EP2850257A1 - Brique de construction garnie d'une matière poreuse silico-calcaire - Google Patents

Brique de construction garnie d'une matière poreuse silico-calcaire

Info

Publication number
EP2850257A1
EP2850257A1 EP13723873.9A EP13723873A EP2850257A1 EP 2850257 A1 EP2850257 A1 EP 2850257A1 EP 13723873 A EP13723873 A EP 13723873A EP 2850257 A1 EP2850257 A1 EP 2850257A1
Authority
EP
European Patent Office
Prior art keywords
parallelepiped
element according
construction element
face
shards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13723873.9A
Other languages
German (de)
English (en)
Inventor
Pascal Del-Gallo
Olivier Dubet
Nicolas Richet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solumix
Original Assignee
Solumix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solumix filed Critical Solumix
Publication of EP2850257A1 publication Critical patent/EP2850257A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • E04B2/16Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position
    • E04B2/18Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position by interlocking of projections or inserts with indentations, e.g. of tongues, grooves, dovetails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0228Non-undercut connections, e.g. tongue and groove connections with tongues next to each other on one end surface and grooves next to each other on opposite end surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0289Building elements with holes filled with insulating material
    • E04B2002/0293Building elements with holes filled with insulating material solid material

Definitions

  • the present invention relates to a construction element of parallelepipedal general shape comprising a porous silico-limestone material and can be used in the construction of a wall.
  • Terracotta bricks called “monomur”, or cement, called “cinderblock”, honeycomb structure, are widely used for the construction of walls, floors, partitions or other elements of buildings.
  • These bricks are usually composed of empty cells (not filled) more or less large, more or less different shape, to increase the thermal insulation.
  • These structures are composed of cells of reduced size to limit thermal convection and have low wall thicknesses to limit the conduction effect.
  • the interior space of the cells of these building bricks is usually empty. When a temperature gradient exists within a cell, the air contained in this cell moves by convection. The direct consequence is a decrease in the thermal resistance of the system.
  • One of the solutions implemented to minimize the convective effects is to increase the number of cells, but this solution is limited by (i) a technical implementation of bricks more and more complex, (ii) quantities of material more (iii) the appearance of more important conduction phenomena.
  • this inorganic material is due to its microstructure to give a "mechanical strength to air or vacuum", namely to trap air (or vacuum) so as to minimize the effects of convection.
  • the document FR 2 876 400 describes the use of hollow bricks filled "with an insulating material based on porous product (s) in bulk".
  • the so-called natural material for filling is based on expanded perlite or expanded vermiculite in which starch is used as a thickener.
  • This document also mentions the use of other components such as colloidal silica, hydrophobic agents, or dispersed plastic.
  • the disadvantage of this solution is the low mechanical strength of the agglomerates, which entails a risk of deterioration of these packing masses during transport and assembly of these elements. It should be noted the low cohesive power of this structure inducing particular risks of loss of material during drilling, cutting, ... walls for example. It is also worth noting the settlement of the grains several years after the laying of the building elements, which ultimately leads to the reduction of the insulating power. Also the use of organic binders or hydrophobic agent substantially reduces the thermal resistance of these materials and increases the risk of fire resistance.
  • Such a structure has the disadvantage of having a low mechanical strength, which limits the reduction of the number of walls of the clay brick and entails risks of degradation of the porous material during the laying of the building elements.
  • the disadvantage of all the solutions presented above is the low compressive strength of the insulating material. This implies the need to ensure the mechanical strength of a building brick only by the shards and does not reduce the amount or section within a certain limit.
  • a solution of the present invention is a construction element of generally parallelepipedal shape comprising at least two cells delimited by internal sherds and peripheral shards, opening on a first opposite face and second face of the parallelepiped and comprising a porous silico-limestone material.
  • the first and second faces of the parallelepiped being each characterized by:
  • the porous silico-limestone material has sufficient mechanical strength to participate in the compressive strength of the construction element. Also, this compressive strength makes it possible to reduce the quantity of sherds and / or their sections, and thus to reduce the effects of thermal conduction.
  • this porous silico-limestone material makes it possible, because of its microstructure, to give a mechanical strength to air or vacuum, namely to trap the air (or the vacuum) so as to minimize the effects of convection.
  • the building element according to the invention may have one or more of the following characteristics:
  • the first and second faces of the parallelepiped are each characterized by a total surface area of the sherds of between 35,000 and 50,000 mm 2 , for a total surface area of said parallelepiped face of between 90,000 and 130,000 mm 2 ;
  • the first and second faces of the parallelepiped are each characterized by a ratio between the surface of the sherds present on said face of the parallelepiped and the total surface of the same face of the parallelepiped between 38 and 43%;
  • the peripheral shards oriented in the second direction 2 have rectangular openings with a width of between 6 mm and 20 mm and a length of between 20 and 35 mm;
  • the cells are of different sizes
  • At least a part of the inner shards oriented in the first direction 1 has a deviation of between 10 and 80 °, preferably between 30 and 60 ° with respect to one of the two edges oriented in the first direction 1;
  • the porous material comprises 25 wt.% to 75 wt.% silica, 75 wt.% to 25 wt.% calcium hydroxide, and 0-5 wt.% magnesia and having a microstructure composed of nodules and / or crystals shaped needles so as to provide pores of average diameter D50 between 0.1 and 10 ⁇ , and so that said porous material has a porosity of between 60 and 95%;
  • the porous material has a microstructure composed of nodules and / or crystals in the form of needles and possibly elementary grains so as to provide pores with an average diameter D50 of between 0.1 and ⁇ ;
  • the porous material has a mechanical strength of between 5 and
  • 40kg / cm 2 preferably between 10 and 30kg / cm 2 and a thermal conductivity of between 50 and 150mW / ° Km, preferably less than 100mW / ° Km;
  • the porous material comprises at least 70% by weight of crystalline phase (s); the crystalline phase also contains one or more silico-calcareous phases representing 0 to 50% of the weight of the porous material;
  • the silico-calcareous phases are chosen from xonotlite, foshagite, tobermorite 11A, tobermorite 9A, Riversideite 9A, Trabzonite [Ca 4 Si 3 O 10, 2H 2 O], Rosenhahnite [Ca 3 Si 3 0 8 (OH) 2 ], Kilalaite [Ca 6 Si 4 O 4, H 2 O], and Gyrolite;
  • the cells have profiled or grooved walls
  • peripheral sherds comprise at least one pin designed to anchor in the groove of a second construction element
  • said building element is a terracotta brick.
  • the porous material used in the invention is totally inorganic, which gives it excellent properties in terms of fire resistance (maintenance of properties high temperature mechanical), reduction of toxic emissions in case of fire, reduction of dust or fiber emissions, etc.
  • the porous material preferably fills all the spaces of the brick because the latter serves as a mold during the shaping of the insulation. This facilitates the filling and avoids any space between the brick and the porous material, space in which the air could circulate by convection. This could result in loss of insulation performance.
  • the porous material used also reduces the transmission of sound waves through the building element.
  • the sound transmission is generally reduced when passing between two materials of different density.
  • the building elements are made from extruded clay to give it the desired shape.
  • Clay is a material consisting of leaflets that orient in the direction of extrusion.
  • the thermal conductivity of the sherds of clay is different in the direction considered: 0.54 W / m in the direction 1 and 0.37 W / m in the direction 2 (see Figures 1 and 2).
  • the transfer of heat through the brick is mainly in the direction 1, between the outside of the building and the interior. Two modes of transfer are predominant, the conduction through the material of the brick and the convection of the air trapped in the openings of the brick.
  • the bricks presented in the following two examples are terracotta and are lined with porous inorganic material.
  • Terracotta makes up the body of the brick and the porous inorganic material fills the cells.
  • the dimensions of the bricks in direction 1 vary from 300 to 490 mm.
  • the surfaces of these two examples are around 43000 mm 2 , the modification relates to the architecture of the brick and therefore the distribution terracotta (sherds) / porous material.
  • the first example ( Figure 1) shows a brick consisting of 7 rows of 2 cells 2a and 2b, separated by parallel shards 3 and 5, with a maximum thickness of 15 mm for a non-porous terracotta brick and 20 mm for a porous terracotta brick.
  • the walls 4a and 6a also do not exceed the previously mentioned values.
  • the second example ( Figure 2) shows a brick with an architecture consisting of 8 rows of 3 cells 2a, 2b and 2c filled with porous material.
  • the cells 2d do not contain a porous mass, they are present to lighten the terracotta structure but they are too small to be filled.
  • Shards 3, 5, 4a, 4b, 6a, 6b, 7 and 8 must not exceed 20 mm in the case of porous clay brick and 15 mm in the case of non-porous terra cotta.
  • the shards 6a and 6b between cells are inclined to increase the path of the heat flow and thus reduce the thermal conductivity in the direction 1.
  • the present invention also relates to a wall comprising one or more building elements according to the invention, wherein the first direction 1 is oriented in the direction of the thickness of the wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Finishing Walls (AREA)
  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Elément de construction de forme générale parallélépipédique comprenant au moins deux alvéoles délimitées par des tessons intérieurs et des tessons périphériques, débouchant sur une première face et une deuxième face opposées du parallélépipède et comprenant une matière poreuse silico-calcaire, la première et la deuxième face du parallélépipède étant chacune caractérisée par: -deux arêtes orientées dans une première direction 1 et deux arêtes orientées dans une deuxième direction 2; -un rapport entre la surface des tessons présents sur ladite face du parallélépipède et la surface totale de cette même face du parallélépipède, compris entre 35et 45%, et -un rapport entre la longueur des tessons intérieurs orientés dans la première direction 1 et la longueur totale des tessons intérieurs de cette même face du parallélépipède, inférieur à 25%.

Description

Brique de construction garnie d'une matière poreuse silico-calcaire
La présente invention a pour objet un élément de construction de forme générale parallélépipédique comprenant une matière poreuse silico-calcaire et pouvant être utilisée dans la construction d'un mur.
Les briques en terre cuite, dites « monomur », ou en ciment, dites « parpaing », à structure alvéolaire, sont largement utilisées pour la construction de murs, de sols, de cloisons ou autres éléments de bâtiments.
Ces briques sont habituellement composées d'alvéoles vides (non remplies) plus ou moins grandes, de forme plus ou moins différentes, destinées à augmenter l'isolation thermique. Ces structures sont composées d'alvéoles de taille réduite pour limiter la convection thermique et présentent de faibles épaisseurs de parois pour limiter l'effet de conduction.
L'espace intérieur des alvéoles de ces briques de construction est généralement vide. Lorsqu'il existe un gradient de température au sein d'une alvéole, l'air contenu dans cette alvéole se déplace par convection. La conséquence directe est une diminution de la résistance thermique du système. Une des solutions mises en œuvre pour minimiser les effets convectifs consiste à augmenter le nombre d'alvéoles, mais cette solution est limitée par (i) une mise en œuvre technique des briques de plus en plus complexe, (ii) des quantités de matière plus importantes, (iii) l'apparition de phénomènes de conduction plus important.
Pour limiter ce phénomène, il est possible de remplir ces alvéoles avec un matériau inorganique de faible conductivité thermique et ainsi empêcher ces mouvements convectifs. Le rôle de ce matériau inorganique est du fait de sa microstructure de donner une « tenue mécanique à l'air ou au vide », à savoir emprisonner l'air (ou le vide) de manière à minimiser les effets de convection.
A titre d'exemple, le document FR 2521 197 Al, fait mention de briques en terre cuite avec des alvéoles remplies « d'un matériaux cellulaire à haut pouvoir d'isolation thermique ». Les matériaux proposés pour le remplissage des alvéoles sont : « une mousse de polyuréthane, une mousse de polystyrène, ou tout autre matériaux fibreux (laine de verre ou de roche) ou divisé (agglomérat de liège) ». L'inconvénient de cette solution est l'utilisation de matériaux organiques et/ou inorganiques qui soient (i) peuvent mal se comporter face au risque d'incendie : tenue au feu, résistance au feu, émission(s) de gaz toxique(s) et de débris enflammés (ii) soit sont potentiellement dangereux car classifïables à termes dans la catégorie des FCR (Fibres Céramiques Réfractaires) nécessitant des conditions spécifiques de pose puis de gestion des déchets, (iii) soit perdre des propriétés d'isolation au cours du temps (tassement du garnissage, dégradation chimique des matériaux, ...), (iv) ne présentent pas ou peu de tenue mécanique (< 5 kg/cm2), (v) ne sont pas recyclables dans les filières traditionnelles, (vi) soit un mélange de points (i) à (vi). On peut également noter que dans certains cas le garnissage se fait sur place pendant le chantier, cela est une contrainte et nécessite de la main d'œuvre supplémentaire.
Le document FR 2 876 400 décrit quant à lui l'utilisation de briques creuses remplie « avec un matériau isolant à base de produit(s) poreux en vrac ». La matière dite naturelle pour le garnissage est à base de perlite expansée ou de la vermiculite expansée dans laquelle on utilise l'amidon comme épaississant. Ce document fait également mention de l'utilisation d'autres composants comme de la silice colloïdale, des agents hydrophobes, ou du plastique dispersé.
L'inconvénient de cette solution est la faible tenue mécanique des agglomérats, cela entraînant un risque de détérioration de ces masses de garnissage pendant le transport et le montage de ces éléments. Il est à noter le faible pouvoir cohésif de cette structure induisant notamment des risques de perte de matière lors de perçage, de découpe, ... des murs par exemple. Il est à noter également le tassement des grains plusieurs années après la pose des éléments de construction, ce qui entraîne à terme la diminution du pouvoir isolant. Egalement l'emploi de liants organiques ou d'agent hydrophobe diminue sensiblement la résistance thermique de ces matériaux et accroît le risque de tenue au feu.
Sur le même principe, on peut citer le document FR2 927 623 Al qui divulgue des éléments de construction de type brique en terre cuite, garnie d'une mousse de chaux. Cette matière poreuse est constituée d'un mélange chaux-ciment 65 à 90% de la matière sèche, de fibres, de charges minérales, d'un durcisseur et d'un agent moussant. Le principe est de faire prendre de la chaux avec un agent moussant pour créer des bulles d'air, de les emprisonner lors de la réaction et avoir ainsi une structure poreuse.
Une telle structure présente le désavantage d'avoir une tenue mécanique faible, ce qui limite la réduction du nombre de parois de la brique de terre cuite et entraîne des risques de dégradation de la matière poreuse pendant la pose des éléments de construction. Autrement dit, l'inconvénient de toutes les solutions présentées ci-dessus est la faible résistance mécanique à la compression du matériau isolant. Ceci implique la nécessité d'assurer la tenue mécanique d'une brique de construction uniquement par les tessons et ne permet pas d'en réduire la quantité ou la section en deçà d'une certaine limite.
Partant de là, un problème qui se pose est de fournir une brique de construction comprenant un matériau isolant ayant une résistance mécanique suffisante pour participer à la résistance à la compression de la brique.
Une solution de la présente invention est un élément de construction de forme générale parallélépipédique comprenant au moins deux alvéoles délimitées par des tessons intérieurs et des tessons périphériques, débouchant sur une première face et une deuxième face opposées du parallélépipède et comprenant une matière poreuse silico-calcaire, la première et la deuxième face du parallélépipède étant chacune caractérisée par :
deux arêtes orientées dans une première direction 1 et deux arêtes orientées dans une deuxième direction 2 ;
- un rapport entre la surface des tessons présents sur ladite face du parallélépipède et la surface totale de cette même face du parallélépipède, compris entre 35 et 45%, et
- un rapport entre la longueur des tessons intérieurs orientés dans la première direction 1 et la longueur totale des tessons intérieurs de cette même face du parallélépipède, inférieur à 25%, préférentiellement moins de 10%.
La matière poreuse silico-calcaire présente une résistance mécanique suffisante pour participer à la résistance à la compression de l'élément de construction. Aussi, cette résistance à la compression permet de réduire la quantité de tessons et/ou leurs sections, et donc de réduire les effets de conduction thermique.
D'autre part, cette matière poreuse silico-calcaire permet du fait de sa microstructure de donner une tenue mécanique à l'air ou au vide, à savoir emprisonner l'air (ou le vide) de manière à minimiser les effets de convection.
Selon le cas, l'élément de construction selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- la première et la deuxième faces du parallélépipède sont chacune caractérisée par une surface totale des tessons comprise entre 35 000 et 50 000 mm2, pour une surface totale de ladite face parallélépipède comprise entre 90 000 et 130 000 mm2 ; la première et la deuxième faces du parallélépipède sont chacune caractérisée par un rapport entre la surface des tessons présents sur ladite face du parallélépipède et la surface totale de cette même face du parallélépipède compris entre 38 et 43% ;
les tessons périphériques orientés dans la deuxième direction 2 présentent des ouvertures rectangulaires de largeur comprise entre 6 mm et 20 mm et de longueur comprise entre 20 et 35 mm ;
les alvéoles sont de dimensions différentes ;
au moins une partie des tessons intérieurs orientés dans la première direction 1 présente une déviation comprise entre 10 et 80°, de préférence entre 30 et 60° par rapport à une des deux arêtes orientées dans la première direction 1 ;
la matière poreuse comprend 25% massique à 75% massique de silice, de 75% massique à 25% massique d'hydroxyde de calcium, et de 0 à 5% massique de magnésie et présentant une microstructure composée de nodules et/ou de cristaux sous forme d'aiguilles de manière à ménager des pores de diamètre moyen D50 compris ente 0,1 et 10 μιη, et de manière à ce que ladite matière poreuse présente une porosité comprise entre 60 et 95% ;
la matière poreuse présente une microstructure composée de nodules et/ou de cristaux sous forme d'aiguilles et éventuellement de grains élémentaires de manière à ménager des pores de diamètre moyen D50 compris entre 0,1 et Ιμιη ;
- la matière poreuse présente une résistance mécanique comprise entre 5 et
40kg/cm2 préférentiellement entre 10 et 30kg/cm2 et une conductivité thermique comprise entre 50 et 150mW/°K.m préférentiellement inférieure à 100mW/°K.m ;
la matière poreuse comprend au moins 70% en poids de phase(s) cristalline(s) ; la phase cristalline renferme en outre une ou plusieurs phases silico-calcaire représentant 0 à 50% du poids de la matière poreuse ;
les phases silico-calcaires sont choisis parmi la xonotlite, la foshagite, la tobermorite 11 A, la tobermorite 9A, la Riversideite 9Â, la Trabzonite [Ca4Si30io, 2H20], la Rosenhahnite [Ca3Si308(OH)2], la Kilalaite [Ca6SÎ40i4, H20], et la Gyrolite ;
les alvéoles présentent des parois profilées ou rainurées ;
- au moins une partie des tessons périphériques comprennent au moins un tenon dessiné pour s'ancrer dans la rainure d'un deuxième élément de construction ;
ledit élément de construction est une brique en terre cuite.
La matière poreuse utilisée dans l'invention est totalement inorganique ce qui lui confère d'excellentes propriétés en terme de résistance au feu (maintien des propriétés mécaniques à haute température), de réduction des émissions de produits toxiques en cas d'incendie, de réduction des émissions de poussières ou de fibres,...
La matière poreuse remplit de préférence la totalité des espaces de la brique car cette dernière sert de moule lors de la mise en forme de l'isolant. Cela facilite le remplissage et permet d'éviter tout espace entre la brique et la matière poreuse, espace dans lequel l'air pourrait circuler par convection. Ceci pourrait entraîner une perte de performance d'isolation.
La pose de ces éléments de construction est facilitée par rapport aux isolants traditionnels car il fait partie intégrante de la brique. La pose est donc identique à celle d ' une brique non garnie .
La matière poreuse utilisée permet également de réduire la transmission des ondes sonores à travers l'élément de construction. La transmission sonore est en générale réduite lors du passage entre deux matériaux de densité différente.
Enfin, l'ensemble des matériaux utilisés dans l'élaboration de l'élément de construction selon l'invention sont naturelles et recyclables.
Les éléments de construction sont réalisés à partir d'argile extrudé pour lui donner la forme souhaitée. L'argile est un matériau constitué de feuillets qui s'orientent dans la direction de l'extrusion. La conductivité thermique des tessons d'argile est différente suivant la direction considérée : 0.54 W/m dans la direction 1 et 0.37 W/m dans la direction 2 (cf figures 1 et 2).
Le transfert de la chaleur à travers la brique se fait majoritairement dans la direction 1, entre l'extérieur du bâtiment et l'intérieur. Deux modes de transferts sont prépondérants, la conduction à travers le matériau de la brique et la convection de l'air emprisonné dans les ouvertures de la brique.
Les briques présentées sur les deux exemples suivants se composent de terre cuite et sont garnies de matière poreuse inorganique. La terre cuite compose le corps de la brique et la matière poreuse inorganique remplie les alvéoles. Les dimensions des briques selon la direction 1 varient de 300 à 490 mm. Les surfaces de ces deux exemples sont aux environs de 43000 mm2, la modification porte sur l'architecture de la brique et par conséquent sur la répartition terre cuite (tessons)/matière poreuse. Le premier exemple (figure 1) montre une brique constituée de 7 rangés de 2 alvéoles 2a et 2b, séparées par des tessons parallèles 3 et 5, d'une épaisseur maximale de 15 mm pour une brique en terre cuite non poreuse et de 20 mm pour une brique en terre cuite poreuse. Les parois 4a et 6a n'excèdent également pas les valeurs précédemment citées. Le deuxième exemple (figure 2) montre une brique avec une architecture constituée de 8 rangés de 3 alvéoles 2a, 2b et 2c remplies de matière poreuse. Les alvéoles 2d ne contiennent pas de masse poreuse, elles sont présentent pour alléger la structure en terre cuite mais elles sont de trop faible dimension pour être remplies. Les tessons 3, 5, 4a, 4b, 6a, 6b, 7 et 8 ne doivent pas excéder 20 mm dans le cas de brique en terre cuite poreuse et 15 mm dans le cas de terre cuite non poreuse. Les tessons 6a et 6b entre alvéoles sont inclinés afin d'augmenter le parcours du flux thermique et ainsi de réduire la conductivité thermique dans la direction 1.
Enfin la présente invention a également pour objet un mur comprenant un ou plusieurs éléments de construction selon l'invention, dans lequel la première direction 1 est orientée dans le sens de l'épaisseur du mur

Claims

Revendications
1. Elément de construction de forme générale parallélépipédique comprenant au moins deux alvéoles délimitées par des tessons intérieurs et des tessons périphériques, débouchant sur une première face et une deuxième face opposées du parallélépipède et comprenant une matière poreuse silico-calcaire, la première et la deuxième face du parallélépipède étant chacune caractérisée par :
deux arêtes orientées dans une première direction 1 et deux arêtes orientées dans une deuxième direction 2 ;
- un rapport entre la surface des tessons présents sur ladite face du parallélépipède et la surface totale de cette même face du parallélépipède, compris entre 35 et 45%, et
- un rapport entre la longueur des tessons intérieurs orientés dans la première direction 1 et la longueur totale des tessons intérieurs de cette même face du parallélépipède, inférieur à 25%.
2. Elément de construction selon la revendication 1 , dans lequel la première et la deuxième faces du parallélépipède sont chacune caractérisée par une surface totale des tessons comprise entre 35 000 et 50 000 mm2, pour une surface totale de ladite face parallélépipède comprise entre 90 000 et 130 000 mm2.
3. Elément de construction selon l'une des revendications 1 ou 2, dans lequel la première et la deuxième face du parallélépipède sont chacune caractérisée par un rapport entre la surface des tessons présents sur ladite face du parallélépipède et la surface totale de cette même face du parallélépipède compris entre 38 et 43%.
4. Elément de construction selon l'une des revendications 1 à 3, caractérisé en ce que les tessons périphériques orientés dans la deuxième direction 2 présentent des ouvertures rectangulaires de largeur comprise entre 6 mm et 20 mm et de longueur comprise entre 20 et 35 mm.
5. Elément de construction selon l'une des revendications 1 à 4, caractérisé en ce que les alvéoles sont de dimensions différentes.
6. Elément de construction selon l'une des revendications 1 à 5, caractérisé en ce qu'au moins une partie des tessons intérieurs orientés dans la première direction 1 présente une déviation comprise entre 10 et 80°, de préférence entre 30 et 60° par rapport à une des deux arêtes orientées dans la première direction 1.
7. Elément de construction selon l'une des revendications 1 à 6, caractérisé en ce que la matière poreuse comprend 25% massique à 75% massique de silice, de 75% massique à 25% massique d'hydroxyde de calcium, et de 0 à 5% massique de magnésie et présentant une microstructure composée de nodules et/ou de cristaux sous forme d'aiguilles de manière à ménager des pores de diamètre moyen D50 compris ente 0,1 et 10 μιη, et de manière à ce que ladite matière poreuse présente une porosité comprise entre 60 et 95%.
8. Elément de construction selon l'une des revendications précédentes, caractérisé en ce que la matière poreuse présente une microstructure composée de nodules et/ou de cristaux sous forme d'aiguilles et éventuellement de grains élémentaires de manière à ménager des pores de diamètre moyen D50 compris entre 0,1 et Ιμιη.
9. Elément de construction selon la revendication 8, caractérisé en ce que la matière poreuse présente une résistance mécanique comprise entre 5 et 40kg/cm2 préférentiellement entre 10 et 30kg/cm2 et une conductivité thermique comprise entre 50 et 150mW/°K.m préférentiellement inférieure à 100mW/°K.m.
10. Elément de construction selon l'une des revendications 8 ou 9, caractérisée en ce que la matière poreuse comprend au moins 70% en poids de phase(s) cristalline(s).
11. Elément de construction selon la revendication 10, caractérisée en ce que la phase cristalline renferme en outre une ou plusieurs phases silico-calcaire représentant 0 à 50%) du poids de la matière poreuse
12. Elément de construction selon la revendication 11 , caractérisée en ce que les phases silico-calcaires sont choisis parmi la xonotlite, la foshagite, la tobermorite 11 A, la tobermorite 9A, la Riversideite 9Â, la Trabzonite [Ca4Si30io, 2H20], la Rosenhahnite [Ca3Si308(OH)2] , la Kilalaite [Ca6Si40i4, H20], et la Gyrolite.
13. Elément de construction selon l'une des revendications 1 à 12, caractérisé en ce que les alvéoles présentent des parois profilées ou rainurées.
14. Elément de construction selon l'une des revendications 1 à 13, caractérisé en ce qu'au moins une partie des tessons périphériques comprennent au moins un tenon dessiné pour s'ancrer dans la rainure d'un deuxième élément de construction.
15. Elément de construction selon l'une des revendications là 14, caractérisé en ce que ledit élément de construction est une brique en terre cuite.
16. Mur comprenant un ou plusieurs éléments de construction selon l'une des revendications 1 à 15, dans lequel la première direction 1 est orientée dans le sens de l'épaisseur du mur.
EP13723873.9A 2012-05-16 2013-04-25 Brique de construction garnie d'une matière poreuse silico-calcaire Withdrawn EP2850257A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254487A FR2990709B1 (fr) 2012-05-16 2012-05-16 Brique de construction garnie d'une matiere poreuse silico-calcaire
PCT/FR2013/050923 WO2013171391A1 (fr) 2012-05-16 2013-04-25 Brique de construction garnie d'une matière poreuse silico-calcaire

Publications (1)

Publication Number Publication Date
EP2850257A1 true EP2850257A1 (fr) 2015-03-25

Family

ID=48468639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13723873.9A Withdrawn EP2850257A1 (fr) 2012-05-16 2013-04-25 Brique de construction garnie d'une matière poreuse silico-calcaire

Country Status (5)

Country Link
EP (1) EP2850257A1 (fr)
CA (1) CA2871728A1 (fr)
FR (1) FR2990709B1 (fr)
TN (1) TN2014000453A1 (fr)
WO (1) WO2013171391A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991701B1 (fr) * 2012-06-11 2015-03-06 Rgo Brique de construction avec conduction thermique limitee
WO2022167878A1 (fr) * 2021-02-02 2022-08-11 Moayed Pouya Briques d'argile isolées utilisant des couches d'air et de mousse de polyuréthane souple

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044253A1 (de) * 2010-09-02 2012-03-08 Roro Plant&Baut Gmbh Vorrichtung zum Aufbau eines Bauwerks

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598442A5 (en) * 1976-11-30 1978-04-28 Btr Materiaux Sa Brick assembly for building wall
DE3124375A1 (de) * 1981-06-22 1983-02-03 Hasit Trockenmörtel GmbH & Co, 8050 Freising "baustein"
DE3202817A1 (de) * 1982-01-29 1983-08-11 Hoechst Ag, 6230 Frankfurt "anorganischer verbundstein und verfahren zu seiner herstellung"
FR2521197A1 (fr) 1982-02-08 1983-08-12 Labasse Gaston Element de construction en terre cuite incorporant un isolant thermique
AT400458B (de) * 1988-01-18 1996-01-25 Wienerberger Baustoffind Ag Hochlochziegel
DE4214825C2 (de) * 1992-05-10 2001-04-12 Nuedling Franz C Basaltwerk Bauelement, insbesondere Schallschutzstein
DE19741282A1 (de) * 1997-09-19 1999-04-08 Diha Schneider Gmbh Mauerwerksbaustein und Verfahren und Vorrichtung zur Herstellung desselben
DE20208886U1 (de) * 2002-06-10 2002-09-12 Nikol Schaller Ziegelwerk GmbH &amp; Co KG, 95145 Oberkotzau Ziegel
DE102004049618B4 (de) 2004-10-12 2007-08-30 Knauf Perlite Gmbh Hohlbaustein und Verwendung einer rieselfähigen Mischung
DE102006002826B4 (de) * 2005-07-21 2008-07-10 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Verfahren zur Herstellung von Mauersteinen sowie mit dem Verfahren hergestellter Mauerstein
DE102007051830A1 (de) * 2007-10-30 2009-05-07 Rimmele, Matthias Wärmedämmmaterialaufweisender Baustein sowie Verfahren zu seiner Herstellung
FR2927623B1 (fr) 2008-02-19 2012-05-25 Imerys Tc Composition de mousse de chaux pour isolation thermique
DE202009016311U1 (de) * 2009-12-02 2010-04-08 Ziegelwerk Ott Deisendorf Gmbh & Co. Besitz-Kg Mauerstein mit mehreren nebeneinander angeordneten Reihen von Hohlräumen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044253A1 (de) * 2010-09-02 2012-03-08 Roro Plant&Baut Gmbh Vorrichtung zum Aufbau eines Bauwerks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHOBER, GEORG: "Pore size distribution in AAC", 17 January 2012 (2012-01-17), Retrieved from the Internet <URL:www.pb-aac.de/pores.html> [retrieved on 20151021] *
See also references of WO2013171391A1 *
WEBER, HELMUT; HULLMANN, HEINZ: "Das Porenbeton-Handbuch; Planen und Bauen mit System", 1996, BAUVERLAG GMBH, WIESBADEN UND BERLIN, Wiesbaden, Berlin, ISBN: 3-7625-3228-1 *

Also Published As

Publication number Publication date
TN2014000453A1 (fr) 2016-03-30
FR2990709B1 (fr) 2015-05-08
CA2871728A1 (fr) 2013-11-21
FR2990709A1 (fr) 2013-11-22
WO2013171391A1 (fr) 2013-11-21

Similar Documents

Publication Publication Date Title
EP2093201A2 (fr) Composition de mousse de chaux pour isolation thermique
FR2777627A1 (fr) Structure de passage dans une cloison et son procede d&#39;installation
FR2876400A1 (fr) Brique creuse et melange destine a sa confection
CN109024913A (zh) 装配式自保温砌块体系及应用方法
WO2013171391A1 (fr) Brique de construction garnie d&#39;une matière poreuse silico-calcaire
FR3023859A1 (fr) Element de construction isolant, procede de fabrication et materiau isolant correspondants
FR3073841A1 (fr) Procede de fabrication de blocs de granulats legers vegetalisables
FR2985008A1 (fr) Regenerateur a paroi isolante composite.
EP2850255A1 (fr) Brique de construction garnie d&#39;une matière poreuse silico-calcaire présentant une tenue mécanique
FR2989707A1 (fr) Garnissage de brique de construction par une matiere poreuse
FR2915701A1 (fr) Procede de fabrication d&#39;un element de construction ayant au moins une face resistante au feu.
EP2159204A1 (fr) Procédé de fabrication d&#39;un élément de construction ayant au moins une face résistante au feu.
WO2013186471A1 (fr) Brique de construction avec conduction thermique limitée
EP3730722A1 (fr) Caisson et procédé d&#39;isolation thermique pour éléments techniques
CN201581544U (zh) 一种隔热砖
WO2006119590A2 (fr) Composition material a base de ciment et de fibres de bois destinee a la fabrication des elements de construction
EP1063364B1 (fr) Mur isolant
EP2726431A1 (fr) Matière poreuse à base de silice et de portlandite pour le garnissage de briques d&#39;isolation de structure contrôlée et procédé d&#39;élaboration associé
EP4010540A1 (fr) Panneau d&#39;isolation thermique
EP3828358B1 (fr) Mur à coffrage intégré et procédé de fabrication dudit mur
FR2962999A1 (fr) Granulats calibres de beton cellulaire permettant de fabriquer du beton leger isolant
WO2019132636A1 (fr) Brique composite isolante contenant un bloc en plastique mince et fermé, rempli de ouate de cellulose, et enrobé par une couche de béton de granulats.
EP4402113A1 (fr) Elément de construction isolant
EP2912236B1 (fr) Brique de construction intégrant une couche isolante interne
EP2915789B1 (fr) Elément de construction pour isolation acoustique et thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEL-GALLO, PASCAL

Inventor name: RICHET, NICOLAS

Inventor name: DUBET, OLIVIER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171212

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEL-GALLO, PASCAL

Inventor name: DUBET, OLIVIER

Inventor name: RICHET, NICOLAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180424