EP2831685A1 - Verfahren zur steuerung einer multirotordrehflügeldrohne mit schätzung und kompensation von seitenwind und beschleunigungsmesserbias - Google Patents

Verfahren zur steuerung einer multirotordrehflügeldrohne mit schätzung und kompensation von seitenwind und beschleunigungsmesserbias

Info

Publication number
EP2831685A1
EP2831685A1 EP13715385.4A EP13715385A EP2831685A1 EP 2831685 A1 EP2831685 A1 EP 2831685A1 EP 13715385 A EP13715385 A EP 13715385A EP 2831685 A1 EP2831685 A1 EP 2831685A1
Authority
EP
European Patent Office
Prior art keywords
drone
wind
speed
ground
dynamic model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13715385.4A
Other languages
English (en)
French (fr)
Inventor
François CALLOU
Gilles Foinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parrot Drones SAS
Original Assignee
Parrot SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parrot SA filed Critical Parrot SA
Publication of EP2831685A1 publication Critical patent/EP2831685A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • G05D1/0204Control of position or course in two dimensions specially adapted to aircraft to counteract a sudden perturbation, e.g. cross-wind, gust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to rotary wing drones such as quadricopters and the like.
  • These drones are provided with multiple rotors driven by respective engines controllable in a differentiated manner to control the drone attitude and speed.
  • a typical example of such a drone is the AR.Drone of Parrot SA, Paris, France, which is a quadricopter equipped with a series of sensors (accelerometers, three-axis gyrometers, altimeter), a front camera capturing an image of the scene to which the drone is directed, and a vertical aiming camera capturing an image of the terrain overflown.
  • sensors accelerometers, three-axis gyrometers, altimeter
  • a front camera capturing an image of the scene to which the drone is directed
  • a vertical aiming camera capturing an image of the terrain overflown.
  • WO 2010/061099 A2 and EP 2 364 757 A1 describe such a drone and its driving principle via a phone or multimedia player with touch screen and built-in accelerometer, for example a cell phone of type iPhone or a player or a multimedia tablet type iPod Touch or iPad (trademarks of Apple Inc., USA).
  • the drone is piloted by the user by means of signals transmitted by the inclination detector of the apparatus, inclinations which will be replicated by the drone: for example, to advance the drone the user tilts his device according to its pitch axis, and to move the drone right or left it tilts the same device relative to its roll axis.
  • the drone is commanded to tilt or "dive" downward (tilt at a pitch angle)
  • it will progress forward with a speed that is higher as the tilt important; conversely if it is controlled so as to "pitch up” in the opposite direction, its speed will gradually slow down and then reverse by going backwards.
  • the drone is also provided with a fixed-point control command: in this operating mode that will be called “autopilot mode” afterwards, when the user releases all the controls of his remote control device, the drone immobilizes in a fixed point and stabilizes there fully automatically.
  • the general problem of the invention is the steering of such a drone in the wind.
  • wind a movement of air parallel to the ground, constant in space and in time (gusts of wind will not be considered). Such a “wind” is then completely determined by its components of horizontal velocity in a given terrestrial reference, or by its norm and its direction in such a reference.
  • the wind represents a disturbance which, by its characteristics, affects the drone when it is in flight.
  • These disturbances are particularly sensitive in the case of very light "microdrones", such as the aforementioned AR.Drone, whose mass is only a few hundred grams.
  • the wind gain of such a drone is therefore particularly sensitive, even in moderate winds.
  • the drone relies to move on a moving air mass as a function of the wind, while it measures its horizontal speed components with respect to the ground (for example by means of a camera pointing downwards and giving an image of the ground), angles (by accelerometers and embedded gyroscopes) and external forces applied to it (by embedded accelerometers).
  • the accelerometers have by construction a bias (which will be assumed constant in the short term) that must be estimated and compensated to correctly use the acceleration measurement in the reconstruction of angles.
  • the accelerometers being used inter alia in inclinometers, an error in estimating the accelerometer biases causes a bias on the angle measurement, which is detrimental to the holding of the fixed point. In the same way this sensor bias influences the measurement of the wind forces achieved by the accelerometer.
  • the drone In the presence of wind, the drone must bow to compensate the wind and maintain the fixed point (enslaved on a stable image of the vertical camera): its attitude will not be zero and the evaluation of the bias will be modified. This does not prevent to maintain the drone in fixed point (enslavement by the camera), but will have a particularly significant incidence in two cases:
  • One of the aims of the invention is to propose a wind estimation method making it possible to distinguish between accelerometer construction bias and wind-induced measurement bias.
  • Another object of the invention is to propose a wind compensation method making it possible to overcome the two phenomena that have just been described, that is to say i) in autopilot flight, to allow the drone to maintain its point. wind in a yaw motion and ii) in controlled mode, to provide a control of the movement which is identical in all directions, whether in the direction of the wind or in the direction opposite to the wind, of transparent way for the driver.
  • the FR 2 926 637 A1 describes a system for estimating the speed of a drone with respect to the air, by applying a model expressing the mechanical relations between the forces acting on the drone and its speeds and accelerations in translation. and in rotation.
  • the speed with respect to the air is notably estimated from the aerodynamic drag force the movement of the drone, which is indirectly measured and used to obtain information on the speed relative to the air.
  • this document proposes to use a GPS receiver embedded measuring the speed of the drone relative to the ground.
  • This way of proceeding requires the presence of such a receiver in the drone, and requires a GPS signal is available and that its accuracy is sufficient (visibility of a sufficient number of satellites).
  • the precision obtained does not provide a wind speed estimate that is sufficiently fine to correctly evaluate the windward part of the acceleration sensor measurement bias, which is necessary to compensate for the windward steering disadvantages described above. .
  • the evaluation of the angle of the drone can be strongly affected by this construction bias of the accelerometers.
  • the invention proposes a technique for estimating the bias of the accelerometer sensor independently of that introduced by the wind.
  • the invention also proposes a compensation technique making it possible to use the results of the bias estimation to correct the piloting faults in the wind exposed above, both in the autopilot mode (fixed point) and in the controlled mode (controls pilot applied by a user).
  • the invention proposes a method for controlling a multi-rotor rotary wing drone driven by respective controllable engines to control the drone in attitude and speed, this method comprising, in a manner known per se, of after the above-mentioned Waslander article:
  • the establishment of at least one dynamic model of the drone describing components of the horizontal velocity of the drone as a function of the drag coefficients and the mass of the drone, Euler angles characterizing the attitude of the drone with respect to a absolute landmark, as well as the speed of rotation of the drone around a vertical yaw axis; the measurement of the aerodynamic drag force of the drone, derived from a measurement of acceleration of the drone;
  • the Kalman predictive filter is a six-state filter, these states comprising:
  • the establishment of the dynamic model of the drone comprises the establishment of two distinct models, with: i) a model dy- drone in flight, and ii) a dynamic model of the drone on the ground, these models being used selectively according to the state of the drone.
  • the dynamic model of the drone in flight can use a measurement of acceleration of the drone as a measure proportional to the speed of the air in the mark of the drone.
  • the dynamic model of the drone in flight can notably be of the type:
  • ⁇ , ⁇ and / being the Euler angles (respectively of roll, pitch and yaw) characterizing the attitude of the drone with respect to the NED mark, where 3 ⁇ 4 is the rate of rotation about the axis w (movement of turn in yaw), and
  • R being the rotation matrix associated with the angle ⁇ , in dimension 2.
  • the dynamic model of the drone on the ground can in particular be of the type:
  • being a temporal parameter of progressive decay of the estimate of the wind speed.
  • the invention also proposes a step of compensating the effect of the lateral wind on the positioning and displacements of the drone, by generating corrective setpoints, a function of the estimated horizontal components of lateral wind speed, and a combination of these corrective instructions. the pitch and roll angles applied to the control loop of the drone's engines.
  • the corrective instructions may especially be of the type:
  • V wind being the modulus of the estimated wind speed
  • Cx being the drag coefficient of the drone
  • y / wind is the heading angle of the wind direction
  • y / drone being the heading angle of the direction of the drone .
  • the compensation step may notably include the definition for the drone of an open loop reference attitude.
  • the corrective instructions are combined with the piloting instructions applied by the user.
  • these corrective instructions are combined with fixed point stabilization instructions produced in response to a measurement of the horizontal velocity of the drone relative to the ground.
  • Figure 1 is an overview showing the drone and associated remote control device for remote control.
  • Figure 2 is a block diagram of the various control organs, servo and assisted steering of the drone.
  • Figures 3 and 4 are comparative records, respectively of the module of the wind speed and the direction of the wind, values simultaneously estimated and measured under real conditions, showing the relevance of the estimation method according to the invention.
  • Figure 5 is a functional schematic representation illustrating the wind estimation and compensation loops, for a flight configuration of the autopilot fixed-point drone.
  • Figure 6 is a functional schematic representation illustrating the wind estimation loop, for a flight configuration of the drone in controlled flight.
  • reference numeral 10 generally denotes a drone, for example a quadricopter such as the AR. Drone of Parrot SA, Paris, France, described in the aforementioned WO 2010/061099 A2 and EP 2,364,757 A1, as well as in FR 2 915 569 A1 (which notably describes the control system with gyrometers and accelerometers used by the drone ).
  • the drone 10 comprises four coplanar rotors 12 whose engines are controlled independently by an integrated navigation system and attitude control. It is provided with a first camera 14 with frontal aiming to obtain an image of the scene towards which the drone is oriented, for example a wide angle camera with CMOS sensor.
  • the drone also includes a second camera with a vertical aim (not visible in Figure 1) pointing downwards, able to capture successive images of the terrain overflown and used in particular to assess the speed of the drone relative to the ground.
  • a second camera with a vertical aim (not visible in Figure 1) pointing downwards, able to capture successive images of the terrain overflown and used in particular to assess the speed of the drone relative to the ground.
  • Inertial sensors make it possible to measure with a certain accuracy the angular velocities and attitude angles of the drone, that is to say the angles of Euler describing the inclination of the drone.
  • inclination means the inclination of the drone with respect to a horizontal plane of a fixed terrestrial reference, being that the two longitudinal and transverse components of the horizontal velocity are intimately related to the inclination along the two respective axes of pitch and roll.
  • a local coordinate system ⁇ u, v, w ⁇ linked to the body of the drone the drone, although strongly symmetrical by construction, comprises a front and a rear, and the position of the camera will be considered as pointing towards the front , thus defining the axis u. ; the axis v is perpendicular to u in the mean plane of the drone, and the axis w is the vertical axis directed towards the ground;
  • NED North East Down
  • Y N direction ED is the direction parallel to the ground plane perpendicular to the geographic North (ie the geographical East)
  • ZNED direction is perpendicular to the ground plane and pointing downwards.
  • An ultrasonic rangefinder disposed under the drone and an onboard barometric sensor also provide measurements which, combined, give an estimate of the altitude of the drone relative to the ground.
  • the device 16 is provided with radio link means with the drone for the bidirectional exchange of data from the drone 10 to the device 16, in particular for the transmission of data.
  • This connection may be for example type Wi-Fi local network (IEEE 802.1 1) or Bluetooth (registered trademarks).
  • the apparatus 16 is also provided with inclination sensors to control the attitude of the drone by printing the device corresponding inclinations.
  • the remote control device 16 is advantageously constituted by a multimedia touch screen phone or player with an integrated accelerometer, for example an iPhone-type cell phone, an iPod Touch-type music player or an iPad-type multimedia tablet, which are devices incorporating the various control devices necessary for the display and detection of control commands, the display of the image captured by the front camera, and the bidirectional exchange of data with the drone by link Wi-Fi or Bluetooth.
  • a multimedia touch screen phone or player with an integrated accelerometer for example an iPhone-type cell phone, an iPod Touch-type music player or an iPad-type multimedia tablet, which are devices incorporating the various control devices necessary for the display and detection of control commands, the display of the image captured by the front camera, and the bidirectional exchange of data with the drone by link Wi-Fi or Bluetooth.
  • the piloting of the drone 10 consists in making it evolve by controlling the engines in a differentiated manner to generate, as the case may be, movements of:
  • the drone also has an automatic and autonomous hover stabilization system ("fixed point" autopilot configuration), activated especially when the user removes his finger from the touch screen of the device, or automatically at the end of the take-off phase, or again if the radio link between the aircraft and the drone is interrupted. The drone then moves to a state of levitation where it will be immobilized and stabilized automatically, without any intervention of the user.
  • an automatic and autonomous hover stabilization system (“fixed point” autopilot configuration)
  • control system involves several nested loops for the control of the horizon- tal speed, the angular velocity and the attitude of the drone, in addition to the variations of altitude.
  • the most central loop which is the angular velocity control loop 100, uses, on the one hand, the signals supplied by gyrometers 102 and, on the other hand, a reference constituted by angular velocity instructions 104. information is applied at the input of a stage 106 for correcting the angular velocity, which itself drives a control stage 108 of the motors 1 10 in order to control separately the speed of the various motors to correct the angular velocity of the drone by the combined action of the rotors driven by these engines.
  • the angular velocity control loop 100 is embedded in an attitude control loop 12, which operates from the indications provided by the gyrometers 102, by accelerometers 114 and by a magnetometer 1 16 giving the absolute orientation of the drone in a terrestrial geomagnetic landmark.
  • the data from these different sensors are applied to a stage 1 18 of attitude estimation type PI (Proportional-Integrator).
  • the stage 1 18 produces an estimate of the real attitude of the drone applied to an attitude correction stage 120 which compares the actual attitude with angle commands generated by a circuit 122 from commands directly.
  • the possibly corrected instructions applied to the circuit 120 and compared to the actual attitude of the drone are transmitted by the circuit 120 to the circuit 104 to control the motors appropriately.
  • the loop 1 12 of the attitude control calculates an angular speed setpoint using the corrector PI of the circuit 120.
  • the angular velocity control loop 100 then calculates the difference between the previous angular velocity reference and the angular velocity effectively measured by the gyrometers 102.
  • the loop calculates from this information the various instructions of rotational speed (and therefore of ascending force), which are sent to the engines 1 10 to perform the maneuver requested by the user and / or planned by the pilot automatic drone.
  • the angle setting calculating circuit 122 also receives corrections delivered by a wind estimation and compensation circuit 128, which will be described below in detail.
  • the horizontal speed control loop 130 uses a vertical video camera 132 and altitude sensors 134 (ultrasonic rangefinder combined with a barometric sensor).
  • a circuit 136 processes the images produced by the vertical camera 132, in combination with the signals of the accelerometer 1 14 and the attitude estimation circuit 1 18, to estimate by means of a circuit 138 the components of the horizontal speed along the two axes of pitch and roll of the drone.
  • the estimated horizontal speeds are corrected by the vertical velocity estimate given by a circuit 140 and by an estimate of the altitude given by the circuit 142 from the information of the sensors 134.
  • the user 124 applies commands to a circuit 144 for calculating altitude setpoints, which instructions are applied to a calculation circuit 146 for ascending speed reference value V z via the altitude correction circuit 148 receiving the estimate of altitude given by the circuit 142.
  • the calculated upward velocity V z is applied to a circuit 150 which compares this reference speed with the corresponding speed estimated by the circuit 140 and consequently modifies the control data of the motors (circuit 108). in such a way as to increase or reduce the speed of rotation simultaneously on all the motors so as to minimize the difference between the ascending velocity measured rate of climb.
  • ⁇ and ⁇ being the two angles defining the inclination of the drone with respect to the horizontal (angles of Euler: if ⁇ corresponds to a rotation around the axis Z NE D of the absolute reference NED, ⁇ corresponds to a rotation around of the YNED axis rotated by ⁇ , and ⁇ corresponds to a rotation around the axis u), C x and C y being the resistance coefficients to the advancement (reflecting the friction forces experienced by the drone) in the two horizontal axes, a being a coefficient linking the thrust and the climbing speed at the speed of rotation ⁇ , and
  • m being the mass of the drone.
  • I x , I y and I z being representative parameters of the inertia coefficient of the drone in the three axes, and 1 being the distance separating the engine from its center of gravity.
  • the first term of the left-hand member corresponds to the dynamic moment of the system
  • the second term represents the contribution to the dynamic moment of the Coriolis forces
  • the right-hand member corresponds to the moments exerted by the ascensional forces Fi and the couples ⁇ created by the propellers of each of the rotors.
  • the invention proposes a wind estimation technique based on the dynamic equations of the drone in flight.
  • This dynamic model whose equations will be given below, will be used with a "Kalman filter” state estimator, which is an infinite impulse response filter that estimates the states of a dynamic system (the drone in the case) from a series of input measures.
  • Kalman filter state estimator
  • the general principles of this technique can be found for example in R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME - Journal of Basic Engineering, Vol. 82 (1960).
  • the Kalman filter will use and estimate six states, namely:
  • the evolution of the six states of the Kalman filter estimator can be predicted using the dynamic model describing the behavior of the drone.
  • the measured values of the ground speed and the acceleration of the drone will serve to recalibrate the predictions given by this estimator, thus allowing i) to improve the accuracy of estimation of the directly measured quantities (filtering function of the estimator), such as the V D f S and V DS velocities of the drone relative to the ground, and ii) estimate the quantities inaccessible to a direct measurement (state estimator function), such as speed and wind direction corresponding to the components ⁇ k / s ⁇ and VA / s ⁇ .
  • ⁇ , ⁇ and p being the Euler angles (respectively of roll, pitch and yaw) characterizing the attitude of the drone with respect to the NED mark, ⁇ ⁇ being the rate of rotation about the w axis (yaw rotation movement), and
  • R v being the rotation matrix associated with the angle ⁇ , in dimension 2.
  • the null terms of the two sub-matrices come from the fact that, by hypothesis, the wind and the accelerometer biases are considered constant on the short term. It should be noted that this does not prevent the estimation of these states because i) the wind speed is dynamically coupled to the speed of the drone relative to the ground, itself measured and ii) the accelerometer bias is measured at through the acceleration measurement.
  • the two matrices of the above relation are not constant (which corresponds to a nonstationary Kalman filter), being a function of the attitude of the drone and its speed of rotation around the yaw axis; but these parameters are assumed to be known to the estimator, insofar as they are in practice measured or estimated as part of the attitude control of the drone.
  • Equation 10 and 11 are applied to the accelerometric measurement system, the latter measures only the aerodynamic friction forces; the accelerometer therefore measures a magnitude proportional to the wind speed of a factor C x / m or C m along the axis considered (with construction bias).
  • this one is measured in the reference ⁇ u, v, w ⁇ related to the drone thanks to the camera with vertical aim giving an image of the ground.
  • This image is analyzed by algorithms such as those described in the aforementioned EP 2 400 460 A1, which estimates the displacement of the scene captured by the camera of a following image and applies to this estimated displacement a scale factor depending on the altitude, itself estimated by merging the data produced by an ultrasonic range finder and a barometric sensor.
  • Figures 3 and 4 are comparative readings, respectively of the wind speed and wind direction modulus, of simultaneously estimated and measured values under real conditions.
  • the use of a specific dynamic model for the ground UAV makes it possible to force the decrease of the wind speed towards zero, thus avoiding any destabilization of the accelerometer bias estimators.
  • Wind estimation has several uses:
  • This wind compensation method is advantageously implemented from the estimate obtained in the manner described above, but in a nonlimiting manner, insofar as it can be implemented with other methods. wind estimation techniques.
  • Wind compensation consists in determining for the drone a reference attitude around which it will be enslaved, either in controlled flight mode or in autopilot fixed point mode:
  • the reference in open loop will be added to the instructions of the pilot, so as to support the drone facing the wind and conversely to brake it in the direction of the wind, and
  • the stabilization of the drone can be reached more quickly, the compensation being as responsive as the estimate.
  • FIG. 5 is a functional schematic representation illustrating the wind estimation and compensation loops along the axis u, for a flight configuration of the autopilot fixed-point drone.
  • the servocontrol is identical along the axis v, the terms in x or in ⁇ being substituted by terms in y or in ⁇ and the cosine function being replaced by the sinus function, respectively.
  • Figure 6 is the counterpart of Figure 5, for a flight configuration of the drone in controlled mode.
  • fixed point 126 comprises a gain integrator stage 154 156 and a proportional stage 158.
  • the output setpoint of the adder stage 152 is applied via a stage 160 limiting the excursion of the setpoint actually applied to the control loop of the drone engines.
  • the compensation term applied to the adder 152 for each of the u and v axes is:
  • V wind being the modulus of the estimated wind speed
  • Cx being the drag coefficient of the drone
  • y wind being the heading angle of the wind direction
  • Wdrom being the heading angle of the direction of the drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)
EP13715385.4A 2012-03-30 2013-03-27 Verfahren zur steuerung einer multirotordrehflügeldrohne mit schätzung und kompensation von seitenwind und beschleunigungsmesserbias Withdrawn EP2831685A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252895A FR2988868B1 (fr) 2012-03-30 2012-03-30 Procede de pilotage d'un drone a voilure tournante a rotors multiples avec estimation et compensation du vent lateral
PCT/FR2013/050663 WO2013144508A1 (fr) 2012-03-30 2013-03-27 Procede de pilotage d'un drone a voilure tournante a rotors multiples avec estimation et compensation du vent lateral et du biais des accelerometres.

Publications (1)

Publication Number Publication Date
EP2831685A1 true EP2831685A1 (de) 2015-02-04

Family

ID=48083546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13715385.4A Withdrawn EP2831685A1 (de) 2012-03-30 2013-03-27 Verfahren zur steuerung einer multirotordrehflügeldrohne mit schätzung und kompensation von seitenwind und beschleunigungsmesserbias

Country Status (6)

Country Link
US (1) US9488978B2 (de)
EP (1) EP2831685A1 (de)
JP (1) JP2015514263A (de)
CN (1) CN104335128B (de)
FR (1) FR2988868B1 (de)
WO (1) WO2013144508A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529549A (ja) * 2015-07-10 2017-10-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像を取得するシステム及び無人航空機
JP2017535086A (ja) * 2015-07-31 2017-11-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像処理のための方法、撮像システム、及びプログラム

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD799374S1 (en) * 2010-03-29 2017-10-10 Dylan T X Zhou Combined amphibious VTOL three way folding camera and phone drone
US9309004B2 (en) * 2012-09-21 2016-04-12 Merlin Technology, Inc. Centripetal acceleration determination, centripetal acceleration based velocity tracking system and methods
USD747775S1 (en) * 2014-04-15 2016-01-19 Fatdoor, Inc. Quadcopter
US9457901B2 (en) * 2014-04-22 2016-10-04 Fatdoor, Inc. Quadcopter with a printable payload extension system and method
EP2940547B1 (de) * 2014-05-01 2019-03-06 Sikorsky Aircraft Corporation Mischen für koaxialen rotor bei niedriger geschwindigkeit
EP2960154A1 (de) * 2014-06-23 2015-12-30 Thomson Licensing Verfahren zur Steuerung eines Pfads einer Drehflügeldrohne, zugehöriges System, Drehflügeldrohne mit dem System und zugehörige Verwendungen solch einer Drohne
US9754496B2 (en) 2014-09-30 2017-09-05 Elwha Llc System and method for management of airspace for unmanned aircraft
EP3674214A1 (de) * 2014-10-17 2020-07-01 Sony Corporation Steuergerät, steuerverfahren und flugfahrzeuggerät
CN104460685A (zh) * 2014-11-21 2015-03-25 南京信息工程大学 一种四旋翼飞行器的控制系统及其控制方法
US20160272310A1 (en) * 2014-12-04 2016-09-22 Elwha Llc Reconfigurable unmanned aircraft system
US9919797B2 (en) 2014-12-04 2018-03-20 Elwha Llc System and method for operation and management of reconfigurable unmanned aircraft
JP6671375B2 (ja) * 2014-12-25 2020-03-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人機の飛行補助方法
CN104729497A (zh) * 2015-01-16 2015-06-24 上海大学 超小型双涵道无人机组合导航系统及双模式导航方法
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制系统、终端及机载飞控系统
EP4332612A3 (de) * 2015-03-07 2024-09-04 Verity AG Systeme und verfahren zur verteilten lokalisierung und selbstlokalisierungsvorrichtung
CN106032166B (zh) * 2015-03-12 2018-12-04 优利科技有限公司 飞行器及其翻转方法
USD776569S1 (en) * 2015-03-26 2017-01-17 Matternet, Inc. Unmanned aerial vehicle
USD776570S1 (en) * 2015-03-26 2017-01-17 Matternet, Inc. Unmanned aerial vehicle
FR3034554B1 (fr) * 2015-04-01 2017-04-28 Parrot Drone muni d'une camera video a visee verticale compensee des rotations instantanees pour l'estimation des vitesses horizontales
US10488870B2 (en) * 2015-04-16 2019-11-26 Sikorsky Aircraft Corporation Gust alleviating control for a coaxial rotary wing aircraft
USD767043S1 (en) * 2015-04-16 2016-09-20 Robert Morrison Quadcopter
US10023323B1 (en) * 2015-04-29 2018-07-17 X Development Llc Estimating wind from an airborne vehicle
US10111044B2 (en) 2015-05-29 2018-10-23 Verity Studios Ag Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
CN104986341B (zh) * 2015-06-04 2018-01-19 深圳一电航空技术有限公司 飞行器防侧翻方法及装置
US9764829B1 (en) * 2015-06-09 2017-09-19 Amazon Technologies, Inc. Multirotor aircraft with enhanced yaw control
CN205989812U (zh) * 2015-06-25 2017-03-01 瑞德利斯技术公司 多旋翼无人机
US9878787B2 (en) 2015-07-15 2018-01-30 Elwha Llc System and method for operating unmanned aircraft
JP6602614B2 (ja) * 2015-09-09 2019-11-06 公立大学法人会津大学 ドローンおよびドローン群
DE102015119279A1 (de) * 2015-11-09 2017-05-11 Antony Pfoertzsch Unbemanntes Flugobjekt sowie Steuerung und Fernsteuerung hierfür und Verfahren zum Steuern eines unbemannten Flugobjekts
CN105259928B (zh) * 2015-11-13 2017-11-03 上海斐讯数据通信技术有限公司 根据风向调整设备方向的方法及装置
US10238962B2 (en) 2015-12-27 2019-03-26 Spin Master Ltd. System and method for recharging battery in augmented reality game system
US10197998B2 (en) 2015-12-27 2019-02-05 Spin Master Ltd. Remotely controlled motile device system
USD809969S1 (en) * 2015-12-28 2018-02-13 Beijing Zero Zero Infinity Technology Co., Ltd Drone
US10012999B2 (en) * 2016-01-08 2018-07-03 Microsoft Technology Licensing, Llc Exploiting or avoiding air drag for an aerial vehicle
CN107301765B (zh) * 2016-04-15 2021-11-30 北京远度互联科技有限公司 遥控方法、装置及终端
CN107368087A (zh) * 2016-05-13 2017-11-21 威海明达创新科技有限公司 微型四轴飞行器及其控制方法
CN105954819B (zh) * 2016-05-24 2018-05-11 南京信息工程大学 基于无人机倾角检测的风速测量装置及操作方法
CN105954782B (zh) * 2016-06-12 2018-08-28 李丹 一种多旋翼无人机的组合测向方法
EP3472681B1 (de) * 2016-06-21 2020-08-19 Bombardier Inc. Regelgesetze für die gier- und rollsteuerung
WO2017221859A1 (ja) 2016-06-21 2017-12-28 日本電気株式会社 移動体、移動体制御システム、移動体制御方法、インターフェース装置、およびプログラムが記録された記録媒体
USD811264S1 (en) * 2016-09-12 2018-02-27 Hangzhou Zero Zero Technology Co., Ltd. Unmanned aerial vehicle
DE102016119152B4 (de) * 2016-10-07 2018-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Windmessung mittels eines Multikopters
WO2018089514A1 (en) * 2016-11-08 2018-05-17 Digital Aerolus, Inc. Real time effective mass and moment of inertia measurement
CN106292683A (zh) * 2016-11-10 2017-01-04 广东容祺智能科技有限公司 一种无人机抗风增稳系统及其自动控制方法
CN106275410B (zh) * 2016-11-17 2018-11-23 湖南科瑞特科技有限公司 一种防风扰无人机
US20200064868A1 (en) * 2016-12-06 2020-02-27 Amimon Ltd. Unmanned aerial vehicle control
FR3060178A1 (fr) * 2016-12-09 2018-06-15 Parrot Drones Dispositif electronique de pilotage d'un drone, drone, procede de pilotage et programme d'ordinateur associes
CN106483968B (zh) * 2016-12-13 2023-05-05 桂林理工大学南宁分校 一种用于无人机自动降落的地表面识别装置
CN106643737B (zh) * 2017-02-07 2020-04-10 大连大学 风力干扰环境下四旋翼飞行器姿态解算方法
CN107063248A (zh) * 2017-02-10 2017-08-18 南京航空航天大学 基于旋翼转速的动力学模型辅助惯导的导航方法
CN106871892B (zh) * 2017-02-17 2020-08-11 张梦 一种航空器组合导航方法和装置
CN110325442A (zh) * 2017-03-03 2019-10-11 深圳市大疆创新科技有限公司 防风空中投放方法和系统
US11319067B2 (en) * 2017-03-12 2022-05-03 Nileworks Drone for capturing images of field crops
CN106882364B (zh) * 2017-03-15 2019-02-19 江西中轻智能设备有限公司 一种控制精确的智能型四旋翼无人机
WO2018191975A1 (en) * 2017-04-21 2018-10-25 SZ DJI Technology Co., Ltd. Wind velocity force feedback
USD851540S1 (en) * 2017-06-07 2019-06-18 MerchSource, LLC Drone
USD852091S1 (en) * 2017-07-20 2019-06-25 MerchSource, LLC Drone
US11402855B2 (en) * 2017-07-21 2022-08-02 Nec Corporation Processing device, drive control device, data processing method, and storage medium for attitude control of moving body based on wind conditions
JP6970424B2 (ja) * 2017-09-06 2021-11-24 株式会社FADrone マルチコプタ及びその制御方法
US10429856B2 (en) * 2017-09-07 2019-10-01 Embraer S.A. Safe takeoff system
JP6371895B1 (ja) * 2017-10-31 2018-08-08 株式会社WorldLink & Company 風況の計測方法
CN107977985B (zh) * 2017-11-29 2021-02-09 上海拓攻机器人有限公司 无人机悬停方法、装置、无人机及存储介质
TWI657011B (zh) * 2017-11-30 2019-04-21 財團法人工業技術研究院 無人機、無人機控制系統及控制方法
USD867470S1 (en) * 2017-12-01 2019-11-19 Horizon Hobby, LLC Quadcopter
US11029709B1 (en) * 2017-12-28 2021-06-08 United States Of America As Represented By The Administrator Of Nasa Adaptive wind estimation, trajectory generation, and flight control for aerial systems using motion data
US10909864B2 (en) * 2018-06-27 2021-02-02 Intel Corporation Drone obstacle avoidance using real-time wind estimation
CN108839795A (zh) * 2018-08-01 2018-11-20 辽宁壮龙无人机科技有限公司 一种水平推动多旋翼无人机及控制方法
WO2020150388A1 (en) 2019-01-15 2020-07-23 Bridger Photonics, Inc. Apparatuses, systems, and methods for gas flux measurements with mobile platforms
CN110134134B (zh) * 2019-05-24 2022-03-15 南京信息工程大学 一种无人机悬停状态下的测风方法
US20220227479A1 (en) * 2019-07-04 2022-07-21 Sony Group Corporation Flying body, control method, and program
JPWO2021024591A1 (de) * 2019-08-02 2021-02-11
CN111435258B (zh) * 2019-10-23 2023-08-11 珠海全志科技股份有限公司 一种无人机漂移补偿方法、装置以及无人机
CN111123831B (zh) * 2019-12-05 2022-12-02 河北汉光重工有限责任公司 一种双轴伺服控制系统中消除内轴陀螺耦合漂移方法
CN113534827B (zh) * 2020-04-17 2022-11-22 北京三快在线科技有限公司 无人机最小风阻面检测方法、装置、无人机及存储介质
CN111722108B (zh) * 2020-06-24 2023-03-24 瑞声科技(新加坡)有限公司 马达失真测量方法及设备、计算机可读存储介质
CN112213516A (zh) * 2020-09-22 2021-01-12 南京信息工程大学 一种基于动力反演的浮空平台测风方法
CN112506046B (zh) * 2020-10-09 2022-04-29 北京航空航天大学 一种针对翼尖铰接组合式飞行平台的增稳控制方法
JP1701070S (de) * 2020-12-11 2021-11-29
CN112711273B (zh) * 2020-12-29 2023-04-18 中国航天空气动力技术研究院 太阳能无人机航迹规划方法、电子设备及介质
CN112884900A (zh) * 2021-02-10 2021-06-01 广东高德星光智能科技有限公司 无人机的降落定位方法、装置、存储介质及无人机机巢
CN113030517B (zh) * 2021-02-18 2022-10-28 北京控制工程研究所 一种火星着陆过程利用测速敏感器的姿态修正方法
US20220308597A1 (en) * 2021-03-24 2022-09-29 4596286 Manitoba Ltd System and method for tilt dead reckoning
CN113359793B (zh) * 2021-06-01 2022-08-23 北京电子工程总体研究所 一种低速飞行器提高空速控制品质的补偿方法与装置
CN113359802B (zh) * 2021-07-05 2022-11-11 上海交通大学 无人机壁面吸附状态下的控制方法及无人机
CN113778120B (zh) * 2021-10-27 2024-05-17 北京航空航天大学 一种多传感器融合的无人机复杂天候飞行控制方法
CN114756038B (zh) * 2022-03-23 2024-09-17 北京理工大学 一种数据驱动的无人机风扰模型在线风扰估计方法
CN117693663A (zh) * 2022-06-28 2024-03-12 深圳市大疆创新科技有限公司 控制方法、头戴式显示设备、控制系统及存储介质
US20240239531A1 (en) * 2022-08-09 2024-07-18 Pete Bitar Compact and Lightweight Drone Delivery Device called an ArcSpear Electric Jet Drone System Having an Electric Ducted Air Propulsion System and Being Relatively Difficult to Track in Flight
JP2024042218A (ja) * 2022-09-15 2024-03-28 株式会社日立製作所 飛行体位置監視システム、および、飛行体位置監視方法
USD1039425S1 (en) * 2022-10-28 2024-08-20 Hangzhou Zero Zero Technology Co., Ltd Drone
CN115826602B (zh) * 2022-11-17 2023-11-17 众芯汉创(北京)科技有限公司 一种基于无人机的飞行动态精准定位管理系统和方法
WO2024142233A1 (ja) * 2022-12-27 2024-07-04 株式会社クボタ 風検出システムおよび無人航空機
CN117829016A (zh) * 2023-12-15 2024-04-05 北京特种机械研究所 一种大翼展无人机降落轨迹预测方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077898A1 (en) * 2008-06-11 2011-03-31 Peter Van Wyck Loomis Altimeter with calibration

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860480A (en) * 1997-04-08 1999-01-19 Caterpillar Inc. Method and apparatus for determining pitch and ground speed of an earth moving machines
US6807468B2 (en) * 2002-07-30 2004-10-19 Lockheed Martin Corporation Method for estimating wind
JP4133435B2 (ja) * 2003-02-26 2008-08-13 健蔵 野波 小型無人ヘリコプタの自律制御方法
US20050048918A1 (en) * 2003-08-29 2005-03-03 Onami, Llc Radio controller system and method for remote devices
CN200976007Y (zh) * 2006-10-19 2007-11-14 太原中北新缘科技中心 气象传感器风速探头装置
FR2908322B1 (fr) * 2006-11-09 2009-03-06 Parrot Sa Procede de definition de zone de jeux pour un systeme de jeux video
FR2915569A1 (fr) 2007-04-26 2008-10-31 Parrot Sa Procede de calibration d'un capteur
FR2926637A1 (fr) 2008-01-18 2009-07-24 Nicolas Clement Petit Procede et dispositif pour l'estimation de la vitesse par rapport a l'air d'un vehicule aerien
FR2927262B1 (fr) * 2008-02-13 2014-11-28 Parrot Procede de pilotage d'un drone a voilure tournante
US8473119B2 (en) * 2008-09-15 2013-06-25 Lockheed Martin Corporation Optimal guidance blender for a hovering/flying vehicle
CN201293426Y (zh) * 2008-10-10 2009-08-19 刘兆峰 直接驱动式风流检测装置
FR2938774A1 (fr) 2008-11-27 2010-05-28 Parrot Dispositif de pilotage d'un drone
FR2955934B1 (fr) * 2010-01-29 2012-03-09 Eurocopter France Estimation stabilisee en virage des angles d'assiettes d'un aeronef
US8473123B2 (en) * 2010-02-18 2013-06-25 Massachusetts Institute Of Technology Programmable surface
FR2957266B1 (fr) 2010-03-11 2012-04-20 Parrot Procede et appareil de telecommande d'un drone, notamment d'un drone a voilure tournante.
US8219267B2 (en) * 2010-05-27 2012-07-10 Honeywell International Inc. Wind estimation for an unmanned aerial vehicle
CN101871948B (zh) * 2010-06-09 2012-10-17 中国科学院深圳先进技术研究院 风电场风速预测系统及方法
FR2961601B1 (fr) 2010-06-22 2012-07-27 Parrot Procede d'evaluation de la vitesse horizontale d'un drone, notamment d'un drone apte au vol stationnaire autopilote
WO2012080847A2 (en) * 2010-07-20 2012-06-21 Paul Wilke Improved helicopter with two or more rotor heads
FR2964573B1 (fr) * 2010-09-15 2012-09-28 Parrot Procede de pilotage d'un drone a voilure tournante a rotors multiples

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077898A1 (en) * 2008-06-11 2011-03-31 Peter Van Wyck Loomis Altimeter with calibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529549A (ja) * 2015-07-10 2017-10-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像を取得するシステム及び無人航空機
JP2017535086A (ja) * 2015-07-31 2017-11-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像処理のための方法、撮像システム、及びプログラム

Also Published As

Publication number Publication date
CN104335128B (zh) 2018-04-20
JP2015514263A (ja) 2015-05-18
US9488978B2 (en) 2016-11-08
CN104335128A (zh) 2015-02-04
FR2988868B1 (fr) 2015-04-24
US20150057844A1 (en) 2015-02-26
FR2988868A1 (fr) 2013-10-04
WO2013144508A1 (fr) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2013144508A1 (fr) Procede de pilotage d'un drone a voilure tournante a rotors multiples avec estimation et compensation du vent lateral et du biais des accelerometres.
EP2613214B1 (de) Steuerungsverfahren einer Drehflügel-Drone, um Aufnahmen mit einer Bordkamera mit Minimierung der störenden Bewegungen zu machen
EP2497555B1 (de) Verfahren zum Steuern einer einem Kurvenflug folgenden Drohne mit Drehflügeln und mehreren Rotoren
EP2644240B1 (de) Flughöhenschätzgerät für Drehflügel-Drohne mit mehreren Rotoren
EP2242552B1 (de) Verfahren zur führung einer drehflügeldrohne mit automatischer flugstabilisierung im schwebezustand
EP2431084B1 (de) Verfahren zum Steuern einer Drohne mit schwenkbarer Tragfläche und mehreren Rotoren
EP2933775B1 (de) Drehflügel-drohne, die mit einer videokamera ausgerüstet ist, die stabilisierte bildsequenzen liefert
EP3199916B1 (de) Höhenschätzungsgerät für eine drohne
EP2613213A1 (de) Intuitives Steuerungsverfahren einer Drone mit Hilfe eines Fernbedienungsgeräts
EP2998818A1 (de) Dynamisches kontrollverfahren beim starten einer drehflügeldrone
EP3273318B1 (de) Autonomes aufnahmesystem von animierten bildern durch eine drohne mit zielverfolgung und verbesserter lokalisierung des ziels
EP2541359A1 (de) Dynamisches Kontrollverfahren der Fluglage einer Drone zur automatischen Ausführung einer Figur vom Typ Überschlag
FR3000813A1 (fr) Drone a voilure tournante comprenant des moyens de determination autonome de position dans un repere absolu lie au sol.
EP1157254B1 (de) Vorrichtung mit kreiseln und beschleunigungsaufnehmern zum bestimmen der lagen eines flugzeugs
EP3281871A1 (de) Bilderfassungsverfahren für eine starrflügeldrohne, entsprechendes computerprogramm und elektronisches system
EP3392728A1 (de) Steuerungsverfahren einer drehflügel-drohne, entsprechende software, entsprechendes elektronisches gerät und entsprechende drohne
FR2915569A1 (fr) Procede de calibration d'un capteur
EP3179328A2 (de) Verfahren und vorrichtung zur steuerung eines luftfahrzeugs
FR2926637A1 (fr) Procede et dispositif pour l'estimation de la vitesse par rapport a l'air d'un vehicule aerien
FR3063911A1 (fr) Procede d'optimisation de l'inclinaison de vol d'un drone, dispositif electronique, appareil electronique et drone associes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160513

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PARROT DRONES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201001