EP2837829B1 - Régulation de champ caractéristique de pompes centrifuges - Google Patents

Régulation de champ caractéristique de pompes centrifuges Download PDF

Info

Publication number
EP2837829B1
EP2837829B1 EP13180356.1A EP13180356A EP2837829B1 EP 2837829 B1 EP2837829 B1 EP 2837829B1 EP 13180356 A EP13180356 A EP 13180356A EP 2837829 B1 EP2837829 B1 EP 2837829B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
flow rate
liquid
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13180356.1A
Other languages
German (de)
English (en)
Other versions
EP2837829A1 (fr
Inventor
Jens-Patrick Springer
Andreas Grill
Richard Aumann
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP13180356.1A priority Critical patent/EP2837829B1/fr
Priority to US14/911,925 priority patent/US10480515B2/en
Priority to PCT/EP2014/063657 priority patent/WO2015022113A1/fr
Priority to CN201480051136.3A priority patent/CN105556127B/zh
Publication of EP2837829A1 publication Critical patent/EP2837829A1/fr
Application granted granted Critical
Publication of EP2837829B1 publication Critical patent/EP2837829B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a method for regulating a pump, in particular a centrifugal pump, while pumping a liquid and a corresponding device.
  • Centrifugal pumps have a strong dependency of the delivery rate on the applied pressure difference and the speed. More specifically, a difference between the pump outlet side liquid pressure and the pump inlet side liquid pressure determines the flow rate (mass flow or volume flow).
  • Each pump has a characteristic pump map that defines a relationship between the three parameters (difference between the pump-side liquid pressure and the pump-side liquid pressure, flow rate, speed). In this way, if the two parameters are known, the third can be determined from the characteristic diagram.
  • the map can be in the form of empirical, semi-empirical or theoretical model equations. In empirical model equations, empirically recorded values can be linked to compensation functions. These empirical compensation functions can also be recorded in a table. In the case of semi-empirical model equations, both empirically determined values and physical equations are used, which e.g. Describe relationships between physical parameters. In the case of theoretical model equations, the relationships between the parameters are completely described by physical equations.
  • Fig. 1 shows an example of such a map.
  • the delivery head H as a function of the speed n is plotted here via the volume flow Q.
  • the volume flow is limited by a minimum and maximum value of the map.
  • the lower limit of the volume flow does not have to be constant as in the drawing, but can depend on the speed.
  • Fig. 2 shows a reduction in the delivery head from H 1 to H 2 at constant speed n.
  • the flow from Q 1 to Q 2 increases significantly due to the map behavior. Such changes can cause problems in process operation that can lead to malfunctions, downtimes and defects.
  • changes in the flow are desired regardless of the current delivery head. This function is also affected by the influence of the map. If, for example, the flow is to be increased and the speed is increased, the increased delivery rate can result in an increase in pressure in many processes on the high-pressure side, which partly compensate for the increase in flow due to the influence of the map.
  • the map also shows that there are machine-specific restrictions for pump operation (such as a minimum volume flow), which must be observed to ensure that the machine functions permanently.
  • a pump (P) is regulated in such a way that desired fresh steam parameters can be set reliably at the outlet of a heat exchanger (V) connected downstream of the pump.
  • V heat exchanger
  • the speed of the pump is influenced by the control in such a way that the evaporation condition changes as a result of the change in flow rate in such a way that the desired pressures and temperatures of the live steam are reached and are controlled stably for stable process operation.
  • the delivery head of the pump depends on the live steam pressure (p FD ) and on the pressure level upstream of the pump (p KOND ).
  • This pressure depends on the current condensation pressure of the condenser (K) upstream of the pump.
  • This condenser cools and liquefies the working medium in the ORC process by giving off heat to a cooling medium.
  • This cooling medium e.g. water from a heating network or ambient air
  • a cascade control in accordance with Fig. 4 , In it, an internal control loop regulates the flow based on a comparison of the current actual value and the setpoint of the mass or Volume flow, while an external control loop specifies the flow setpoint for the control to the actual control variable of the pump (e.g. process pressure) to the inner loop. This allows flow deviations to be compensated for and at the same time regulated to a desired process value.
  • an internal control loop regulates the flow based on a comparison of the current actual value and the setpoint of the mass or Volume flow
  • an external control loop specifies the flow setpoint for the control to the actual control variable of the pump (e.g. process pressure) to the inner loop. This allows flow deviations to be compensated for and at the same time regulated to a desired process value.
  • the (inner) sub-process I can be the pumping process. This contains all the components that convert the signal of the mass flow control (m control) into the delivery of a medium. This can include control / speed control of the pump, the pump motor and the pump itself.
  • the outer subprocess II can, for example, be an evaporation process and the process value s can be the media pressure p after the evaporation. The evaporation process can thus contain all the necessary components, such as one or more heat exchangers, containers, fittings, etc.
  • EP-A-1286056 discloses a method of controlling a pump in response to a signal indicating the presence and extent of cavitation.
  • a controller receives suction and discharge pressure signals from sensors upstream and downstream of the pump.
  • the object of the invention is to at least partially overcome the disadvantages described above.
  • the method according to the invention for regulating a pump, in particular a centrifugal pump, while pumping a liquid comprises the steps: establishing a setpoint of a flow rate of the pump; Measure an inlet pressure of the liquid upstream of the pump and an outlet pressure the liquid downstream of the pump; Determining a setpoint of a speed of the pump or a control signal determining the speed from a map of the pump, the setpoint of the flow rate and a difference between the outlet pressure and the inlet pressure being input to the map as input values; and setting the speed of the pump to the setpoint value of the speed or supplying the control signal determining the speed to the pump.
  • control can react when a pressure fluctuation occurs before the effects of a flow fluctuation occur (predictive control behavior), which improves the control quality.
  • the map of the pump can be used in the usual form, so there is a relationship between the flow rate and the differential pressure or the delivery head at different but constant speed.
  • the map can alternatively or additionally be used in "inverted” form (hereinafter also referred to as inverted map), in which case there is a relationship between the differential pressure or delivery head and the speed at different but constant flow rates.
  • the map is used in such a way that a change in the flow rate caused by a change in differential pressure is counteracted by a change in speed in order to keep the flow rate as constant as possible, which is done by finding a corresponding operating point of the pump in its map or inverted map.
  • the setpoint of the flow rate can in turn be determined by the control system, for example based on a specified output pressure of the pump or based on another suitable process value.
  • the setpoint of the flow rate can be set by a user. In both cases, this can be done either by directly specifying the flow rate or indirectly by means of a Specification of the speed, from which the flow rate to be kept constant can then be determined.
  • the steps of measuring the inlet pressure of the liquid and the outlet pressure of the liquid, determining the set point of the speed of the pump, and adjusting the speed of the pump are performed continuously.
  • the determination of the setpoint value of the flow rate can comprise the following steps: determining an average over time of the difference between the outlet pressure and the inlet pressure; and determining the desired value of the flow rate from the characteristic diagram of the pump, the mean value over time of the difference between the outlet pressure and the inlet pressure and a current speed of the pump being input into the characteristic diagram.
  • a setpoint of the flow rate that is to be maintained as possible can be determined while the pump is in operation.
  • the setpoint of the flow rate can also be set continuously.
  • Another development consists in that the temporal average of the difference between the outlet pressure and the inlet pressure can be determined from a first temporal mean of the inlet pressure and a second temporal mean of the outlet pressure. It is therefore possible to use different time constants for averaging the inlet pressure and the outlet pressure if necessary.
  • the determination of the setpoint value of the speed of the pump can comprise the following further steps: checking whether a combination of the speed of the pump, the setpoint value of the flow rate and the difference between the outlet pressure and the inlet pressure lies within a map limit; Setting the speed of the pump to the setpoint value of the speed if the combination lies within the map; and setting the speed of the pump to a safety value if the combination lies outside the characteristic diagram, the safety value preferably being selected such that the deviation from the desired value of the flow rate is as small as possible.
  • the setting of the speed of the pump to the setpoint value of the speed can include the output of a correction signal to an actuating signal supplied to the pump.
  • a correction signal can be applied to the control signal.
  • a minimum control signal can be output as a correction signal in order to prevent an operating state from being set outside the characteristic diagram.
  • the map defines a relationship between the flow rate and a delivery head of the pump at different speeds, and the delivery head is determined from the pressure difference between the measured outlet pressure and the measured inlet pressure.
  • the density of the liquid can be used as a constant predetermined value, or the method can comprise the further step of measuring the temperature of the liquid and the density of the liquid can be obtained from a functional dependence of the density on the temperature or from a table can be determined, the measurement of the temperature in particular comprising an averaging of the temperature over a predetermined time interval.
  • the flow rate can be defined as a volume flow or as a mass flow of the liquid through the pump.
  • the device according to the invention for regulating a pump, in particular a centrifugal pump, during the pumping of a liquid comprises: a first one Pressure measuring device for measuring an inlet pressure of the liquid upstream of the pump; a second pressure measuring device for measuring an outlet pressure of the liquid downstream of the pump; and control means for setting a target value of a flow rate of the pump; for determining a setpoint value of a speed of rotation of the pump from a map of the pump stored in a memory, the setpoint value of the flow rate and a difference between the outlet pressure and the inlet pressure being entered as input values into the map; and to set the speed of the pump to the setpoint of the speed.
  • the advantages correspond to those mentioned in connection with the method according to the invention.
  • the device according to the invention can be designed such that it can be used to carry out the method according to the invention or one of its developments.
  • control device can also be suitable for determining an average over time of the difference between the outlet pressure and the inlet pressure; and for determining the setpoint value of the flow rate from the characteristic diagram of the pump, the mean time value of the difference between the outlet pressure and the inlet pressure and a current speed of the pump being entered as input values in the characteristic diagram.
  • control device can be designed to output an actuating signal to the pump, and setting the speed of the pump to the setpoint value of the rotational speed can include outputting a correction signal to the actuating signal supplied to the pump.
  • the device can further comprise: a temperature measuring device for measuring a temperature of the liquid and for transmitting a temperature measurement signal to the control device; wherein the control device can also be designed to determine a density of the liquid from the temperature measurement signal and to determine the density of the liquid from a functional dependence of the density on the temperature or from a table stored in the memory.
  • the device according to the invention or one of the developments can be part of an ORC system (Organic Rankine Cycle) with a pump for pumping a working medium of the ORC system.
  • ORC system Organic Rankine Cycle
  • Fig. 5 illustrates the inventive method according to one embodiment. Knowing the map of a machine allows its limitation with regard to the parameters of a process (difference between the pump outlet-side fluid pressure and the pump inlet-side fluid pressure, flow rate, speed) and their interdependency in the control system (map control). A control algorithm monitors the current delivery head (or the differential pressure) and the speed and uses this to calculate the current flow rate. For this purpose, the map is stored numerically in the algorithm.
  • the current density can either be determined exactly by means of an additional measurement of the temperature of the medium, or can be assumed to be constant by approximation in the operating range used.
  • the latter simplification is at many media in the liquid phase and limited operating range (pressure and / or temperature range) in a sufficiently good approximation for the control is permissible.
  • a setpoint of a flow rate of the pump is determined as the currently calculated flow rate; measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; determining a setpoint value of a speed of rotation of the pump from the map of the pump, the setpoint value of the flow rate and the difference between the outlet pressure and the inlet pressure being input into the map; and finally the speed of the pump is set to the setpoint of the speed.
  • the limitation of the map (e.g. minimum flow) is also taken into account in the algorithm. This ensures both a uniform process operation and compliance with the operating limits of the pump.
  • Fig. 6 shows the functioning of the compensation influence of the map control, namely the correction of the speed in the event of a change in differential pressure, in order to correct the flow rate in this way.
  • the mode of operation of the method according to this embodiment of the map control according to the invention is shown in the map of the pump. If the pressure difference or the corresponding delivery head falls from that in point 1 to that in point 2 at constant speed n 1 , the flow rate Q increases. By reducing the speed to n 2 , the original flow rate can now be changed at the new pressure difference or delivery head be restored in point 3.
  • the measured values p FD and p KOND flow into the control according to the invention (see Fig. 7 ).
  • the measurement signal is first averaged (moving average) in a suitable averaging interval.
  • the mean value of the live steam pressure p FD_M is used with the live steam setpoint for control deviation as the input signal of a controller (for example a PID controller).
  • the output signal and the difference between the mean values flow into the map KF 1 as input values.
  • the currently expected mass flow is calculated here. This value, as well as the difference between the averaged current measured values, flow into the inverted map KF -1 .
  • This provides the currently required control signal from the pump.
  • the difference between this value and the current control signal of the controller is the deviation to be compensated for. Adding this deviation to the control signal results in the compensation of the disturbance.
  • the influence of this activation can be adapted to the process by means of the gain K.
  • the map KF 1 also delivers the currently required minimum control signal s min to the controller. This can prevent the controller from falling below this map limit.
  • the predictive operating principle of this regulation offers a significant advantage of this procedure.
  • the flow fluctuation is compensated for as soon as pressure fluctuations occur (the cause of mass flow changes and the resulting malfunctions) before a downstream measuring system or the downstream process can detect the deviation or feel its effects.
  • the map control also implicitly implements the function of a feedforward control.
  • Fig. 8 shows an example from a measurement on an ORC system the course of differential pressure (p FD -p KOND ) (upper curve in Fig. 8 ) and mass flow (lower curve in Fig. 8 ) over a period of approx. 15 minutes. You can see how pressure fluctuations show their influence on the flow. When the differential pressure drops, a higher flow is immediately measurable, and vice versa.
  • This stabilization can be implemented by the map control.
  • the consequences of stabilization on design and process can mean higher process quality and availability, but also higher security against violations of process limit values. For example, with lower expected oscillations of temperatures, the safety limits are reduced depending on the now lower peak values or the process can be operated at higher temperatures (closer to the safety limits) without reductions in availability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Claims (13)

  1. Procédé de régulation d'une pompe, en particulier d'une pompe centrifuge, durant le pompage d'un fluide, comprenant les étapes suivantes :
    détermination d'une valeur cible du débit de la pompe ;
    mesure d'une pression d'entrée du fluide en amont de la pompe et d'une pression de sortie du fluide en aval de la pompe ;
    établissement d'une valeur cible d'une fréquence de rotation de la pompe à partir d'un champ caractéristique de la pompe, dans lequel la valeur cible déterminée du débit et une différence entre la pression de sortie et la pression d'entrée sont entrées comme valeurs d'entrée dans le champ caractéristique ; et
    réglage de la fréquence de rotation de la pompe sur la valeur cible de la fréquence de rotation,
    dans lequel la détermination de la valeur cible du débit comprend les étapes suivantes :
    établissement d'une valeur moyenne temporelle de la différence entre la pression de sortie et la pression d'entrée ; et
    détermination de la valeur cible du débit à partir du champ caractéristique de la pompe, dans lequel la valeur moyenne temporelle de la différence entre la pression de sortie et la pression d'entrée ainsi qu'une fréquence de rotation actuelle de la pompe sont entrées comme valeurs d'entrée dans le champ caractéristique.
  2. Procédé selon la revendication 1, dans lequel la valeur moyenne temporelle de la différence entre la pression de sortie et de la pression d'entrée est déterminée à partir d'une première valeur moyenne temporelle de la pression d'entrée et d'une deuxième valeur moyenne temporelle de la pression de sortie.
  3. Procédé selon la revendication 1 ou 2, dans lequel l'établissement de la valeur cible de la fréquence de rotation de la pompe comprend les étapes additionnelles suivantes :
    vérification du fait qu'une combinaison de la fréquence de rotation de la pompe, de la valeur cible déterminée du débit et de la différence entre la pression de sortie et la pression d'entrée est comprise dans une délimitation de champ caractéristique ;
    réglage de la fréquence de rotation de la pompe sur la valeur cible de la fréquence de rotation, quand la combinaison est comprise dans le champ caractéristique ; et
    réglage de la fréquence de rotation de la pompe sur une valeur de sécurité, quand la combinaison se trouve en dehors du champ caractéristique, dans lequel la valeur de sécurité est préférablement choisie de telle sorte que l'écart du débit par rapport à la valeur cible est le plus faible.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel le réglage de la fréquence de rotation de la pompe sur la valeur cible de la fréquence de rotation comprend l'envoi d'un signal de correction sur un signal de régulation fourni à la pompe, et dans lequel, conformément à la revendication 4, un signal de commande minimal est en particulier émis comme signal de correction.
  5. Procédé selon l'une des revendications 1 à 4, dans lequel le champ caractéristique définit à différentes fréquences de rotation une relation entre le débit et une hauteur de refoulement de la pompe, et la hauteur de refoulement est déterminée par la différence de pression entre la pression de sortie mesurée et la pression d'entrée mesurée, dans lequel la hauteur de refoulement H est déterminée en particulier par l'expression H=(p2-p1)/ρ·g), dans laquelle p1 désigne la pression d'entrée mesurée, p2 la pression de sortie mesurée, ρ la densité du fluide, et g l'accélération gravitationnelle normale.
  6. Procédé selon la revendication 5, dans lequel la densité du fluide est utilisée comme une valeur prédéterminée constante, ou dans lequel le procédé comprend l'étape additionnelle de mesure de la température du fluide, et la densité du fluide est déterminée soit à partir d'une dépendance fonctionnelle de la densité vis-à-vis de la température, soit à partir d'une table, dans lequel la mesure de la température peut comprendre en particulier le calcul de la moyenne de la température sur un intervalle temporel prédéterminé.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel la mesure de la pression d'entrée et de la pression de sortie du fluide est effectuée en continu.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel le débit est défini soit comme un débit volumique, soit comme un débit massique du fluide à travers la pompe.
  9. Dispositif de régulation d'une pompe, en particulier d'une pompe centrifuge, durant le pompage d'un fluide, dans lequel le dispositif comprend :
    un premier dispositif de mesure de pression pour mesurer une pression d'entrée du fluide en amont de la pompe ;
    un deuxième dispositif de mesure de pression pour mesurer une pression de sortie du fluide en aval de la pompe ; et
    un dispositif de régulation pour déterminer une valeur cible du débit de la pompe ; pour établir une valeur cible d'une fréquence de rotation de la pompe à partir d'un champ caractéristique de la pompe enregistré dans une mémoire, dans lequel la valeur cible déterminée du débit et une différence entre la pression de sortie et la pression d'entrée sont entrées comme valeurs d'entrée dans le champ caractéristique ; et pour régler la fréquence de rotation de la pompe sur la valeur cible de la fréquence de rotation,
    dans lequel le dispositif de régulation est en outre adapté pour établir une valeur moyenne temporelle de la différence entre la pression de sortie et la pression d'entrée ; et pour déterminer la valeur cible du débit à partir du champ caractéristique de la pompe, dans lequel la valeur moyenne temporelle de la différence entre la pression de sortie et la pression d'entrée ainsi qu'une fréquence de rotation actuelle de la pompe sont entrées comme valeurs d'entrée dans le champ caractéristique.
  10. Dispositif selon la revendication 9, dans lequel le dispositif de régulation est constitué pour envoyer un signal de régulation à la pompe, et le réglage de la fréquence de rotation de la pompe sur la valeur cible de la fréquence de rotation comprend l'envoi d'un signal de correction sur le signal de régulation fourni à la pompe.
  11. Dispositif selon la revendication 9 ou 10, dans lequel le champ caractéristique définit à différentes fréquences de rotation une relation entre le débit et une hauteur de refoulement de la pompe, et dans lequel le dispositif de régulation est en outre constitué pour établir une hauteur de refoulement h à partir de l'équation h=(p2-p1)/ρ·g), dans laquelle p1 désigne la pression d'entrée mesurée, p2 la pression de sortie mesurée, ρ la densité du fluide, et g l'accélération gravitationnelle normale.
  12. Dispositif selon la revendication 11, comprenant en outre :
    un dispositif de mesure de la température pour mesurer la température du fluide et pour transmettre un signal de mesure de température au dispositif de régulation ;
    dans lequel le dispositif de régulation est en outre constitué pour établir la densité du fluide à partir du signal de mesure de température et pour déterminer la densité du fluide soit à partir d'une dépendance fonctionnelle de la densité vis-à-vis de la température, soit à partir d'une table stockée dans la mémoire.
  13. Système à cycle organique de Rankine, comprenant :
    une pompe pour pomper un fluide de travail, et
    un dispositif selon l'une des revendications 9 à 12 pour réguler la pompe.
EP13180356.1A 2013-08-14 2013-08-14 Régulation de champ caractéristique de pompes centrifuges Active EP2837829B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (fr) 2013-08-14 2013-08-14 Régulation de champ caractéristique de pompes centrifuges
US14/911,925 US10480515B2 (en) 2013-08-14 2014-06-27 Performance map control of centrifugal pumps
PCT/EP2014/063657 WO2015022113A1 (fr) 2013-08-14 2014-06-27 Réglage du diagramme caractéristique de pompes centrifuges
CN201480051136.3A CN105556127B (zh) 2013-08-14 2014-06-27 离心泵的综合特征曲线调节

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (fr) 2013-08-14 2013-08-14 Régulation de champ caractéristique de pompes centrifuges

Publications (2)

Publication Number Publication Date
EP2837829A1 EP2837829A1 (fr) 2015-02-18
EP2837829B1 true EP2837829B1 (fr) 2019-12-18

Family

ID=48998450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13180356.1A Active EP2837829B1 (fr) 2013-08-14 2013-08-14 Régulation de champ caractéristique de pompes centrifuges

Country Status (4)

Country Link
US (1) US10480515B2 (fr)
EP (1) EP2837829B1 (fr)
CN (1) CN105556127B (fr)
WO (1) WO2015022113A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2586425B1 (es) * 2015-02-19 2018-06-08 Expander Tech, S.L. Sistema de anti-cavitación eficiente de bombas para ciclos de potencia rankine orgánicos
CN107050700A (zh) * 2017-05-12 2017-08-18 广州三业科技有限公司 数字定比大流量混合装置及其测试系统和调试方法
CN108169394B (zh) * 2017-12-26 2019-11-29 迈克医疗电子有限公司 流量控制方法和装置、分析仪器及计算机可读存储介质
DE102018217230A1 (de) * 2018-10-09 2020-04-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung einer Fluidpumpe
DE102018217439A1 (de) * 2018-10-11 2020-04-16 Albert Ziegler Gmbh Pumpeneinrichtung
EP4116791A1 (fr) * 2021-07-09 2023-01-11 Grundfos Holding A/S Système de régulation de la température d'un fluide porteur d'énergie thermique dans un secteur de réseau de distribution de fluide
CN113719889B (zh) * 2021-09-09 2023-04-07 中国电子信息产业集团有限公司第六研究所 一种区块链边缘流量安全控制方法、系统、电子设备
CN113743808B (zh) * 2021-09-09 2023-06-20 中国电子信息产业集团有限公司第六研究所 一种区块链边缘安全运行状态评估方法、系统、电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108574A (en) * 1977-01-21 1978-08-22 International Paper Company Apparatus and method for the indirect measurement and control of the flow rate of a liquid in a piping system
US5006044A (en) * 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
US6425293B1 (en) * 1999-03-13 2002-07-30 Textron Systems Corporation Sensor plug
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
JP4678799B2 (ja) * 2000-09-05 2011-04-27 テラル株式会社 給水装置及び給水装置制御方法
US6655922B1 (en) * 2001-08-10 2003-12-02 Rockwell Automation Technologies, Inc. System and method for detecting and diagnosing pump cavitation
DE10163987A1 (de) 2001-12-24 2003-07-10 Grundfos As Verfahren zum Steuern einer drehzahlregelbaren Heizungsumwälzpumpe
JP2003267191A (ja) 2002-03-14 2003-09-25 Calsonic Kansei Corp 乗物用盗難防止装置
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
CN101556068A (zh) * 2008-04-11 2009-10-14 上海瀚艺冷冻机械有限公司 中央空调系统中循环泵的恒压变频节能控制方法
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
CN201461354U (zh) * 2009-06-15 2010-05-12 上海远动科技有限公司 水泵变频调节闭环控制系统
CN102094798B (zh) * 2010-12-22 2013-08-21 哈尔滨工业大学 热网循环泵等阻力区间的变流量调节方法
DE102011115244A1 (de) 2011-09-28 2013-03-28 Airbus Operations Gmbh Verfahren und System zur Überwachung des Betriebszustands einer Pumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2837829A1 (fr) 2015-02-18
WO2015022113A1 (fr) 2015-02-19
CN105556127A (zh) 2016-05-04
US10480515B2 (en) 2019-11-19
CN105556127B (zh) 2017-06-27
US20160195092A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
EP2837829B1 (fr) Régulation de champ caractéristique de pompes centrifuges
EP2753999B1 (fr) Procédé pour faire fonctionner et/ou surveiller une installation hvac
EP0344397B1 (fr) Chambre d'essai climatique
EP2933442B1 (fr) Dispositif et procédé de reconnaissance de fuites dans des cycles fermés
DE112013004970T5 (de) Drucksteuerung mit Hilfe eines Phasenstromes und anfänglicher Einstellung bei einer Fahrzeugbaureihe
DE102011050018A1 (de) Pumpen-System
DE102007010768A1 (de) Verfahren für die Optimierung der Ventilstellung und der Pumpendrehzahl in einem Ventilsystem mit PID-Regelung ohne die Verwendung externer Signale
EP3164626A1 (fr) Soupape de réglage linéaire
EP2187136A2 (fr) Procédé de fonctionnement d'un système de transport d'énergie thermique sur un support fluide
DE102015120989A1 (de) Systeme und Verfahren zum Schätzen der Dämpfertemperatur
EP3034955A1 (fr) Procédé d'exécution d'un équilibrage hydraulique automatisé d'une installation de chauffage
EP3215742B1 (fr) Procédé et dispositif de fonctionnement d'une pompe
EP2526353B1 (fr) Procédé de commande et de réglage de pompes à chaleur et d'installations réfrigérantes
EP3101352B1 (fr) Procede de fonctionnement d'une installation de chauffage et dispositif de regulation comprenant un capteur de difference de pression
EP2667117B1 (fr) Procédé de commande et de réglage d'installations de refroidissement et de pompes à chaleur avec évaporateur à air
EP2886811A1 (fr) Procédé de régulation de condenseur dans un cycle thermique
EP1775533A2 (fr) Procédé et appareil pour faire fonctionner un système frigorifique à compression
WO2016059197A1 (fr) Procédé de commande ou de régulation d'un circuit de réfrigérant d'un système de climatisation de véhicule
DE102010025518A1 (de) Verfahren zum Regeln eines Funktionswerts einer hydrodynamischen Komponents
WO2019141658A1 (fr) Procédé d'auto-diagnostic de l'état mécanique et/ou hydraulique d'une pompe centrifuge
EP3259463B1 (fr) Procédé de règulation d'une pompe d'essence
EP1632690B1 (fr) Méthode pour déterminer la valeur de consigne de la pression pour contrôler un accouplement hydrodynamique
DE102021105123B3 (de) Verfahren zum Betrieb eines Gargeräts sowie Gargerät
DE102014100093A1 (de) Kälteanlage und Verfahren zur Regelung der Überhitzung eines Kältemittels einer Kälteanlage
WO2010037464A1 (fr) Procédé de commande ou de régulation d'un système de conditionnement d'air de véhicule

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190814

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: AUMANN, RICHARD

Inventor name: GRILL, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014072

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014072

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 11

Ref country code: GB

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230824

Year of fee payment: 11

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230830

Year of fee payment: 11

Ref country code: BE

Payment date: 20230824

Year of fee payment: 11