EP2836620B1 - Alliage aluminium cuivre lithium à résistance au choc améliorée - Google Patents

Alliage aluminium cuivre lithium à résistance au choc améliorée Download PDF

Info

Publication number
EP2836620B1
EP2836620B1 EP13722480.4A EP13722480A EP2836620B1 EP 2836620 B1 EP2836620 B1 EP 2836620B1 EP 13722480 A EP13722480 A EP 13722480A EP 2836620 B1 EP2836620 B1 EP 2836620B1
Authority
EP
European Patent Office
Prior art keywords
mpa
thickness
extruded product
product according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13722480.4A
Other languages
German (de)
French (fr)
Other versions
EP2836620A1 (en
Inventor
Armelle Danielou
Mathieu MARQUETTE
Jérome PIGNATEL
Gaëlle POUGET
Timothy Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Priority to DE13722480.4T priority Critical patent/DE13722480T1/en
Publication of EP2836620A1 publication Critical patent/EP2836620A1/en
Application granted granted Critical
Publication of EP2836620B1 publication Critical patent/EP2836620B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • B21C23/142Making profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/023Work treatment directly following extrusion, e.g. further deformation or surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the invention relates to spun products made of aluminum-copper-lithium alloys, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
  • Aluminum alloy spun products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.
  • Aluminum alloy spun products are used in the aerospace industry for many applications, such as stiffeners or fuselage rails, fuselage frames, wing stiffeners, floor profiles or beams, as well as track rails. seat.
  • Ductile aluminum alloys have a significant ability to absorb impact energy during impact, in particular because they deform plastically.
  • the specific energy absorption capacity during a shock of an aluminum alloy profile can be connected to the curve obtained during a tensile test of the material in question, in particular to the area under the curve deformation force. It can thus be evaluated by the product R m x A% or R p0.2 x A% in the direction L and in the direction TL.
  • AlCuLi alloys are known.
  • the patent US 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.
  • the patent US5,455,003 discloses a process for manufacturing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, particularly through proper work-hardening and tempering.
  • the patent US7,438,772 discloses alloys comprising, in weight percent, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourage the use of higher lithium contents due to degradation compromise between toughness and mechanical strength.
  • the patent US 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.
  • the patent application US 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2 to 0.8% of Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.
  • the patent application WO 2009/036953 discloses an alloy for structural elements comprising (in% by weight) 3.4 to 6.0% Cu, 0.9 to 1.7% Li, about 0.2 to 0.8% Mg, about 0 , 1 to 0.8% Ag, about 0.1 to 0.8% Mn, up to 1.5% Zn and one or more members selected from the group consisting of Zr, Cr, Ti, Sc and Hf, with Fe ⁇ 0.15 and Si ⁇ 0.15.
  • AA2195 alloy comprising (in% by weight) 3.7 to 4.3% Cu, 0.8 to 1.2% Li, 0.25 to 0.8% Mg, O, is also known.
  • Yet another object of the invention is the use of a product according to the invention for the aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.
  • alloys are in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515 .
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 , and the elongation at break A% are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
  • the stress intensity factor (K Q ) is determined according to ASTM E399.
  • ASTM E399 gives the criteria to determine if K Q is a valid K 1C value .
  • the thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
  • a selected class of aluminum-copper-lithium alloys makes it possible to manufacture spun products having improved properties with respect to those of known products, in particular in terms of energy absorption during impact, static mechanical strength properties, corrosion resistance and low density.
  • the simultaneous addition of manganese, titanium, zirconium, magnesium and silver allows for the selected copper and lithium contents, to obtain a compromise between a representative parameter of the energy absorption during a shock and the yield point particularly advantageous.
  • the copper content is at least 4.2% by weight, preferably at least 4.3% and most preferably at least 4.35% by weight. In one embodiment of the invention, the copper content is at least 4.50% by weight.
  • the copper content is at most 4.8 wt.%, Preferably at most 4.7 wt.% And most preferably 4.55 wt.%.
  • the selected copper content improves in particular the static mechanical properties.
  • a high copper content is, however, unfavorable especially for the density of the alloy.
  • the lithium content is at least 0.9% by weight and preferably at least 0.95% by weight.
  • the lithium content is at most 1.1% by weight and preferably at most 1.05% by weight. In one embodiment of the invention, the lithium content is at most 1.04% by weight.
  • the selected lithium content improves in particular the energy absorbed during an impact.
  • An excessively low lithium content is however unfavorable, especially for the density of the alloy.
  • the addition of manganese is an important aspect of the present invention.
  • the manganese content is at least 0.2% by weight and preferably at least 0.3% by weight.
  • the manganese content is at most 0.6% by weight and preferably at most 0.5% by weight. In one embodiment of the invention, the manganese content is at most 0.40% by weight.
  • the addition of manganese in these amounts improves in particular the compromise between the desired properties.
  • the magnesium content is at least 0.2% by weight and preferably at least 0.30% by weight.
  • the magnesium content is at most 0.6% by weight and preferably at most 0.50% by weight.
  • the magnesium content is at most 0.40% by weight.
  • the silver content is at least 0.15% by weight.
  • Content silver is at most 0.25% by weight.
  • the present inventors have found that surprisingly silver addition of more than 0.25% by weight could have an adverse effect on the energy absorption during an impact. It is important to combine the silver content from 0.15% to 0.25% by weight to a controlled pull after dissolution and quenching with a permanent deformation of 2 to 4%, in particular because a controlled pull of less than 2% does not then allow to obtain the desired mechanical strength.
  • the addition of magnesium and silver is necessary to achieve the favorable compromise between static mechanical strength, absorbed energy, density and toughness.
  • the zirconium content is at least 0.07% by weight and preferably at least 0.10% by weight.
  • the zirconium content is at most 0.15% by weight and preferably at most 0.13% by weight.
  • the addition of zirconium is in particular necessary to maintain the essentially non-recrystallized structure desired for the spun products according to the invention.
  • the titanium content is between 0.01 and 0.15% by weight and preferably between 0.02 and 0.05% by weight.
  • the addition of titanium makes it possible in particular to obtain a controlled granular structure of the raw form obtained after casting.
  • the amount of Fe and Si is less than or equal to 0.1% by weight each. Preferably, the content of Fe and Si is less than 0.08% by weight each.
  • the Zn content is less than 0.2% by weight, preferably less than 0.15% by weight and preferably less than 0.1% by weight.
  • the presence of Zn can have an adverse effect on the compromise between static mechanical resistance, absorbed energy, density and toughness, especially since this element adversely affects the density of the alloy without having a favorable effect on the static mechanical resistance, absorbed energy and toughness.
  • the unavoidable impurities are maintained at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
  • the products according to the invention preferably have, for a thickness of between 5 and 16 mm, a tenacity K 1C (LT) of at least 24 MPa m and preferably at least 25 MPa m and for a thickness of between 17 and 30 mm a tenacity K 1C (LT) of at least 21 MPa m and preferably at least 22 22 MPa m .
  • LT tenacity K 1C
  • the products according to the invention have an excellent resistance to corrosion.
  • the spun products according to the invention have a resistance of at least 30 days when a stress corrosion test according to ASTM G44 and ASTM G49 standards on specimens taken in the TL direction for a voltage of 450 MPa.
  • the spun products according to the invention are particularly advantageous for aircraft construction.
  • the products according to the invention are used for aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.
  • the products according to the invention are used as a floor beam, in particular as a beam of the lower floor of the aircraft, or cargo floor, this floor being particularly important during the impact.
  • the raw forms were homogenized at a temperature of 490 ° C to 520 ° C adapted according to their composition, spun as spun product described in FIG. Figure 1 whose thickness of the elementary rectangles is between 17 and 22 mm, with an initial hot deformation temperature of about 460 ° C.
  • the spun products obtained were dissolved at a temperature suitable for the alloy of between 500 ° C. and 520 ° C., quenched, triturated for about 3% and recovered for 30 hours at 155 ° C.
  • the figure 2 presents the trade-off between the elastic limit and the EA parameter.
  • the alloy according to the invention makes it possible to reach a particularly advantageous compromise.
  • the alloy spun product A according to the invention underwent a stress corrosion test according to ASTM G44 and ASTM G49 standards for a tension of 450 MPa on specimens taken in the TL direction. No rupture was observed after 30 days of testing.
  • the alloys A and B presented in Example 1 were spun as a spun product of a different shape and having lower elementary rectangles thicknesses between 5 and 12 mm.
  • the crude forms were homogenized 15h at 500 ° C and then 20-25 h at 510 ° C, spun as I-spun product with an initial hot deformation temperature of about 460 ° C.
  • the spun products obtained were dissolved at a temperature of approximately 510 ° C., quenched, triturated approximately 3.5% and returned for 30 hours at 155 ° C.
  • the mechanical properties in the longitudinal direction were measured on "full thickness” specimens taken from the various elementary rectangles of the spun product (thicknesses 5, 7 and 12 mm) and averaged for the different sections obtained.
  • the "full thickness” measurement underestimates the real value measured at mid-thickness on machined specimens, because of the effect of the different microstructure close to the surface.
  • a correction factor was introduced to account for this bias, however, the factor was chosen such that the actual machined test specimen value would likely be greater than the indicated corrected value.
  • the mechanical properties in the transverse direction were measured on machined specimens taken from the zone of smaller thickness, the only possible zone for this type of measurement because of the length of the specimens necessary for this measurement.
  • the toughness properties were measured on specimens taken from the thickest zone.
  • the structure of the spun products obtained was essentially non-recrystallized. The degree of recrystallized granular structure between 1 ⁇ 4 and 1 ⁇ 2 thickness was less than 10%.
  • the spun product according to the invention achieves a more favorable compromise than the spun product of reference between the mechanical strength and the EA parameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne les produits filés en alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés notamment à la construction aéronautique et aérospatiale.The invention relates to spun products made of aluminum-copper-lithium alloys, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.

Etat de la techniqueState of the art

Des produits filés en alliage d'aluminium sont développés pour produire des pièces de haute résistance destinées notamment à l'industrie aéronautique et à l'industrie aérospatiale.Aluminum alloy spun products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.

Les produits filés en alliage d'aluminium sont utilisés dans l'industrie aéronautique pour de nombreuses applications, tels que les raidisseurs ou lisses de fuselage, les cadres de fuselage, les raidisseurs de voilure, les profilés ou poutres de plancher ainsi que les rails de siège.Aluminum alloy spun products are used in the aerospace industry for many applications, such as stiffeners or fuselage rails, fuselage frames, wing stiffeners, floor profiles or beams, as well as track rails. seat.

L'incorporation progressive de davantage de matériaux composites dans les structures aéronautiques a modifié les exigences en ce qui concerne les produits filés incorporés dans les avions, notamment pour des éléments de structure tels que les poutres de plancher. Il est apparu que l'absorption d'énergie lors d'un choc, ou plus particulièrement lors d'un crash, est un critère désormais important pour sélectionner ce produit. Les autres propriétés essentielles sont des caractéristiques mécaniques les plus élevées possible, de façon à diminuer le poids des structures, et la tenue à la corrosion.
Une grandeur telle que la capacité spécifique d'absorption peut être utilisée pour caractériser l'absorption d'énergie lors d'un choc.
La capacité spécifique d'absorption d'énergie lors d'un choc peut être mesurée lors d'un test d'écrasement dans lequel on mesure l'effort fourni en fonction du déplacement réalisé lors de l'écrasement. Il s'agit de la quantité d'énergie dépensée pour écraser une unité de masse de matériau dans la phase d'écrasement stable. Les alliages d'aluminium ductiles ont une capacité importante d'absorption de l'énergie d'impact lors du choc, en particulier car ils se déforment plastiquement. En première approximation la capacité spécifique d'absorption d'énergie lors d'un choc d'un profilé en alliage d'aluminium peut être reliée à la courbe obtenue lors d'un test en traction du matériau considéré, en particulier à l'aire sous la courbe force déformation. On peut ainsi l'évaluer par le produit Rm x A% ou Rp0,2 x A% dans le sens L et dans le sens TL.
The gradual incorporation of more composite materials into aeronautical structures has changed the requirements for spun products incorporated in aircraft, particularly for structural members such as floor beams. It appeared that the absorption of energy during a shock, or more particularly during a crash, is now an important criterion for selecting this product. The other essential properties are the highest possible mechanical characteristics, so as to reduce the weight of the structures, and the resistance to corrosion.
A magnitude such that the specific absorption capacity can be used to characterize the energy absorption during an impact.
The specific energy absorption capacity during an impact can be measured during a crash test in which the force provided is measured as a function of the displacement achieved. during the crash. This is the amount of energy expended to crush a unit mass of material in the stable crush phase. Ductile aluminum alloys have a significant ability to absorb impact energy during impact, in particular because they deform plastically. As a first approximation, the specific energy absorption capacity during a shock of an aluminum alloy profile can be connected to the curve obtained during a tensile test of the material in question, in particular to the area under the curve deformation force. It can thus be evaluated by the product R m x A% or R p0.2 x A% in the direction L and in the direction TL.

Les alliages AlCuLi sont connus.AlCuLi alloys are known.

Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pour cent en poids, permet d'augmenter la résistance mécanique.The patent US 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.

Le brevet US 5,455,003 décrit un procédé de fabrication d'alliages Al-Cu-Li qui présentent une résistance mécanique et une ténacité améliorées à température cryogénique, en particulier grâce à un écrouissage et un revenu appropriés. Ce brevet recommande en particulier la composition, en pourcentage en poids, Cu = 3,0 - 4,5, Li = 0,7 - 1,1, Ag = 0 - 0,6, Mg = 0,3-0,6 et Zn = 0 - 0,75.The patent US5,455,003 discloses a process for manufacturing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, particularly through proper work-hardening and tempering. This patent recommends in particular the composition, in percentage by weight, Cu = 3.0-4.5, Li = 0.7-1.1, Ag = 0-0.6, Mg = 0.3-0.6. and Zn = 0 - 0.75.

Le brevet US 7,438,772 décrit des alliages comprenant, en pourcentage en poids, Cu : 3-5, Mg : 0,5-2, Li : 0,01-0,9 et décourage l'utilisation de teneurs en lithium plus élevées en raison d'une dégradation du compromis entre ténacité et résistance mécanique.The patent US7,438,772 discloses alloys comprising, in weight percent, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourage the use of higher lithium contents due to degradation compromise between toughness and mechanical strength.

Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5) Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Sc, V.The patent US 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.

La demande de brevet US 2009/142222 A1 décrit des alliages comprenant (en % en poids), 3,4 à 4,2% de Cu, 0,9 à 1,4 % de Li, 0,3 à 0,7 % de Ag, 0,1 à 0,6% de Mg, 0,2 à 0,8 % de Zn, 0,1 à 0,6 % de Mn et 0,01 à 0,6 % d'au moins un élément pour le contrôle de la structure granulaire. Cette demande décrit également un procédé de fabrication de produits filés.
La demande de brevet WO 2009/036953 divulgue un alliage pour éléments de structure comprenant (en % en poids) 3,4 à 6,0 % de Cu, 0,9 à 1,7 % de Li, environ 0,2 à 0,8 % de Mg, environ 0,1 à 0,8 % de Ag, environ 0,1 à 0,8 % de Mn, jusque 1,5 % de Zn et un ou plusieurs éléments choisis dans le groupe consistent en Zr, Cr, Ti, Sc et Hf, avec Fe < 0,15 et Si < 0,15.
On connait par ailleurs l'alliage AA2195 comprenant (en % en poids) 3,7 à 4,3 % de Cu, 0,8 à 1,2 % de Li, 0,25 à 0,8 % de Mg, 0,25 à 0,6 % de Ag, moins de 0,25% de Mn, moins de 0,25% de Zn 0,08 à 0,16 % de Zr, moins de 0,10% de Ti, moins de 0,15 % de Fe et moins de 0,12 % de Si. Des profilés en alliage 2195 sont décris par exemple dans le document « Friction stir welding dissimilar alloys for tailoring properties of aerospace parts », I. Eberl, C. Hantrais, J.-C. Ehrstrom et C. Nardin, Science and Technology of Welding and Joining, 2010 vol 15 N°8 pp 699 - 705 .
Il existe un besoin pour des produits filés en alliage aluminium-cuivre-lithium présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes d'absorption d'énergie lors d'un choc, de propriétés de résistance mécanique statique et de résistance à la corrosion, tout en ayant une faible densité. Simultanément il convient de maintenir une ténacité satisfaisante pour ces produits.
The patent application US 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2 to 0.8% of Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.
The patent application WO 2009/036953 discloses an alloy for structural elements comprising (in% by weight) 3.4 to 6.0% Cu, 0.9 to 1.7% Li, about 0.2 to 0.8% Mg, about 0 , 1 to 0.8% Ag, about 0.1 to 0.8% Mn, up to 1.5% Zn and one or more members selected from the group consisting of Zr, Cr, Ti, Sc and Hf, with Fe <0.15 and Si <0.15.
AA2195 alloy comprising (in% by weight) 3.7 to 4.3% Cu, 0.8 to 1.2% Li, 0.25 to 0.8% Mg, O, is also known. 25 to 0.6% Ag, less than 0.25% Mn, less than 0.25% Zn 0.08 to 0.16% Zr, less than 0.10% Ti, less than 0, 15% Fe and less than 0.12% Si. 2195 alloy sections are described for example in the document Eberl, C. Hantrais, J.-C. Ehrstrom and C. Nardin, Science and Technology of Welding and Joining, 2010, Vol. 15 No. 8, pp. 699 - "Friction stir welding dissimilar alloys for tailoring properties of aerospace parts" 705 .
There is a need for aluminum-copper-lithium alloy spun products having improved properties over those of the known products, particularly in terms of energy absorption during impact, static mechanical strength properties and resistance to corrosion, while having a low density. At the same time, it is necessary to maintain a satisfactory tenacity for these products.

Objet de l'inventionObject of the invention

Un premier objet de l'invention est un produit filé dont l'épaisseur d'au moins un rectangle élémentaire, définie selon la norme EN 2066:2001, est comprise entre 1 mm et 30 mm, en alliage à base d'aluminium comprenant

  • 4,2 à 4,8 % en poids de Cu,
  • 0,9 à 1,1 % en poids de Li,
  • 0,15 à 0,25 % en poids de Ag,
  • 0,2 à 0,6 % en poids de Mg,
  • 0,07 à 0,15 % en poids de Zr,
  • 0,2 à 0,6 % en poids de Mn,
  • 0,01 à 0,15 % en poids de Ti
une quantité de Zn inférieure à 0,2 % en poids, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.A first object of the invention is a spun product whose thickness of at least one elementary rectangle, defined according to the EN 2066: 2001 standard, is between 1 mm and 30 mm, an aluminum-based alloy comprising
  • 4.2 to 4.8% by weight of Cu,
  • 0.9 to 1.1% by weight of Li,
  • 0.15 to 0.25% by weight of Ag,
  • 0.2 to 0.6% by weight of Mg,
  • 0.07 to 0.15% by weight of Zr,
  • 0.2 to 0.6% by weight of Mn,
  • 0.01 to 0.15% by weight of Ti
an amount of Zn of less than 0.2% by weight, an amount of Fe and Si of less than or equal to 0.1% by weight each, and unavoidable impurities at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.

Un autre objet de l'invention est un procédé de fabrication d'un produit filé selon l'invention dans lequel :

  1. (a) on coule une forme brute en alliage selon l'invention,
  2. (b) on homogénéise ladite forme brute à une température de 490°C à 520 °C pendant 8 à 48 heures,
  3. (c) on déforme à chaud par filage ladite forme brute avec une température initiale de déformation à chaud de 420 °C à 480 °C pour obtenir un produit filé,
  4. (d) on met en solution ledit produit filé à une température de 500 °C à 520 °C pendant 15 minutes à 8 heures,
  5. (e) on trempe,
  6. (f) on tractionne de façon contrôlée ledit produit filé avec une déformation permanente de 2 à 4%,
  7. (g) optionnellement on effectue un dressage dudit produit filé,
  8. (h) on réalise un revenu dudit produit filé par chauffage à une température de 100 °C à 170°C pendant 5 à 100 heures.
Another subject of the invention is a method for manufacturing a spun product according to the invention in which:
  1. (a) casting a raw form of alloy according to the invention,
  2. (b) homogenizing said crude form at a temperature of 490 ° C to 520 ° C for 8 to 48 hours,
  3. (c) hot-spinning said raw form with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product,
  4. (d) dissolving said spun product at a temperature of 500 ° C to 520 ° C for 15 minutes to 8 hours,
  5. (e) quenching,
  6. (f) controlling said spun product in a controlled manner with a permanent deformation of 2 to 4%,
  7. (g) optionally, a dressing is carried out of said spun product,
  8. (h) yielding said spun product by heating at a temperature of 100 ° C to 170 ° C for 5 to 100 hours.

Encore un autre objet de l'invention est l'utilisation d'un produit selon l'invention pour la construction aéronautique comme raidisseur ou lisse de fuselage, cadre de fuselage, raidisseur de voilure, profilé ou poutre de plancher ou rail de siège.Yet another object of the invention is the use of a product according to the invention for the aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail.

Description des figuresDescription of figures

  • Figure 1 : Vue en coupe du produit filé de l'exemple 1. Figure 1 : Sectional view of the spun product of Example 1.
  • Figure 2 : Compromis entre la limite d'élasticité et le paramètre EA pour les produits filés de l'exemple 1. Figure 2 : Compromise between the yield strength and the EA parameter for the spun products of Example 1.
Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515 .
Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515 .
The static mechanical characteristics in tension, in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 , and the elongation at break A% are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.

Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E399. La norme ASTM E399 donne les critères qui permettent de déterminer si KQ est une valeur valide de K1C. Pour une géométrie d'éprouvette donnée, les valeurs de KQ obtenues pour différents matériaux sont comparables entre elles pour autant que les limites d'élasticité des matériaux soient du même ordre de grandeur.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.
L'épaisseur des produits filés est définie selon la norme EN 2066:2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.
The stress intensity factor (K Q ) is determined according to ASTM E399. ASTM E399 gives the criteria to determine if K Q is a valid K 1C value . For a given specimen geometry, the K Q values obtained for different materials are comparable to each other as long as the elasticity limits of the materials are of the same order of magnitude.
Unless otherwise specified, the definitions of EN 12258 apply.
The thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.

Selon la présente invention, une classe sélectionnée d'alliages d'aluminium-cuivre-lithium permet de fabriquer des produits filés présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes d'absorption d'énergie lors d'un choc, de propriétés de résistance mécanique statique, de résistance à la corrosion et ayant une faible densité.
L'addition simultanée de manganèse, de titane, de zirconium, de magnésium et d'argent, permet pour les teneurs en cuivre et en lithium sélectionnées, d'obtenir un compromis entre un paramètre représentatif de l'absorption d'énergie lors d'un choc et la limite d'élasticité particulièrement avantageux.
According to the present invention, a selected class of aluminum-copper-lithium alloys makes it possible to manufacture spun products having improved properties with respect to those of known products, in particular in terms of energy absorption during impact, static mechanical strength properties, corrosion resistance and low density.
The simultaneous addition of manganese, titanium, zirconium, magnesium and silver allows for the selected copper and lithium contents, to obtain a compromise between a representative parameter of the energy absorption during a shock and the yield point particularly advantageous.

La teneur en cuivre est au moins de 4,2 % en poids, de préférence au moins 4,3 % et de manière préférée au moins 4,35 % en poids. Dans un mode de réalisation de l'invention la teneur en cuivre est au moins de 4,50 % en poids. La teneur en cuivre est au plus de 4,8 % en poids, de préférence au plus 4,7 % en poids et de manière préférée au plus 4,55 % en poids. La teneur en cuivre sélectionnée améliore notamment les propriétés mécaniques statiques. Une teneur en cuivre élevée est cependant défavorable notamment pour la densité de l'alliage.
La teneur en lithium est au moins de 0,9 % en poids et de préférence au moins 0,95 %.en poids. La teneur en lithium est au plus de 1,1 % en poids et de préférence au plus 1,05 % en poids. Dans un mode de réalisation de l'invention la teneur en lithium est au plus de 1,04 % en poids. La teneur en lithium sélectionnée améliore notamment l'énergie absorbée lors d'un choc. Une teneur en lithium trop faible est cependant défavorable notamment pour la densité de l'alliage.
L'addition de manganèse est un aspect important de la présente invention. La teneur en manganèse est au moins de 0,2 % en poids et de préférence au moins 0,3 % en poids. La teneur en manganèse est au plus de 0,6 % en poids et de préférence au plus 0,5 % en poids. Dans un mode de réalisation de l'invention la teneur en manganèse est au plus de 0,40 % en poids. L'addition de manganèse dans ces quantités améliore en particulier le compromis entre les propriétés recherchées.
La teneur en magnésium est au moins 0,2% en poids et de préférence au moins 0,30% en poids. La teneur en magnésium est au plus de 0,6 % en poids et de préférence au plus de 0,50 % en poids. Dans un mode de réalisation de l'invention la teneur en magnésium est au plus de 0,40 % en poids. La teneur en argent est au moins de 0,15 % en poids. La teneur en argent est au plus de 0,25 % en poids. Les présents inventeurs ont constaté que de manière surprenante une addition d'argent de plus de 0,25% en poids pouvait avoir un effet défavorable sur l'absorption d'énergie lors d'un choc. Il est important de combiner la teneur en argent de 0,15% à 0,25% en poids à une traction contrôlée après mise en solution et trempe avec une déformation permanente de 2 à 4%, notamment car une traction contôlée inférieure à 2% ne permet pas alors d'obtenir la résistance mécanique souhaitée. L'addition de magnésium et d'argent est nécessaire pour atteindre le compromis favorable entre résistance mécanique statique, énergie absorbée, densité et ténacité.
La teneur en zirconium est au moins de 0,07 % en poids et de préférence au moins de 0,10% en poids. La teneur en zirconium est au plus de 0,15% en poids et de préférence au plus de 0,13 % en poids. L'addition de zirconium est notamment nécessaire pour maintenir la structure essentiellement non-recristallisée souhaitée pour les produits filés selon l'invention.
La teneur en titane est comprise entre 0,01 et 0,15 % en poids et de préférence entre 0,02 et 0,05 % en poids. L'addition de titane permet notamment d'obtenir une structure granulaire contrôlée de la forme brute obtenue après la coulée.
La quantité de Fe et de Si est inférieure ou égale à 0,1 % en poids chacun. De préférence la teneur en Fe et en Si est inférieure à 0,08 % en poids chacun.
La teneur en Zn est inférieure à 0,2 % en poids, de préférence inférieure à 0,15 % en poids et de manière préférée inférieure à 0,1 % en poids. La présence de Zn peut avoir un effet défavorable sur le compromis entre résistance mécanique statique, énergie absorbée, densité et ténacité, notamment car cet élément nuit à la densité de l'alliage sans apporter d'effet favorable sur la résistance mécanique statique, l'énergie absorbée et la ténacité.
Les impuretés inévitables sont maintenues à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.
The copper content is at least 4.2% by weight, preferably at least 4.3% and most preferably at least 4.35% by weight. In one embodiment of the invention, the copper content is at least 4.50% by weight. The copper content is at most 4.8 wt.%, Preferably at most 4.7 wt.% And most preferably 4.55 wt.%. The selected copper content improves in particular the static mechanical properties. A high copper content is, however, unfavorable especially for the density of the alloy.
The lithium content is at least 0.9% by weight and preferably at least 0.95% by weight. The lithium content is at most 1.1% by weight and preferably at most 1.05% by weight. In one embodiment of the invention, the lithium content is at most 1.04% by weight. The selected lithium content improves in particular the energy absorbed during an impact. An excessively low lithium content is however unfavorable, especially for the density of the alloy.
The addition of manganese is an important aspect of the present invention. The manganese content is at least 0.2% by weight and preferably at least 0.3% by weight. The manganese content is at most 0.6% by weight and preferably at most 0.5% by weight. In one embodiment of the invention, the manganese content is at most 0.40% by weight. The addition of manganese in these amounts improves in particular the compromise between the desired properties.
The magnesium content is at least 0.2% by weight and preferably at least 0.30% by weight. The magnesium content is at most 0.6% by weight and preferably at most 0.50% by weight. In one embodiment of the invention, the magnesium content is at most 0.40% by weight. The silver content is at least 0.15% by weight. Content silver is at most 0.25% by weight. The present inventors have found that surprisingly silver addition of more than 0.25% by weight could have an adverse effect on the energy absorption during an impact. It is important to combine the silver content from 0.15% to 0.25% by weight to a controlled pull after dissolution and quenching with a permanent deformation of 2 to 4%, in particular because a controlled pull of less than 2% does not then allow to obtain the desired mechanical strength. The addition of magnesium and silver is necessary to achieve the favorable compromise between static mechanical strength, absorbed energy, density and toughness.
The zirconium content is at least 0.07% by weight and preferably at least 0.10% by weight. The zirconium content is at most 0.15% by weight and preferably at most 0.13% by weight. The addition of zirconium is in particular necessary to maintain the essentially non-recrystallized structure desired for the spun products according to the invention.
The titanium content is between 0.01 and 0.15% by weight and preferably between 0.02 and 0.05% by weight. The addition of titanium makes it possible in particular to obtain a controlled granular structure of the raw form obtained after casting.
The amount of Fe and Si is less than or equal to 0.1% by weight each. Preferably, the content of Fe and Si is less than 0.08% by weight each.
The Zn content is less than 0.2% by weight, preferably less than 0.15% by weight and preferably less than 0.1% by weight. The presence of Zn can have an adverse effect on the compromise between static mechanical resistance, absorbed energy, density and toughness, especially since this element adversely affects the density of the alloy without having a favorable effect on the static mechanical resistance, absorbed energy and toughness.
The unavoidable impurities are maintained at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.

Les produits filés selon l'invention sont préparés à l'aide d'un procédé dans lequel tout d'abord on coule une forme brute en alliage selon l'invention. De préférence, la forme brute est une billette de filage. La forme brute est ensuite homogénéisée à une température de 490°C à 520 °C pendant 8 à 48 heures. L'homogénéisation peut être réalisée en un ou plusieurs paliers. La forme brute peut être refroidie jusqu'à température ambiante après homogénéisation ou directement amenée à la température de déformation à chaud. La forme brute homogénéisée est déformée à chaud par filage avec une température initiale de déformation à chaud de 420 °C à 480 °C pour obtenir un produit filé. La température de filage utilisée permet notamment d'obtenir la structure essentiellement non-recristallisée souhaitée.
Les produits filés selon l'invention sont des profilés dont l'épaisseur d'au moins un des rectangles élémentaires est comprise entre 1 mm et 30 mm, de préférence entre 2 à 20 mm et de manière préférée entre 5 et 16 mm. Les produits filés utilisés en construction aéronautique comprennent généralement plusieurs segments ou rectangles élémentaires d'épaisseurs différentes. Une difficulté rencontrée avec ces produits est d'atteindre des propriétés satisfaisantes dans les différents segments. L'alliage selon l'invention permet notamment d'obtenir un compromis favorable entre résistance mécanique statique, énergie absorbée, densité et ténacité pour des rectangles élémentaires d'épaisseurs différentes.
Le produit filé ainsi obtenu est ensuite mis en solution à une température de 500 °C à 520 °C pendant 15 minutes à 8 heures puis trempé avec de l'eau à température ambiante. La trempe est effectuée de préférence à l'eau, par aspersion ou par immersion.
Le produit filé ainsi mis en solution et trempé est ensuite tractionné avec une déformation permanente de 2 à 4%. Une déformation permanente par traction trop faible, telle qu'une déformation par traction de 1,5%, ne permet pas d'atteindre le compromis entre propriétés souhaité. Une déformation permanente par traction trop élevée, telle qu'une déformation de 6 % ne permet notamment pas de garantir les caractéristiques dimensionnelles du produit filé, typiquement en ce qui concerne les angles entre les différents rectangles élémentaires. Il peut être nécessaire de réaliser une opération de dressage du produit filé pour obtenir les propriétés souhaitées d'un point de vue dimensionnel.
Le produit filé est enfin revenu par chauffage à une température de 100 °C à 170°C pendant 5 à 100 heures. Le revenu peut être effectué en un ou plusieurs paliers. De manière préférée, le revenu est effectué en un palier à une température comprise entre 130 °C et 170 °C et avantageusement entre 150 et 160 °C pendant une durée de 20 à 40 h.
Les produits filés ainsi obtenus ont de préférence une structure granulaire essentiellement non-recristallisée. Dans le cadre de la présente invention, on appelle structure granulaire essentiellement non-recristallisée une structure granulaire telle que le taux de recristallisation entre ¼ et ½ épaisseur d'un rectangle élémentaire est inférieur à 30% et de préférence inférieur à 10%.
Les produits filés selon l'invention ont des propriétés mécaniques particulièrement avantageuses.
Ainsi de manière préférée, les produits filés selon l'invention ont comme propriétés à mi-épaisseur :

  • pour une épaisseur comprise entre 5 et 16 mm
  • une limite d'élasticité moyenne Rp0,2 dans le sens L d'au moins 630 MPa et de préférence d'au moins 635 MPa et
  • une limite d'élasticité moyenne Rp0,2 dans le sens TL d'au moins 625 MPa et de préférence d'au moins 630 MPa et
  • un facteur EA EA = Rm L + Rp 0,2 L / 2 * A % L + Rm TL + Rp 0,2 TL / 2 * A % TL
    Figure imgb0001
  • au moins égal à 14000 et de préférence au moins égal à 14500
    et/ou
  • pour une épaisseur comprise entre 17 et 30 mm
  • une limite d'élasticité moyenne Rp0,2 dans le sens L d'au moins 655 MPa et de préférence d'au moins 660 MPa et
  • une limite d'élasticité moyenne Rp0,2 dans le sens TL d'au moins 600 MPa et de préférence d'au moins 605 MPa et
  • un facteur EA EA = Rm L + Rp 0,2 L / 2 * A % L + Rm TL + Rp 0,2 TL / 2 * A % TL
    Figure imgb0002
  • au moins égal à 9500 et de préférence au moins égal à 9800.
De plus les produits selon l'invention ont une ténacité avantageuse.The spun products according to the invention are prepared by means of a process in which firstly a raw form of an alloy according to the invention is cast. Preferably, the raw form is a spinning billet. The crude form is then homogenized at 490 ° C to 520 ° C for 8 to 48 hours. The homogenization can be carried out in one or more stages. The raw form can be cooled to room temperature after homogenization or directly brought to the temperature of hot deformation. The homogenized raw form is hot deformed by spinning with an initial hot deformation temperature of 420 ° C to 480 ° C to obtain a spun product. The spinning temperature used in particular makes it possible to obtain the desired essentially non-recrystallized structure.
The products spun according to the invention are profiles whose thickness of at least one of the elementary rectangles is between 1 mm and 30 mm, preferably between 2 to 20 mm and preferably between 5 and 16 mm. Spun products used in aeronautical construction generally comprise several segments or elementary rectangles of different thicknesses. A difficulty encountered with these products is to achieve satisfactory properties in the different segments. The alloy according to the invention makes it possible in particular to obtain a favorable compromise between static mechanical strength, absorbed energy, density and toughness for elementary rectangles of different thicknesses.
The spun product thus obtained is then dissolved at a temperature of 500 ° C to 520 ° C for 15 minutes to 8 hours and then quenched with water at room temperature. Quenching is preferably carried out with water, by spraying or immersion.
The spun product thus dissolved and quenched is then tractionned with a permanent deformation of 2 to 4%. A permanent deformation by too weak a traction, such as a deformation by traction of 1.5%, does not make it possible to reach the compromise between desired properties. A permanent deformation by traction that is too high, such as a deformation of 6%, makes it impossible in particular to guarantee the dimensional characteristics of the spun product, typically as regards the angles between the various elementary rectangles. It may be necessary to perform a dressing operation of the spun product to obtain the desired properties from a dimensional point of view.
The spun product was finally heated back to a temperature of 100 ° C to 170 ° C for 5 to 100 hours. The income can be made in one or more levels. Preferably, the income is carried out in a stage at a temperature between 130 ° C and 170 ° C and preferably between 150 and 160 ° C for a period of 20 to 40 hours.
The spun products thus obtained preferably have a substantially non-recrystallized granular structure. In the context of the present invention, the term granular structure essentially non-recrystallized a granular structure such that the recrystallization rate between ¼ and ½ thickness of an elementary rectangle is less than 30% and preferably less than 10%.
The spun products according to the invention have particularly advantageous mechanical properties.
Thus, preferably, the products spun according to the invention have as properties at mid-thickness:
  • for a thickness between 5 and 16 mm
  • an average yield strength R p0,2 in the L direction of at least 630 MPa and preferably at least 635 MPa and
  • a mean yield strength R p0.2 in the TL direction of at least 625 MPa and preferably at least 630 MPa and
  • an EA factor EA = rm The + rp 0.2 The / 2 * AT % The + rm TL + rp 0.2 TL / 2 * AT % TL
    Figure imgb0001
  • at least 14000 and preferably at least 14500
    and or
  • for a thickness of between 17 and 30 mm
  • a mean yield strength R p0,2 in the L direction of at least 655 MPa and preferably at least 660 MPa and
  • an average yield strength R p0,2 in the TL direction of at least 600 MPa and preferably at least 605 MPa and
  • an EA factor EA = rm The + rp 0.2 The / 2 * AT % The + rm TL + rp 0.2 TL / 2 * AT % TL
    Figure imgb0002
  • at least 9500 and preferably at least 9800.
In addition, the products according to the invention have an advantageous tenacity.

Ainsi les produits selon l'invention ont de préférence pour une épaisseur comprise entre 5 et 16 mm une ténacité K1C(L-T), d'au moins 24 MPa m

Figure imgb0003
et de préférence d'au moins 25 MPa m
Figure imgb0004
et pour une épaisseur comprise entre 17 et 30 mm une ténacité K1C(L-T), d'au moins 21 MPa m
Figure imgb0005
et de préférence d'au moins 22 22 MPa m .
Figure imgb0006
Thus, the products according to the invention preferably have, for a thickness of between 5 and 16 mm, a tenacity K 1C (LT) of at least 24 MPa m
Figure imgb0003
and preferably at least 25 MPa m
Figure imgb0004
and for a thickness of between 17 and 30 mm a tenacity K 1C (LT) of at least 21 MPa m
Figure imgb0005
and preferably at least 22 22 MPa m .
Figure imgb0006

Enfin les produits selon l'invention présentent une excellente résistance à la corrosion. Ainsi les produits filés selon l'invention présentent une résistance d'au moins 30 jours lors d'un test de corrosion sous contrainte selon les normes ASTM G44 et ASTM G49 sur des éprouvettes prélevées dans le sens TL pour une tension de 450 MPa.Finally, the products according to the invention have an excellent resistance to corrosion. Thus the spun products according to the invention have a resistance of at least 30 days when a stress corrosion test according to ASTM G44 and ASTM G49 standards on specimens taken in the TL direction for a voltage of 450 MPa.

Les produits filés selon l'invention sont particulièrement avantageux pour la construction aéronautique. Ainsi, les produits selon l'invention sont utilisés pour la construction aéronautique comme raidisseur ou lisse de fuselage, cadre de fuselage, raidisseur de voilure, profilé ou poutre de plancher ou rail de siège. Dans un mode de réalisation préféré on utilise les produits selon l'invention comme poutre de plancher, notamment comme poutre du plancher inférieur des avions, ou plancher cargo, ce plancher étant particulièrement important lors du choc.The spun products according to the invention are particularly advantageous for aircraft construction. Thus, the products according to the invention are used for aeronautical construction as a stiffener or smooth fuselage, fuselage frame, wing stiffener, profile or beam floor or seat rail. In a preferred embodiment, the products according to the invention are used as a floor beam, in particular as a beam of the lower floor of the aircraft, or cargo floor, this floor being particularly important during the impact.

ExemplesExamples Exemple 1.Example 1

Dans cet exemple, cinq alliages dont la composition est donnée dans le tableau 1 ont été préparés et coulés sous une forme brute. Tableau 1. Composition en % en poids des alliages Cu Li Mn Mg Zr Ag Ti Si Fe A (inv) 4,52 1,02 0,37 0,35 0,11 0,21 0,03 0,05 0,05 B (ref) 4,36 1,13 0,01 0,35 0,13 0,33 0,05 0,03 0,01 C (ref) 4,30 1,17 0,31 0,39 0,12 0,35 0,02 0,06 0,03 D (ref) 4,10 0,98 0,00 0,35 0,12 0,35 0,02 0,04 0,03 E (ref) 4,16 1,02 0,00 0,36 0,14 0,29 0,03 0,05 0,03 inv : invention - ref : référence In this example, five alloys whose composition is given in Table 1 were prepared and cast in a raw form. Table 1. Composition in% by weight of alloys Cu Li mn mg Zr Ag Ti Yes Fe A (inv) 4.52 1.02 0.37 0.35 0.11 0.21 0.03 0.05 0.05 B (ref) 4.36 1.13 0.01 0.35 0.13 0.33 0.05 0.03 0.01 C (ref) 4.30 1.17 0.31 0.39 0.12 0.35 0.02 0.06 0.03 D (ref) 4.10 0.98 0.00 0.35 0.12 0.35 0.02 0.04 0.03 E (ref) 4.16 1.02 0.00 0.36 0.14 0.29 0.03 0.05 0.03 inv: invention - ref: reference

Les formes brutes ont été homogénéisées à une température de 490°C à 520 °C adaptée selon leur composition, filées sous forme de produit filé décrit dans la Figure 1, dont l'épaisseur des rectangles élémentaires est comprise entre 17 et 22 mm, avec une température initiale de déformation à chaud d'environ 460 °C. Les produits filés obtenus ont été mis en solution à une température adaptée à l'alliage comprise entre 500 °C et 520 °C, trempés, tractionnés environ 3 % et revenus 30h à 155 °C.The raw forms were homogenized at a temperature of 490 ° C to 520 ° C adapted according to their composition, spun as spun product described in FIG. Figure 1 whose thickness of the elementary rectangles is between 17 and 22 mm, with an initial hot deformation temperature of about 460 ° C. The spun products obtained were dissolved at a temperature suitable for the alloy of between 500 ° C. and 520 ° C., quenched, triturated for about 3% and recovered for 30 hours at 155 ° C.

Les propriétés mécaniques obtenues pour des échantillons cylindriques de diamètre 10 mm prélevés à mi-épaisseur et quart-largeur dans la semelle d'épaisseur 18 mm des produits filés sont présentées dans le tableau 2. Afin d'évaluer l'absorption d'énergie lors d'un choc on a calculé le paramètre EA = R m L + R p 0,2 L / 2 * A % L + R m TL + R p 0,2 TL / 2 * A % TL

Figure imgb0007
The mechanical properties obtained for cylindrical samples of diameter 10 mm taken at mid-thickness and quarter-width in the 18 mm thick sole of the spun products are presented in Table 2. In order to evaluate the energy absorption during of a shock we calculated the parameter EA = R m The + R p 0.2 The / 2 * AT % The + R m TL + R p 0.2 TL / 2 * AT % TL
Figure imgb0007

La structure des produit filés obtenus était essentiellement non-recristallisée. Le taux de structure granulaire recristallisée entre ¼ et ½ épaisseur était inférieur à 10 %. Tableau 2. Propriétés mécaniques obtenues pour les différents alliages. Alliage A B C D E Rm L (MPa) 679 667 668 648 664 Rp0,2 L (MPa) 663 650 653 629 645 E% L 8,1 10,4 8,0 9,3 10,1 Rm TL (MPa) 641 635 619 601 622 Rp02 TL (MPa) 608 599 590 569 596 E% TL 7,2 6,2 5,1 5,3 5,9 K1C L-T (MPa m1/2) 22,5 22,8 21,4 28,6 23,9 K1C T-L (MPa m1/2) 18,8 18,3 19,5 22,7 19,0 EA 9896 10635 8331 9033 10204 The structure of the spun products obtained was essentially non-recrystallized. The degree of recrystallized granular structure between ¼ and ½ thickness was less than 10%. Table 2. Mechanical properties obtained for different alloys. Alloy AT B C D E Rm L (MPa) 679 667 668 648 664 Rp0.2 L (MPa) 663 650 653 629 645 E% L 8.1 10.4 8.0 9.3 10.1 Rm TL (MPa) 641 635 619 601 622 Rp02 TL (MPa) 608 599 590 569 596 E% TL 7.2 6.2 5.1 5.3 5.9 K 1C LT (MPa m 1/2 ) 22.5 22.8 21.4 28.6 23.9 K 1C TL (MPa m 1/2 ) 18.8 18.3 19.5 22.7 19.0 EA 9896 10635 8331 9033 10204

La figure 2 présente le compromis entre la limite d'élasticité et le paramètre EA. L'alliage selon l'invention permet d'atteindre un compromis particulièrement avantageux.The figure 2 presents the trade-off between the elastic limit and the EA parameter. The alloy according to the invention makes it possible to reach a particularly advantageous compromise.

Le produit filé en alliage A selon l'invention a subit un test de corrosion sous contrainte selon les normes ASTM G44 et ASTM G49 pour une tension de 450 MPa sur des éprouvettes prélevées dans le sens TL. Aucune rupture n'a été observée après 30 jours de test.The alloy spun product A according to the invention underwent a stress corrosion test according to ASTM G44 and ASTM G49 standards for a tension of 450 MPa on specimens taken in the TL direction. No rupture was observed after 30 days of testing.

Exemple 2Example 2

Dans cet exemple, les alliages A et B présentés dans l'exemple 1 ont été filés sous forme d'un produit filé d'une forme différente et présentant des épaisseurs de rectangles élémentaires plus faibles, comprises entre 5 et 12 mm. Les formes brutes ont été homogénéisées 15h à 500 °C puis 20 à 25h à 510 °C, filées sous forme de produit filé en I avec une température initiale de déformation à chaud d'environ 460 °C. Les produits filés obtenus ont été mis en solution à une température d'environ 510 °C, trempés, tractionnés environ 3,5 % et revenus 30h à 155 °C.In this example, the alloys A and B presented in Example 1 were spun as a spun product of a different shape and having lower elementary rectangles thicknesses between 5 and 12 mm. The crude forms were homogenized 15h at 500 ° C and then 20-25 h at 510 ° C, spun as I-spun product with an initial hot deformation temperature of about 460 ° C. The spun products obtained were dissolved at a temperature of approximately 510 ° C., quenched, triturated approximately 3.5% and returned for 30 hours at 155 ° C.

Les propriétés mécaniques dans la direction longitudinale ont été mesurées sur des éprouvettes « pleine épaisseur », prélevées dans les différents rectangles élémentaires du produit filé (épaisseurs 5, 7 et 12 mm) et moyennées pour les différents profilés obtenus. La mesure « pleine épaisseur » sous estime la valeur réelle mesurée à mi-épaisseur sur des éprouvettes usinées, à cause de l'effet de la microstructure différente proche de la surface. Un facteur de correction a été introduit pour tenir compte de ce biais, cependant le facteur a été choisi de telle façon que la valeur réelle sur éprouvette usinée serait sans doute supérieure à la valeur corrigée indiquée. Les propriétés mécaniques dans la direction transverse ont été mesurées sur des éprouvettes usinées prélevées dans la zone de plus faible épaisseur, seule zone possible pour ce type de mesure en raison de la longueur des éprouvettes nécessaire pour cette mesure. Les propriétés de ténacité ont été mesurées sur des éprouvettes prélevées dans la zone de plus forte épaisseur.
La structure des produit filés obtenus était essentiellement non-recristallisée. Le taux de structure granulaire recristallisée entre ¼ et ½ épaisseur était inférieur à 10 %.
The mechanical properties in the longitudinal direction were measured on "full thickness" specimens taken from the various elementary rectangles of the spun product (thicknesses 5, 7 and 12 mm) and averaged for the different sections obtained. The "full thickness" measurement underestimates the real value measured at mid-thickness on machined specimens, because of the effect of the different microstructure close to the surface. A correction factor was introduced to account for this bias, however, the factor was chosen such that the actual machined test specimen value would likely be greater than the indicated corrected value. The mechanical properties in the transverse direction were measured on machined specimens taken from the zone of smaller thickness, the only possible zone for this type of measurement because of the length of the specimens necessary for this measurement. The toughness properties were measured on specimens taken from the thickest zone.
The structure of the spun products obtained was essentially non-recrystallized. The degree of recrystallized granular structure between ¼ and ½ thickness was less than 10%.

Les propriétés mécaniques ainsi obtenues sont présentées dans le Tableau 3. Tableau 3. Propriétés mécaniques obtenues pour les différents alliages. Alliage A B Rm L* 661 651 Rp0,2 L* 639 627 E% L 10,8 9,8 Rm TL 664 663 Rp02 TL 633 622 E% TL 11,6 11,8 K1C L-T 25,3 22,9 K1C T-L 23,7 19,4 EA 14540 13840 * facteur de correction 1,033 appliqué au résultat obtenu sur éprouvette pleine épaisseur The mechanical properties thus obtained are presented in Table 3. Table 3. Mechanical properties obtained for different alloys. Alloy AT B Rm L * 661 651 Rp0.2 L * 639 627 E% L 10.8 9.8 Rm TL 664 663 Rp02 TL 633 622 E% TL 11.6 11.8 K1C LT 25.3 22.9 K1C TL 23.7 19.4 EA 14540 13840 * correction factor 1.033 applied to the result obtained on a full thickness test specimen

A nouveau, le produit filé selon l'invention atteint un compromis plus favorable que le produit filé de référence entre la résistance mécanique et le paramètre EA.Again, the spun product according to the invention achieves a more favorable compromise than the spun product of reference between the mechanical strength and the EA parameter.

Claims (12)

  1. Extruded product for which the thickness of at least one elementary rectangle, defined according to the standard EN 2066:2001, is between 1 mm and 30 mm, made of an aluminium-based alloy comprising
    4.2wt% to 4.8wt% of Cu,
    0.9wt% to 1.1wt% of Li,
    0.15wt% to 0.25wt% of Ag,
    0.2wt% to 0.6wt% of Mg,
    0.07wt% to 0.15wt% of Zr,
    0.2wt% to 0.6wt% of Mn,
    0.01wt% to 0.15wt% of Ti,
    a quantity of Zn less than 0.2wt%, a quantity of Fe and Si each less than or equal to 0.1wt%, and inevitable impurities each with a content less than or equal to 0.05wt% and 0.15wt% in total.
  2. Extruded product according to claim 1, comprising 4.3wt% to 4.7wt% of Cu and preferably 4.35wt% to 4.55wt% of Cu.
  3. Extruded product according to claim 1 or claim 2, comprising 0.95wt% to 1.05wt% of Li.
  4. Extruded product according to any one of claims 1 to 3 comprising 0.30wt% to 0.50wt% of Mg and/or 0.10wt% to 0.13wt% of Zr.
  5. Extruded product according to any one of claims 1 to 4 comprising 0.3wt% to 0.5wt% of Mn.
  6. Extruded product according to any one of claims 1 to 5 comprising less than 0.15wt% Zn and preferably less than 0.1wt% Zn.
  7. Extruded product according to any one of claims 1 to 6 characterised in that it is a profile for which the thickness of said at least one elementary rectangle is between 2 mm and 20 mm and preferably between 5 mm and 16 mm.
  8. Product according to any one of claims 1 to 7 for which the recrystallisation rate between ¼ and ½ thickness of said elementary rectangle is less than 30% and preferably less than 10%.
  9. Extruded product according to any one of claims 1 to 8 having at mid-thickness
    for a thickness of between 5 mm and 16 mm
    an average tensile yield stress Rp0.2 in the L-direction of at least 630 MPa and preferably of at least 635 MPa and
    an average tensile yield stress Rp0.2 in the TL-direction at least 625 MPa and preferably at least 630 MPa and
    a factor EA EA = Rm L + Rp 0.2 L / 2 * A % L + Rm TL + Rp 0.2 TL / 2 * A % TL
    Figure imgb0020
    at least equal to 14,000 and preferably at least equal to 14,500
    and/or
    for a thickness between 17 mm and 30 mm
    an average tensile yield stress Rp0.2 in the L-direction of at least 655 MPa and preferably of at least 660 MPa and
    an average tensile yield stress Rp0.2 in the TL-direction of at least 600 MPa and preferably of at least 605 MPa and
    a factor EA EA = Rm L + Rp 0.2 L / 2 * A % L + Rm TL + Rp 0.2 TL / 2 * A % TL
    Figure imgb0021
    at least equal to 9,500 and preferably at least equal to 9,800.
  10. Product according to claim 9 having
    for a thickness of between 5 mm and 16 mm, toughness K1C(L-T), of at least 24 MPa m
    Figure imgb0022
    and preferably of at least 25 MPa m
    Figure imgb0023
    and
    a thickness between 17 mm and 30 mm, a toughness K1C(L-T), of at least 21 MPa m
    Figure imgb0024
    and preferably of at least 22 MPa m .
    Figure imgb0025
  11. Process for manufacturing a product according to any one of claims 1 to 10 wherein:
    (a) an alloy unwrought product is cast according to one of claims 1 to 6,
    (b) said unwrought product is homogenised at a temperature of 490°C to 520°C for 8 to 48 hours,
    (c) said unwrought product is hot worked by extrusion at an initial hot working temperature of 420°C to 480°C to obtain an extruded product,
    (d) said extruded product undergoes solution heat treatment at a temperature of 500°C to 520°C for 15 minutes to 8 hours,
    (e) quenching,
    (f) said extruded product undergoes controlled stretching with a permanent set of 2 to 4%,
    (g) optionally, said extruded product is straightened,
    (h) said extruded product is aged by heating at a temperature of 100°C to 170°C for 5 to 100 hours.
  12. Use of a product according to any one of claims 1 to 10 for aeronautic construction as a fuselage stiffener or stringer, circumferential frame, wing stiffener, floor profile or beam or seat track.
EP13722480.4A 2012-04-11 2013-04-10 Alliage aluminium cuivre lithium à résistance au choc améliorée Active EP2836620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE13722480.4T DE13722480T1 (en) 2012-04-11 2013-04-10 ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPACTNESS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261622774P 2012-04-11 2012-04-11
FR1201063A FR2989387B1 (en) 2012-04-11 2012-04-11 LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED SHOCK RESISTANCE
PCT/FR2013/000096 WO2013153292A1 (en) 2012-04-11 2013-04-10 Aluminium copper lithium alloy with improved impact strength

Publications (2)

Publication Number Publication Date
EP2836620A1 EP2836620A1 (en) 2015-02-18
EP2836620B1 true EP2836620B1 (en) 2019-03-27

Family

ID=46940511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13722480.4A Active EP2836620B1 (en) 2012-04-11 2013-04-10 Alliage aluminium cuivre lithium à résistance au choc améliorée

Country Status (8)

Country Link
US (1) US9945010B2 (en)
EP (1) EP2836620B1 (en)
CN (1) CN104220616B (en)
BR (1) BR112014025110B1 (en)
CA (1) CA2869733C (en)
DE (1) DE13722480T1 (en)
FR (1) FR2989387B1 (en)
WO (1) WO2013153292A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007423B1 (en) 2013-06-21 2015-06-05 Constellium France EXTRADOS STRUCTURE ELEMENT IN ALUMINUM COPPER LITHIUM ALUMINUM
FR3014904B1 (en) * 2013-12-13 2016-05-06 Constellium France PRODUCTS FILES FOR PLASTER FLOORS IN LITHIUM COPPER ALLOY
RU2560485C1 (en) * 2014-06-10 2015-08-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength heat-treatable aluminium alloy and article made thereof
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
MX2019004494A (en) 2016-10-24 2019-12-18 Shape Corp Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components.
CN107964641B (en) * 2017-10-18 2021-02-05 中国航发北京航空材料研究院 Heat treatment method for improving creep forming performance of aluminum-lithium alloy
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
FR3080860B1 (en) * 2018-05-02 2020-04-17 Constellium Issoire LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY
CN110423927A (en) * 2019-07-17 2019-11-08 中南大学 A kind of Ultrahigh strength aluminum lithium alloy and preparation method thereof
CN110952010A (en) * 2019-12-18 2020-04-03 东北轻合金有限责任公司 Manufacturing method of high-temperature-resistant aluminum alloy plate for rocket tank body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US7438772B2 (en) 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
DE04753337T1 (en) 2003-05-28 2007-11-08 Alcan Rolled Products Ravenswood LLC, Ravenswood NEW AL-CU-LI-MG-AG-MN-ZR ALLOY FOR CONSTRUCTION APPLICATIONS REQUIRING HIGH STRENGTH AND HIGH BROKENNESS
CA2700250C (en) * 2007-09-21 2016-06-28 Aleris Aluminum Koblenz Gmbh Al-cu-li alloy product suitable for aerospace application
CN104674090A (en) 2007-12-04 2015-06-03 美铝公司 Improved aluminum-copper-lithium alloys
FR2969177B1 (en) * 2010-12-20 2012-12-21 Alcan Rhenalu LITHIUM COPPER ALUMINUM ALLOY WITH ENHANCED COMPRESSION RESISTANCE AND TENACITY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2869733A1 (en) 2013-10-17
FR2989387A1 (en) 2013-10-18
WO2013153292A1 (en) 2013-10-17
CN104220616B (en) 2017-12-15
FR2989387B1 (en) 2014-11-07
DE13722480T1 (en) 2015-06-25
US20130269840A1 (en) 2013-10-17
CN104220616A (en) 2014-12-17
CA2869733C (en) 2021-07-20
EP2836620A1 (en) 2015-02-18
BR112014025110B1 (en) 2019-04-24
US9945010B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
EP2836620B1 (en) Alliage aluminium cuivre lithium à résistance au choc améliorée
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP3011068B1 (en) Extrados structural element made from an aluminium copper lithium alloy
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP2569456B1 (en) Aluminum-copper-lithium alloy for lower surface element
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
FR2902442A1 (en) ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
EP3080319B1 (en) Extruded products for aeroplane floors made of an aluminium-copper-lithium alloy
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP3411508B1 (en) Thick al - cu - li - alloy sheets having improved fatigue properties
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
EP3802897A1 (en) Thin sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GBCC Gb: corrected translation (of claims) filed (gb section 80(3)/1977)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIGNATEL JEROME

Inventor name: WARNER TIMOTHY

Inventor name: POUGET GAELLE

Inventor name: DANIELOU ARMELLE

Inventor name: MARQUETTE MATHIEU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Effective date: 20150625

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013052912

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013052912

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1113171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1113171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013052912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130410

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 11

Ref country code: DE

Payment date: 20230427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240328

Year of fee payment: 12