EP2837829B1 - Kennfeldregelung von kreiselpumpen - Google Patents

Kennfeldregelung von kreiselpumpen Download PDF

Info

Publication number
EP2837829B1
EP2837829B1 EP13180356.1A EP13180356A EP2837829B1 EP 2837829 B1 EP2837829 B1 EP 2837829B1 EP 13180356 A EP13180356 A EP 13180356A EP 2837829 B1 EP2837829 B1 EP 2837829B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
flow rate
liquid
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13180356.1A
Other languages
English (en)
French (fr)
Other versions
EP2837829A1 (de
Inventor
Jens-Patrick Springer
Andreas Grill
Richard Aumann
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP13180356.1A priority Critical patent/EP2837829B1/de
Priority to US14/911,925 priority patent/US10480515B2/en
Priority to CN201480051136.3A priority patent/CN105556127B/zh
Priority to PCT/EP2014/063657 priority patent/WO2015022113A1/de
Publication of EP2837829A1 publication Critical patent/EP2837829A1/de
Application granted granted Critical
Publication of EP2837829B1 publication Critical patent/EP2837829B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a method for regulating a pump, in particular a centrifugal pump, while pumping a liquid and a corresponding device.
  • Centrifugal pumps have a strong dependency of the delivery rate on the applied pressure difference and the speed. More specifically, a difference between the pump outlet side liquid pressure and the pump inlet side liquid pressure determines the flow rate (mass flow or volume flow).
  • Each pump has a characteristic pump map that defines a relationship between the three parameters (difference between the pump-side liquid pressure and the pump-side liquid pressure, flow rate, speed). In this way, if the two parameters are known, the third can be determined from the characteristic diagram.
  • the map can be in the form of empirical, semi-empirical or theoretical model equations. In empirical model equations, empirically recorded values can be linked to compensation functions. These empirical compensation functions can also be recorded in a table. In the case of semi-empirical model equations, both empirically determined values and physical equations are used, which e.g. Describe relationships between physical parameters. In the case of theoretical model equations, the relationships between the parameters are completely described by physical equations.
  • Fig. 1 shows an example of such a map.
  • the delivery head H as a function of the speed n is plotted here via the volume flow Q.
  • the volume flow is limited by a minimum and maximum value of the map.
  • the lower limit of the volume flow does not have to be constant as in the drawing, but can depend on the speed.
  • Fig. 2 shows a reduction in the delivery head from H 1 to H 2 at constant speed n.
  • the flow from Q 1 to Q 2 increases significantly due to the map behavior. Such changes can cause problems in process operation that can lead to malfunctions, downtimes and defects.
  • changes in the flow are desired regardless of the current delivery head. This function is also affected by the influence of the map. If, for example, the flow is to be increased and the speed is increased, the increased delivery rate can result in an increase in pressure in many processes on the high-pressure side, which partly compensate for the increase in flow due to the influence of the map.
  • the map also shows that there are machine-specific restrictions for pump operation (such as a minimum volume flow), which must be observed to ensure that the machine functions permanently.
  • a pump (P) is regulated in such a way that desired fresh steam parameters can be set reliably at the outlet of a heat exchanger (V) connected downstream of the pump.
  • V heat exchanger
  • the speed of the pump is influenced by the control in such a way that the evaporation condition changes as a result of the change in flow rate in such a way that the desired pressures and temperatures of the live steam are reached and are controlled stably for stable process operation.
  • the delivery head of the pump depends on the live steam pressure (p FD ) and on the pressure level upstream of the pump (p KOND ).
  • This pressure depends on the current condensation pressure of the condenser (K) upstream of the pump.
  • This condenser cools and liquefies the working medium in the ORC process by giving off heat to a cooling medium.
  • This cooling medium e.g. water from a heating network or ambient air
  • a cascade control in accordance with Fig. 4 , In it, an internal control loop regulates the flow based on a comparison of the current actual value and the setpoint of the mass or Volume flow, while an external control loop specifies the flow setpoint for the control to the actual control variable of the pump (e.g. process pressure) to the inner loop. This allows flow deviations to be compensated for and at the same time regulated to a desired process value.
  • an internal control loop regulates the flow based on a comparison of the current actual value and the setpoint of the mass or Volume flow
  • an external control loop specifies the flow setpoint for the control to the actual control variable of the pump (e.g. process pressure) to the inner loop. This allows flow deviations to be compensated for and at the same time regulated to a desired process value.
  • the (inner) sub-process I can be the pumping process. This contains all the components that convert the signal of the mass flow control (m control) into the delivery of a medium. This can include control / speed control of the pump, the pump motor and the pump itself.
  • the outer subprocess II can, for example, be an evaporation process and the process value s can be the media pressure p after the evaporation. The evaporation process can thus contain all the necessary components, such as one or more heat exchangers, containers, fittings, etc.
  • EP-A-1286056 discloses a method of controlling a pump in response to a signal indicating the presence and extent of cavitation.
  • a controller receives suction and discharge pressure signals from sensors upstream and downstream of the pump.
  • the object of the invention is to at least partially overcome the disadvantages described above.
  • the method according to the invention for regulating a pump, in particular a centrifugal pump, while pumping a liquid comprises the steps: establishing a setpoint of a flow rate of the pump; Measure an inlet pressure of the liquid upstream of the pump and an outlet pressure the liquid downstream of the pump; Determining a setpoint of a speed of the pump or a control signal determining the speed from a map of the pump, the setpoint of the flow rate and a difference between the outlet pressure and the inlet pressure being input to the map as input values; and setting the speed of the pump to the setpoint value of the speed or supplying the control signal determining the speed to the pump.
  • control can react when a pressure fluctuation occurs before the effects of a flow fluctuation occur (predictive control behavior), which improves the control quality.
  • the map of the pump can be used in the usual form, so there is a relationship between the flow rate and the differential pressure or the delivery head at different but constant speed.
  • the map can alternatively or additionally be used in "inverted” form (hereinafter also referred to as inverted map), in which case there is a relationship between the differential pressure or delivery head and the speed at different but constant flow rates.
  • the map is used in such a way that a change in the flow rate caused by a change in differential pressure is counteracted by a change in speed in order to keep the flow rate as constant as possible, which is done by finding a corresponding operating point of the pump in its map or inverted map.
  • the setpoint of the flow rate can in turn be determined by the control system, for example based on a specified output pressure of the pump or based on another suitable process value.
  • the setpoint of the flow rate can be set by a user. In both cases, this can be done either by directly specifying the flow rate or indirectly by means of a Specification of the speed, from which the flow rate to be kept constant can then be determined.
  • the steps of measuring the inlet pressure of the liquid and the outlet pressure of the liquid, determining the set point of the speed of the pump, and adjusting the speed of the pump are performed continuously.
  • the determination of the setpoint value of the flow rate can comprise the following steps: determining an average over time of the difference between the outlet pressure and the inlet pressure; and determining the desired value of the flow rate from the characteristic diagram of the pump, the mean value over time of the difference between the outlet pressure and the inlet pressure and a current speed of the pump being input into the characteristic diagram.
  • a setpoint of the flow rate that is to be maintained as possible can be determined while the pump is in operation.
  • the setpoint of the flow rate can also be set continuously.
  • Another development consists in that the temporal average of the difference between the outlet pressure and the inlet pressure can be determined from a first temporal mean of the inlet pressure and a second temporal mean of the outlet pressure. It is therefore possible to use different time constants for averaging the inlet pressure and the outlet pressure if necessary.
  • the determination of the setpoint value of the speed of the pump can comprise the following further steps: checking whether a combination of the speed of the pump, the setpoint value of the flow rate and the difference between the outlet pressure and the inlet pressure lies within a map limit; Setting the speed of the pump to the setpoint value of the speed if the combination lies within the map; and setting the speed of the pump to a safety value if the combination lies outside the characteristic diagram, the safety value preferably being selected such that the deviation from the desired value of the flow rate is as small as possible.
  • the setting of the speed of the pump to the setpoint value of the speed can include the output of a correction signal to an actuating signal supplied to the pump.
  • a correction signal can be applied to the control signal.
  • a minimum control signal can be output as a correction signal in order to prevent an operating state from being set outside the characteristic diagram.
  • the map defines a relationship between the flow rate and a delivery head of the pump at different speeds, and the delivery head is determined from the pressure difference between the measured outlet pressure and the measured inlet pressure.
  • the density of the liquid can be used as a constant predetermined value, or the method can comprise the further step of measuring the temperature of the liquid and the density of the liquid can be obtained from a functional dependence of the density on the temperature or from a table can be determined, the measurement of the temperature in particular comprising an averaging of the temperature over a predetermined time interval.
  • the flow rate can be defined as a volume flow or as a mass flow of the liquid through the pump.
  • the device according to the invention for regulating a pump, in particular a centrifugal pump, during the pumping of a liquid comprises: a first one Pressure measuring device for measuring an inlet pressure of the liquid upstream of the pump; a second pressure measuring device for measuring an outlet pressure of the liquid downstream of the pump; and control means for setting a target value of a flow rate of the pump; for determining a setpoint value of a speed of rotation of the pump from a map of the pump stored in a memory, the setpoint value of the flow rate and a difference between the outlet pressure and the inlet pressure being entered as input values into the map; and to set the speed of the pump to the setpoint of the speed.
  • the advantages correspond to those mentioned in connection with the method according to the invention.
  • the device according to the invention can be designed such that it can be used to carry out the method according to the invention or one of its developments.
  • control device can also be suitable for determining an average over time of the difference between the outlet pressure and the inlet pressure; and for determining the setpoint value of the flow rate from the characteristic diagram of the pump, the mean time value of the difference between the outlet pressure and the inlet pressure and a current speed of the pump being entered as input values in the characteristic diagram.
  • control device can be designed to output an actuating signal to the pump, and setting the speed of the pump to the setpoint value of the rotational speed can include outputting a correction signal to the actuating signal supplied to the pump.
  • the device can further comprise: a temperature measuring device for measuring a temperature of the liquid and for transmitting a temperature measurement signal to the control device; wherein the control device can also be designed to determine a density of the liquid from the temperature measurement signal and to determine the density of the liquid from a functional dependence of the density on the temperature or from a table stored in the memory.
  • the device according to the invention or one of the developments can be part of an ORC system (Organic Rankine Cycle) with a pump for pumping a working medium of the ORC system.
  • ORC system Organic Rankine Cycle
  • Fig. 5 illustrates the inventive method according to one embodiment. Knowing the map of a machine allows its limitation with regard to the parameters of a process (difference between the pump outlet-side fluid pressure and the pump inlet-side fluid pressure, flow rate, speed) and their interdependency in the control system (map control). A control algorithm monitors the current delivery head (or the differential pressure) and the speed and uses this to calculate the current flow rate. For this purpose, the map is stored numerically in the algorithm.
  • the current density can either be determined exactly by means of an additional measurement of the temperature of the medium, or can be assumed to be constant by approximation in the operating range used.
  • the latter simplification is at many media in the liquid phase and limited operating range (pressure and / or temperature range) in a sufficiently good approximation for the control is permissible.
  • a setpoint of a flow rate of the pump is determined as the currently calculated flow rate; measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; determining a setpoint value of a speed of rotation of the pump from the map of the pump, the setpoint value of the flow rate and the difference between the outlet pressure and the inlet pressure being input into the map; and finally the speed of the pump is set to the setpoint of the speed.
  • the limitation of the map (e.g. minimum flow) is also taken into account in the algorithm. This ensures both a uniform process operation and compliance with the operating limits of the pump.
  • Fig. 6 shows the functioning of the compensation influence of the map control, namely the correction of the speed in the event of a change in differential pressure, in order to correct the flow rate in this way.
  • the mode of operation of the method according to this embodiment of the map control according to the invention is shown in the map of the pump. If the pressure difference or the corresponding delivery head falls from that in point 1 to that in point 2 at constant speed n 1 , the flow rate Q increases. By reducing the speed to n 2 , the original flow rate can now be changed at the new pressure difference or delivery head be restored in point 3.
  • the measured values p FD and p KOND flow into the control according to the invention (see Fig. 7 ).
  • the measurement signal is first averaged (moving average) in a suitable averaging interval.
  • the mean value of the live steam pressure p FD_M is used with the live steam setpoint for control deviation as the input signal of a controller (for example a PID controller).
  • the output signal and the difference between the mean values flow into the map KF 1 as input values.
  • the currently expected mass flow is calculated here. This value, as well as the difference between the averaged current measured values, flow into the inverted map KF -1 .
  • This provides the currently required control signal from the pump.
  • the difference between this value and the current control signal of the controller is the deviation to be compensated for. Adding this deviation to the control signal results in the compensation of the disturbance.
  • the influence of this activation can be adapted to the process by means of the gain K.
  • the map KF 1 also delivers the currently required minimum control signal s min to the controller. This can prevent the controller from falling below this map limit.
  • the predictive operating principle of this regulation offers a significant advantage of this procedure.
  • the flow fluctuation is compensated for as soon as pressure fluctuations occur (the cause of mass flow changes and the resulting malfunctions) before a downstream measuring system or the downstream process can detect the deviation or feel its effects.
  • the map control also implicitly implements the function of a feedforward control.
  • Fig. 8 shows an example from a measurement on an ORC system the course of differential pressure (p FD -p KOND ) (upper curve in Fig. 8 ) and mass flow (lower curve in Fig. 8 ) over a period of approx. 15 minutes. You can see how pressure fluctuations show their influence on the flow. When the differential pressure drops, a higher flow is immediately measurable, and vice versa.
  • This stabilization can be implemented by the map control.
  • the consequences of stabilization on design and process can mean higher process quality and availability, but also higher security against violations of process limit values. For example, with lower expected oscillations of temperatures, the safety limits are reduced depending on the now lower peak values or the process can be operated at higher temperatures (closer to the safety limits) without reductions in availability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit und eine entsprechende Vorrichtung.
  • Stand der Technik
  • Kreiselpumpen weisen eine starke Abhängigkeit der Fördermenge von der anliegenden Druckdifferenz und der Drehzahl auf. Genauer gesagt, bestimmt eine Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck die Durchflussmenge (Massenstrom oder Volumenstrom). Jede Pumpe weist ein für sie kennzeichnendes Pumpenkennfeld auf, das einen Zusammenhang zwischen den drei Parametern (Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck, Durchflussmenge, Drehzahl) definiert. Auf diese Weise kann aus dem Kennfeld bei Kenntnis von zwei der Parameter der dritte ermittelt werden. Das Kennfeld kann in Form von empirischen, semi-empirischen oder theoretischen Modellgleichungen vorliegen. Bei empirischen Modellgleichungen können empirisch erfasste Werte mit Ausgleichfunktionen verbunden sein. Diese empirischen Ausgleichfunktionen können auch als Abbildung in einer Tabelle festgehalten sein. Im Falle von semi-empirischen Modellgleichungen gehen sowohl empirische ermittelte Werte als auch physikalische Gleichungen ein, welche z.B. Zusammenhänge von physikalischen Parametern beschreiben. Im Falle von theoretischen Modellgleichungen sind die Zusammenhänge der Parameter vollständig durch physikalische Gleichungen beschrieben.
  • Nachteilig ist, dass Schwankungen im Mediendruck auf Hoch- und/oder Niederdruckseite einen ungleichmäßigen Durchfluss (bei gegebener Drehzahl) verursachen, was bei massenstromkritischen Prozessen zu Beeinträchtigungen des Prozessablaufs führen kann. Weiterhin reduziert das Kennfeld den Betriebsbereich der Pumpe, was zu Prozessstörungen und Komponentenschäden bei Überschreiten der Grenzen führen kann.
  • Fig. 1 zeigt ein Beispiel eines solchen Kennfelds. Hierin ist über den Volumenstrom Q die Förderhöhe H in Abhängigkeit der Drehzahl n aufgetragen. Der Volumenstrom wird durch einen Minimal- und Maximalwert des Kennfelds limitiert. Weiter gibt es eine maximale Förderhöhe, die nur bei höchster Drehzahl und minimalem Durchfluss erreicht werden kann. Es zeigt sich, dass sich bei fester Drehzahl der Durchfluss stark in Abhängigkeit der Höhe ändert. Da die Förderhöhe proportional zur anliegenden Druckdifferenz an der Pumpe ist, bewirken Schwankungen im Druck auf Hoch- oder Niederdruckseite eine Änderung des Pumpendurchflusses. Die Begrenzung des Volumenstroms nach unten muss nicht wie in der Zeichnung konstant sein, sondern kann von der Drehzahl abhängen.
  • Das Beispiel in Fig. 2 zeigt eine Reduzierung der Förderhöhe von H1 nach H2 bei konstanter Drehzahl n. Durch das Kennfeldverhalten erhöht sich der Durchfluss von Q1 nach Q2 signifikant. Solche Änderungen können Probleme im Prozessbetrieb verursachen, die zu Störungen, Stillstandzeiten und Defekten führen können. Zudem werden bei vielen Prozessen Änderungen des Durchflusses unabhängig von aktueller Förderhöhe gewünscht. Diese Funktion wird durch den Einfluss des Kennfeldes ebenfalls beeinträchtigt. Soll z.B. der Durchfluss erhöht werden und wird dazu die Drehzahl erhöht, so kann die erhöhte Fördermenge in vielen Prozessen zu einer Druckerhöhung auf der Hochdruckseite führen, die den Durchflussanstieg aufgrund des Kennfeldeinflusses zum Teil wieder kompensieren.
  • Weiterhin zeigt das Kennfeld auch, dass es maschinentypische Einschränkungen für den Pumpenbetrieb gibt (wie z.B. einen Mindestvolumenstrom) deren Einhaltung zur dauerhaften Sicherstellung der Maschinenfunktion notwendig sind.
  • Aus dem Dokument DE 10 2011 115 244 A1 ist lediglich eine Überwachung des Betriebszustands einer Pumpe bekannt, die einen Vergleich einer Ist-Kennlinie mit einer Soll-Kennlinie der Pumpe umfasst, um daraus eine Reparaturbedürftigkeit oder Austauschbedürftigkeit der Pumpe zu prognostizieren.
  • Ein Anwendungsbereich bei der das sichere Fördern eines Fluidstroms von besonderer Bedeutung ist, ist die Pumpenreglung einer Speisepumpe eines ORC-Kraftwerkprozesses (Organic-Rankine-Cycle), wie schematisch in Fig. 3 dargestellt. Darin wird eine Pumpe (P) in der Form geregelt, dass gewünschte Frischdampfparameter am Ausgang eines der Pumpe nachgeschalteten Wärmeübertragers (V) sicher eingestellt werden können. Dazu wird die Drehzahl der Pumpe durch die Regelung so beeinflusst, dass sich über den damit geänderten Durchfluss die Verdampfungsbedingung derart ändern, dass die gewünschten Drücke und Temperaturen des Frischdampfes erreicht und für einen stabilen Prozessbetrieb stabil kontrolliert werden.
  • In diesem Beispiel hängt die Förderhöhe der Pumpe zum einen vom Frischdampfdruck (pFD), zum anderen vom Druckniveau vor der Pumpe ab (pKOND). Dieser Druck hängt vom aktuellen Kondensationsdruck des der Pumpe vorgeschalteten Kondensators (K) ab. Dieser Kondensator kühlt und verflüssigt im ORC-Prozess das Arbeitsmedium durch Abgabe von Wärme an ein Kühlmedium. Dieses Kühlmedium (z.B. Wasser eines Heiznetzes oder Umgebungsluft) kann in Menge und Temperatur Schwankungen unterliegen (Temperaturschwankungen in einem Heiznetz, Wind- oder sonstige Umwelteinflüsse). Diese Schwankungen beeinflussen die Wärmeübertragung im Kondensator, was Auswirkungen auf die Kondensationsbedingungen und somit den Kondensationsdruck hat. Somit können sich externe Störungen auf die Förderhöhe der Pumpe auswirken und deshalb Schwankungen in Massenstrom und Frischdampfdruck verursachen. Diese möglichen Schwankungsamplituden müssen in Sicherheitsbetrachtungen und Verfügbarkeitsanalysen berücksichtigt werden. Weiterhin handelt es sich beim ORC-Prozess um ein geschlossenes System, und somit ist eine Rückwirkung eines schwankenden Frischdampfdrucks über die Expansionsmaschine (E) auf den Kondensationsdruck nicht auszuschließen. Daher kann es zu einem selbstverstärkenden Effekt kommen, der die Prozessstabilität weiter negativ beeinflusst.
  • Eine Möglichkeit diesen Einflüssen zu begegnen, ist der Einsatz einer Kaskadenregelung gemäß Fig. 4. Darin regelt ein innerer Regelkreis den Durchfluss anhand eines Vergleichs aus aktuellem Ist- und Sollwert des Massen- bzw. Volumenstroms, während ein äußerer Regelkreis den Durchflusssollwert zur Regelung auf die eigentliche Regelgröße der Pumpe (z.B. Prozessdruck) dem inneren Kreis vorgibt. Dadurch können Durchflussabweichungen kompensiert werden und gleichzeitig auf einen gewünschten Prozesswert geregelt werden.
  • Im Kaskadenregler kann der (innere) Teilprozess I der Pumpprozess sein. Hierin finden sich alle Komponenten, die das Signal der Massenstrom-Regelung (m-Regelung) in das Fördern eines Mediums umsetzen. Dies kann eine Ansteuerung/Drehzahlregelung der Pumpe, den Pumpenmotor und die Pumpe selbst beinhalten. Der äußere Teilprozess II kann beispielsweise ein Verdampfungsprozess und der Prozesswert s kann der Mediendruck p nach der Verdampfung sein. Der Verdampfungsprozess kann damit alle notwendigen Komponenten, wie ein oder mehrere Wärmeübertrager, Behälter, Armaturen, usw. enthalten.
  • Diese Lösung erlaubt es zwar, Durchflussabweichungen beim Auftreten zu detektieren und darauf zu reagieren, dazu muss sich der Durchfluss jedoch bereits von seinem Sollwert SSoll entfernt haben. Damit ist keine vorausschauende Kompensation vor Eintreten der Schwankungen möglich. Somit wird eine zusätzliche Störgrößenaufschaltung notwendig (nicht dargestellt). Zudem benötigt diese Lösung nach dem Stand der Technik eine aufwendige und häufig kostenintensive Messung des Massen- bzw. Volumenstroms. Eine Vermeidung dieser Messung hätte signifikante Kostenvorteile.
  • Die Druckschrift EP-A-1286056 offenbart ein Verfahren zum Regeln einer Pumpe in Abhängigkeit von einem Signal, das ein Vorhandensein und ein Ausmaß von Kavitation anzeigt. Eine Steuerung empfängt dazu Saug- und Ausstoßdrucksignale von Sensoren stromaufwärts bzw. stromabwärts der Pumpe.
  • Beschreibung der Erfindung
  • Aufgabe der Erfindung ist es, die oben beschriebenen Nachteile zumindest teilweise zu überwinden.
  • Diese Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1.
  • Das erfindungsgemäße Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, umfasst die Schritte: Festlegen eines Sollwerts einer Durchflussrate der Pumpe; Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; Bestimmen eines Sollwerts einer Drehzahl der Pumpe bzw. eines die Drehzahl bestimmenden Stellsignals aus einem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl bzw. Zuführen des die Drehzahl bestimmenden Stellsignals an die Pumpe.
  • Vorteilhaft ist dabei, dass es durch die Berücksichtigung des Kennfeldes keiner Messung des Massen- bzw. Volumenstroms zur Regelung bzw. Kompensation bedarf. Weiterhin kann die Regelung bereits beim Auftreten einer Druckschwankung reagieren, bevor die Auswirkungen einer Durchflussschwankung auftreten (Vorausschauendes Regelverhalten), womit die Regelgüte verbessert wird.
  • Das Kennfeld der Pumpe kann dabei in üblicher Form verwendet werden, wobei also ein Zusammenhang zwischen der Durchflussrate und dem Differenzdruck bzw. der Förderhöhe bei verschiedener jedoch jeweils konstanter Drehzahl gegeben ist.
  • Das Kennfeld kann alternativ oder zusätzlich in "invertierter" Form (nachfolgend auch invertiertes Kennfeld genannt) verwendet werden, wobei dann ein Zusammenhang zwischen Differenzdruck bzw. Förderhöhe und der Drehzahl bei verschiedenem jedoch jeweils konstantem Durchfluss gegeben ist.
  • In jedem Fall erfolgt die Verwendung des Kennfelds derart, dass einer durch eine Differenzdruckänderung hervorgerufenen Durchflussratenänderung durch eine Drehzahländerung entgegengeregelt wird, um die Durchflussrate möglichst konstant zu halten, was durch Auffinden eines entsprechenden Betriebspunktes der Pumpe in deren Kennfeld bzw. invertiertem Kennfeld erfolgt.
  • Der Sollwert der Durchflussrate kann dabei wiederum von der Regelung festgelegt werden, z.B. basierend auf einem festgelegten Ausgangsdruck der Pumpe oder basierend auf einem anderen geeigneten Prozesswert. Andererseits kann der Sollwert der Durchflussrate von einem Nutzer festgelegt werden. In beiden Fällen kann dies entweder durch die direkte Vorgabe der Durchflussrate oder aber indirekt durch eine Vorgabe der Drehzahl, woraus sich dann die konstant zu haltende Durchflussrate ermitteln lässt, geschehen.
  • Vorzugsweise erfolgt nach dem Festlegen des Sollwerts der Durchflussrate ein kontinuierliches Durchführen der Schritte des Messens des Eingangsdrucks der Flüssigkeit und des Ausgangsdrucks der Flüssigkeit, des Bestimmens des Sollwerts der Drehzahl der Pumpe und des Einstellens der Drehzahl der Pumpe.
  • Gemäß einer Weiterbildung kann das Festlegen des Sollwerts der Durchflussrate die folgenden Schritte umfassen: Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen. Auf diese Weise kann im laufenden Betrieb der Pumpe ein möglichst einzuhaltender Sollwert der Durchflussrate bestimmt werden. In diesem Fall kann auch das Festlegen des Sollwerts der Durchflussrate kontinuierlich erfolgen.
  • Eine andere Weiterbildung besteht darin, dass der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks aus einem ersten zeitlichen Mittelwert des Eingangsdrucks und einem zweiten zeitlichen Mittelwert des Ausgangsdrucks bestimmt werden kann. Somit ist es möglich, bei Bedarf unterschiedliche Zeitkonstanten für die Mittelung des Eingangsdrucks und des Ausgangsdrucks zu verwenden.
  • Nach einer anderen Weiterbildung kann das Bestimmen des Sollwerts der Drehzahl der Pumpe die folgenden weiteren Schritte umfassen: Überprüfen, ob eine Kombination aus Drehzahl der Pumpe, festgelegtem Sollwert der Durchflussrate und der Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck innerhalb einer Kennfeldbegrenzung liegt; Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl, wenn die Kombination innerhalb des Kennfelds liegt; und Einstellen der Drehzahl der Pumpe auf einen Sicherheitswert, wenn die Kombination außerhalb des Kennfelds liegt, wobei der Sicherheitswert vorzugsweise so gewählt wird, dass die Abweichung von dem Sollwert der Durchflussrate möglichst klein ist.
  • Gemäß einer anderen Weiterbildung kann das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf ein der Pumpe zugeführtes Stellsignals umfassen. Auf diese Weise kann ein Korrektursignal auf das Stellsignal aufgeschaltet werden. Insbesondere kann ein Mindeststellsignal als Korrektursignal ausgegeben werden, um zu vermeiden, dass ein Betriebszustand außerhalb des Kennfelds eingestellt wird.
  • Eine andere Weiterbildung besteht darin, dass das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und die Förderhöhe aus der Druckdifferenz zwischen dem gemessenen Ausgangsdruck und dem gemessenen Eingangsdruck bestimmt wird. Insbesondere kann die Förderhöhe h aus h=(p2-p1)/(ρ·g) bestimmt werden, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.
  • Gemäß einer anderen Weiterbildung kann die Dichte der Flüssigkeit als ein konstanter vorbestimmter Wert verwendet werden, oder das Verfahren kann den weiteren Schritt des Messens der Temperatur der Flüssigkeit umfassen und die Dichte der Flüssigkeit kann aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer Tabelle ermittelt werden, wobei das Messen der Temperatur insbesondere eine Mittelung der Temperatur über ein vorbestimmtes Zeitintervall umfassen kann.
  • Eine andere Weiterbildung besteht darin, dass das Messen des Eingangsdrucks und des Ausgangsdrucks der Flüssigkeit kontinuierlich erfolgen kann. Auf diese Weise ist eine ständige Korrektur der Drehzahl bei Druckschwankungen möglich.
  • Die Durchflussrate kann als ein Volumenstrom oder als ein Massenstrom der Flüssigkeit durch die Pumpe definiert sein.
  • Die oben genannte Aufgabe wird weiterhin gelöst durch eine Vorrichtung nach Anspruch 10.
  • Die erfindungsgemäße Vorrichtung zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit umfasst: ein erstes Druckmessgerät zum Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe; ein zweites Druckmessgerät zum Messen eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; und eine Steuereinrichtung zum Festlegen eines Sollwerts einer Durchflussrate der Pumpe; zum Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem in einem Speicher gespeicherten Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und zum Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Die Vorteile entsprechen jenen die im Zusammenhang mit dem erfindungsgemäßen Verfahren genannt wurden. Weiterhin kann die erfindungsgemäße Vorrichtung so ausgebildet sein, dass damit das erfindungsgemäße Verfahren oder eine dessen Weiterbildungen ausgeführt werden kann.
  • Gemäß einer Weiterbildung kann die Steuereinrichtung weiterhin geeignet sein zum Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und zum Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen.
  • Eine andere Weiterbildung besteht darin, dass die Steuereinrichtung zum Ausgeben eines Stellsignals an die Pumpe ausgebildet sein kann und das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf das der Pumpe zugeführte Stellsignals umfassen kann.
  • Gemäß einer Weiterbildung kann das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definieren, wobei die Steuereinrichtung weiterhin dazu ausgebildet sein kann, eine Förderhöhe H aus H=(p2-p1)/(ρ·g) zu bestimmen, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.
  • Eine andere Weiterbildung besteht darin, dass die Vorrichtung weiterhin umfassen kann: ein Temperaturmessgerät zum Messen einer Temperatur der Flüssigkeit und zum Übermitteln eines Temperaturmesssignals an die Steuereinrichtung; wobei die Steuereinrichtung weiterhin dazu ausgebildet sein kann, aus dem Temperaturmesssignal eine Dichte der Flüssigkeit zu bestimmen und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer im Speicher gespeicherten Tabelle zu ermitteln.
  • Die erfindungsgemäße Vorrichtung oder einer der Weiterbildungen können Teil eines ORC-Systems (Organic-Rankine-Cycle) mit einer Pumpe zum Pumpen eines Arbeitsmediums des ORC-Systems sein.
  • Die Weiterbildungen der erfindungsgemäßen Vorrichtung und dessen Vorteile entsprechen jenen die im Zusammenhang mit dem erfindungsgemäßen Verfahren genannt wurden.
  • Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.
  • Zeichnungen
  • Figur 1
    zeigt schematisch ein Kennfeld einer Pumpe.
    Figur 2
    zeigt die Änderung des Durchflusses bei Druckänderung und konstanter Drehzahl im Kennfeld der Fig. 1.
    Figur 3
    zeigt die wesentlichen Elemente eines ORC-Systems.
    Figur 4
    zeigt einen Kaskadenregler.
    Figur 5
    zeigt die Wirkungsweise eine Ausführungsform der erfindungsgemäßen Kennfeldregelung.
    Figur 6
    zeigt eine Kompensation des Durchflusses bei einer Schwankung der Druckdifferenz im Kennfeld der Pumpe.
    Figur 7
    zeigt eine weitere Ausführungsform der erfindungsgemäßen Kennfeldregelung.
    Figur 8
    zeigt beispielhaft einen Differenzdruck und einen entsprechenden Massenstrom in einem ORC-System.
    Figur 9
    zeigt den Massenstrom nach Fig. 8 und eine entsprechende Dampftemperatur in dem ORC-System.
    Ausführungsformen
  • Fig. 5 veranschaulicht das erfindungsgemäße Verfahren gemäß einer Ausführungsform. Das Wissen um das Kennfeld einer Maschine erlaubt deren Begrenzung in Bezug auf die Parameter eines Prozesses (Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck, Durchflussrate, Drehzahl) und deren gegenseitige Abhängigkeit in die Regelung zu implementieren (Kennfeldregelung). Dabei überwacht ein Regelalgorithmus die aktuelle Förderhöhe (bzw. den Differenzdruck) sowie die Drehzahl und berechnet daraus die aktuellen Durchflussrate. Dazu ist im Algorithmus das Kennfeld numerisch hinterlegt.
  • Zur Ermittlung der Förderhöhe für die Regelung ist die Kenntnis der aktuellen Drücke auf der Nieder- und Hochdruckseite (pn, ph) der Pumpe notwendig (entsprechend: pumpeneinlassseitig und pumpenauslassseitig bzw. stromaufwärts und stromabwärts der Pumpe bzw. gemessener Eingangsdruck p1 und gemessener Ausgangsdruck p2). Aus der Differenz Δp= (ph - pn) dieser Drücke und der Dichte ρ des Mediums lässt sich die Förderhöhe H berechnen: H = Δ p / ρ g
    Figure imgb0001
    wobei g die Normfallbeschleunigung bezeichnet.
  • Die aktuelle Dichte kann entweder über eine zusätzliche Messung der Temperatur des Mediums exakt ermittelt werden, oder durch eine Approximation im verwendeten Betriebsbereich als konstant angenommen werden. Die letztere Vereinfachung ist bei vielen Medien in flüssiger Phase und eingeschränktem Betriebsbereich (Druck- und/oder Temperaturbereich) in einer für die Regelung ausreichend guten Näherung zulässig.
  • Es erfolgt ein Festlegen eines Sollwerts einer Durchflussrate der Pumpe als die aktuell berechnete Durchflussrate; ein Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; ein Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus dem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und die Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und schließlich erfolgt ein Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Wenn der Differenzdruck sich ändert, erfolgt somit eine Änderung der Drehzahl, um einer Änderung der Durchflussrate, die ansonsten eintreten würde, entgegenzuwirken. Zumindest kann die Änderung der Durchflussrate reduziert werden.
  • Weiter wird die Begrenzung des Kennfeldes (z.B. Minimaldurchfluss) im Algorithmus berücksichtigt. Dadurch kann sowohl ein gleichmäßiger Prozessbetrieb als auch die Einhaltung der Betriebsgrenzen der Pumpe sichergestellt werden.
  • Fig. 6 zeigt die Funktionsweise des Kompensationseinflusses der Kennfeldregelung, nämlich die Korrektur der Drehzahl bei einer Differenzdruckänderung, um auf diese Weise die Durchflussrate zu korrigieren. Die Wirkungsweise des Verfahrens gemäß dieser Ausführungsform der erfindungsgemäßen Kennfeldregelung ist im Kennfeld der Pumpe dargestellt. Sinkt bei konstanter Drehzahl n1 die Druckdifferenz bzw. die entsprechende Förderhöhe von der im Punkt 1 auf die im Punkt 2 ab, erhöht sich der Durchfluss Q. Durch Reduktion der Drehzahl auf n2 kann nun der ursprüngliche Durchfluss bei der neuen Druckdifferenz bzw. Förderhöhe im Punkt 3 wieder hergestellt werden.
  • Betrachtet man wieder das bereits oben genannte Beispiel eines ORC-Prozesses, so fließen in die erfindungsgemäße Regelung die Messwerte pFD und pKOND (als Hochdruck- bzw. Niedrigdruck) ein (siehe Fig. 7). Zur Unterdrückung der Messung zyklischer Schwankungen durchläuft das Messsignals zunächst eine Mittelwertbildung (gleitender Mittelwert) in einem geeigneten Mittelungsintervall. Der Mittelwert des Frischdampfdrucks pFD_M wird mit dem Frischdampfsollwert zur Regelabweichung als Eingangssignal eines Reglers (z.B. eines PID-Reglers) verwendet. Das Ausgangssignal und die Differenz der Mittelwerte fließen als Eingangswerte in das Kennfeld KF1 ein. Hierin wird der aktuell erwartete Massenstrom berechnet. Dieser Wert, sowie die Differenz der ungemittelten aktuellen Messwerte, fließen in das invertierte Kennfeld KF-1 ein. Dieses liefert das aktuell notwendige Stellsignal der Pumpe. Die Differenz dieses Wertes und des aktuelle Stellsignals des Reglers ist die gesuchte zu kompensierende Abweichung. Durch Addition dieser Abweichung auf das Stellsignal ergibt sich eine Aufschaltung der Kompensation der Störung. Durch die Verstärkung K kann der Einfluss dieser Aufschaltung an den Prozess angepasst werden.
  • In diesem Beispiel liefert das Kennfeld KF1 ebenfalls an den Regler das aktuell notwendige Mindeststellsignal smin. Damit kann eine Unterschreitung dieser Kennfeldgrenze durch den Regler verhindert werden.
  • Einen signifikanten Vorteil dieses Vorgehens bietet das voraussehende Wirkungsprinzip dieser Regelung. Schon beim Eintreten von Druckschwankungen (die Ursache für Massenstromänderungen und daraus folgenden Störungen) wird die Durchflussschwankung kompensiert, bevor ein nachgeschaltetes Messsystem oder der nachgeschaltete Prozess die Abweichung detektieren bzw. deren Auswirkungen spüren könnte. Durch die Messung der Drücke und nicht des Durchflusses realisiert die Kennfeldregelung implizit ebenfalls die Funktion einer Störgrößenaufschaltung.
  • Fig. 8 zeigt beispielhaft aus einer Messung an einem ORC-System den Verlauf von Differenzdruck (pFD-pKOND) (obere Kurve in Fig. 8) und Massenstrom (untere Kurve in Fig. 8) über eine Zeit von ca. 15 Minuten. Man sieht, wie Druckschwankungen ihren Einfluss auf den Durchfluss zeigen. Bei sinkendem Differenzdruck ist unmittelbar ein höherer Durchfluss messbar, sowie umgekehrt.
  • Es ist zudem auch die Auswirkung auf einen Verdampfungsprozess messbar (siehe Fig. 9). Hierbei verringert sich bei steigendem Massenstrom (untere Kurve in Fig. 9) die Temperatur des Dampfes (obere Kurve in Fig. 9), da die im Wärmeübertrager übertragene Leistung nun einen höheren Massenstrom verdampfen und überhitzen muss. Die Dampftemperatur sinkt somit ab. Bei Absinken des Durchflusses erhöht sich die Temperatur wieder. Es zeigt sich damit, dass eine Reduktion der Durchflussschwankungen zu einer Stabilisierung von Prozessparametern führen kann.
  • Durch die Kennfeldregelung lässt sich diese Stabilisierung umsetzen. Die Folgen der Stabilisierung auf Auslegung und Prozess können höhere Prozessgüte und Verfügbarkeit, aber auch höhere Sicherheiten vor Verletzungen von Prozessgrenzwerten bedeuten. So können z.B. bei geringeren zu erwartenden Oszillationen von Temperaturen die Sicherheitsgrenzen in Abhängigkeit der nun niedrigeren Scheitelwerte reduziert werden bzw. der Prozess mit höheren Temperaturen (näher an den Sicherheitsgrenzen) ohne Verfügbarkeitsreduktionen betrieben werden.
  • Weiterhin benötigt diese Regelung nur zwei relativ günstige Druckmessstellen, welche in vielen Prozessen bereits zur Verfügung stehen, statt der teuren Messung des Massen- bzw. Volumenstroms. Damit ergibt sich ein deutlicher Kostenvorteil der Kennfeldregelung gegenüber konventionellen Lösungsansätzen.
  • Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.

Claims (13)

  1. Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, mit den Schritten:
    Festlegen eines Sollwerts einer Durchflussrate der Pumpe;
    Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe;
    Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und
    Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl;
    wobei das Festlegen des Sollwerts der Durchflussrate die folgenden Schritte umfasst:
    Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und
    Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen.
  2. Verfahren nach Anspruch 1, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks aus einem ersten zeitlichen Mittelwert des Eingangsdrucks und einem zweiten zeitlichen Mittelwert des Ausgangsdrucks bestimmt wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei das Bestimmen des Sollwerts der Drehzahl der Pumpe die folgenden weiteren Schritte umfasst:
    Überprüfen, ob eine Kombination aus Drehzahl der Pumpe, festgelegtem Sollwert der Durchflussrate und der Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck innerhalb einer Kennfeldbegrenzung liegt;
    Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl, wenn die Kombination innerhalb des Kennfelds liegt; und
    Einstellen der Drehzahl der Pumpe auf einen Sicherheitswert, wenn die Kombination außerhalb des Kennfelds liegt, wobei der Sicherheitswert vorzugsweise so gewählt wird, dass die Abweichung von dem Sollwert der Durchflussrate möglichst klein ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf ein der Pumpe zugeführtes Stellsignals umfasst, und wobei in Verbindung mit Anspruch 4 insbesondere ein Mindeststellsignal als Korrektursignal ausgegeben wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und die Förderhöhe aus der Druckdifferenz zwischen dem gemessenen Ausgangsdruck und dem gemessenen Eingangsdruck bestimmt wird, wobei die Förderhöhe H insbesondere aus H=(p2-p1)/(ρ·g) bestimmt wird, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.
  6. Verfahren nach Anspruch 5, wobei die Dichte der Flüssigkeit als ein konstanter vorbestimmter Wert verwendet wird, oder wobei das Verfahren den weiteren Schritt des Messens der Temperatur der Flüssigkeit umfasst und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer Tabelle ermittelt wird, wobei das Messen der Temperatur insbesondere eine Mittelung der Temperatur über ein vorbestimmtes Zeitintervall umfassen kann.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Messen des Eingangsdrucks und des Ausgangsdrucks der Flüssigkeit kontinuierlich erfolgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Durchflussrate als ein Volumenstrom oder als ein Massenstrom der Flüssigkeit durch die Pumpe definiert ist.
  9. Vorrichtung zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, wobei die Vorrichtung umfasst:
    ein erstes Druckmessgerät zum Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe;
    ein zweites Druckmessgerät zum Messen eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; und
    eine Steuereinrichtung zum Festlegen eines Sollwerts einer Durchflussrate der Pumpe; zum Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem in einem Speicher gespeicherten Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und zum Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl;
    wobei die Steuereinrichtung weiterhin geeignet ist zum Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und zum Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen.
  10. Vorrichtung nach Anspruch 9, wobei die Steuereinrichtung zum Ausgeben eines Stellsignals an die Pumpe ausgebildet ist und das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf das der Pumpe zugeführte Stellsignals umfasst.
  11. Vorrichtung nach Anspruch 9 oder 10, wobei das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und wobei die Steuereinrichtung weiterhin dazu ausgebildet ist, eine Förderhöhe h aus h=(p2-p1)/(ρ·g) zu bestimmen, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.
  12. Vorrichtung nach Anspruch 11, weiterhin umfassend:
    ein Temperaturmessgerät zum Messen einer Temperatur der Flüssigkeit und zum Übermitteln eines Temperaturmesssignals an die Steuereinrichtung;
    wobei die Steuereinrichtung weiterhin dazu ausgebildet ist, aus dem Temperaturmesssignal eine Dichte der Flüssigkeit zu bestimmen und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer im Speicher gespeicherten Tabelle zu ermitteln.
  13. ORC-System, umfassend:
    eine Pumpe zum Pumpen eines Arbeitsmediums, und
    eine Vorrichtung nach einem der Ansprüche 9 bis 12 zum Regeln der Pumpe.
EP13180356.1A 2013-08-14 2013-08-14 Kennfeldregelung von kreiselpumpen Active EP2837829B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (de) 2013-08-14 2013-08-14 Kennfeldregelung von kreiselpumpen
US14/911,925 US10480515B2 (en) 2013-08-14 2014-06-27 Performance map control of centrifugal pumps
CN201480051136.3A CN105556127B (zh) 2013-08-14 2014-06-27 离心泵的综合特征曲线调节
PCT/EP2014/063657 WO2015022113A1 (de) 2013-08-14 2014-06-27 Kennfeldregelung von kreiselpumpen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (de) 2013-08-14 2013-08-14 Kennfeldregelung von kreiselpumpen

Publications (2)

Publication Number Publication Date
EP2837829A1 EP2837829A1 (de) 2015-02-18
EP2837829B1 true EP2837829B1 (de) 2019-12-18

Family

ID=48998450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13180356.1A Active EP2837829B1 (de) 2013-08-14 2013-08-14 Kennfeldregelung von kreiselpumpen

Country Status (4)

Country Link
US (1) US10480515B2 (de)
EP (1) EP2837829B1 (de)
CN (1) CN105556127B (de)
WO (1) WO2015022113A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2586425B1 (es) * 2015-02-19 2018-06-08 Expander Tech, S.L. Sistema de anti-cavitación eficiente de bombas para ciclos de potencia rankine orgánicos
CN107050700A (zh) * 2017-05-12 2017-08-18 广州三业科技有限公司 数字定比大流量混合装置及其测试系统和调试方法
CN108169394B (zh) * 2017-12-26 2019-11-29 迈克医疗电子有限公司 流量控制方法和装置、分析仪器及计算机可读存储介质
DE102018217230A1 (de) * 2018-10-09 2020-04-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung einer Fluidpumpe
DE102018217439A1 (de) * 2018-10-11 2020-04-16 Albert Ziegler Gmbh Pumpeneinrichtung
EP4116791A1 (de) * 2021-07-09 2023-01-11 Grundfos Holding A/S System zur regelung der temperatur einer wärmeenergieführenden flüssigkeit in einem sektor eines flüssigkeitsverteilungsnetzes
CN113719889B (zh) * 2021-09-09 2023-04-07 中国电子信息产业集团有限公司第六研究所 一种区块链边缘流量安全控制方法、系统、电子设备
CN113743808B (zh) * 2021-09-09 2023-06-20 中国电子信息产业集团有限公司第六研究所 一种区块链边缘安全运行状态评估方法、系统、电子设备
US20230287881A1 (en) * 2022-03-09 2023-09-14 Blue-White Industries, Ltd. Input/output calibration of pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108574A (en) * 1977-01-21 1978-08-22 International Paper Company Apparatus and method for the indirect measurement and control of the flow rate of a liquid in a piping system
US5006044A (en) * 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
US6425293B1 (en) * 1999-03-13 2002-07-30 Textron Systems Corporation Sensor plug
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
JP4678799B2 (ja) * 2000-09-05 2011-04-27 テラル株式会社 給水装置及び給水装置制御方法
US6655922B1 (en) * 2001-08-10 2003-12-02 Rockwell Automation Technologies, Inc. System and method for detecting and diagnosing pump cavitation
DE10163987A1 (de) * 2001-12-24 2003-07-10 Grundfos As Verfahren zum Steuern einer drehzahlregelbaren Heizungsumwälzpumpe
JP2003267191A (ja) 2002-03-14 2003-09-25 Calsonic Kansei Corp 乗物用盗難防止装置
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
CN101556068A (zh) 2008-04-11 2009-10-14 上海瀚艺冷冻机械有限公司 中央空调系统中循环泵的恒压变频节能控制方法
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
CN201461354U (zh) 2009-06-15 2010-05-12 上海远动科技有限公司 水泵变频调节闭环控制系统
CN102094798B (zh) 2010-12-22 2013-08-21 哈尔滨工业大学 热网循环泵等阻力区间的变流量调节方法
DE102011115244A1 (de) 2011-09-28 2013-03-28 Airbus Operations Gmbh Verfahren und System zur Überwachung des Betriebszustands einer Pumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10480515B2 (en) 2019-11-19
WO2015022113A1 (de) 2015-02-19
US20160195092A1 (en) 2016-07-07
CN105556127A (zh) 2016-05-04
EP2837829A1 (de) 2015-02-18
CN105556127B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
EP2837829B1 (de) Kennfeldregelung von kreiselpumpen
DE69118924T2 (de) Hochdruckregelung in einem transkritischen dampfkompressionskreis
EP2753999B1 (de) Verfahren zum betreiben und/oder überwachen einer hvac-anlage
EP0344397B1 (de) Klimaprüfkammer
DE102007010768B4 (de) Verfahren für die Optimierung der Ventilstellung und der Pumpendrehzahl in einem Ventilsystem mit PID-Regelung ohne die Verwendung externer Signale
DE112013004970T5 (de) Drucksteuerung mit Hilfe eines Phasenstromes und anfänglicher Einstellung bei einer Fahrzeugbaureihe
EP3164626A1 (de) Lineares regelventil
EP2933442A1 (de) Vorrichtung und Verfahren zur Erkennung von Leckagen in geschlossenen Kreisprozessen
EP2187136A2 (de) Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
EP3215742B1 (de) Verfahren und vorrichtung zum betreiben einer pumpe
DE102015120989A1 (de) Systeme und Verfahren zum Schätzen der Dämpfertemperatur
EP3034955A1 (de) Verfahren zum durchführen eines automatisierten hydraulischen abgleich einer heinzungsanlage
EP2526353B1 (de) Verfahren für die steuerung und regelung von wärmepumpen und kühlanlagen
EP3101352A1 (de) Verfahren zum betreiben einer heizungsanlage und regler mit differenzdrucksensor
EP2667117B1 (de) Verfahren für die Steuerung und Regelung von Kälteanlagen und Wärmepumpen mit luftbeaufschlagtem Verdampfer
EP2886811A1 (de) Verfahren zur Regelung eines Kondensators ini einer thermischen Kreisprozessvorrichtung
DE102010025518A1 (de) Verfahren zum Regeln eines Funktionswerts einer hydrodynamischen Komponents
EP1775533A2 (de) Verfahren und Vorrichtung zum Betreiben einer Kompressionskälteanlage
WO2016059197A1 (de) Verfahren zur steuerung oder regelung eines fahrzeugklimaanlagen-kältemittelkreislaufs
WO2019141658A1 (de) Verfahren zur eigendiagnose des mechanischen und/oder hydraulischen zustandes einer kreiselpumpe
EP3259463B1 (de) Verfahren zur regelung einer kraftstoffförderpumpe
EP1632690B1 (de) Verfahren zur Bestimmung eines Sollwertes für den Druck zur Ansteuerung einer hydrodynamischen Kupplung
DE102021105123B3 (de) Verfahren zum Betrieb eines Gargeräts sowie Gargerät
DE102014100093A1 (de) Kälteanlage und Verfahren zur Regelung der Überhitzung eines Kältemittels einer Kälteanlage
WO2010037464A1 (de) Verfahren zur steuerung oder regelung einer fahrzeugklimaanlage

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190814

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: AUMANN, RICHARD

Inventor name: GRILL, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014072

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014072

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 11

Ref country code: GB

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230824

Year of fee payment: 11

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230830

Year of fee payment: 11

Ref country code: BE

Payment date: 20230824

Year of fee payment: 11