EP2831427B1 - Hydraulische drehantriebvorrichtung - Google Patents

Hydraulische drehantriebvorrichtung Download PDF

Info

Publication number
EP2831427B1
EP2831427B1 EP13725056.9A EP13725056A EP2831427B1 EP 2831427 B1 EP2831427 B1 EP 2831427B1 EP 13725056 A EP13725056 A EP 13725056A EP 2831427 B1 EP2831427 B1 EP 2831427B1
Authority
EP
European Patent Office
Prior art keywords
rotary actuator
rotary
hydro
hydraulic
hydraulic rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13725056.9A
Other languages
English (en)
French (fr)
Other versions
EP2831427A1 (de
Inventor
Reinhard Diem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2831427A1 publication Critical patent/EP2831427A1/de
Application granted granted Critical
Publication of EP2831427B1 publication Critical patent/EP2831427B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/12Fluid oscillators or pulse generators
    • F15B21/125Fluid oscillators or pulse generators by means of a rotating valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/12Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump

Definitions

  • the invention relates to a hydro-rotary oscillator, with a driven by a hydro-fluid flow hydro-rotary actuator having a fully cylindrical rotary actuator inner part and at least one hollow cylindrical rotary actuator outer part, which are arranged concentrically to each other with a radial distance, at least two annular segment-shaped working chambers radially and rotatable relative to each other in two directions of rotation, wherein the working chambers are separated and resized by a co-rotating radially extending rotary actuator wall and are connected to the at least one hydro-rotary pump via hydraulic connection lines, and at least one control means the hydro-fluid flow alternately to the at least two working chambers, wherein the at least one rotary actuator outer part is rotatable and the rotary actuator inner part rotatably formed, wherein the hydro-rotary actuator a rotary actuator inner part u nd has at least two juxtaposed rotary actuator outer parts.
  • Such hydraulic rotary drive devices with a hydro-fluid flow driven hydro-rotary actuator are known in the prior art in various embodiments.
  • Common hydraulic rotary pumps usually produce a quasi-continuous fluid flow from a hydraulic fluid, which also remains constant in the rule, if by resistors such as throttles, switching elements or drives in the hydraulic system builds up a pressure.
  • Such hydraulic pumps are usually designed as vane, gear or screw pumps and can operate in an open or closed circuit. In the closed circuit, the hydro-rotary pump with its suction side and with its pressure side, depending on the number of working chambers of the hydro-actuator, at the same time directly or alternately via a control means, such as a hydraulic multi-way valve, connected to the hydro-actuator.
  • Hydro actuators are known as axial piston or rotary piston actuators.
  • Known hydro-rotary actuators have a rotor and a stator, usually one in a housing (stator) sealed rotatably mounted rotary piston (rotor).
  • Such hydro-rotary actuators usually have at least two working chambers, which are formed by an annular gap portion between the housing and the rotary piston. The working chambers are radially bounded by the housing and the rotary piston and in the circumferential direction of stops of the housing and a rotary wing extension of the rotary piston, which extend radially.
  • Such a hydro-rotary actuator is disclosed in the publication DE 102 10 756 A1 known.
  • This document discloses a rotary piston device with a cylindrical housing which is sealed frontally with bearing caps and in which a piston shaft rotary bearing is finally rotatable in both directions up to a maximum rotationally fixed stop body with two lateral stops, the stopper body substantially medium tight between the cylinder wall and the Piston shaft and with respect to the bearing cap is arranged.
  • the rotary piston has a radially extending blade extension, which, together with the stopper body, divides the total displacement as a function of the position of the rotary piston into two working chambers, a pressure chamber and a suction chamber.
  • the two working chambers are used alternately as a pressure and suction chamber, ie alternately connected to the pressure and the suction side of a hydro-rotary pump, for example via a hydraulic multi-way valve.
  • a disadvantage is considered in this known hydraulic rotary drive device that the rotor is arranged inside and thus the coupling with a lever arm or the like of an external device is difficult, and that the hydro-rotary pump indirectly via at least one switching valve with the two working chambers of the hydraulic rotary actuator connected, which reduces the maximum oscillation speed of the rotary piston.
  • the invention has for its object to propose a possibility with which a fin drive for a watercraft can be realized.
  • the hydro-rotary actuator is an external rotor.
  • the rotary actuator outer part is rotatable as a rotor and the rotary actuator inner part rotatably formed as a stator.
  • the rotary actuator inner part forms an immovable axle shaft, which carries the three rotary actuator outer parts in the circumferential direction pivotally.
  • the rotary actuator outer parts are sealed rotatably mounted on the rotary actuator inner part and in two directions of rotation relative to the Rotary actuator inner part stop limited rotation.
  • suitable connecting elements for example threaded bushes or threaded pins.
  • This also allows a shorter in the axial direction design, since the coupling does not have to take place next to the rotor, as is the case with an internal rotary piston.
  • the invention moves at least one of the rotary actuator outer parts on the rotary actuator inner part out of phase with at least one other rotary actuator outer part, preferably opposite.
  • This can be achieved by suitable control of the working chambers via a plurality of controllable hydraulic valves and / or via corresponding hydraulic throttles.
  • the common rotary actuator inner part may have further main flow channels.
  • the hydro-rotary oscillator according to the invention on a rotary actuator with three rotary actuator outer parts, wherein the central rotary actuator outer part always moves in the opposite direction of the two outer rotary actuator outer parts and formed on each of the rotary actuator outer parts, an outer part extension and on Each of the outer part extensions a fin is attached or molded.
  • the hydro-fluid flow driving the hydro-rotary actuator is continuously oscillating and is generated by two hydro-rotary pumps continuously driven by a common drive motor.
  • the two hydro-rotary pumps are connected in parallel to each other and to the hydraulic rotary actuator fluidly.
  • Each of the hydro-rotary pumps includes a hemisphere-shaped cavity filled with a hydro-fluid comprising a circular raised cavity bottom plate, a rotatably driven spherical segment disposed in the cavity with a planar spherical segment bottom and a spherical spherical segment cap, a spherical wedge shaped space between the raised bottom plate and the spherical segment bottom , with a drive axis of the ball segment extending as a rotation axis perpendicular to the cavity bottom plate and inclined with respect to the central center axis of the ball segment and aligned with the center of the cavity bottom plate, with a center perpendicular to the cavity bottom plate recessed, the spherical segment bottom with a contact edge contacting pendulum plate which is pivotable about a virtual pivot of the pendulum plate in the middle of the abutment edge, and with passage channels for the hydro-fluid on both sides of the pendulum plate in the cavity bottom plate for transport
  • the oscillation frequency of the hydro-fluid flow is variable via the freely adjustable rotational speed of the two hydro-rotary pumps, wherein the and pressure of the hydro-rotary actuator driving oscillating hydro-fluid flow over the phase position of the rotating spherical segments of the two hydro-rotary pumps is variably adjustable by means of a phase adjustment ,
  • the phase angle of the rotating spherical segments of the two hydro-rotary pumps is preferably mutually variable between 0 ° and 180 °, wherein the dependent on the phase angle of the pivot angle of the at least three rotary actuator outer parts relative to the rotary actuator inner part between zero degrees and that determined by the rotary stops Degree variable variable.
  • the hydraulic fluid flow leading hydro-connecting lines preferably lead to the rotatably mounted rotary actuator inner part, since these can then be performed rigid.
  • the connection of the hydro-connecting lines to the at least one first and second working chamber of the hydro-rotary actuator is carried out in a preferred embodiment of the invention via two axially extending in the fully cylindrical rotary actuator inner part main flow channels, from which each side secondary flow channels extend one of the working chambers.
  • the main and the secondary flow channels are formed, for example, as bores, wherein the secondary flow channels transverse to the main flow channels, preferably perpendicular thereto.
  • the working chambers of out of phase moving rotary actuator outer parts are in opposite directions and the working chambers of in-phase moving rotary actuator outer parts in the same direction directly or indirectly connected to the main flow channels.
  • the hydro-rotary actuator at at least one of the rotary actuator outer parts on a third and a fourth working chamber, which are diametrically opposed to the first and the second working chamber.
  • the third and the fourth working chamber are directly or indirectly coupled to the first and second working chamber and increase the working volume of the hydraulic rotary actuator and thus its pivotal moment.
  • further working chambers may be arranged in pairs in the circumferential direction of the hydro-rotary actuator following the third and fourth working chamber, provided that sufficient space is available. Also in this case is the arrangement of all working chambers preferably symmetrical.
  • the further working chambers are fluid-technically coupled to the first and second working chambers, as are the third and fourth working chambers.
  • the third and the fourth working chamber is connected crosswise indirectly via secondary flow channels leading to the main flow channels or directly via additional transverse flow channels to the first and second working chamber, respectively.
  • the additional transverse flow channels extend in the axial direction of the hydro-rotary actuator longitudinally offset from each other and to the secondary flow channels and generally inclined to the secondary flow channels.
  • the four working chambers of the hydro-rotary actuator are arranged one after the other in the circumferential direction of the hydro-rotary actuator and consecutively numbered accordingly in the description.
  • the first and the third and the second and the fourth working chamber fluidly communicate with each other. This is to say that the first and the third working chamber are pressurized simultaneously when the second and the fourth working chamber are soakbed together, or vice versa.
  • the rotary actuator inner part depending on its length and that of the rotary actuator outer part, more than three rotary actuator outer parts rotatably record side by side.
  • the movement of the rotary actuator outer parts driven by the two hydraulic rotary pumps coupled to each other is also synchronized in this case by the fluidic coupling.
  • the hydro-rotary oscillator ideally lead to the hydro-rotary actuator only two hydro-connecting lines, which are alternately pressurized or sobebeetzschlagt.
  • This can in principle also be achieved with four hydraulic connection lines leading to four main flow channels of the rotary actuator inner part.
  • the two outer rotary actuator outer members are then respectively connected in common to a first pair of the main flow channels and the middle rotary actuator outer part to the two other main flow channels.
  • the rotary actuator inner part has only two main flow channels, to which all working chambers are connected. As a result, the movement of all three Drehsteligieder-outer parts is inevitably predetermined.
  • the working chambers of phase-shifted moving rotary actuator outer parts are in opposite directions and the working chambers of in-phase moving rotary actuator outer parts in the same direction connected to the main flow channels.
  • the working chambers of the in-phase moving rotary actuator outer parts are fluidly connected directly parallel to each other, while the working chambers of the phase-shifted moving rotary actuator outer parts are preferably connected crosswise with the main flow channels.
  • two hydraulic connection lines to the hydro-rotary actuator and, correspondingly, two main flow channels in the rotary actuator inner part suffice.
  • the secondary flow channels and, if appropriate, the additional transverse flow channels for the respective rotary actuator outer part are arranged offset to one another in the longitudinal direction of the hydraulic rotary actuator and, accordingly, do not stand in the way.
  • control means which control the hydro-fluid flow to the hydro-rotary actuator and in the prior art usually formed as a standalone hydraulic valves and offset from the hydro-pump, are integrated into the hydro-rotary pump.
  • the hydraulic connection lines or the main flow channels is possible.
  • the structure of the hydro-rotary oscillator according to the invention is simplified and less susceptible to interference.
  • the control means may be, for example, hydro-pressure-controlled valves.
  • the hydro-fluid flow originating from the hydro-rotary pumps is oscillating.
  • no additional control means are required to reverse the direction of the hydro-fluid flow in the hydro-connecting lines to the hydro-rotary actuator.
  • the pressure and suction amplitudes desirably have a sinusoidal rise or fall over time.
  • Such an oscillating hydro-fluid flow can, for example, with a from the document DE 20 2008 013 877 U1 known hydro-rotary pump having a spherical segment, filled with a hydro-fluid cavity having a circular cavity bottom plate.
  • a rotationally driven ball segment is arranged, which is preferably formed as a hemisphere.
  • the ball segment has a planar ball segment bottom and a spherical ball segment cap.
  • the cavity bottom plate and the ball segment bottom are arranged at an angle to each other and define a spherical wedge-shaped space between the cavity bottom plate and the spherical segment bottom.
  • the ball segment in this case has an axis of rotation which extends perpendicular to the cavity bottom plate and inclined relative to the central center axis of the ball segment and aligned with the center of the cavity bottom plate.
  • the spherical wedge-shaped intermediate space is subdivided into two working chambers by a pendulum plate movably arranged between the cavity bottom plate and the spherical segment bottom.
  • the pendulum plate is centered at right angles in the cavity floor plate and touches the ball segment floor with a contact edge, the pendulum plate is pivotable about a virtual pivot point in the middle of the contact edge. Both sides of the pendulum plate passageways for the hydro-fluid are provided in the cavity bottom plate.
  • the ball segment rotates at an adjustable speed in the spherical segment-shaped cavity at a distance from the cavity bottom plate, the oscillating plate is always on the spherical segment bottom over the entire length of their plant sealingly in abutment.
  • the rotation of the ball segment causes an oscillating hydro-fluid flow in a closed hydraulic system, as formed for example by the hydro-rotary pump, the hydro-connecting lines and the hydro-rotary actuator of the hydro-oscillator according to the invention.
  • the phase position of the rotating spherical segments of the two hydro-rotary pumps to one another preferably between 0 ° and 180 ° can be changed. If the two ball segments are in phase, then the delivery rate and the pressure of the hydro-fluid flow in the hydro-connecting lines to the hydraulic rotary actuator are maximal; if the spherical segments are out of phase with each other by 180 °, these are minimal.
  • the respective value varies between the maximum and the minimum value. For two hydro-rotary pumps identical in performance, the minimum value is zero. The maximum value is limited by the rotary stops of the rotary actuator inner part and the rotary actuator outer part.
  • the pivot angle of the at least one rotary actuator outer part relative to the rotary actuator inner part between zero degrees and the determined by the rotary stops degree value can be set.
  • the pivoting frequency is determined only by the oscillation frequency of the hydro-fluid flow and thus by the rotational speed of the hydro-rotary pump, wherein the rotational speed of the hydro-rotary pump is freely adjustable per se to a large extent.
  • the two hydro-rotary pumps have a common drive unit with a drive motor and the drive axes of the ball segments of the hydro-rotary pumps are coupled together via a phase adjustment, which is suitably configured to synchronize the position of the drive axes in the opposite direction to each other.
  • the drive shaft of the drive motor is connected via a drive chain or a drive belt with the drive axes of the ball segments.
  • the phase adjustment device may have a self-locking drive or a locking device, so that after the adjustment of the phase position of the two spherical segments to each other an unintentional adjustment of the phase position is excluded.
  • the phase adjusting device can also have two separate adjusting elements with which the Phase angle of the ball segments independently of each other is adjustable.
  • the adjustment of the phase position is preferably carried out by turning the drive axis of at least one spherical segment.
  • the phase adjustment of the drive unit on four deflection points which are arranged on the drive motor, the hydro-rotary pumps and at least one additional rotatable about an axis deflection roller, wherein in each case the drive motor and a guide roller or two Deflection rollers and the two hydro-rotary pumps are arranged opposite to each other.
  • the phase adjustment of the drive unit has four pulleys for the drive chain or the drive belt, which guide the drive chain or the drive belt cross-shaped, wherein the four pulleys are arranged close to the hydro-rotary pumps stationary.
  • the drive motor and the one guide roller or the two guide rollers are supported by a sliding carriage, which is guided longitudinally displaceable perpendicular to an imaginary connecting line of the two hydro-rotary pumps.
  • the cruciform guide allows only that the circulation path of the drive chain or the drive belt to drive axes of the ball segments, the drive shaft of the drive motor and the axis of rotation of the guide roller when moving the sliding carriage in length is constant, so that is unnecessary to a complex chain tensioning device.
  • the hydro-rotary oscillator according to the invention which is designed as an external rotor, has a simpler design and improved accessibility to the rotor compared to the prior art.
  • any external devices can be particularly easily coupled to the outside of the rotor, ie with the rotary actuator outer part.
  • the rotary actuator outer part there is the possibility of forming the rotatable in two directions rotational actuator outer part on its outer peripheral surface with a radially outwardly extending, forming a lever arm outer part extension to which the external device can be attached.
  • the rotary actuator outer part can temporarily to a desired swivel angle pivotally pivoted temporarily or continuously oscillated by correspondingly controlling the hydro-fluid flow to the hydro-rotary actuator.
  • such a hydro-rotary oscillator can be used, for example, in a rudder system of an air or sea vehicle.
  • the hydro-rotary oscillator is formed with at least three rotary actuator outer parts, which are supported by a common rotary actuator inner part with or without a lateral distance to each other. This can be operated in phase or out of phase with a single hydro-rotary oscillator, a corresponding number of external devices.
  • both the pivot frequency of the at least one rotary actuator outer part, as well as its pivot angle to be controlled are provided.
  • Such a controlled hydro-rotary oscillator is suitable for example as a fin drive for a watercraft, when a fin is attached to the outer-part extension of the rotary actuator outer part or molded.
  • a hydraulic rotary oscillator with three rotary actuator outer parts and molded fins has been found to be particularly favorable, in which the middle of the three rotary actuator outer parts with fin always moves opposite to the two outer rotary actuator outer parts with fin.
  • the two outer fins in the area or size are the same, whereas the middle fin is designed to be significantly larger, ideally twice as large, ie the middle fin has an area or size, as the two outer fins together , It is useful in this case also to provide between the rotary actuator outer parts with fin partitions, so that the outgoing from one of the fins water turbulence does not affect the other fins and affect the water turbulence generated by these.
  • FIGS. 1a, 1b show a hydro-rotary oscillator 1, with a hydro-rotary pump 2 and a hydro-rotary actuator 3, which are connected to each other via two hydraulic connection lines 4, 4 '.
  • the hydro-rotary actuator 3 has two working chambers 5, 5 ', which extend as an annular gap between a fully cylindrical rotary actuator inner part 6 and a hollow cylindrical rotary actuator outer part 7.
  • the hydro-rotary actuator 3 comprises a rotary actuator inner part 6 and at least two juxtaposed rotary actuator outer parts 7, 7 ', 7 ", of which only the rotary actuator outer part 7 can be seen in the illustrated cross-sectional representation
  • the rotary actuator outer part 7 has a radially inwardly extending co-rotating rotary actuator wall 8 and the rotary actuator inner part 6 has a transverse wall 9, 9 'on both sides of the rotary actuator wall 8. which delimit the two working chambers 5, 5 'in the circumferential direction
  • FIGS. 1a and 1b show the hydro-rotary oscillator 1 in different rotational positions.
  • the working chamber 5 arranged in the circumferential direction to the left of the rotary actuator wall 8 is referred to as first and the right of the rotary actuator wall 8 located as the second working chamber 5 '.
  • the hydro-rotary oscillator 1 generally has a closed hydraulic system.
  • the first working chamber 5 is pressurized and the second working chamber 5 'simultaneously sogbeetzschlagt.
  • the hydro-fluid flow thus flows towards the first working chamber 5 and away from the second working chamber 5 '.
  • the flow direction of the hydro-fluid flow is reversed.
  • the working chambers 5, 5 ' change their size accordingly.
  • the hydro-connecting lines 4,4 ' which connect the hydro-rotary pump 2 with the hydro-rotary actuator 3, lead to main flow channels 10, 10', which extend in the rotary actuator inner part 6 in the axial direction. From the main flow channel 10 and 10 'in each case a secondary flow channel 11 or 11' leads to the working chambers 5 or 5 '.
  • the hydro-rotary pump 2 has two juxtaposed separate pump chambers 12, 12 ', from which the hydraulic connection lines 4, 4' go out. In each case alternately acts one of the pump chambers 12, 12 'as a suction and the other as a pressure chamber.
  • the exact operation of the hydro-rotary pump 2 is based on the FIG. 4 explained in more detail later.
  • the pump chamber 12 is connected to the working chamber 5 and the pump chamber 12 'with the working chamber 5'.
  • the pump chamber 12 acts as a pressure chamber and the pump chamber 12 'as a suction chamber 5'.
  • FIGS. 2a . 2 B show two variants of the shown in the figure Hydro rotary actuator 3.
  • the illustrated hydro-rotary actuator 3 has in the circumferential direction next to the working chambers 5, 5 ', two further working chamber 13, 13', in the further description as a third working chamber 13 and fourth Working chamber 13 'are called.
  • the third working chamber 13 is the first working chamber 5 and the fourth working chamber 13 'of the second working chamber 5' diametrically opposite and are each fluidly connected to each other.
  • the hydro-rotary actuator 3 also has an outer radially extending outer part extension 14 which is integrally formed on the rotary actuator outer part 7.
  • an external device 15 is attached in the form of a wing or a fin. In principle, the external device 15 may also be formed integrally with the outer part extension 14.
  • the working chambers 5, 5 'and the working chambers 13, 13' are each indirectly connected to each other and via secondary flow channels 11, 11 'to the main flow channels 10, 10', wherein the secondary flow channels 11, 11 'to the working chambers thirteenth , 13 'in the axial direction of the hydraulic actuator inner part 6 at a distance from the working chambers 5, 5' leading secondary flow channels 11, 11 'are arranged.
  • the working chambers 5, 5 'are each connected to the main flow channels 10, 10' via secondary flow channels 11, 11 ', while the working chambers 13, 13' are connected directly to the working chambers 5, 5 'via additional transverse flow channels 16, 16'. are connected.
  • FIGS. 3a, 3b show an embodiment of the hydro-rotary actuator 3 of a hydro-rotary oscillator according to the invention 1.
  • the hydro-rotary actuator. 3 comprises a rotary actuator inner part 6 and three juxtaposed rotary actuator outer parts 7, 7 ', 7 ".
  • the rotary actuator outer parts 7, 7', 7" correspond in shape to that in FIG. 2 and are provided with respective outer-part extensions 14, 14 ', 14 ".
  • Each of the three rotary-actuator outer parts 7, 7', 7" is corresponding to FIG. 3 with four working chambers 5, 5 ', 13, 13', which are connected to each other in the same way as there and the two main flow channels 10, 10 '.
  • the two outer rotary actuator outer parts 7, '7 "move in phase and in the same direction, while the central rotary actuator outer part 7 moves out of phase opposite to the other two rotary actuator outer parts 7,'7" moves.
  • the movement is inevitable.
  • This is achieved in that the working chambers 5, 5 ', 13, 13' of the central rotary actuator outer part 7 in a reverse manner, that is crosswise connected to the main flow channels 10, 10 ', as in the two outer rotary actuator outer parts
  • the two outer rotary actuator outer parts 7 ', 7 "are connected in the same way to the main flow channels 10, 10', ie connected in parallel in terms of fluid technology.
  • FIG. 4 is the hydro-rotary pump 2 off FIG. 1 shown enlarged.
  • the hydro-rotary pump 2 is designed to generate an oscillating hydro-fluid flow and has a spherical section-shaped cavity 17 which has a circular cavity bottom plate 18 and a spherical cavity cap 19.
  • a rotationally driven ball segment 20 in the form of a hemisphere, with a spherical segment bottom 21 and a spherical spherical segment cap 22, respectively.
  • the spherical segment bottom 21 and the cavity bottom plate 18 are inclined to each other and have a distance from each other. They limit a spherical wedge-shaped gap 23 on opposite sides.
  • the ball segment 20 which is formed slightly smaller than the spherical segment-shaped cavity 17, arranged inclined in the cavity 17.
  • the ball segment 20 has a relative to the central center axis 24 by a few angular degrees inclined rotational axis 25 which is aligned with the center 26 of the cavity bottom plate 18 and which extends perpendicular to the cavity bottom plate 18.
  • the inclination of the rotation axis 25 with respect to the central axis 24 is typically between 1 and 10 degrees.
  • a pendulum plate 27 centrally recessed at right angles, which is held on the spherical segment bottom 21 with a contact edge 28 sealingly in abutment.
  • the pendulum plate 27 is designed as a semi-circular disc and received in a complementary formed receiving groove 29, wherein the pendulum plate 27 is slidably guided on the semicircular circumference.
  • the pivoting of the pendulum plate 27 about a virtual pivot point 30 takes place during rotation of the ball segment 20 through the ball segment bottom 21, which exerts pressure on one or the other half of the abutment edge 28 of the pendulum plate 27 depending on the position of the ball segment 20 in the cavity 17.
  • the cavity bottom plate 18 also has passageways 31, 31 'for a fluid, not shown in the drawing, which are arranged on both sides of the pendulum plate 27.
  • the passageways 31, 31 ' serve for the oscillating transport of the fluid from or into the gap 23 between the cavity bottom plate 18 and the spherical segment bottom 21, which is divided by the pendulum plate 27 into two pump chambers 12, 12'.
  • the two pump chambers 12, 12 ' act on the fluid in alternating sequence with pressure or suction when the ball segment 20 rotates in the cavity 17, wherein the two passage channels 31, 31' act alternately as inlet and outlet channels.
  • the hydro-rotary pump 2 has a relative to the cavity 17 sealed drive shaft 32 for the ball segment 20, which is arranged in extension of the rotation axis 25 on the ball segment bottom 21 opposite side of the spherical segment cap 22.
  • the drive axle 32 of the ball segment 20 can be coupled to a drive shaft of any motor.
  • FIG. 5 shows in the FIGS. 5a . 5b in the FIGS. 1a, 1b shown hydro-rotary oscillator 1, but with two hydro-rotary pumps 2.2 '.
  • the two hydro-rotary pumps 2, 2 ' are connected in parallel to each other and to the hydro-rotary actuator 3. They have a common drive unit 33, which in the FIG. 6 is shown in plan view.
  • the drive unit 33 has a drive motor 34, whose drive shaft 35 is connected via a drive chain or a drive belt 36 to the drive axles 32 of the ball segments 20 of the hydro-rotary pumps 2, 2 '.
  • the drive unit 33 also includes a phase adjuster 37 for synchronizing the position of the drive axles 32 of the hydro-rotary pumps 2, 2 'to one another.
  • the phase adjuster 37 is coupled to the drive chain or with the drive belt 36 and moves the drive axles 32 of the ball segments 20 to each other in the opposite direction of rotation.
  • the phase adjuster 37 has, as shown in FIG. 6 seen.
  • the four guide rollers 38 are arranged in pairs each near one of the hydro-rotary pumps 2, 2 'stationary.
  • the drive motor 34 may also be arranged at a suitable other location of the drive unit 33.
  • a second guide roller 39 is arranged at the in the in the FIG. 5 formed by the drive motor 34 deflection. This embodiment is not shown in the drawing.
  • FIGS. 6a . 6b show the sliding carriage 40 of the phase adjuster 37 in two different positions.
  • the axes of rotation 32 of the hydro-rotary pumps 2, 2 ' are equal and in the FIG. 6b mirror image aligned with each other, wherein the sliding carriage 40 is in different positions relative to the drive unit 33.
  • the two axes of rotation 32 of the spherical segments 20 synchronously with each other in the same direction of rotation.
  • the rotary actuator outer part 7, 7 ', 7 “of the hydro-rotary actuator 3 is cyclically moved, ie oscillated back and forth, the speed of movement and thus the frequency with which the at least one rotary actuator outer part 7, 7', 7 “is dependent on the rotational speed of the drive shaft 35 of the drive motor 34.
  • This can be set arbitrarily and is also influenced by the ratio of the drive shaft 35 to the drive axles 32 of the hydro-rotary pumps 2, 2 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydraulic Motors (AREA)

Description

  • Die Erfindung betrifft einen Hydro-Drehoszillator, mit einem von einem Hydro-Fluidstrom angetriebenen Hydro-Drehstellglied, das ein vollzylindrisches Drehstellglied-Innenteil und mindestens ein hohlzylindrisches Drehstellglied-Außenteil aufweist, die konzentrisch zueinander mit radialem Abstand angeordnet sind, mindestens zwei ringsegmentförmige Arbeitskammern radial begrenzen und einander gegenüber in zwei Drehrichtungen begrenzt drehbar sind, wobei die Arbeitskammern durch eine mitdrehende sich radial erstreckende Drehstellgliedwand voneinander getrennt und in der Größe änderbar sind und mit der mindestens einen Hydro-Rotationspumpe über Hydro-Verbindungsleitungen verbunden sind, und mit mindestens einem Steuermittel, das den Hydro-Fluidstrom wechselweise zu den mindestens zwei Arbeitskammern lenkt, wobei das mindestens eine Drehstellglied-Außenteil drehbar und das Drehstellglied-Innenteil drehfest ausgebildet ist, wobei das Hydro-Drehstellglied ein Drehstellglied-Innenteil und mindestens zwei nebeneinander angeordnete Drehstellglied-Außenteile aufweist.
  • Derartige hydraulische Drehantriebvorrichtungen, mit einem von einem Hydro-Fluidstrom angetriebenen Hydro-Drehstellglied, sind aus dem Stand der Technik in vielfältigen Ausführungsformen bekannt. Gebräuchliche Hydro-Rotationspumpen erzeugen in der Regel einen quasi kontinuierlichen Fluidstrom aus einer Hydraulikflüssigkeit, der auch dann in der Regel konstant bleibt, wenn durch Widerstände wie beispielsweise Drosselstellen, Schaltelemente oder Antriebe sich im Hydrauliksystem ein Druck aufbaut. Solche Hydraulikpumpen sind üblicherweise als Flügelzellen-, Zahnrad- oder Schraubenspindelpumpen ausgeführt und können in einem offenen oder geschlossenen Kreislauf arbeiten. Beim geschlossenen Kreislauf ist die Hydro-Rotationspumpe mit ihrer Saugseite und mit ihrer Druckseite, abhängig von der Anzahl der Arbeitskammern des Hydro-Aktuators, gleichzeitig direkt oder wechselweise über ein Steuermittel, beispielsweise ein hydraulische Mehrwegeventil, mit dem Hydro-Aktuator verbunden. Hydro-Aktuatoren sind als Axialkolben- oder als Drehkolben-Stellglieder bekannt. Bekannte Hydro-Drehstellglieder weisen einen Rotor und einen Stator auf, üblicherweise einen in einem Gehäuse (Stator) abgedichtet drehbar gelagerten Drehkolben (Rotor). Solche Hydro-Drehstellglieder weisen üblicherweise mindestens zwei Arbeitskammern auf, die von einem Ringspaltabschnitt zwischen dem Gehäuse und dem Drehkolben gebildet sind. Die Arbeitskammern werden radial von dem Gehäuse und dem Drehkolben und in Umfangsrichtung von Anschlägen des Gehäuses und einem Drehkolbenflügelfortsatz des Drehkolbens begrenzt, die sich radial erstrecken.
  • Ein derartiges Hydro-Drehstellglied ist aus der Offenlegungsschrift DE 102 10 756 A1 bekannt. Diese Schrift offenbart eine Drehkolbenvorrichtung mit einem zylindrischen Gehäuse, das mit Lagerdeckeln stirnseitig abgedichtet ist und in welchem ein kolbenwellengelagerter Drehkolben endlich in beide Drehrichtungen bis maximal zu einem drehfesten Anschlagkörper mit zwei seitlichen Anschlägen drehbar ist, wobei der Anschlagkörper im wesentlichen mediumdicht zwischen der Zylinderwand und der Kolbenwelle sowie bezüglich der Lagerdeckel angeordnet ist. Der Drehkolben weist einen sich radial erstreckenden Flügelfortsatz auf, der zusammen mit dem Anschlagkörper den Gesamthubraum in Abhängigkeit von der Stellung des Drehkolbens in zwei Arbeitskammern, einen Druck- und einen Saugraum aufteilt. Die beiden Arbeitskammern werden abwechselnd als Druck- und Saugraum verwendet, d.h. alternierend mit der Druck- und der Saugseite einer Hydro-Rotationspumpe, beispielsweise über ein hydraulisches Mehrwegeventil verbunden.
  • Als nachteilig wird bei dieser bekannten hydraulischen Drehantriebvorrichtung angesehen, dass der Rotor innenliegend angeordnet ist und somit die Kopplung mit einem Hebelarm oder dergleichen einer externen Einrichtung erschwert ist, und dass die Hydro-Rotationspumpe indirekt über mindestens ein Umschaltventil mit den beiden Arbeitskammern des Hydro-Drehstellgliedes verbunden ist, was die maximale Oszillationsgeschwindigkeit des Drehkolbens mindert.
  • Zum Stand der Technik wird weiterhin auf die Druckschrift US 3,196,934 verwiesen. Diese Schrift offenbart eine hydraulische Drehkolbenanordnung zum Verschwenken von zwei relativ zueinander und relativ zu einer gemeinsamen Achse schwenkbaren Teilen, wobei zwei Drehkolbenmotoren auf einer gemeinsamen Welle angeordnet und die Drehkolbenmotoren mit zusammenwirkenden radialen Flügeln versehen sind. Die Flügel sind an der Welle und an dem Gehäuse der Drehkolbenmotoren angeordnet und die zu schwenkenden Teile jeweils an einem der Gehäuse befestigt. Die Anordnung der radialen Flügel ist derart, dass die beiden Teile in entgegengesetztem Drehsinn verschwenkbar sind, wobei die gemeinsame Welle frei drehbar gelagert ist.
  • Ausgehend von dem vorstehend genannten Stand der Technik, liegt der Erfindung die Aufgabe zugrunde, eine Möglichkeit vorzuschlagen, mit der der ein Flossenantrieb für ein Wasserfahrzeug realisiert werden kann.
  • Diese Aufgabe wird erfindungsgemäß durch einen Hydro-Drehoszillator mit den Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen sind den rückbezogenen Ansprüchen zu entnehmen.
  • Danach ist das Hydro-Drehstellglied ein Außenläufer. Erfindungsgemäß ist das Drehstellglied-Außenteil drehbar als Rotor und das Drehstellglied-Innenteil drehfest als Stator ausgebildet. Das Drehstellglied-Innenteil bildet eine unbewegliche Achswelle, die die drei Drehstellglied-Außenteile in Umfangsrichtung schwenkbeweglich trägt. Die Drehstellglied-Außenteile sind abgedichtet drehbar auf dem Drehstellglied-Innenteil gelagert und in zwei Drehrichtungen gegenüber dem Drehstellglied-Innenteil Anschlag begrenzt drehbar. Daraus ergibt sich ein konstruktiv einfacherer Aufbau des Hydro-Drehstellgliedes gegenüber dem Stand der Technik, mit einem verbesserten Zugang zu dem Rotor, indem das jeweilige bewegliche Drehstellglied-Außenteil eine direkte mechanische Ankopplung einer externen Einrichtung an der Außenumfangsfläche ermöglicht. Dazu können dort geeignete Verbindungselemente, beispielsweise Gewindebuchsen oder Gewindestifte vorgesehen sein. Dies ermöglicht zudem eine in axialer Richtung kürzere Bauform, da die Ankopplung nicht neben dem Rotor erfolgen muss, wie es bei einem innenliegenden Drehkolben der Fall ist. Erfindungsgemäß bewegt sich mindestens eines der Drehstellglied-Außenteile auf dem Drehstellglied-Innenteil phasenversetzt zu mindestens einem anderen Drehstellglied-Außenteil, vorzugsweise entgegengesetzt. Dies kann durch geeignete Ansteuerung der Arbeitskammern über mehrere steuerbare Hydraulikventile und/oder über entsprechende Hydraulik-Drosseln erreicht werden. Falls notwendig, kann das gemeinsame Drehstellglied-Innenteil weitere Haupt-Strömungskanäle.
  • Dabei weist der erfindungsgemäße Hydro-Drehoszillator ein Hydro-Drehstellglied mit drei Drehstellglied-Außenteilen auf, wobei sich das mittlere Drehstellglied-Außenteil stets in entgegengesetzter Richtung der beiden äußeren Drehstellglied-Außenteile bewegt und an jedem der Drehstellglied-Außenteile ein Außenteil-Fortsatz ausgebildet und an jedem der Außenteil-Fortsätze eine Flosse befestigt oder angeformt ist. Der das Hydro-Drehstellglied antreibende Hydro-Fluidstrom ist stetig oszillierend und wird von zwei über einen gemeinsamen Antriebsmotor kontinuierlich angetriebene Hydro-Rotationspumpen erzeugt. Die beiden Hydro-Rotationspumpen sind zueinander und zu dem Hydro-Drehstellglied fluidtechnisch parallel geschaltet. Jede der Hydro-Rotationspumpen weist einen kugelabschnittförmigen, mit einem Hydro-Fluid gefüllten Hohlraum auf, der eine kreisförmige Hohlraumbodenplatte, ein in dem Hohlraum angeordnetes rotierend angetriebenes Kugelsegment mit einem ebenen Kugelsegmentboden und einer sphärischen Kugelsegmentkappe, einen kugelkeilförmigen Zwischenraum zwischen der Hohlraumbodenplatte und dem Kugelsegmentboden umfasst, mit einer Antriebsachse des Kugelsegments, die sich als Rotationsachse senkrecht zur Hohlraumbodenplatte und geneigt gegenüber der zentralen Mittelachse des Kugelsegments erstreckt und mit dem Mittelpunkt der Hohlraumbodenplatte fluchtet, mit einer mittig rechtwinklig in die Hohlraumbodenplatte eingelassenen, den Kugelsegmentboden mit einer Anlagekante berührenden Pendelplatte, die um einen virtuellen Drehpunkt der Pendelplatte in der Mitte der Anlagekante schwenkbar ist, und mit Durchtrittskanälen für das Hydro-Fluid beidseitig der Pendelplatte in der Hohlraumbodenplatte zum Transport des Hydro-Fluids aus dem und in den Zwischenraum zwischen der Hohlraumbodenplatte und dem Kugelsegmentboden.
  • Die Oszillationsfrequenz des Hydro-Fluidstroms ist über die frei einstellbare Rotationsgeschwindigkeit der beiden Hydro-Rotationspumpen veränderbar, wobei die und Druck des das Hydro-Drehstellglied antreibenden oszillierenden Hydro-Fluidstroms über die Phasenlage der rotierenden Kugelsegmente der beiden Hydro-Rotationspumpen mittels einer Phasenverstelleinrichtung variabel einstellbar ist. Die Phasenlage der rotierenden Kugelsegmente der beiden Hydro-Rotationspumpen ist zueinander vorzugsweise zwischen 0° und 180° veränderbar, wobei der von der Phasenlage abhängige Schwenkwinkel der mindestens drei Drehstellglied-Außenteile gegenüber dem Drehstellglied-Innenteil zwischen null Grad und dem von den Dreh-Anschlägen bestimmten Gradwert variabel festlegbar ist.
  • Die den Hydro-Fluidstrom führenden Hydro-Verbindungsleitungen führen vorzugsweise zu dem drehfest angeordneten Drehstellglied-Innenteil, da diese dann biegestarr ausgeführt werden können. Die Verbindung von den Hydro-Verbindungsleitungen zu der mindestens einen ersten und zweiten Arbeitskammer des Hydro-Drehstellglieds erfolgt in einer bevorzugten Ausführungsform der Erfindung über zwei sich axial in dem vollzylindrischen Drehstellglied-Innenteil erstreckende Haupt-Strömungskanäle, von denen aus sich jeweils Neben-Strömungskanäle zu einer der Arbeitskammern erstrecken. Die Haupt- und die Neben-Strömungskanäle sind beispielsweise als Bohrungen ausgebildet, wobei die Neben-Strömungskanäle quer zu den Haupt-Strömungskanälen, vorzugsweise senkrecht dazu verlaufen.
  • Bei einer Ausführungsform der Erfindung sind die Arbeitskammern von sich phasenversetzt bewegenden Drehstellglied-Außenteilen gegensinnig und die Arbeitskammern von sich phasengleich bewegenden Drehstellglied-Außenteilen gleichsinnig mit den Haupt-Strömungskanälen direkt oder indirekt verbunden.
  • Bei einer Ausführungsform der Erfindung weist das Hydro-Drehstellglied bei mindestens einem der Drehstellglied-Außenteile eine dritte und eine vierte Arbeitskammer auf, die der ersten und der zweiten Arbeitskammer diametral gegenüber liegen. Durch die weiteren Arbeitskammern wird die Schwenkkraft des Hydro-Drehstellgliedes entsprechend vergrößert. Die dritte und die vierte Arbeitskammer sind mit der ersten bzw. zweiten Arbeitskammer direkt oder indirekt gekoppelt und vergrößern das Arbeitsvolumen des Hydro-Drehstellgliedes und damit sein Schwenkmoment. Prinzipiell können noch weitere Arbeitskammern paarweise in Umfangsrichtung des Hydro-Drehstellgliedes auf die dritte und vierte Arbeitskammer folgend angeordnet sein, sofern genügend Raum zur Verfügung steht. Auch in diesem Fall ist die Anordnung aller Arbeitskammern vorzugsweise symmetrisch. Die weiteren Arbeitskammern sind fluidtechnisch wie die dritte und die vierte Arbeitskammer mit der ersten bzw. zweiten Arbeitskammer gekoppelt.
  • Vorzugsweise ist dabei die dritte und die vierte Arbeitskammer indirekt über zu den Haupt-Strömungskanälen führenden Neben-Strömungskanäle oder direkt über Zusatzquer-Strömungskanäle mit der ersten bzw. zweiten Arbeitskammer kreuzweise verbunden. Die Zusatzquer-Strömungskanäle verlaufen in axialer Richtung des Hydro-Drehstellgliedes längs versetzt zueinander und zu den Neben-Strömungskanälen und in der Regel geneigt zu den Neben-Strömungskanälen. Die vier Arbeitskammern des Hydro-Drehstellgliedes sind in Umfangsrichtung des Hydro-Drehstellglieds nacheinander angeordnet und entsprechend in der Beschreibung fortlaufend nummeriert. Unter kreuzweiser Verbindung der Arbeitskammern wird in diesem Zusammenhang verstanden, dass die erste und die dritte sowie die zweite und die vierte Arbeitskammer miteinander fluidtechnisch in Verbindung stehen. Das soll heißen, dass die erste und die dritte Arbeitskammer gleichzeitig druckbeaufschlagt sind, wenn die zweite und die vierte Arbeitskammer gemeinsam sogbeaufschlagt sind, oder umgekehrt.
  • Natürlich kann das Drehstellglied-Innenteil, abhängig von seiner Länge und der des Drehstellglied-Außenteils, mehrere als drei Drehstellglied-Außenteile drehbeweglich nebeneinander aufnehmen. Die Bewegung der über die beiden miteinander gekoppelten Hydro-Rotationspumpen angetriebenen Drehstellglied-Außenteile erfolgt auch in diesem Fall durch die fluidtechnische Kopplung synchron.
  • Bei bevorzugten Ausführungsformen des erfindungsgemäßen Hydro-Drehoszillators führen idealerweise zu dem Hydro-Drehstellglied nur zwei Hydro-Verbindungsleitungen, die abwechselnd druck- bzw. sogbeaufschlagt werden. Dies kann prinzipiell auch mit vier Hydro-Verbindungsleitungen erreicht werden, die zu vier Haupt-Strömungskanälen des Drehstellglied-Innenteils führen. Bei drei vorgesehenen Drehstellglied-Außenteilen sind die zwei äußeren Drehstellglied-Außenteile dann entsprechend gemeinsam an ein erstes Paar der Haupt-Strömungskanäle und das mittlere Drehstellglied-Außenteil an die zwei anderen Haupt-Strömungskanäle angeschlossen. Vorzugsweise weist das Drehstellglied-Innenteil nur zwei Haupt-Strömungskanäle auf, an die alle Arbeitskammern angeschlossen sind. Dadurch ist die Bewegung aller drei Drehsteliglieder-Außenteile zwangsläufig vorgegeben.
  • Bei einer vorteilhaften Ausführungsform der Erfindung sind die Arbeitskammern von sich phasenversetzt bewegenden Drehstellglied-Außenteilen gegensinnig und die Arbeitskammern von sich phasengleich bewegenden Drehstellglied-Außenteilen gleichsinnig mit den Haupt-Strömungskanälen verbunden. Damit sind die Arbeitskammern der sich phasengleich bewegenden Drehstellglied-Außenteile fluidtechnisch direkt parallel zueinander geschaltet, während die Arbeitskammern der sich phasenversetzt bewegenden Drehstellglied-Außenteilen vorzugsweise kreuzweise mit den Haupt-Strömungskanälen verbunden sind. In diesem Fall genügen zwei Hydro-Verbindungsleitungen zu dem Hydro-Drehstellglied und entsprechend zwei Haupt-Strömungskanäie in dem Drehstellglied-Innenteil. Es ist selbstverständlich dass die Neben-Strömungskanäle sowie gegebenenfalls die Zusatzquer-Strömungskanäle für das jeweilige Drehstellglied-Außenteil in Längsrichtung des Hydro-Drehstellgliedes versetzt zueinander angeordnet sind und sich dem zufolge räumlich nicht im Wege stehen.
  • Vorzugsweise sind die Steuermittel, die den Hydro-Fluidstrom zu dem Hydro-Drehstellglied steuern und beim Stand der Technik üblicherweise als eigenständige Hydro-Ventile ausgebildet und abgesetzt von der Hydro-Pumpe angeordnet sind, in die Hydro-Rotationspumpe integriert. Damit ist eine sichere und schnelle Umschaltung zwischen der Druck- und der Sogbeaufschlagung der Hydro-Verbindungsleitungen bzw. der Haupt-Strömungskanäle möglich. Zudem ist der Aufbau des erfindungsgemäßen Hydro-Drehoszillators vereinfacht und weniger störanfällig. Die Steuermittel können beispielsweise hydrodruckbesteuerte Ventile sein.
  • Gemäß der Erfindung ist der von den Hydro-Rotationspumpen ausgehende Hydro-Fluidstrom oszillierend. Damit sind keine zusätzlichen Steuermittel zur Umkehr der Richtung des Hydro-Fluidstroms in den Hydro-Verbindungsleitungen zu dem Hydro-Drehstellglied erforderlich. Dies führt zu einer hohen Funktionssicherheit und zu einer Kostenreduzierung des vorgeschlagenen Hydro-Drehoszillators. Bei dem zyklisch oszillierenden Hydro-Fluidstrom weist die Druck- und die Sog-Amplitude günstigerweise über die Zeit einen sinusförmigen Anstieg oder Abfall auf. Damit treten keine schlagartigen Abbremsungen oder Beschleunigungen der von dem Hydro-Fluidstrom angetriebenen Drehstellglied-Außenteile auf. Dies ist besonders vorteilhaft bei der Drehrichtungsumkehr des jeweiligen Drehstellglied-Außenteils und ermöglicht somit hohe Oszillationsfrequenzen der Drehstellglied-Außenteile. Indem die beiden für den erfindungsgemäßen Hydro-Drehoszillatorverwendeten Hydro-Rotationspumpen zueinander und zu dem Hydro-Drehstellglied parallel geschaltet sind, können Menge und Druck des Hydro-Fluidstroms in dem zu dem Hydro-Drehstellglied führenden Hydro-Verbindungsleitungen variabel eingestellt werden.
  • Ein derartiger oszillierender Hydro-Fluidstrom kann beispielsweise mit einer aus der Druckschrift DE 20 2008 013 877 U1 bekannten Hydro-Rotationspumpe erzeugt werden, die einen kugelabschnittförmigen, mit einem Hydro-Fluid gefüllten Hohlraum mit einer kreisförmigen Hohlraumbodenplatte aufweist. In dem Hohlraum ist ein rotierend angetriebenes Kugelsegment angeordnet, das vorzugsweise als Halbkugel ausgebildet ist. Das Kugelsegment weist einen ebenen Kugelsegmentboden und eine sphärische Kugelsegmentkappe auf. Die Hohlraumbodenplatte und der Kugelsegmentboden sind in einem Winkel zueinander angeordnet und begrenzen einen kugelkeilförmigen Zwischenraum zwischen der Hohlraumbodenplatte und dem Kugelsegmentboden. Das Kugelsegment weist dabei eine Rotationsachse auf, die sich senkrecht zu der Hohlraumbodenplatte und geneigt gegenüber der zentralen Mittelachse des Kugelsegments erstreckt und mit dem Mittelpunkt der Hohlraumbodenplatte fluchtet. Der kugelkeilförmige Zwischenraum ist durch eine zwischen der Hohlraumbodenplatte und dem Kugelsegmentboden beweglich angeordnete Pendelplatte in zwei Arbeitskammern unterteilt. Die Pendelplatte ist mittig rechtwinklig in die Hohlraumbodenplatte eingelassen und berührt den Kugelsegmentboden mit einer Anlagekante, wobei die Pendelplatte um einen virtuellen Drehpunkt in der Mitte der Anlagekante schwenkbar ist. Beidseitig der Pendelplatte sind in der Hohlraumbodenplatte Durchtrittskanäle für das Hydro-Fluid vorgesehen. Diese ermöglichen den Transport des Hydro-Fluids aus den bzw. in die Arbeitskammern des Zwischenraumes zwischen der Hohlraumbodenplatte und dem Kugelsegmentboden. Das Kugelsegment rotiert mit einstellbarer Geschwindigkeit in dem kugelabschnittförmigen Hohlraum mit Abstand zu der Hohlraumbodenplatte, wobei die Pendelplatte stets am Kugelsegmentboden über die gesamte Länge ihre Anlage dichtend in Anlage ist. Die Rotation des Kugelsegmentes bewirkt einen oszillierenden Hydro-Fluidstrom in einem geschlossenen hydraulischen System, wie es beispielsweise von der Hydro-Rotationspumpe, den Hydro-Verbindungsleitungen und dem Hydro-Drehstellglied des erfindungsgemäßen Hydro-Oszillators gebildet ist.
  • Zur Einstellung des Hydro-Fluidstroms kann die Phasenlage der rotierenden Kugelsegmente der beiden Hydro-Rotationspumpen zueinander, vorzugsweise zwischen 0° und 180° verändert werden. Laufen die beiden Kugelsegmente phasengleich, so ist die Fördermenge und der Druck des Hydro-Fluidstroms in den Hydro-Verbindungsleitungen zu dem Hydro-Drehstellglied maximal, laufen die Kugelsegmente um 180° phasenversetzt zueinander, so sind diese minimal. Bei einer anderen Phasenlage der Kugelsegmente zueinander variiert der jeweilige Wert zwischen dem Maximal- und dem Minimalwert. Bei zwei in der Leistung identischen Hydro-Rotationspumpen ist der Minimalwert gleich Null. Der Maximalwert ist durch die Dreh-Anschläge des Drehstellglied-Innenteils und des Drehstellglied-Außenteils begrenzt. Damit kann der Schwenkwinkel des mindestens einen Drehstellglied-Außenteils gegenüber dem Drehstellglied-Innenteil zwischen null Grad und dem von den Dreh-Anschlägen bestimmten Gradwert festgelegt werden. Die Schwenkfrequenz wird dabei lediglich von der Oszillationsfrequenz des Hydro-Fluidstroms und damit von der Rotationsgeschwindigkeit der Hydro-Rotationspumpe vorgegeben, wobei die Rotationsgeschwindigkeit der Hydro-Rotationspumpe an sich in einem weiten Umfang frei einstellbar ist.
  • In diesem Zusammenhang weisen die beiden Hydro-Rotationspumpen eine gemeinsame Antriebseinheit mit einem Antriebsmotor auf und die Antriebsachsen der Kugelsegmente der Hydro-Rotationspumpen über eine Phasenverstelleinrichtung miteinander gekoppelt sind, die geeignet konfiguriert ist, die Stellung der Antriebsachsen zueinander in entgegengesetzter Richtung synchron einzustellen. Dabei ist die Antriebswelle des Antriebsmotors über eine Antriebskette oder einen Antriebsriemen mit den Antriebsachsen der Kugelsegmente verbunden. Die Phasenverstelleinrichtung kann einen selbsthemmenden Antrieb oder eine arretierende Einrichtung aufweisen, so dass nach der Einstellung der Phasenlage der beiden Kugelsegmente zueinander ein unbeabsichtigtes Verstellen der Phasenlage ausgeschlossen ist. Die Phasenverstelleinrichtung kann anstelle eines einzigen Einstellelementes, das gleichzeitig auf die beiden Kugelsegmente einwirkt, natürlich auch zwei voneinander getrennte Einstellelemente aufweisen, mit denen die Phasenlage der Kugelsegmente unabhängig voneinander einander gegenüber einstellbar ist. Die Verstellung der Phasenlage erfolgt dabei vorzugsweise durch Verdrehen der Antriebsachse mindestens eines Kugelsegmentes. Bei eingestellter Phasenverstelleinrichtung treibt der gemeinsame Antrieb der beiden Hydro-Rotationspumpen die beiden Kugelsegmente unter Beibehaltung des gewählten Phasenversatzes synchron in gleicher Drehrichtung an, wobei die Drehrichtung frei wählbar ist.
  • Bei einer vorteilhaften Ausführungsform des vorgeschlagenen Hydro-Drehoszillators weist die Phasenverstelleinrichtung der Antriebseinheit vier Umlenkstellen auf, die an dem Antriebsmotor, an den Hydro-Rotationspumpen und an mindestens einer zusätzlichen um eine Drehachse drehbare Umlenkwalze angeordnet sind, wobei jeweils der Antriebsmotor und eine Umlenkwalze oder zwei Umlenkwalzen und die beiden Hydro-Rotationspumpen einander gegenüberliegend angeordnet sind. Die Phasenverstelleinrichtung der Antriebseinheit weist vier Umlenkrollen für die Antriebskette oder den Antriebsriemen auf, die die Antriebskette oder den Antriebsriemen kreuzförmig führen, wobei die vier Umlenkrollen nahe den Hydro-Rotationspumpen ortsfest angeordnet sind. Dabei sind der Antriebsmotor und die eine Umlenkwalze oder die beiden Umlenkwalzen von einem Schiebeschlitten getragen, der senkrecht gegenüber einer gedachten Verbindungslinie der beiden Hydro-Rotationspumpen längs verschiebbar geführt ist. Die kreuzförmige Führung ermöglicht erst, dass der Umlaufweg der Antriebskette bzw. des Antriebsriemens um Antriebsachsen der Kugelsegmente, die Antriebswelle des Antriebsmotors und die Drehachse der Umlenkwalze beim Verschieben des Schiebeschlittens in der Länge gleichbleibend ist, sodass auf eine aufwändige Ketten-Spannvorrichtung unnötig ist.
  • Der als Außenläufer konzipierte erfindungsgemäße Hydro-Drehoszillator weist gegenüber dem Stand der Technik einen einfacheren Aufbau und eine verbesserte Zugänglichkeit zu dem Rotor auf. Insbesondere können beliebige externe Einrichtungen besonders einfach mit dem Rotor, d.h. mit dem Drehstellglied-Außenteil außen gekoppelt werden. Zudem besteht die Möglichkeit, das in zwei Drehrichtungen drehbare Drehstellglied-Außenteil an seiner Außenumfangsfläche mit einem sich radial nach außen erstreckenden, einen Hebelarm bildenden Außenteil-Fortsatz ausbilden, an der die externe Einrichtung befestigt werden kann. Das Drehstellglied-Außenteil kann dabei temporär um einen gewünschten Schwenkwinkel drehend temporär hin oder her geschwenkt oder kontinuierlich oszillierend bewegt werden, indem der Hydro-Fluidstrom zu dem Hydro-Drehstellglied entsprechend gesteuert wird. Im ersten Fall kann ein solcher Hydro-Drehoszillator beispielsweise in einer Ruderanlage eines Luft- oder Seefahrzeuges eingesetzt werden. Weiterer Vorteil der Erfindung ist, dass der Hydro-Drehoszillator mit mindestens drei Drehstellglied-Außenteilen ausgebildet ist, die von einem gemeinsamen Drehstellglied-Innenteil mit oder ohne seitlichen Abstand zueinander getragen werden. Damit können mit einem einzigen Hydro-Drehoszillator eine entsprechende Anzahl von externen Einrichtungen phasengleich oder phasenversetzt betätigt werden. In Verbindung mit zwei geeigneten parallel zueinander und zu dem Hydro-Drehstellglied geschalteten Hydro-Rotationspumpen, die über einen gemeinsamen Antriebsmotor verfügen und über eine Phasenverstelleinrichtung der vorstehend beschriebenen Art gekoppelt sind, kann sowohl die Schwenkfrequenz des mindesten einen Drehstellglied-Außenteils, wie auch dessen Schwenkwinkel gesteuert werden. Ein derart gesteuerter Hydro-Drehoszillator eignet sich beispielsweise als Flossenantrieb für ein Wasserfahrzeug, wenn eine Flosse an den Außenteil-Fortsatz des Drehstellglied-Außenteils befestigt oder angeformt wird. Dabei hat sich ein Hydro-Drehoszillator mit drei Drehstellglied-Außenteilen und jeweils daran angeformten Flossen als besonders günstig erwiesen, bei dem sich das mittlere der drei Drehstellglied-Außenteile mit Flosse stets entgegengesetzt zu den beiden äußeren Drehstellglied-Außenteilen mit Flosse bewegt. Idealerweise sind dabei die beiden äußeren Flossen in der Fläche bzw. Größe gleich, während die mittlere Flosse diesen gegenüber deutlich größer, idealerweise doppelt so groß ausgebildet ist, d.h. die mittlere Flosse weist dabei eine Fläche bzw. Größe auf, wie die beiden äußeren Flossen zusammen. Zweckmäßig ist es in diesem Fall außerdem, zwischen den Drehstellglied-Außenteilen mit Flosse Trennwände vorzusehen, so dass die von einer der Flossen ausgehenden Wasser-Verwirbelungen nicht auf die anderen Flossen einwirken bzw. die von diesen erzeugten Wasser-Verwirbelungen beeinflussen.
  • Nachfolgend wird die Erfindung anhand mehrerer in der Zeichnung dargestellten Beispiele erläutert. Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung der der Figuren in Verbindung mit den Ansprüchen und der beigefügten Zeichnungen. Es zeigen:
  • Figur 1
    einen Hydro-Drehoszillator in zwei Drehstellungen (Figur 1a, 1b), mit einem stationären Drehstellglied-Innenteil, mindestens zwei hohlzylindrischen Drehstellglied-Außenteilen, einer Hydro-Rotationspumpe und einem Hydro-Drehstellglied mit zwei Arbeitskammern, in einer Querschnittdarstellung durch die Arbeitskammern eines Drehstellglied-Außenteils;
    Figur 2
    eine Variante des Hydro-Drehsteilglieds aus Figur 1, die vier Arbeitskammern mit unterschiedlicher Anbindung an die Hauptströmungskanäle aufweist (Figur 2a, 2b);
    Figur 3
    eine Ausführungsform des Hydro-Drehstellgliedes eines erfindungsgemäßen Hydro-Drehoszillators, mit einem Hydro-Drehstellglied mit einem Drehstellglied-Innenteil und drei darauf angeordneten Drehstellglied-Außenteilen in Draufsicht (Fig. 3a) und Seitenansicht (Fig. 3b), wobei keine der Drehstellglied-Außenteilen eine Flosse zeigt;
    Figur 4
    die Hydro-Rotationspumpe aus Figur 1, in einer vergrößerten Darstellung;
    Figur 5
    zwei parallel geschalteten Hydro-Rotationspumpen, mit unterschiedlichen Drehstellungen des rotierenden Kugelsegments (Figur 5a, 5b); und
    Figur 6
    eine Phasenverstelleinrichtung zur Einstellung des Phasenversatzes der Kugelsegmente der beiden zueinander parallel geschalteten Hydro-Rotationspumpen mit unterschiedlicher Stellung der Phasenverstelleinrichtung (Figur 6a, 6b).
  • Die Figuren 1a, 1b zeigen einen Hydro-Drehoszillators 1, mit einer Hydro-Rotationspumpe 2 und einem Hydro-Drehstellglied 3, die über zwei Hydro-Verbindungsleitungen 4, 4' miteinander verbunden sind. Das Hydro-Drehstellglied 3 weist zwei Arbeitskammern 5, 5' auf, die sich als Ringspalt zwischen einem vollzylindrischen Drehstellglied-Innenteil 6 und einem hohlzylindrischen Drehstellglied-Außenteil 7 erstrecken. Das Hydro-Drehstellglied 3 umfasst ein Drehstellglied-Innenteil 6 und mindestens zwei nebeneinander angeordnete Drehstellglied-Außenteile 7, 7', 7", von denen in der abgebildeten Querschnittsdarstellung lediglich das Drehstellglied-Außenteil 7 zu sehen ist. Das Drehstellglied-Außenteil 7 ist dichtend auf dem Drehstellglied-Innenteil 6 angeordnet und gegenüber diesem in zwei Drehrichtungen begrenzt drehbar. Dazu weist das Drehstellglied-Außenteil 7 eine sich radial nach innen erstreckende sich mitdrehende Drehstellgliedwand 8 und das Drehstellglied-Innenteil 6 beidseitig der Drehstellgliedwand 8 jeweils eine Querwand 9, 9' auf, die die beiden Arbeitskammern 5, 5' in Umfangsrichtung begrenzen. Die Figuren 1a und 1b zeigen den Hydro-Drehoszillator 1 in unterschiedlichen Drehstellungen. Für die weitere Beschreibung wird die in Umfangsrichtung links der Drehstellgliedwand 8 angeordnete Arbeitskammer 5 als erste und die rechts der Drehstellgliedwand 8 befindliche als zweite Arbeitskammer 5' bezeichnet.
  • Der Hydro-Drehoszillator 1 weist generell ein geschlossenes Hydraulik-System auf. Zur Linksdrehung des Drehstellglied-Außenteils 7 wird die erste Arbeitskammer 5 druckbeaufschlagt und die zweite Arbeitskammer 5' gleichzeitig sogbeaufschlagt. Der Hydro-Fluidstrom fließt somit hin zu der ersten Arbeitskammer 5 und weg von der zweiten Arbeitskammer 5'. Zur Rechtsdrehung des Drehstellglied-Außenteils 7 gegenüber dem Drehstellglied-Innenteil 6 wird die Fließrichtung des Hydro-Fluidstroms umgekehrt. Dabei ändern die Arbeitskammern 5, 5' ihre Größe entsprechend. Die Hydro-Verbindungsleitungen 4,4', die die Hydro-Rotationspumpe 2 mit dem Hydro-Drehstellglied 3 verbinden, führen zu Haupt-Strömungskanälen 10, 10', die sich in dem Drehstellglied-Innenteil 6 in axialer Richtung erstrecken. Von dem Hauptströmungskanal 10 und 10' führt jeweils ein Neben-Strömungskanal 11 bzw. 11' zu den Arbeitskammern 5 oder 5'.
  • Die Hydro-Rotationspumpe 2 weist zwei nebeneinander angeordnete voneinander getrennte Pumpenkammern 12, 12' auf, von denen die Hydro-Verbindungsleitungen 4, 4' ausgehen. Dabei wirkt jeweils abwechselnd eine der Pumpenkammern 12, 12' als Sog- und die andere als Druckkammer. Die genaue Funktionsweise der Hydro-Rotationspumpe 2 wird anhand der Figur 4 später näher erläutert. Wie den Figuren 1a, 1b zu entnehmen ist, ändern die Pumpenkammern 12, 12' zyklisch ihre Größe. Damit geht von der Hydro-Rotationspumpe 2 ein Hydro-Fluidstrom aus, der oszillierend ist. Dabei ist die Pumpenkammer 12 mit der Arbeitskammer 5 und die Pumpenkammer 12' mit der Arbeitskammer 5' verbunden. In der Figur 1a wirkt die Pumpenkammer 12 als Druckkammer und die Pumpenkammer 12' als Saugkammer 5'. In der Figur 1b ist dies umgekehrt.
  • Die Figuren 2a, 2b zeigen zwei Varianten des in der Figur dargestellten Hydro-Drehstellgliedes 3. Das abgebildete Hydro-Drehstellglied 3 weist in Umfangsrichtung neben den Arbeitskammern 5, 5' zwei weitere Arbeitskammer 13, 13' auf, die in der weiteren Beschreibung als dritte Arbeitskammer 13 und als vierte Arbeitskammer 13' bezeichnet werden. Die dritte Arbeitskammer 13 liegt der ersten Arbeitskammer 5 und die vierte Arbeitskammer 13' der zweiten Arbeitskammer 5' diametral gegenüber und sind jeweils fluidtechnisch miteinander verbunden. Das Hydro-Drehstellglied 3 weist außerdem einen sich außen radial erstreckenden Außenteil-Fortsatz 14 auf, der an das Drehstellglied-Außenteil 7 angeformt ist. An dem Außenteil-Fortsatz 14 ist eine externe Einrichtung 15 in Form eines Flügels oder einer Flosse befestigt. Prinzipiell kann die externe Einrichtung 15 auch integral mit dem Außenteil-Fortsatz 14 ausgebildet sein.
  • In der Figur 2a sind die Arbeitskammern 5, 5' und die Arbeitskammern 13, 13' jeweils indirekt miteinander und über Neben-Strömungskanäle 11, 11' mit den Haupt-Strömungskanälen 10, 10' verbunden, wobei die Neben-Strömungskanäle 11, 11' zu den Arbeitskammern 13, 13' in axialer Richtung des Hydrostellglied-Innenteil 6 mit Abstand zu den Arbeitskammern 5, 5' führenden Neben-Strömungskanälen 11, 11' angeordnet sind. In der Figur 2b sind die Arbeitskammern 5, 5' jeweils über Neben-Strömungskanäle 11, 11' mit den Haupt-Strömungskanälen 10, 10' verbunden, während die Arbeitskammern 13, 13' direkt über Zusatzquer-Strömungskanäle 16, 16' mit den Arbeitskammern 5, 5' verbunden sind. Die Zusatzquer-Strömungskanäle 16, 16' verlaufen in axialer Richtung versetzt zu den Neben-Strömungskanälen 11, 11' und können parallel oder geneigt zu diesen angeordnet sein.
  • Die Figuren 3a, 3b zeigen eine Ausführungsform des Hydro-Drehstellgliedes 3 eines erfindungsgemäßen Hydro-Drehoszillators 1. Das Hydro-Drehstellglied 3 weist ein Drehstellglied-Innenteil 6 und drei nebeneinander angeordnete Drehstellglied-Außenteile 7, 7', 7" auf. Die Drehstellglied-Außenteile 7, 7', 7" entsprechen in der Form dem in der Figur 2 dargestellten Drehstellglied-Außenteil 7 und sind mit entsprechenden Außenteil-Fortsätzen 14, 14', 14" versehen. Jedes der drei Drehstellglied-Außenteile 7, 7', 7" ist entsprechend der Figur 3 mit vier Arbeitskammern 5, 5', 13, 13' ausgebildet, die in gleicher Weise wie dort miteinander und den beiden Haupt-Strömungskanäien 10, 10' verbunden sind. Dabei bewegen sich die beiden äußeren Drehstellglied-Außenteile 7,' 7" phasengleich und jeweils in gleicher Richtung, während das mittlere Drehstellglied-Außenteil 7 sich phasenversetzt entgegengesetzt zu den beiden anderen Drehstellglied-Außenteilen 7,' 7" bewegt. Die Bewegung ist zwangsläufig. Dies wird dadurch erreicht, dass die Arbeitskammern 5, 5', 13, 13' des mittleren Drehstellglied-Außenteils 7 in umgekehrter Weise, d.h. kreuzweise mit den Haupt-Strömungskanälen 10, 10' verbunden sind, wie es bei den beiden äußeren Drehstellglied-Außenteilen 7', 7" der Fall ist. Die beiden äußeren Drehstellglied-Außenteile 7', 7" sind in gleicher Weise mit den Haupt-Strömungskanälen 10. 10' verbunden, d.h. fluidtechnisch parallel geschaltet.
  • In der Figur 4 ist die Hydro-Rotationspumpe 2 aus Figur 1 vergrößert gezeigt. Die Hydro-Rotationspumpe 2 ist zum Erzeugen eines oszillierenden Hydro-Fluidstromes ausgebildet und weist einen kugelabschnittsförmigen Hohlraum 17 auf, der eine kreisförmige Hohlraumbodenplatte 18 und eine sphärische Hohlraumkappe 19 aufweist. In dem Hohlraum 17 ist ein rotierend angetriebenes Kugelsegment 20 in Form einer Halbkugel, mit einem Kugelsegmentboden 21 und einer ebenfalls sphärischen Kugelsegmentkappe 22, angeordnet. Der Kugelsegmentboden 21 und die Hohlraumbodenplatte 18 sind geneigt zueinander ausgerichtet und weisen einen Abstand zueinander auf. Sie begrenzen einen kugelkeilförmigen Zwischenraum 23 auf gegenüberliegenden Seiten. Damit ist das Kugelsegment 20, das geringfügig kleiner als der kugelabschnittförmige Hohlraum 17 ausgebildet ist, in dem Hohlraum 17 geneigt angeordnet.
  • Das Kugelsegment 20 weist eine gegenüber der zentralen Mittelachse 24 um wenige Winkelgrade geneigte Rotationsachse 25 auf, die mit dem Mittelpunkt 26 der Hohlraumbodenplatte 18 fluchtet und die sich senkrecht zu der Hohlraumbodenplatte 18 erstreckt. Die Neigung der Rotationsachse 25 bezüglich der Mittelachse 24 beträgt dabei typisch zwischen 1 und 10 Grad. In der Hohlraumbodenplatte 18 ist eine Pendelplatte 27 mittig rechtwinklig eingelassen, die an dem Kugelsegmentboden 21 mit einer Anlagekante 28 dichtend in Anlage gehalten ist. Die Pendelplatte 27 ist als Halbkreisscheibe ausgeführt und in einer komplementär ausgebildeten Aufnahmenut 29 aufgenommen, wobei die Pendelplatte 27 am halbkreisförmigen Umfang verschiebbar geführt ist. Das Schwenken der Pendelplatte 27 um einen virtuellen Schwenkpunkt 30 erfolgt beim Drehen des Kugelsegments 20 durch den Kugelsegmentboden 21, der abhängig von der Stellung des Kugelsegments 20 in dem Hohlraum 17 Druck auf die eine oder die andere Hälfte der Anlagekante 28 der Pendelplatte 27 ausübt.
  • Die Hohlraumbodenplatte 18 weist außerdem Durchtrittskanäle 31, 31' für ein in der Zeichnung nicht dargestelltes Fluid auf, die beidseitig der Pendelplatte 27 angeordnet sind. Die Durchtrittskanäle 31, 31' dienen zum oszillierenden Transport des Fluids aus dem bzw. in den Zwischenraum 23 zwischen der Hohlraumbodenplatte 18 und dem Kugelsegmentboden 21, der durch die Pendelplatte 27 in zwei Pumpenkammern 12, 12' unterteilt ist. Die beiden Pumpenkammern 12, 12' beaufschlagen das Fluid in abwechselnder Folge mit Druck oder Sog, wenn das Kugelsegment 20 in dem Hohlraum 17 rotiert, wobei die beiden Durchtrittskanäle 31, 31' abwechselnd als Eintritts- und Austrittskanäle wirken. Die Hydro-Rotationspumpe 2 weist eine gegenüber dem Hohlraum 17 abgedichtete Antriebsachse 32 für das Kugelsegment 20 auf, die in Verlängerung der Rotationsachse 25 auf der dem Kugelsegmentboden 21 gegenüberliegenden Seite der Kugelsegmentkappe 22 angeordnet ist. Die Antriebsachse 32 des Kugelsegments 20 kann mit einer Antriebswelle eines beliebigen Motors gekoppelt werden.
  • Die Figur 5 zeigt in den Figuren 5a, 5b den in den Figuren 1a, 1b abgebildeten Hydro-Drehoszillator 1, jedoch mit zwei Hydro-Rotationspumpen 2,2'. Die beiden Hydro-Rotationspumpen 2, 2' sind zueinander und zu dem Hydro-Drehstellglied 3 parallel geschaltet. Sie weisen eine gemeinsame Antriebseinheit 33 auf, die in der Figur 6 in Draufsicht abgebildet ist. Die Antriebseinheit 33 weist einen Antriebsmotor 34 auf, dessen Antriebswelle 35 über eine Antriebskette oder einen Antriebsriemen 36 mit den Antriebsachsen 32 der Kugelsegmente 20 der Hydro-Rotationspumpen 2, 2' verbunden ist. Die Antriebseinheit 33 beinhaltet außerdem eine Phasenverstelleinrichtung 37 zur synchronen Einstellung der Stellung der Antriebsachsen 32 der Hydro-Rotationspumpen 2, 2' zueinander. Die Phasenverstelleinrichtung 37 ist mit der Antriebskette bzw. mit dem Antriebsriemen 36 gekoppelt und bewegt die Antriebsachsen 32 der Kugelsegmente 20 zueinander in entgegengesetzter Drehrichtung.
  • Die Phasenverstelleinrichtung 37 weist, wie aus der Figur 6 ersichtlich. zudem vier Umlenkrollen 38 für die Antriebskette bzw. den Antriebsriemen 36 sowie eine zusätzliche Umlenkwalze 39 für diesen auf, die die Antriebskette bzw. den Antriebsriemen 36 zusammen mit den Antriebsachsen 32 der Kegeisegmente 20 und der Antriebswelle 35 des Antriebsmotors 34 kreuzförmig führen. Dabei sind jeweils der Antriebsmotor 34 und die Umlenkwalze 39 sowie die beiden Hydro-Rotationspumpen 2, 2' einander gegenüberliegend angeordnet, wobei der Antriebsmotor 34 und die Umlenkwalze 39 von einem Schiebeschlitten 40 getragen sind, der senkrecht gegenüber einer gedachten Verbindungslinie der beiden Hydro-Rotationspumpen 2, 2' längs verschiebbar geführt ist. Die vier Umlenkrollen 38 sind paarweise jeweils nahe einer der Hydro-Rotationspumpen 2, 2' ortsfest angeordnet. Prinzipiell ermöglicht die Verwendung von zwei Umlenkwalzen 39 anstelle von einer Umlenkwalze 39 und dem Antriebsmotor 34 als Umlenkstellen des Schiebeschlittens 40 einen einfacheren Aufbau der Phasenverstelleinrichtung 37, da keine elektrischen Anschlussleitungen beim Verfahren des Schiebeschlittens 40 mitbewegt werden müssen.
  • Alternativ kann der Antriebsmotor 34 auch an einer geeigneten anderen Stelle der Antriebseinheit 33 angeordnet sein. In diesem Fall ist an der in der in der Figur 5 vom Antriebsmotor 34 gebildeten Umlenkstelle, anstelle des Antriebsmotors 34 eine zweite Umlenkwalze 39 angeordnet. Diese Ausführungsform ist in der Zeichnung nicht dargestellt.
  • Die Figuren 6a, 6b zeigen den Schiebeschlitten 40 der Phasenverstelleinrichtung 37 in zwei unterschiedlichen Stellungen. In der Figur 6a sind die Drehachsen 32 der Hydro-Rotationspumpen 2, 2' gleich und in der Figur 6b spiegelbildlich zueinander ausgerichtet, wobei sich der Schiebeschlitten 40 in unterschiedlichen Stellungen gegenüber der Antriebseinheit 33 befindet. In jeder Stellung des Schiebeschlittens 40 bewegt die Antriebskette bzw. der Antriebsriemen 36 die beiden Drehachsen 32 der Kugelsegmente 20 synchron miteinander in derselben Drehrichtung. Bei der in der Figur 6a gezeigten Ausrichtung der Antriebsachsen 32 wird der gesamte Hydro-Fluidstrom oszillierend zu dem Hydro-Drehstellglied 3 geleitet, in der in der Figur 6b dargestellten Ausrichtung oszilliert der Fluidstrom lediglich zwischen den beiden Hydro-Rotationspumpen 2, 2'. Dies bedeutet, dass im ersten Fall bei dem Hydro-Drehstellglied 3 das Drehstellglied-Außenteil 7, 7', 7" in Umfangsrichtung maximal geschwenkt und im zweiten Fall nicht bewegt wird. In einer Zwischenstellung des Schiebeschlittens 40 zwischen den beiden in den Figuren 6a, 6b gezeigten Stellungen oszilliert der Hydro-Fluidstrom sowohl zwischen den Hydro-Rotationspumpen 2, 2' wie auch zwischen den Hydro-Rotationspumpen 2, 2' und dem Hydro-Drehstellglied 3. Die Aufteilung des Hydro-Fluidstroms ist von der Stellung der Antriebsachsen 32 und damit der Kugelsegmente 20 der Hydro-Rotationspumpen 2, 2' einander gegenüber abhängig.
  • Durch den oszillierenden Fluidstrom wird das Drehstellglied-Außenteil 7, 7', 7" des Hydro-Drehstellgliedes 3 zyklisch bewegt, d.h. hin- und hergeschwenkt. Die Bewegungsgeschwindigkeit und damit die Frequenz mit der sich das mindestens eine Drehstellglied-Außenteil 7, 7', 7" bewegt, ist von der Rotationsgeschwindigkeit der Antriebswelle 35 des Antriebsmotors 34 abhängig. Diese kann an sich beliebig eingestellt werden und wird zudem von der Übersetzung der Antriebswelle 35 zu den Antriebsachsen 32 der Hydro-Rotationspumpen 2, 2' beeinflusst.

Claims (10)

  1. Hydro-Drehoszillator (1), mit einem von einem Hydro-Fluidstrom angetriebenen Hydro-Drehstellglied (3), das ein vollzylindrisches Drehstellglied-Innenteil (6) und mindestens ein hohlzylindrisches Drehstellglied-Außenteil (7) aufweist, die konzentrisch zueinander mit radialem Abstand angeordnet sind, mindestens zwei ringsegmentförmige Arbeitskammern (5, 5') radial begrenzen und einander gegenüber in zwei Drehrichtungen begrenzt drehbar sind, wobei die Arbeitskammern (5, 5') durch eine mitdrehende sich radial erstreckende Drehstellgliedwand (8) voneinander getrennt und in der Größe änderbar sind und mit der Hydro-Rotationspumpe (2, 2') über Hydro-Verbindungsleitungen (4, 4') verbunden sind, und mit mindestens einem Steuermittel, das den Hydro-Fluidstrom wechselweise zu den mindestens zwei Arbeitskammern (5, 5') lenkt, wobei das Drehstellglied-Außenteil (7) drehbar und das Drehstellglied-Innenteil (6) drehfest ausgebildet ist, dadurch gekennzeichnet, dass das Hydro-Drehstellglied (3) das Drehstellglied-Innenteil (6) und drei nebeneinander angeordnete Drehstellglied-Außenteile (7, 7', 7") aufweist, wobei sich das mittlere Drehstellglied-Außenteil (7) stets in entgegengesetzter Richtung der beiden äußeren Drehstellglied-Außenteile (7', 7") bewegt, wobei
    an jedem der Drehstellglied-Außenteile (7, 7', 7") ein Außenteil-Fortsatz (14) ausgebildet und an jedem der Außenteil-Fortsätze (14) eine Flosse (15) befestigt oder angeformt ist, und
    der das Hydro-Drehstellglied (3) antreibende Hydro-Fluidstrom stetig oszillierend und von zwei über eine gemeinsame Antriebseinheit mit einem Antriebsmotor (34) kontinuierlich angetriebene Hydro-Rotationspumpen (2, 2') erzeugt ist, wobei die zwei Hydro-Rotationspumpen (2, 2') zueinander und zu dem Hydro-Drehstellglied (3) fluidtechnisch parallel geschaltet sind, und wobei jede Hydro-Rotationspumpe (2, 2') einen kugelabschnittförmigen, mit einem Hydro-Fluid gefüllten Hohlraum (17), der eine kreisförmige Hohlraumbodenplatte (18), ein in dem Hohlraum (17) angeordnetes rotierend angetriebenes Kugelsegment (20), mit einem ebenen Kugelsegmentboden (21) und einer sphärischen Kugelsegmentkappe (22), einem kugelkeilförmigen Zwischenraum (23) zwischen der Hohlraumbodenplatte (18) und dem Kugelsegmentboden (21), mit einer Antriebsachse (32) des Kugelsegments (20), die sich als Rotationsachse (25) senkrecht zur Hohlraumbodenplatte (18) und geneigt gegenüber der zentralen Mittelachse (24) des Kugelsegments (20) erstreckt und mit dem Mittelpunkt (26) der Hohlraumbodenplatte (18) fluchtet, mit einer mittig rechtwinklig in die Hohlraumbodenplatte eingelassenen, den Kugelsegmentboden (21) mit einer Anlagekante (28) berührenden Pendelplatte (27), die um einen virtuellen Drehpunkt (30) der Pendelplatte (27) in der Mitte der Anlagekante (28) schwenkbar ist, und mit Durchtrittskanälen (31, 31') für das Hydro-Fluid beidseitig der Pendelplatte (27) in der Hohlraumbodenplatte (18) zum Transport des Hydro-Fluids aus dem und in den Zwischenraum (23) zwischen der Hohlraumbodenplatte (18) und dem Kugelsegmentboden (21) aufweist, und wobei
    die Oszillationsfrequenz des Hydro-Fluidstroms über die frei einstellbare Rotationsgeschwindigkeit der beiden Hydro-Rotationspumpen (2, 2') veränderbar ist, und
    die Menge und Druck des das Hydro-Drehstellglied (3) antreibenden oszillierenden Hydro-Fluidstroms über die Phasenlage der rotierenden Kugelsegmente (20) der beiden Hydro-Rotationspumpen (2, 2') mittels einer Phasenverstelleinrichtung variabel einstellbar ist, wobei die Phasenlage der rotierenden Kugelsegmente (20) der beiden Hydro-Rotationspumpen (2, 2') zueinander, vorzugsweise zwischen 0° und 180° veränderbar ist und der von der Phasenlage abhängige Schwenkwinkel der mindestens drei Drehstellglied-Außenteile (7, 7', 7") gegenüber dem Drehstellglied-Innenteil (6) zwischen null Grad und dem von den Dreh-Anschlägen bestimmten Gradwert variabel festlegbar ist.
  2. Hydro-Drehoszillator Anspruch 1, dadurch gekennzeichnet, dass das Drehstellglied-Innenteil (6) zwei sich axial erstreckende Haupt-Strömungskanäle (10, 10') aufweist, von denen aus sich jeweils Neben-Strömungskanäle (11, 11') zu einer der Arbeitskammern (5, 5') erstrecken.
  3. Hydro-Drehoszillator nach Anspruch 2, dadurch gekennzeichnet, dass die Arbeitskammern (5, 5', 13, 13') von sich phasenversetzt bewegenden Drehstellglied-Außenteilen (7, 7', 7") gegensinnig und die Arbeitskammern (5, 5', 13, 13') von sich phasengleich bewegenden Drehstellglied-Außenteilen (7, 7', 7") gleichsinnig mit den Haupt-Strömungskanälen (10, 10') direkt oder indirekt verbunden sind.
  4. Hydro-Drehoszillator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Hydro-Drehstellglied (3) eine dritte und vierte Arbeitskammer (13, 13') aufweist, die der ersten und der zweiten Arbeitskammer (5, 5') diametral gegenüber liegen.
  5. Hydro-Drehoszillator nach Anspruch 4, dadurch gekennzeichnet, dass die dritte und vierte Arbeitskammer (13, 13') indirekt über zu den Haupt-Strömungskanälen (10, 10') führende Neben-Strömungskanäle (11, 11') oder direkt über Zusatzquer-Strömungskanäle (16, 16') mit der ersten bzw. zweiten Arbeitskammer (5, 5') kreuzweise verbunden sind.
  6. Hydro-Drehoszillator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Steuermittel in die Hydro-Rotationspumpe (2, 2') integriert ist.
  7. Hydro-Drehoszillator nach Anspruch 6, dadurch gekennzeichnet, dass eine Antriebswelle (35) des Antriebsmotor über eine Antriebskette oder einen Antriebsriemen (36) mit den Antriebsachsen (32) der Kugelsegmente (20) verbunden ist, und dass die Antriebsachsen (32) der Kugelsegmente (20) der Hydro-Rotationspumpen (2, 2') über die Phasenverstelleinrichtung (37) miteinander gekoppelt sind, wobei die Stellung der Antriebsachsen (32) zueinander in entgegengesetzter Drehrichtung vorzugsweise synchron einstellbar ist.
  8. Hydro-Drehoszillator nach Anspruch 7, dadurch gekennzeichnet, dass die Phasenverstelleinrichtung vier Umlenkrollen (38) für die Antriebskette oder den Antriebsriemen (36) und mindestens eine zusätzlichen Umlenkwalze (39) aufweist, die die Antriebskette oder den Antriebsriemen (36) kreuzförmig führen, wobei jeweils der Antriebsmotor (34) und eine Umlenkwalze (39) oder zwei Umlenkwalzen (39) sowie die beiden Hydro-Rotationspumpen (2, 2') einander gegenüberliegend angeordnet sind, und wobei der Antriebsmotor (34) und die Umlenkwalze (39) oder die zwei Umlenkwalzen (39) von einem Schiebeschlitten (40) getragen sind, der senkrecht gegenüber einer gedachten Verbindungslinie der beiden Hydro-Rotationspumpen (2, 2') längsverschiebbar geführt ist und wobei die vier Umlenkrollen (38) nahe den Hydro-Rotationspumpen (2, 2') ortsfest angeordnet sind.
  9. Hydro-Drehoszillator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Größe und/oder Fläche der sich jeweils entgegengesetzt bewegenden Flossen (15) in der Summe gleich ist.
  10. Hydro-Drehoszillator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Flossen (15) der Drehstellglied-Außenteile (7, 7', 7") Trennwände angeordnet sind.
EP13725056.9A 2012-03-29 2013-03-28 Hydraulische drehantriebvorrichtung Not-in-force EP2831427B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202012101137U DE202012101137U1 (de) 2012-03-29 2012-03-29 Hydraulische Drehantriebsvorrichtung
PCT/DE2013/100116 WO2013143538A1 (de) 2012-03-29 2013-03-28 Hydraulische drehantriebvorrichtung

Publications (2)

Publication Number Publication Date
EP2831427A1 EP2831427A1 (de) 2015-02-04
EP2831427B1 true EP2831427B1 (de) 2018-07-25

Family

ID=46083399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13725056.9A Not-in-force EP2831427B1 (de) 2012-03-29 2013-03-28 Hydraulische drehantriebvorrichtung

Country Status (3)

Country Link
EP (1) EP2831427B1 (de)
DE (2) DE202012101137U1 (de)
WO (1) WO2013143538A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816537B2 (en) 2013-02-27 2017-11-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
US9163648B2 (en) 2013-02-27 2015-10-20 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
US9593696B2 (en) 2013-02-27 2017-03-14 Woodward, Inc. Rotary piston type actuator with hydraulic supply
US9234535B2 (en) 2013-02-27 2016-01-12 Woodward, Inc. Rotary piston type actuator
US9631645B2 (en) 2013-02-27 2017-04-25 Woodward, Inc. Rotary piston actuator anti-rotation configurations
US8955425B2 (en) 2013-02-27 2015-02-17 Woodward, Inc. Rotary piston type actuator with pin retention features
US9476434B2 (en) 2013-02-27 2016-10-25 Woodward, Inc. Rotary piston type actuator with modular housing
DE102013112455A1 (de) 2013-11-13 2015-05-13 C. & E. Fein Gmbh Oszillierend antreibbare Werkzeugmaschine
DE202013011687U1 (de) 2013-11-13 2015-02-23 C. & E. Fein Gmbh Oszillierend antreibbare Werkzeugmaschine
US11199248B2 (en) 2019-04-30 2021-12-14 Woodward, Inc. Compact linear to rotary actuator
WO2021207482A1 (en) 2020-04-08 2021-10-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930434A (en) * 1957-08-15 1960-03-29 Englesson John Elov Hatch operating device
NL267764A (de) * 1960-08-03
FR2278968A1 (fr) * 1973-12-21 1976-02-13 Mysliwiec Jean Actionneur a mouvement angulaire alternatif
FR2421414A1 (fr) * 1978-03-31 1979-10-26 Basfer Srl Machine operatrice automatique a asservissement en boucle
DE10210756A1 (de) 2002-03-12 2003-10-16 Sorg Reinhard Drehkolbenvorrichtung
DE202008013877U1 (de) 2008-10-20 2009-01-08 Diem, Reinhard Vorrichtung zum Erzeugen eines oszillierenden Fluidstroms sowie Vorrichtung zum Erzeugen eines oszillierenden Hubes eines Werkzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE202012101137U1 (de) 2012-04-18
WO2013143538A1 (de) 2013-10-03
EP2831427A1 (de) 2015-02-04
DE112013001736A5 (de) 2015-02-26

Similar Documents

Publication Publication Date Title
EP2831427B1 (de) Hydraulische drehantriebvorrichtung
EP0044070A1 (de) Axialkolbenpumpe für zwei Förderströme
DE19917506A1 (de) Verstellbare Verdrängerpumpe
EP0167846A1 (de) Innenachsige Drehkolbenmaschine
WO2010108582A1 (de) Vorrichtung zur veränderung des verdichtungsverhältnisses in einem verbrennungsmotor
DE2533498A1 (de) Steuerungssystem fuer eine axialkolbenmaschine zur stroemungsenergieuebertragung
DE690874C (de) Pumpe oder Motor eines Fluessigkeits- oder Druckluftwechselgetriebes
DE3152095A1 (en) Variable positive displacement fluid motor/pump apparatus
DE69902247T2 (de) Einstellbare ein- und auslassöffnungen für einen drucktransformator
WO1995008712A1 (de) Flügelzellenpumpe
DE112012003717T5 (de) Gemeinsam genutzte Ölkanäle und/oder Steuerventil für einen oder mehrere Nockenwellenversteller
DE60306198T2 (de) Hydraulikpumpe oder -motor
EP3333456B1 (de) Kolbenpumpe, kurvengetriebe für die umsetzung eines variablen hubs und verwendung eines kurvengetriebes
EP0141874A1 (de) Wegeventilvorrichtung
DE102014110703A1 (de) Ventil
DE1528984B1 (de) Drehkolbenmaschine
DE69838149T2 (de) Rotationsmaschine
WO2014079847A1 (de) Pumpvorrichtung
DE202008013877U1 (de) Vorrichtung zum Erzeugen eines oszillierenden Fluidstroms sowie Vorrichtung zum Erzeugen eines oszillierenden Hubes eines Werkzeugs
DE10037114A1 (de) Hydrotransformator
DE4032811C2 (de) Drehkolbenventil mit Nachlaufeinrichtung
DE2253252A1 (de) Axialkolben-verdraengungsmaschine
DE2201554C3 (de) Rotationskolbenmaschine
WO2018019514A1 (de) Pleuel für eine brennkraftmaschine mit variabler verdichtung
AT511166B1 (de) Fluidenergiemaschine mit zwei gegenüberliegenden zylinderrotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013010685

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F15B0007000000

Ipc: F15B0015120000

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/12 20060101AFI20180117BHEP

Ipc: F15B 15/18 20060101ALI20180117BHEP

Ipc: F15B 21/12 20060101ALI20180117BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1022081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010685

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010685

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 7

Ref country code: GB

Payment date: 20190320

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1022081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210331

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013010685

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013010685

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001