EP2836620A1 - Aluminium copper lithium alloy with improved impact strength - Google Patents

Aluminium copper lithium alloy with improved impact strength

Info

Publication number
EP2836620A1
EP2836620A1 EP13722480.4A EP13722480A EP2836620A1 EP 2836620 A1 EP2836620 A1 EP 2836620A1 EP 13722480 A EP13722480 A EP 13722480A EP 2836620 A1 EP2836620 A1 EP 2836620A1
Authority
EP
European Patent Office
Prior art keywords
weight
mpa
spun
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13722480.4A
Other languages
German (de)
French (fr)
Other versions
EP2836620B1 (en
Inventor
Armelle Danielou
Mathieu MARQUETTE
Jérome PIGNATEL
Gaëlle POUGET
Timothy Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium France SAS filed Critical Constellium France SAS
Priority to DE13722480.4T priority Critical patent/DE13722480T1/en
Publication of EP2836620A1 publication Critical patent/EP2836620A1/en
Application granted granted Critical
Publication of EP2836620B1 publication Critical patent/EP2836620B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • B21C23/142Making profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/023Work treatment directly following extrusion, e.g. further deformation or surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the invention relates to spun products made of aluminum-copper-lithium alloys, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
  • Aluminum alloy spun products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.
  • Aluminum alloy spun products are used in the aerospace industry for many applications, such as stiffeners or fuselage rails, fuselage frames, wing stiffeners, floor profiles or beams, as well as track rails. seat.
  • the specific energy absorption capacity during an impact can be measured during a crash test in which the force provided is measured as a function of the displacement achieved. during the crash. This is the amount of energy expended to crush a unit mass of material in the stable crush phase.
  • Ductile aluminum alloys have a significant ability to absorb impact energy during impact, in particular because they deform plastically.
  • the specific energy absorption capacity during a shock of an aluminum alloy profile can be connected to the curve obtained during a tensile test of the material in question, in particular to the area under the curve deformation force. It can thus be evaluated by the product R m x A% or R p0 , 2 x A% in the direction L and in the direction TL.
  • AlCuLi alloys are known.
  • U.S. Patent 5,032,359 discloses a broad family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, particularly between 0.3 and 0.5 percent by weight, increases the mechanical strength. .
  • US Pat. No. 5,455,003 describes a process for manufacturing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, in particular through appropriate work-hardening and tempering.
  • US Pat. No. 7,438,772 describes alloys comprising, in percentage by weight, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourages the use of higher lithium contents due to degradation of the compromise between toughness and mechanical strength.
  • US Pat. No. 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0, 2-0.8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Se, V.
  • US patent application 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% of Ag, 0, 1 to 0.6% Mg, 0.2 to 0.8% of Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.
  • Patent application WO 2009/036953 discloses an alloy for structural elements comprising (in% by weight) 3.4 to 6.0% Cu, 0.9 to 1.7% Li, about 0.2 to 0 , 8% Mg, about 0.1 to 0.8% Ag, about 0.1 to 0.8% Mn, up to 1.5% Zn, and one or more members selected from the group consisting of Zr, Cr, Ti, Se and Hf, with Fe ⁇ 0.15 and Si ⁇ 0.15.
  • AA2195 alloy comprising (in% by weight) 3.7 to 4.3% Cu, 0.8 to 1.2% Li, 0.25 to 0.8% Mg, O, is also known. 25 to 0.6% Ag, less than 0.25% Mn, less than 0.25% Zn 0.08 to 0.16% Zr, less than 0.10% Ti, less than 0, 15% Fe and less than 0.12% Si. 2195 alloy sections are described, for example, in the document "Friction on Welding Dissimilar Alloys for Tailoring Properties of Aerospace Parts", I. Eberl, C. Hantrais, J. C. Ehrstrom and C. Nardin, Science and Technology of Welding and Joining, 2010 Vol 15 No. 8 pp 699 - 705.
  • a first object of the invention is an aluminum alloy spun product comprising
  • Another subject of the invention is a method for manufacturing a spun product according to the invention in which:
  • Yet another object of the invention is the use of a product according to the invention for the aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.
  • Figure 1 Sectional view of the spun product of Example 1.
  • Figure 2 Compromise between the yield strength and the EA parameter for the spun products of Example 1. Description of the invention
  • alloys are in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than a weight measurement method. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515.
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p o, 2 , and the elongation at break A, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
  • KQ stress intensity factor
  • EN 12258 Unless otherwise specified, the definitions of EN 12258 apply.
  • the thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
  • a selected class of aluminum-copper-lithium alloys makes it possible to manufacture spun products having improved properties with respect to those of known products, in particular in terms of energy absorption during impact, static mechanical strength properties, corrosion resistance and low density.
  • the copper content is at least 4.2% by weight, preferably at least 4.3%, and most preferably at least 4.35% by weight. In one embodiment of the invention, the copper content is at least 4.50% by weight.
  • the copper content is at most 4.8 wt.%, Preferably at most 4.7 wt.% And most preferably 4.55 wt.%.
  • the selected copper content improves in particular the static mechanical properties. A high copper content is, however, unfavorable especially for the density of the alloy.
  • the lithium content is at least 0.9% by weight and preferably at least 0.95% by weight.
  • the lithium content is at most 1.1% by weight and preferably at most 1.05% by weight. In one embodiment of the invention, the lithium content is at most 1.04% by weight.
  • the selected lithium content improves in particular the energy absorbed during an impact. An excessively low lithium content is however unfavorable, especially for the density of the alloy.
  • the addition of manganese is an important aspect of the present invention.
  • the manganese content is at least 0.2% by weight and preferably at least 0.3% by weight.
  • the manganese content is at most 0.6% by weight and preferably at most 0.5% by weight. In one embodiment of the invention, the manganese content is at most 0.40% by weight.
  • the addition of manganese in these amounts improves in particular the compromise between the desired properties.
  • the magnesium content is at least 0.2% by weight and preferably at least 0.30% by weight.
  • the magnesium content is at most 0.6% by weight and preferably at most 0.50% by weight.
  • the magnesium content is at most 0.40% by weight.
  • the silver content is at least 0.15% by weight.
  • Content silver is at most 0.25% by weight.
  • the present inventors have found that surprisingly silver addition of more than 0.25% by weight could have an adverse effect on the energy absorption during an impact. It is important to combine the silver content from 0.15% to 0.25% by weight to a controlled pull after dissolution and quenching with a permanent deformation of 2 to 4%, in particular because a controlled pull of less than 2% does not then allow to obtain the desired mechanical strength.
  • the addition of magnesium and silver is necessary to achieve the favorable compromise between static mechanical strength, absorbed energy, density and toughness.
  • the zirconium content is at least 0.07% by weight and preferably at least 0.10% by weight.
  • the zirconium content is at most 0.15% by weight and preferably at most 0.13% by weight.
  • the addition of zirconium is in particular necessary to maintain the essentially non-recrystallized structure desired for the spun products according to the invention.
  • the titanium content is between 0.01 and 0.15% by weight and preferably between 0.02 and 0.05% by weight.
  • the addition of titanium makes it possible in particular to obtain a controlled granular structure of the raw form obtained after casting.
  • the amount of Fe and Si is less than or equal to 0.1% by weight each.
  • the content of Fe and Si is less than 0.08% by weight each.
  • the Zn content is less than 0.2% by weight, preferably less than 0.15% by weight and preferably less than 0.1% by weight.
  • the presence of Zn can have an adverse effect on the compromise between static mechanical resistance, absorbed energy, density and toughness, especially since this element adversely affects the density of the alloy without having a favorable effect on the static mechanical resistance, absorbed energy and toughness.
  • the unavoidable impurities are maintained at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
  • the spun products according to the invention are prepared by means of a process in which firstly a raw form of an alloy according to the invention is cast.
  • the raw form is a spinning billet.
  • the crude form is then homogenized at 490 ° C to 520 ° C for 8 to 48 hours.
  • the homogenization can be carried out in one or more stages.
  • the raw form can be cooled to room temperature after homogenization or directly brought to the temperature of hot deformation.
  • the homogenized raw form is hot deformed by spinning with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product.
  • the spinning temperature used in particular makes it possible to obtain the desired essentially non-recrystallized structure.
  • the products spun according to the invention are preferably profiles whose thickness of at least one of the elementary rectangles is between 1 mm and 30 mm, preferably between 2 to 20 mm and preferably between 5 and 16 mm.
  • Spun products used in aeronautical construction generally comprise several segments or elementary rectangles of different thicknesses. A difficulty encountered with these products is to achieve satisfactory properties in the different segments.
  • the alloy according to the invention makes it possible in particular to obtain a favorable compromise between static mechanical strength, absorbed energy, density and toughness for elementary rectangles of different thicknesses.
  • the spun product thus obtained is then dissolved at a temperature of 500 ° C to 520 ° C for 15 minutes to 8 hours and then quenched with water at room temperature. Quenching is preferably carried out with water, by spraying or immersion.
  • the spun product thus dissolved and quenched is then tractionned with a permanent deformation of 2 to 4%.
  • a permanent deformation by too weak a traction such as a deformation by traction of 1.5%, does not make it possible to reach the compromise between desired properties.
  • the spun product was finally heated back to a temperature of 100 ° C to 170 ° C for 5 to 100 hours.
  • the income can be made in one or more levels.
  • the income is carried out in a stage at a temperature between 130 ° C and 170 ° C and preferably between 150 and 160 ° C for a period of 20 to 40 hours.
  • the spun products thus obtained preferably have a substantially non-recrystallized granular structure.
  • the term granular structure essentially non-recrystallized a granular structure such that the recrystallization rate between 1 ⁇ 4 and 1 ⁇ 2 thickness of an elementary rectangle is less than 30% and preferably less than 10%.
  • the spun products according to the invention have particularly advantageous mechanical properties.
  • the spun products according to the invention have as properties at half thickness:
  • EA (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + Rp0.2 (TL)) 12 * A% (TL) of at least 14,000 and of preferably at least 14500
  • EA (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + Rp0.2 (TL)) 12 * A% (TL) at least equal to 9500 and of preferably at least 9800.
  • the products according to the invention have an advantageous tenacity.
  • the products according to the invention preferably have a Kic (LT) toughness of at least 24 MPa Vm and preferably at least 25 MPaVm for a thickness of between 5 and 16 mm and for a thickness of between 17 and 15 ⁇ m.
  • LT Kic toughness
  • 30 mm Kic toughness (LT) at least 21 MPa m and preferably at least 22 MPa m.
  • the products according to the invention have an excellent resistance to corrosion.
  • the spun products according to the invention have a resistance of at least 30 days when a stress corrosion test according to ASTM G44 and ASTM G49 standards on specimens taken in the TL direction for a voltage of 450 MPa.
  • the spun products according to the invention are particularly advantageous for aircraft construction.
  • the products according to the invention are used for aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.
  • the products according to the invention are used as a floor beam, in particular as a beam of the lower floor of the aircraft, or cargo floor, this floor being particularly important during the impact.
  • the raw forms were homogenized at a temperature of 490 ° C to 520 ° C adapted according to their composition, spun as spun product described in Figure 1, the thickness of the elementary rectangles is between 17 and 22 mm, with an initial hot deformation temperature of about 460 ° C.
  • the spun products obtained were dissolved at a temperature suitable for the alloy of between 500 ° C. and 520 ° C., quenched, triturated for about 3% and recovered for 30 hours at 155 ° C.
  • Table 2 The mechanical properties obtained for cylindrical samples of diameter 10 mm taken at mid-thickness and quarter-width in the 18 mm thick sole of the spun products are presented in Table 2. In order to evaluate the energy absorption during of a shock we calculated the parameter
  • the structure of the spun products obtained was essentially non-recrystallized.
  • the degree of recrystallized granular structure between 1 ⁇ 4 and 1 ⁇ 2 thickness was less than 10.
  • Figure 2 shows the tradeoff between the yield strength and the EA parameter.
  • the alloy according to the invention makes it possible to reach a particularly advantageous compromise.
  • the alloy spun product A according to the invention underwent a stress corrosion test according to ASTM G44 and ASTM G49 standards for a tension of 450 MPa on specimens taken in the TL direction. No rupture was observed after 30 days of testing.
  • the alloys A and B presented in Example 1 were spun as a spun product of a different shape and having lower elementary rectangles thicknesses between 5 and 12 mm.
  • the crude forms were homogenized 15h at 500 ° C and then 20-25 h at 510 ° C, spun as I-spun product with an initial hot deformation temperature of about 460 ° C.
  • the spun products obtained were dissolved at a temperature of approximately 510 ° C., quenched, triturated approximately 3.5% and returned for 30 hours at 155 ° C.
  • the mechanical properties in the longitudinal direction were measured on "full thickness” specimens taken from the various elementary rectangles of the spun product (thicknesses 5, 7 and 12 mm) and averaged for the different sections obtained.
  • the "full thickness” measurement underestimates the real value measured at mid-thickness on machined specimens, because of the effect of the different microstructure close to the surface.
  • a correction factor was introduced to account for this bias, however, the factor was chosen such that the actual machined test specimen value would likely be greater than the indicated corrected value.
  • the mechanical properties in the transverse direction were measured on machined specimens taken from the zone of smaller thickness, the only possible zone for this type of measurement because of the length of the specimens necessary for this measurement.
  • the toughness properties were measured on specimens taken from the thickest zone.
  • the structure of the spun products obtained was essentially non-recrystallized.
  • the degree of recrystallized granular structure between 1 ⁇ 4 and 1 ⁇ 2 thickness was less than 10%.
  • the spun product according to the invention achieves a more favorable compromise than the spun product of reference between the mechanical strength and the EA parameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The invention relates to an extruded product made of an aluminium-based alloy comprising 4.2% to 4.8% by weight of Cu, 0.9% to 1.1% by weight of Li, 0.15% to 0.25% by weight of Ag, 0.2% to 0.6% by weight of Mg, 0.07% to 0.15% by weight of Zr, 0.2% to 0.6% by weight of Mn, 0.01% to 0.15% by weight of Ti, an amount of Zn of less than 0.2% by weight, an amount of Fe and of Si of less than or equal to 0.1% by weight each, and inevitable impurities at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total. The sections according to the invention are particularly useful as fuselage stringer or stiffener, fuselage frame, wing stiffener, floor beam or section or seat track, especially due to their improved properties compared to those of known products, in particular in terms of energy absorption during an impact; static mechanical strength and corrosion resistance properties, and their low density.

Description

A!liage aluminium cuivre lithium à résistance au choc améliorée  A copper lithium aluminum bond with improved impact resistance
Domaine de l'invention Field of the invention
L'invention concerne les produits filés en alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés notamment à la construction aéronautique et aérospatiale. The invention relates to spun products made of aluminum-copper-lithium alloys, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
Etat de la technique State of the art
Des produits filés en alliage d'aluminium sont développés pour produire des pièces de haute résistance destinées notamment à l'industrie aéronautique et à l'industrie aérospatiale. Aluminum alloy spun products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.
Les produits filés en alliage d'aluminium sont utilisés dans l'industrie aéronautique pour de nombreuses applications, tels que les raidisseurs ou lisses de fuselage, les cadres de fuselage, les raidisseurs de voilure, les profilés ou poutres de plancher ainsi que les rails de siège. Aluminum alloy spun products are used in the aerospace industry for many applications, such as stiffeners or fuselage rails, fuselage frames, wing stiffeners, floor profiles or beams, as well as track rails. seat.
L'incorporation progressive de davantage de matériaux composites dans les structures aéronautiques a modifié les exigences en ce qui concerne les produits filés incorporés dans les avions, notamment pour des éléments de structure tels que les poutres de plancher. Il est apparu que l'absorption d'énergie lors d'un choc, ou plus particulièrement lors d'un crash, est un critère désormais important pour sélectionner ce produit. Les autres propriétés essentielles sont des caractéristiques mécaniques les plus élevées possible, de façon à diminuer le poids des structures, et la tenue à la corrosion. The gradual incorporation of more composite materials into aeronautical structures has changed the requirements for spun products incorporated in aircraft, particularly for structural members such as floor beams. It appeared that the absorption of energy during a shock, or more particularly during a crash, is now an important criterion for selecting this product. The other essential properties are the highest possible mechanical characteristics, so as to reduce the weight of the structures, and the resistance to corrosion.
Une grandeur telle que la capacité spécifique d'absorption peut être utilisée pour caractériser l'absorption d'énergie lors d'un choc.  A magnitude such that the specific absorption capacity can be used to characterize the energy absorption during an impact.
La capacité spécifique d'absorption d'énergie lors d'un choc peut être mesurée lors d'un test d'écrasement dans lequel on mesure l'effort fourni en fonction du déplacement réalisé lors de l'écrasement. Il s'agit de la quantité d'énergie dépensée pour écraser une unité de masse de matériau dans la phase d'écrasement stable. Les alliages d'aluminium ductiles ont une capacité importante d'absorption de l'énergie d'impact lors du choc, en particulier car ils se déforment plastiquement. En première approximation la capacité spécifique d'absorption d'énergie lors d'un choc d'un profilé en alliage d'aluminium peut être reliée à la courbe obtenue lors d'un test en traction du matériau considéré, en particulier à l'aire sous la courbe force déformation. On peut ainsi l'évaluer par le produit Rm x A% ou Rp0,2 x A% dans le sens L et dans le sens TL. The specific energy absorption capacity during an impact can be measured during a crash test in which the force provided is measured as a function of the displacement achieved. during the crash. This is the amount of energy expended to crush a unit mass of material in the stable crush phase. Ductile aluminum alloys have a significant ability to absorb impact energy during impact, in particular because they deform plastically. As a first approximation, the specific energy absorption capacity during a shock of an aluminum alloy profile can be connected to the curve obtained during a tensile test of the material in question, in particular to the area under the curve deformation force. It can thus be evaluated by the product R m x A% or R p0 , 2 x A% in the direction L and in the direction TL.
Les alliages AlCuLi sont connus. AlCuLi alloys are known.
Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pour cent en poids, permet d'augmenter la résistance mécanique. U.S. Patent 5,032,359 discloses a broad family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, particularly between 0.3 and 0.5 percent by weight, increases the mechanical strength. .
Le brevet US 5,455,003 décrit un procédé de fabrication d'alliages Al-Cu-Li qui présentent une résistance mécanique et une ténacité améliorées à température cryogénique, en particulier grâce à un écrouissage et un revenu appropriés. Ce brevet recommande en particulier la composition, en pourcentage en poids, Cu = 3,0 - 4,5, Li = 0,7 - 1,1, Ag = 0 - 0,6, Mg = 0,3-0,6 et Zn = 0 - 0,75. US Pat. No. 5,455,003 describes a process for manufacturing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, in particular through appropriate work-hardening and tempering. This patent recommends in particular the composition, in percentage by weight, Cu = 3.0-4.5, Li = 0.7-1.1, Ag = 0-0.6, Mg = 0.3-0.6. and Zn = 0 - 0.75.
Le brevet US 7,438,772 décrit des alliages comprenant, en pourcentage en poids, Cu : 3-5, Mg : 0,5-2, Li : 0,01-0,9 et décourage l'utilisation de teneurs en lithium plus élevées en raison d'une dégradation du compromis entre ténacité et résistance mécanique. US Pat. No. 7,438,772 describes alloys comprising, in percentage by weight, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourages the use of higher lithium contents due to degradation of the compromise between toughness and mechanical strength.
Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5) Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Se, V. US Pat. No. 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0, 2-0.8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Se, V.
La demande de brevet US 2009/142222 Al décrit des alliages comprenant (en % en poids), 3,4 à 4,2% de Cu, 0,9 à 1,4 % de Li, 0,3 à 0,7 % de Ag, 0, 1 à 0,6% de Mg, 0,2 à 0,8 % de Zn, 0,1 à 0,6 % de Mn et 0,01 à 0,6 % d'au moins un élément pour le contrôle de la structure granulaire. Cette demande décrit également un procédé de fabrication de produits filés. US patent application 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% of Ag, 0, 1 to 0.6% Mg, 0.2 to 0.8% of Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.
La demande de brevet WO 2009/036953 divulgue un alliage pour éléments de structure comprenant (en % en poids) 3,4 à 6,0 % de Cu, 0,9 à 1,7 % de Li, environ 0,2 à 0,8 % de Mg, environ 0,1 à 0,8 % de Ag, environ 0,1 à 0,8 % de Mn, jusque 1,5 % de Zn et un ou plusieurs éléments choisis dans le groupe consistent en Zr, Cr, Ti, Se et Hf, avec Fe < 0,15 et Si < 0,15.  Patent application WO 2009/036953 discloses an alloy for structural elements comprising (in% by weight) 3.4 to 6.0% Cu, 0.9 to 1.7% Li, about 0.2 to 0 , 8% Mg, about 0.1 to 0.8% Ag, about 0.1 to 0.8% Mn, up to 1.5% Zn, and one or more members selected from the group consisting of Zr, Cr, Ti, Se and Hf, with Fe <0.15 and Si <0.15.
On connaît par ailleurs l'alliage AA2195 comprenant (en % en poids) 3,7 à 4,3 % de Cu, 0,8 à 1,2 % de Li, 0,25 à 0,8 % de Mg, 0,25 à 0,6 % de Ag, moins de 0,25% de Mn, moins de 0,25% de Zn 0,08 à 0,16 % de Zr, moins de 0,10% de Ti, moins de 0,15 % de Fe et moins de 0,12 % de Si. Des profilés en alliage 2195 sont décris par exemple dans le document « Friction stir welding dissimalr alloys for tailoring properties of aerospace parts », I. Eberl, C. Hantrais, J.-C. Ehrstrom et C. Nardin, Science and Technology of Welding and Joining, 2010 vol 15 N° 8 pp 699 - 705.  AA2195 alloy comprising (in% by weight) 3.7 to 4.3% Cu, 0.8 to 1.2% Li, 0.25 to 0.8% Mg, O, is also known. 25 to 0.6% Ag, less than 0.25% Mn, less than 0.25% Zn 0.08 to 0.16% Zr, less than 0.10% Ti, less than 0, 15% Fe and less than 0.12% Si. 2195 alloy sections are described, for example, in the document "Friction on Welding Dissimilar Alloys for Tailoring Properties of Aerospace Parts", I. Eberl, C. Hantrais, J. C. Ehrstrom and C. Nardin, Science and Technology of Welding and Joining, 2010 Vol 15 No. 8 pp 699 - 705.
Il existe un besoin pour des produits filés en alliage aluminium-cuivre-lithium présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes d'absorption d'énergie lors d'un choc, de propriétés de résistance mécanique statique et de résistance à la corrosion, tout en ayant une faible densité. Simultanément il convient de maintenir une ténacité satisfaisante pour ces produits. There is a need for aluminum-copper-lithium alloy spun products having improved properties over those of the known products, particularly in terms of energy absorption during impact, static mechanical strength properties and resistance to corrosion, while having a low density. At the same time, it is necessary to maintain a satisfactory tenacity for these products.
Objet de l'invention Object of the invention
Un premier objet de l'invention est un produit filé en alliage à base d'aluminium comprenant  A first object of the invention is an aluminum alloy spun product comprising
4,2 à 4,8 % en poids de Cu,  4.2 to 4.8% by weight of Cu,
0,9 à 1,1 % en poids de Li,  0.9 to 1.1% by weight of Li,
0,15 à 0,25 % en poids de Ag,  0.15 to 0.25% by weight of Ag,
0j2 à 0,6 % en poids de Mg,  0j2 to 0.6% by weight of Mg,
0,07 à 0,15 % en poids de Zr, 0,2 à 0,6 % en poids de Mn, 0.07 to 0.15% by weight of Zr, 0.2 to 0.6% by weight of Mn,
0,01 à 0,15 % en poids de Ti une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.  0.01 to 0.15% by weight of Ti, a quantity of Zn of less than 0.2% by weight, an amount of Fe and Si of less than or equal to 0.1% by weight each, and unavoidable impurities at a rate of content less than or equal to 0.05% by weight each and 0.15% by weight in total.
Un autre objet de l'invention est un procédé de fabrication d'un produit filé selon l'invention dans lequel : Another subject of the invention is a method for manufacturing a spun product according to the invention in which:
(a) on coule une forme brute en alliage selon l'invention,  (a) casting a raw form of alloy according to the invention,
(b) on homogénéise ladite forme brute à une température de 490°C à 520 °C pendant 8 à 48 heures,  (b) homogenizing said crude form at a temperature of 490 ° C to 520 ° C for 8 to 48 hours,
(c) on déforme à chaud par filage ladite forme brute avec une température initiale de déformation à chaud de 420 °C à 480 °C pour obtenir un produit filé,  (c) hot-spinning said raw form with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product,
(d) on met en solution ledit produit filé à une température de 500 °C à 520 °C pendant 1 minutes à 8 heures,  (d) dissolving said spun product at a temperature of 500 ° C to 520 ° C for 1 minute to 8 hours,
(e) on trempe,  (e) quenching,
(f) on tractionne de façon contrôlée ledit produit filé avec une déformation permanente de 2 à 4%,  (f) controlling said spun product in a controlled manner with a permanent deformation of 2 to 4%,
(g) optionnellement on effectue un dressage dudit produit filé,  (g) optionally, a dressing is carried out of said spun product,
(h) on réalise un revenu dudit produit filé par chauffage à une température de 100 °C à 170°C pendant 5 à 100 heures.  (h) yielding said spun product by heating at a temperature of 100 ° C to 170 ° C for 5 to 100 hours.
Encore un autre objet de l'invention est l'utilisation d'un produit selon l'invention pour la construction aéronautique comme raidisseur ou lisse de fuselage, cadre de fuselage, raidisseur de voilure, profilé ou poutre de plancher ou rail de siège. Yet another object of the invention is the use of a product according to the invention for the aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.
Description des figures Description of figures
Figure 1 : Vue en coupe du produit filé de l'exemple 1.  Figure 1: Sectional view of the spun product of Example 1.
Figure 2 : Compromis entre la limite d'élasticité et le paramètre EA pour les produits filés de l'exemple 1. Description de l'invention Figure 2: Compromise between the yield strength and the EA parameter for the spun products of Example 1. Description of the invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1 ,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure dé poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de << Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515. Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1, 4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than a weight measurement method. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515.
Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rpo,2, et l'allongement à la rupture A , sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1 , le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. The static mechanical characteristics in tension, in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p o, 2 , and the elongation at break A, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E399. La norme ASTM E399 donne les critères qui permettent de déterminer si KQ est une valeur valide de Kic- Pour une géométrie d'éprouvette donnée, les valeurs de KQ obtenues pour différents matériaux sont comparables entre elles pour autant que les limites d'élasticité des matériaux soient du même ordre de grandeur. The stress intensity factor (KQ) is determined according to ASTM E399. ASTM E399 gives the criteria for determining whether KQ is a valid Kic value. For a given test piece geometry, the KQ values obtained for different materials are comparable to one another as long as the yield strengths of the materials are the same. are of the same order of magnitude.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.  Unless otherwise specified, the definitions of EN 12258 apply.
L'épaisseur des produits filés est définie selon la norme EN 2066:2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A. The thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
Selon la présente invention, une classe sélectionnée d'alliages d'aluminium-cuivre-lithium permet de fabriquer des produits filés présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes d'absorption d'énergie lors d'un choc, de propriétés de résistance mécanique statique, de résistance à la corrosion et ayant une faible densité. According to the present invention, a selected class of aluminum-copper-lithium alloys makes it possible to manufacture spun products having improved properties with respect to those of known products, in particular in terms of energy absorption during impact, static mechanical strength properties, corrosion resistance and low density.
L'addition simultanée de manganèse, de titane, de zirconium, de magnésium et d'argent, permet pour les teneurs en cuivre et en lithium sélectionnées, d'obtenir un compromis entre un paramètre représentatif de l'absorption d'énergie lors d'un choc et la limite d'élasticité particulièrement avantageux.  The simultaneous addition of manganese, titanium, zirconium, magnesium and silver allows for the selected copper and lithium contents, to obtain a compromise between a representative parameter of the energy absorption during a shock and the yield point particularly advantageous.
La teneur en cuivre est au moins de 4,2 % en poids, de préférence au moins 4,3 % èt de manière préférée au moins 4,35 % en poids. Dans un mode de réalisation de l'invention la teneur en cuivre est au moins de 4,50 % en poids. La teneur en cuivre est au plus de 4,8 % en poids, de préférence au plus 4,7 % en poids et de manière préférée au plus 4,55 % en poids. La teneur en cuivre sélectionnée améliore notamment les propriétés mécaniques statiques. Une teneur en cuivre élevée est cependant défavorable notamment pour la densité de l'alliage. The copper content is at least 4.2% by weight, preferably at least 4.3%, and most preferably at least 4.35% by weight. In one embodiment of the invention, the copper content is at least 4.50% by weight. The copper content is at most 4.8 wt.%, Preferably at most 4.7 wt.% And most preferably 4.55 wt.%. The selected copper content improves in particular the static mechanical properties. A high copper content is, however, unfavorable especially for the density of the alloy.
La teneur en lithium est au moins de 0,9 % en poids et de préférence au moins 0,95 %.en poids. La teneur en lithium est au plus de 1, 1 % en poids et de préférence au plus 1,05 % en poids. Dans un mode de réalisation de l'invention la teneur en lithium est au plus de 1,04 % en poids. La teneur en lithium sélectionnée améliore notamment l'énergie absorbée lors d'un choc. Une teneur en lithium trop faible est cependant défavorable notamment pour la densité de l'alliage.  The lithium content is at least 0.9% by weight and preferably at least 0.95% by weight. The lithium content is at most 1.1% by weight and preferably at most 1.05% by weight. In one embodiment of the invention, the lithium content is at most 1.04% by weight. The selected lithium content improves in particular the energy absorbed during an impact. An excessively low lithium content is however unfavorable, especially for the density of the alloy.
L'addition de manganèse est un aspect important de la présente invention. La teneur en manganèse est au moins de 0,2 % en poids et de préférence au moins 0,3 % en poids. La teneur en manganèse est au plus de 0,6 % en poids et de préférence au plus 0,5 % en poids. Dans un mode de réalisation de l'invention la teneur en manganèse est au plus de 0,40 % en poids. L'addition de manganèse dans ces quantités améliore en particulier le compromis entre les propriétés recherchées.  The addition of manganese is an important aspect of the present invention. The manganese content is at least 0.2% by weight and preferably at least 0.3% by weight. The manganese content is at most 0.6% by weight and preferably at most 0.5% by weight. In one embodiment of the invention, the manganese content is at most 0.40% by weight. The addition of manganese in these amounts improves in particular the compromise between the desired properties.
La teneur en magnésium est au moins 0,2% en poids et de préférence au moins 0,30% en poids. La teneur en magnésium est au plus de 0,6 % en poids et de préférence au plus de 0,50 % en poids. Dans un mode de réalisation de l'invention la teneur en magnésium est au plus de 0,40 % en poids. La teneur en argent est au moins de 0,15 % en poids. La teneur en argent est au plus de 0,25 % en poids. Les présents inventeurs ont constaté que de manière surprenante une addition d'argent de plus de 0,25% en poids pouvait avoir un effet défavorable sur l'absorption d'énergie lors d'un choc. Il est important de combiner la teneur en argent de 0,15% à 0,25% en poids à une traction contrôlée après mise en solution et trempe avec une déformation permanente de 2 à 4%, notamment car une traction contôlée inférieure à 2% ne permet pas alors d'obtenir la résistance mécanique souhaitée. L'addition de magnésium et d'argent est nécessaire pour atteindre le compromis favorable entre résistance mécanique statique, énergie absorbée, densité et ténacité. The magnesium content is at least 0.2% by weight and preferably at least 0.30% by weight. The magnesium content is at most 0.6% by weight and preferably at most 0.50% by weight. In one embodiment of the invention, the magnesium content is at most 0.40% by weight. The silver content is at least 0.15% by weight. Content silver is at most 0.25% by weight. The present inventors have found that surprisingly silver addition of more than 0.25% by weight could have an adverse effect on the energy absorption during an impact. It is important to combine the silver content from 0.15% to 0.25% by weight to a controlled pull after dissolution and quenching with a permanent deformation of 2 to 4%, in particular because a controlled pull of less than 2% does not then allow to obtain the desired mechanical strength. The addition of magnesium and silver is necessary to achieve the favorable compromise between static mechanical strength, absorbed energy, density and toughness.
La teneur en zirconium est au moins de 0,07 % en poids et de préférence au moins de 0,10% en poids. La teneur en zirconium est au plus de 0,15% en poids et de préférence au plus de 0,13 % en poids. L'addition de zirconium est notamment nécessaire pour maintenir la structure essentiellement non-recristallisée souhaitée pour les produits filés selon l'invention.  The zirconium content is at least 0.07% by weight and preferably at least 0.10% by weight. The zirconium content is at most 0.15% by weight and preferably at most 0.13% by weight. The addition of zirconium is in particular necessary to maintain the essentially non-recrystallized structure desired for the spun products according to the invention.
La teneur en titane est comprise entre 0,01 et 0,15 % en poids et de préférence entre 0,02 et 0,05 % en poids. L'addition de titane permet notamment d'obtenir une structure granulaire contrôlée de la forme brute obtenue après la coulée.  The titanium content is between 0.01 and 0.15% by weight and preferably between 0.02 and 0.05% by weight. The addition of titanium makes it possible in particular to obtain a controlled granular structure of the raw form obtained after casting.
La quantité de Fe et de Si est inférieure ou égale à 0, 1 % en poids chacun. De préférence la teneur en Fe et en Si est inférieure à 0,08 % en poids chacun.  The amount of Fe and Si is less than or equal to 0.1% by weight each. Preferably, the content of Fe and Si is less than 0.08% by weight each.
La teneur en Zn est inférieure à 0,2 % en poids, de préférence inférieure à 0, 15 % en poids et de manière préférée inférieure à 0,1 % en poids. La présence de Zn peut avoir un effet défavorable sur le compromis entre résistance mécanique statique, énergie absorbée, densité et ténacité, notamment car cet élément nuit à la densité de l'alliage sans apporter d'effet favorable sur la résistance mécanique statique, l'énergie absorbée et la ténacité. Les impuretés inévitables sont maintenues à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.  The Zn content is less than 0.2% by weight, preferably less than 0.15% by weight and preferably less than 0.1% by weight. The presence of Zn can have an adverse effect on the compromise between static mechanical resistance, absorbed energy, density and toughness, especially since this element adversely affects the density of the alloy without having a favorable effect on the static mechanical resistance, absorbed energy and toughness. The unavoidable impurities are maintained at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
Les produits filés selon l'invention sont préparés à l'aide d'un procédé dans lequel tout d'abord on coule une forme brute en alliage selon l'invention. De préférence, la forme brute est une billette de filage. La forme brute est ensuite homogénéisée à une température de 490°C à 520 °C pendant 8 à 48 heures. L'homogénéisation peut être réalisée en un ou plusieurs paliers. La forme brute peut être refroidie jusqu'à température ambiante après homogénéisation ou directement amenée à la température de déformation à chaud. La forme brute homogénéisée est déformée à chaud par filage avec une température initiale de déformation à chaud de 420 °C à 480 °C pour obtenir un produit filé. La température de filage utilisée permet notamment d'obtenir la structure essentiellement non-recristallisée souhaitée. The spun products according to the invention are prepared by means of a process in which firstly a raw form of an alloy according to the invention is cast. Preferably, the raw form is a spinning billet. The crude form is then homogenized at 490 ° C to 520 ° C for 8 to 48 hours. The homogenization can be carried out in one or more stages. The raw form can be cooled to room temperature after homogenization or directly brought to the temperature of hot deformation. The homogenized raw form is hot deformed by spinning with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product. The spinning temperature used in particular makes it possible to obtain the desired essentially non-recrystallized structure.
Les produits filés selon l'invention sont de préférences des profilés dont l'épaisseur d'au moins un des rectangles élémentaires est comprise entre 1 mm et 30 mm, de préférence entre 2 à 20 mm et de manière préférée entre 5 et 16 mm. Les produits filés utilisés en construction aéronautique comprennent généralement plusieurs segments ou rectangles élémentaires d'épaisseurs différentes. Une difficulté rencontrée avec ces produits est d'atteindre des propriétés satisfaisantes dans les différents segments. L'alliage selon l'invention permet notamment d'obtenir un compromis favorable entre résistance mécanique statique, énergie absorbée, densité et ténacité pour des rectangles élémentaires d'épaisseurs différentes.  The products spun according to the invention are preferably profiles whose thickness of at least one of the elementary rectangles is between 1 mm and 30 mm, preferably between 2 to 20 mm and preferably between 5 and 16 mm. Spun products used in aeronautical construction generally comprise several segments or elementary rectangles of different thicknesses. A difficulty encountered with these products is to achieve satisfactory properties in the different segments. The alloy according to the invention makes it possible in particular to obtain a favorable compromise between static mechanical strength, absorbed energy, density and toughness for elementary rectangles of different thicknesses.
Le produit filé ainsi obtenu est ensuite mis en solution à une température de 500 °C à 520 °C pendant 15 minutes à 8 heures puis trempé avec de l'eau à température ambiante. La trempe est effectuée de préférence à l'eau, par aspersion ou par immersion.  The spun product thus obtained is then dissolved at a temperature of 500 ° C to 520 ° C for 15 minutes to 8 hours and then quenched with water at room temperature. Quenching is preferably carried out with water, by spraying or immersion.
Le produit filé ainsi mis en solution et trempé est ensuite tractionné avec une déformation permanente de 2 à 4%. Une déformation permanente par traction trop faible, telle qu'une déformation par traction de 1,5%, ne permet pas d'atteindre le compromis entre propriétés souhaité. Une déformation permanente par traction trop élevée, telle qu'une déformation de 6 % ne permet notamment pas de garantir les caractéristiques dimensionnelles du produit filé, typiquement en ce qui concerne les angles entre les différents rectangles élémentaires. Il peut être nécessaire de réaliser une opération de dressage du produit filé pour obtenir les propriétés souhaitées d'un point de vue dimensionnel. The spun product thus dissolved and quenched is then tractionned with a permanent deformation of 2 to 4%. A permanent deformation by too weak a traction, such as a deformation by traction of 1.5%, does not make it possible to reach the compromise between desired properties. A permanent deformation by traction that is too high, such as a deformation of 6%, makes it impossible in particular to guarantee the dimensional characteristics of the spun product, typically as regards the angles between the various elementary rectangles. It may be necessary to perform a dressing operation of the spun product to obtain the desired properties from a dimensional point of view.
Le produit filé est enfin revenu par chauffage à une température de 100 °C à 170°C pendant 5 à 100 heures. Le revenu peut être effectué en un ou plusieurs paliers. De manière préférée, le revenu est effectué en un palier à une température comprise entre 130 °C et 170 °C et avantageusement entre 150 et 160 °C pendant une durée de 20 à 40 h.  The spun product was finally heated back to a temperature of 100 ° C to 170 ° C for 5 to 100 hours. The income can be made in one or more levels. Preferably, the income is carried out in a stage at a temperature between 130 ° C and 170 ° C and preferably between 150 and 160 ° C for a period of 20 to 40 hours.
Les produits filés ainsi obtenus ont de préférence une structure granulaire essentiellement non-recristallisée. Dans le cadre de la présente invention, on appelle structure granulaire essentiellement non-recristallisée une structure granulaire telle que le taux de recristallisation entre ¼ et ½ épaisseur d'un rectangle élémentaire est inférieur à 30% et de préférence inférieur à 10%. The spun products thus obtained preferably have a substantially non-recrystallized granular structure. In the context of the present invention, the term granular structure essentially non-recrystallized a granular structure such that the recrystallization rate between ¼ and ½ thickness of an elementary rectangle is less than 30% and preferably less than 10%.
Les produits filés selon l'invention ont des propriétés mécaniques particulièrement avantageuses.  The spun products according to the invention have particularly advantageous mechanical properties.
Ainsi de manière préférée, les produits filés selon l'invention ont comme propriétés à mi- épaisseur :  Thus, preferably, the spun products according to the invention have as properties at half thickness:
pour une épaisseur comprise entre 5 et 16 mm for a thickness between 5 and 16 mm
une limite d'élasticité moyenne Rp0,2 dans le sens L d'au moins 630 MPa et de préférence d'au moins 635 MPa et an average yield strength R p0,2 in the L direction of at least 630 MPa and preferably at least 635 MPa and
une limite d'élasticité moyenne Rp0,2 dans le sens TL d'au moins 625 MPa et de préférence d'au moins 630 MPa et a mean yield strength R p0.2 in the TL direction of at least 625 MPa and preferably at least 630 MPa and
un facteur EA an EA factor
EA = (Rm(L) + RpO,2(L)) 12 * A%(L) + (Rm(TL) + Rp0,2(TL)) 12 * A%(TL) au moins égal à 14000 et de préférence au moins égal à 14500  EA = (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + Rp0.2 (TL)) 12 * A% (TL) of at least 14,000 and of preferably at least 14500
et/ou and or
pour une épaisseur comprise entre 17 et 30 mm for a thickness of between 17 and 30 mm
une limite d'élasticité moyenne Rp0,2 dans le sens L d'au moins 655 MPa et de préférence d'au moins 660 MPa et a mean yield strength R p0,2 in the L direction of at least 655 MPa and preferably at least 660 MPa and
une limite d'élasticité moyenne Rpo,2 dans le sens TL d'au moins 600 MPa et de préférence d'au moins 605 MPa et an average yield strength R p o, 2 in the TL direction of at least 600 MPa and preferably at least 605 MPa and
un facteur EA an EA factor
EA = (Rm(L) + RpO,2(L)) 12 * A%(L) + (Rm(TL) + Rp0,2(TL)) 12 * A%(TL) au moins égal à 9500 et de préférence au moins égal à 9800.  EA = (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + Rp0.2 (TL)) 12 * A% (TL) at least equal to 9500 and of preferably at least 9800.
De plus les produits selon l'invention ont une ténacité avantageuse. In addition, the products according to the invention have an advantageous tenacity.
Ainsi les produits selon l'invention ont de préférence pour une épaisseur comprise entre 5 et 16 mm une ténacité Kic(L-T), d'au moins 24 MPa Vm et de préférence d'au moins 25 MPaVm et pour une épaisseur comprise entre 17 et 30 mm une ténacité Kic(L-T), d'au moins 21 MPa m et de préférence d'au moins 22 MPa m .  Thus, the products according to the invention preferably have a Kic (LT) toughness of at least 24 MPa Vm and preferably at least 25 MPaVm for a thickness of between 5 and 16 mm and for a thickness of between 17 and 15 μm. 30 mm Kic toughness (LT), at least 21 MPa m and preferably at least 22 MPa m.
Enfin les produits selon l'invention présentent une excellente résistance à la corrosion. Ainsi les produits filés selon l'invention présentent une résistance d'au moins 30 jours lors d'un test de corrosion sous contrainte selon les normes ASTM G44 et ASTM G49 sur des éprouvettes prélevées dans le sens TL pour une tension de 450 MPa. Finally, the products according to the invention have an excellent resistance to corrosion. Thus the spun products according to the invention have a resistance of at least 30 days when a stress corrosion test according to ASTM G44 and ASTM G49 standards on specimens taken in the TL direction for a voltage of 450 MPa.
Les produits filés selon l'invention sont particulièrement avantageux pour la construction aéronautique. Ainsi, les produits selon l'invention sont utilisés pour la construction aéronautique comme raidisseur ou lisse de fuselage, cadre de fuselage, raidisseur de voilure, profilé ou poutre de plancher ou rail de siège. Dans un mode de réalisation préféré on utilise les produits selon l'invention comme poutre de plancher, notamment comme poutre du plancher inférieur des avions, ou plancher cargo, ce plancher étant particulièrement important lors du choc.  The spun products according to the invention are particularly advantageous for aircraft construction. Thus, the products according to the invention are used for aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail. In a preferred embodiment, the products according to the invention are used as a floor beam, in particular as a beam of the lower floor of the aircraft, or cargo floor, this floor being particularly important during the impact.
Exemples Exemple 1. Examples Example 1.
Dans cet exemple, cinq alliages dont la composition est donnée dans le tableau 1 ont été préparés et coulés sous une forme brute. In this example, five alloys whose composition is given in Table 1 were prepared and cast in a raw form.
Tableau 1. Composition en % en poids des alliages Table 1. Composition in% by weight of alloys
inv : invention - ref : référence inv: invention - ref: reference
Les formes brutes ont été homogénéisées à une température de 490°C à 520 °C adaptée selon leur composition, filées sous forme de produit filé décrit dans la Figure 1, dont l'épaisseur des rectangles élémentaires est comprise entre 17 et 22 mm, avec une température initiale de déformation à chaud d'environ 460 °C. Les produits filés obtenus ont été mis en solution à une température adaptée à l'alliage comprise entre 500 °C et 520 °C, trempés, tractionnés environ 3 % et revenus 30h à 155 °C. Les propriétés mécaniques obtenues pour des échantillons cylindriques de diamètre 10 mm prélevés à mi-épaisseur et quart-largeur dans la semelle d'épaisseur 18 mm des produits filés sont présentées dans le tableau 2. Afin d'évaluer l'absorption d'énergie lors d'un choc on a calculé le paramètre The raw forms were homogenized at a temperature of 490 ° C to 520 ° C adapted according to their composition, spun as spun product described in Figure 1, the thickness of the elementary rectangles is between 17 and 22 mm, with an initial hot deformation temperature of about 460 ° C. The spun products obtained were dissolved at a temperature suitable for the alloy of between 500 ° C. and 520 ° C., quenched, triturated for about 3% and recovered for 30 hours at 155 ° C. The mechanical properties obtained for cylindrical samples of diameter 10 mm taken at mid-thickness and quarter-width in the 18 mm thick sole of the spun products are presented in Table 2. In order to evaluate the energy absorption during of a shock we calculated the parameter
EA = (Rra(L) + Rp0,2(L)) 12 * A (L) + (Rm(TL) + Rp0,2(TL)) 12 * A%(TL) EA = (R ra (L) + R p0.2 (L)) 12 * A (L) + (R m (TL) + R p0.2 (TL)) 12 * A% (TL)
La structure des produit filés obtenus était essentiellement non-recristallisée. Le taux de structure granulaire recristallisée entre ¼ et ½ épaisseur était inférieur à 10 . The structure of the spun products obtained was essentially non-recrystallized. The degree of recrystallized granular structure between ¼ and ½ thickness was less than 10.
Tableau 2. Propriétés mécaniques obtenues pour les différents alliages. Table 2. Mechanical properties obtained for different alloys.
La figure 2 présente le compromis entre la limite d'élasticité et le paramètre EA. L'alliage selon l'invention permet d'atteindre un compromis particulièrement avantageux. Figure 2 shows the tradeoff between the yield strength and the EA parameter. The alloy according to the invention makes it possible to reach a particularly advantageous compromise.
Le produit filé en alliage A selon l'invention a subit un test de corrosion sous contrainte selon les normes ASTM G44 et ASTM G49 pour une tension de 450 MPa sur des éprouvettes prélevées dans le sens TL. Aucune rupture n'a été observée après 30 jours de test. The alloy spun product A according to the invention underwent a stress corrosion test according to ASTM G44 and ASTM G49 standards for a tension of 450 MPa on specimens taken in the TL direction. No rupture was observed after 30 days of testing.
Exemple 2 Example 2
i l Dans cet exemple, les alliages A et B présentés dans l'exemple 1 ont été filés sous forme d'un produit filé d'une forme différente et présentant des épaisseurs de rectangles élémentaires plus faibles, comprises entre 5 et 12 mm. Les formes brutes ont été homogénéisées 15h à 500 °C puis 20 à 25h à 510 °C, filées sous forme de produit filé en I avec une température initiale de déformation à chaud d'environ 460 °C. Les produits filés obtenus ont été mis en solution à une température d'environ 510 °C, trempés, tractionnés environ 3,5 % et revenus 30h à 155 °C. he In this example, the alloys A and B presented in Example 1 were spun as a spun product of a different shape and having lower elementary rectangles thicknesses between 5 and 12 mm. The crude forms were homogenized 15h at 500 ° C and then 20-25 h at 510 ° C, spun as I-spun product with an initial hot deformation temperature of about 460 ° C. The spun products obtained were dissolved at a temperature of approximately 510 ° C., quenched, triturated approximately 3.5% and returned for 30 hours at 155 ° C.
Les propriétés mécaniques dans la direction longitudinale ont été mesurées sur des éprouvettes « pleine épaisseur », prélevées dans les différents rectangles élémentaires du produit filé (épaisseurs 5, 7 et 12 mm) et moyennées pour les différents profilés obtenus. La mesure « pleine épaisseur » sous estime la valeur réelle mesurée à mi-épaisseur sur des éprouvettes usinées, à cause de l'effet de la microstructure différente proche de la surface. Un facteur de correction a été introduit pour tenir compte de ce biais, cependant le facteur a été choisi de telle façon que la valeur réelle sur éprouvette usinée serait sans doute supérieure à la valeur corrigée indiquée. Les propriétés mécaniques dans la direction transverse ont été mesurées sur des éprouvettes usinées prélevées dans la zone de plus faible épaisseur, seule zone possible pour ce type de mesure en raison de la longueur des éprouvettes nécessaire pour cette mesure. Les propriétés de ténacité ont été mesurées sur des éprouvettes prélevées dans la zone de plus forte épaisseur.  The mechanical properties in the longitudinal direction were measured on "full thickness" specimens taken from the various elementary rectangles of the spun product (thicknesses 5, 7 and 12 mm) and averaged for the different sections obtained. The "full thickness" measurement underestimates the real value measured at mid-thickness on machined specimens, because of the effect of the different microstructure close to the surface. A correction factor was introduced to account for this bias, however, the factor was chosen such that the actual machined test specimen value would likely be greater than the indicated corrected value. The mechanical properties in the transverse direction were measured on machined specimens taken from the zone of smaller thickness, the only possible zone for this type of measurement because of the length of the specimens necessary for this measurement. The toughness properties were measured on specimens taken from the thickest zone.
La structure des produit filés obtenus était essentiellement non-recristallisée. Le taux de structure granulaire recristallisée entre ¼ et ½ épaisseur était inférieur à 10 %.  The structure of the spun products obtained was essentially non-recrystallized. The degree of recrystallized granular structure between ¼ and ½ thickness was less than 10%.
Les propriétés mécaniques ainsi obtenues sont présentées dans le Tableau 3. The mechanical properties thus obtained are presented in Table 3.
Tableau 3. Propriétés mécaniques obtenues pour les différents alliages. Table 3. Mechanical properties obtained for different alloys.
EA I 14540 I 13840 | EA I 14540 I 13840 |
* facteur de correction 1,033 appliqué au résultat obtenu sur éprouvette pleine épaisseur  * correction factor 1.033 applied to the result obtained on a full thickness test specimen
A nouveau, le produit filé selon l'invention atteint un compromis plus favorable que le produit filé de référence entre la résistance mécanique et le paramètre EA. Again, the spun product according to the invention achieves a more favorable compromise than the spun product of reference between the mechanical strength and the EA parameter.

Claims

Revendications claims
1. Produit filé en alliage à base d'aluminium comprenant 1. Spun aluminum alloy product comprising
4,2 à 4,8 % en poids de Cu,  4.2 to 4.8% by weight of Cu,
0,9 à 1, 1 % en poids de Li,  0.9 to 1, 1% by weight of Li,
0,15 à 0,25% en poids de Ag,  0.15 to 0.25% by weight of Ag,
0,2 à 0,6 % en poids de Mg,  0.2 to 0.6% by weight of Mg,
0,07 à 0, 15 % en poids de Zr,  0.07 to 0, 15% by weight of Zr,
0,2 à 0,6 % en poids de Mn,  0.2 to 0.6% by weight of Mn,
0,01 à 0,15 % en poids de Ti,  0.01 to 0.15% by weight of Ti,
une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.  an amount of Zn of less than 0.2% by weight, an amount of Fe and Si of less than or equal to 0.1% by weight each, and unavoidable impurities at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
2. Produit filé selon la revendication 1, comprenant 4,3 % à 4,7 % en poids de Cu et de préférence 4,35 % à 4,55 % en poids de Cu. 2. Spun product according to claim 1, comprising 4.3% to 4.7% by weight of Cu and preferably 4.35% to 4.55% by weight of Cu.
3. Produit filé selon la revendication 1 ou la revendication 2, comprenant 0,95 à 1,05 % en poids de Li. The spun product of claim 1 or claim 2 comprising 0.95 to 1.05% by weight of Li.
4. Produit filé selon une quelconque des revendications 1 à 3 comprenant 0,30 à 0,50 % en poids de Mg et/ou 0,10 à 0,13 % en poids de Zr. 4. Spun product according to any one of claims 1 to 3 comprising 0.30 to 0.50% by weight of Mg and / or 0.10 to 0.13% by weight of Zr.
5. Produit filé selon une quelconque des revendications 1 à 4 comprenant 0,3 à 0,5 % en poids de Mn. 5. Spun product according to any one of claims 1 to 4 comprising 0.3 to 0.5% by weight of Mn.
6. Produit filé selon une quelconque des revendications 1 à 5 comprenant moins de 0, 15% de Zn et de préférence moins de 0, 1 % de Zn. 6. Spun product according to any one of claims 1 to 5 comprising less than 0, 15% of Zn and preferably less than 0, 1% of Zn.
7. Produit filé selon une quelconque des revendications 1 à 6 caractérisé en ce qu'il s'agit d'un profilé dont l'épaisseur d'au moins un rectangle élémentaire est comprise entre 1 mm et 30 mm, de préférence entre 2 à 20 mm et de manière préférée entre 5 et 16 mm. 7. Spun product according to any one of claims 1 to 6 characterized in that it is a profile whose thickness of at least one elementary rectangle is between 1 mm and 30 mm, preferably between 2 and 20 mm and preferably between 5 and 16 mm.
8. Produit selon une quelconque des revendications 1 à 7 dont le taux de recristallisation entre ¼ et ½ épaisseur d'un rectangle élémentaire est inférieur à 30% et de préférence inférieur à 10%. 8. Product according to any one of claims 1 to 7, the recrystallization rate between ¼ and ½ thickness of an elementary rectangle is less than 30% and preferably less than 10%.
9. Produit filé selon une quelconque des revendications 1 à 8 ayant à mi-épaisseur 9. Spun product according to any one of claims 1 to 8 having mid-thickness
pour une épaisseur comprise entre 5 et 16 mm  for a thickness between 5 and 16 mm
une limite d'élasticité moyenne Rp0,2 dans le sens L d'au moins 630 MPa et de préférence d'au moins 635 MPa et an average yield strength R p0,2 in the L direction of at least 630 MPa and preferably at least 635 MPa and
une limite d'élasticité moyenne Rp0,2 dans le sens TL d'au moins 625 MPa et de préférence d'au moins 630 MPa et a mean yield strength R p0 , 2 in the TL direction of at least 625 MPa and preferably at least 630 MPa and
un facteur EA  an EA factor
EA = (Rm(L) + RpO,2(L)) 12 * A%(L) + (Rm(TL) + RpO,2(TL)) 12 * A%(TL) au moins égal à 14000 et de préférence au moins égal à 14500  EA = (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + RpO, 2 (TL)) 12 * A% (TL) of at least 14,000 and of preferably at least 14500
et/ou  and or
pour une épaisseur comprise entre 17 et 30 mm  for a thickness of between 17 and 30 mm
une limite d'élasticité moyenne Rpo,2 dans le sens L d'au moins 655 MPa et de préférence d'au moins 660 MPa et an average yield strength R p o, 2 in the direction L of at least 655 MPa and preferably at least 660 MPa and
une limite d'élasticité moyenne Rpo,2 dans le sens TL d'au moins 600 MPa et de préférence d'au moins 605 MPa et an average yield strength R p o , 2 in the TL direction of at least 600 MPa and preferably at least 605 MPa and
un facteur EA  an EA factor
EA = (Rm(L) + RpO,2(L)) 12 * A%(L) + (Rm(TL) + RpO,2(TL)) 12 * A%(TL) au moins égal à 9500 et de préférence au moins égal à 9800.  EA = (Rm (L) + RpO, 2 (L)) 12 * A% (L) + (Rm (TL) + RpO, 2 (TL)) 12 * A% (TL) at least equal to 9500 and of preferably at least 9800.
10. Produit selon la revendication 9 ayant The product of claim 9 having
pour une épaisseur comprise entre 5 et 16 mm une ténacité Kic(L-T), d'au moins 24 for a thickness between 5 and 16 mm Kic toughness (L-T), of at least 24
MPa Vm et de préférence d'au moins 25 MPa Vm et MPa Vm and preferably at least 25 MPa Vm and
pour une épaisseur comprise entre 17 et 30 mm une ténacité Kic(L-T), d'au moins 21 for a thickness between 17 and 30 mm Kic toughness (L-T), of at least 21
MPa Vm et de préférence d'au moins 22 MPa m . MPa Vm and preferably at least 22 MPa m.
11. Procédé de fabrication d'un produit filé selon une quelconque des revendications 1 à 10 dans lequel : 11. A method of manufacturing a spun product according to any one of claims 1 to 10 wherein:
(a) on coule une forme brute en alliage selon une des revendications 1 à 6,  (a) pouring a raw form of alloy according to one of claims 1 to 6,
(b) on homogénéise ladite forme brute à une température de 490°C à 520 °C pendant 8 à 48 heures,  (b) homogenizing said crude form at a temperature of 490 ° C to 520 ° C for 8 to 48 hours,
(c) on déforme à chaud par filage ladite forme brute avec une température initiale de déformation à chaud de 420 °C à 480 °C pour obtenir un produit filé,  (c) hot-spinning said raw form with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product,
(d) on met en solution ledit produit filé à une température de 500 °C à 520 °C pendant 15 minutes à 8 heures,  (d) dissolving said spun product at a temperature of 500 ° C to 520 ° C for 15 minutes to 8 hours,
(e) on trempe,  (e) quenching,
(f) on tractionne de façon contrôlée ledit produit filé avec une déformation permanente de 2 à 4%,  (f) controlling said spun product in a controlled manner with a permanent deformation of 2 to 4%,
(g) optionnellement on effectue un dressage dudit produit filé,  (g) optionally, a dressing is carried out of said spun product,
(h) on réalise un revenu dudit produit filé par chauffage à une température de 100 °C à 170°C pendant 5 à 100 heures.  (h) yielding said spun product by heating at a temperature of 100 ° C to 170 ° C for 5 to 100 hours.
Utilisation d'un produit selon une quelconque des revendications 1 à 10 pour la construction aéronautique comme raidisseur ou lisse de fuselage, cadre de fuselage, raidisseur de voilure, profilé ou poutre de plancher ou rail de siège. Use of a product according to any one of claims 1 to 10 for aeronautical construction such as stiffener or fuselage beam, fuselage frame, wing stiffener, profile or beam of floor or seat rail.
EP13722480.4A 2012-04-11 2013-04-10 Alliage aluminium cuivre lithium à résistance au choc améliorée Active EP2836620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE13722480.4T DE13722480T1 (en) 2012-04-11 2013-04-10 ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPACTNESS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261622774P 2012-04-11 2012-04-11
FR1201063A FR2989387B1 (en) 2012-04-11 2012-04-11 LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED SHOCK RESISTANCE
PCT/FR2013/000096 WO2013153292A1 (en) 2012-04-11 2013-04-10 Aluminium copper lithium alloy with improved impact strength

Publications (2)

Publication Number Publication Date
EP2836620A1 true EP2836620A1 (en) 2015-02-18
EP2836620B1 EP2836620B1 (en) 2019-03-27

Family

ID=46940511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13722480.4A Active EP2836620B1 (en) 2012-04-11 2013-04-10 Alliage aluminium cuivre lithium à résistance au choc améliorée

Country Status (8)

Country Link
US (1) US9945010B2 (en)
EP (1) EP2836620B1 (en)
CN (1) CN104220616B (en)
BR (1) BR112014025110B1 (en)
CA (1) CA2869733C (en)
DE (1) DE13722480T1 (en)
FR (1) FR2989387B1 (en)
WO (1) WO2013153292A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007423B1 (en) 2013-06-21 2015-06-05 Constellium France EXTRADOS STRUCTURE ELEMENT IN ALUMINUM COPPER LITHIUM ALUMINUM
FR3014904B1 (en) * 2013-12-13 2016-05-06 Constellium France PRODUCTS FILES FOR PLASTER FLOORS IN LITHIUM COPPER ALLOY
RU2560485C1 (en) * 2014-06-10 2015-08-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength heat-treatable aluminium alloy and article made thereof
CN109890663B (en) 2016-08-26 2023-04-14 形状集团 Warm forming process and apparatus for transverse bending extrusion of aluminum beams to warm form vehicle structural members
CN110114498A (en) 2016-10-24 2019-08-09 形状集团 Multistage aluminium alloy for producing vehicle part is formed and hot-working method
CN107964641B (en) * 2017-10-18 2021-02-05 中国航发北京航空材料研究院 Heat treatment method for improving creep forming performance of aluminum-lithium alloy
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
FR3080860B1 (en) * 2018-05-02 2020-04-17 Constellium Issoire LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY
CN110423927A (en) * 2019-07-17 2019-11-08 中南大学 A kind of Ultrahigh strength aluminum lithium alloy and preparation method thereof
CN110952010A (en) * 2019-12-18 2020-04-03 东北轻合金有限责任公司 Manufacturing method of high-temperature-resistant aluminum alloy plate for rocket tank body
CN116287913A (en) * 2023-02-10 2023-06-23 南京航空航天大学 Microelement modified aluminum lithium alloy powder for additive manufacturing and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US7438772B2 (en) 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
WO2004106570A1 (en) 2003-05-28 2004-12-09 Pechiney Rolled Products New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness
CN101855376B (en) * 2007-09-21 2013-06-05 阿勒里斯铝业科布伦茨有限公司 Al-Cu-Li alloy product suitable for aerospace application
RU2497967C2 (en) 2007-12-04 2013-11-10 Алкоа Инк. Improved aluminium-copper-lithium alloys
FR2969177B1 (en) * 2010-12-20 2012-12-21 Alcan Rhenalu LITHIUM COPPER ALUMINUM ALLOY WITH ENHANCED COMPRESSION RESISTANCE AND TENACITY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013153292A1 *

Also Published As

Publication number Publication date
FR2989387A1 (en) 2013-10-18
CA2869733A1 (en) 2013-10-17
CN104220616B (en) 2017-12-15
US20130269840A1 (en) 2013-10-17
DE13722480T1 (en) 2015-06-25
WO2013153292A1 (en) 2013-10-17
CN104220616A (en) 2014-12-17
CA2869733C (en) 2021-07-20
US9945010B2 (en) 2018-04-17
FR2989387B1 (en) 2014-11-07
EP2836620B1 (en) 2019-03-27
BR112014025110B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
EP2836620B1 (en) Alliage aluminium cuivre lithium à résistance au choc améliorée
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
FR2826979A1 (en) Weldable rolled product of high strength aluminum alloy for structural aircraft components contains silicon, copper, manganese, magnesium, iron, zirconium, chromium, zinc, titanium, vanadium and aluminum
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
FR3007423A1 (en) EXTRADOS STRUCTURE ELEMENT IN ALUMINUM COPPER LITHIUM ALUMINUM
EP1891247A1 (en) High-strength aluminum-copper-lithium sheet metal for aircraft fuselages
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP3080319A2 (en) Extruded products for aeroplane floors made of an aluminium-copper-lithium alloy
CA3012956C (en) Thick plates made of al-cu-li alloy with improved fatigue properties
FR2889542A1 (en) High strength aluminum-copper-lithium sheet metal production for use in aircraft fuselage panels and stiffeners
FR3080860A1 (en) LITHIUM COPPER ALUMINUM ALLOY WITH ENHANCED COMPRESSION RESISTANCE AND TENACITY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GBCC Gb: corrected translation (of claims) filed (gb section 80(3)/1977)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIGNATEL JEROME

Inventor name: WARNER TIMOTHY

Inventor name: POUGET GAELLE

Inventor name: DANIELOU ARMELLE

Inventor name: MARQUETTE MATHIEU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Effective date: 20150625

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013052912

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013052912

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1113171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1113171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013052912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130410

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240429

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 12