EP2826572B1 - Federwindemaschine mit einstellbarer Schnitteinrichtung - Google Patents

Federwindemaschine mit einstellbarer Schnitteinrichtung Download PDF

Info

Publication number
EP2826572B1
EP2826572B1 EP14164046.6A EP14164046A EP2826572B1 EP 2826572 B1 EP2826572 B1 EP 2826572B1 EP 14164046 A EP14164046 A EP 14164046A EP 2826572 B1 EP2826572 B1 EP 2826572B1
Authority
EP
European Patent Office
Prior art keywords
trajectory
cutting tool
cutting
drive
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14164046.6A
Other languages
English (en)
French (fr)
Other versions
EP2826572A1 (de
Inventor
Andreas Sigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wafios AG
Original Assignee
Wafios AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wafios AG filed Critical Wafios AG
Publication of EP2826572A1 publication Critical patent/EP2826572A1/de
Application granted granted Critical
Publication of EP2826572B1 publication Critical patent/EP2826572B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • B21F3/06Coiling wire into particular forms helically internally on a hollow form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F11/00Cutting wire
    • B21F11/005Cutting wire springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire

Definitions

  • the invention relates to a spring coiling machine for producing coil springs by spring winds according to the preamble of claim 1.
  • Coil springs are machine elements that are required in numerous applications in large numbers and different designs. Coil springs, which are also referred to as twisted torsion springs, are usually made of spring wire and designed depending on the load in use as tension springs or compression springs. Compression springs, in particular suspension springs, are needed for example in large quantities in the automotive industry.
  • Coil springs are nowadays commonly manufactured by spring winches using numerically controlled spring coiling machines.
  • a wire (spring wire) is supplied under the control of an NC control program by means of a feeder a forming device of the spring coiling machine and formed by means of tools of the forming device to form a coil spring.
  • the tools typically include one or more wind pins that are adjustable in position to define and, if necessary, alter the diameter of spring coils and one or more pitch tools that determine the local pitch of the spring coils at each stage of the manufacturing process.
  • a finished coil spring is separated from the supplied wire under the control of the NC control program by means of a cutter.
  • the European patent application EP 0 804 979 A1 which forms the basis for the preamble of claim 1, describes components of a cutting device for a spring coiling machine, which allow to change the cutting device to perform either a straight cut or a rotary cut, in which the cutting tool is guided along a teardrop-shaped trajectory.
  • the cutting tool is held in a carriage, which is guided linearly movable in a linear guide.
  • the linear guide is pivotally mounted.
  • a drive motor is coupled via a drive shaft, an eccentric and a connecting rod with the carriage and can thereby cause the linear reciprocation of the cutting tool.
  • the pivoting movement of the linear guide can be effected via a second drive shaft, which acts via an eccentric on the linear guide.
  • the drive motor may optionally be disengaged from the second drive shaft or engaged with the second drive shaft. If no drive connection is set, then the cutting device performs a straight cut out.
  • the linear guide executes a pendulum pivoting movement, resulting in a drop-shaped trajectory of the cutting tool from the superimposition of the linear linear motion and the pivoting movement.
  • the patent US 7,055,356 B2 describes components of a cutting device for a spring manufacturing machine constructed so that the cutting tool can be moved along a substantially elliptical trajectory.
  • the shape of the trajectory can be changed by manually shifting the position of a slider along a linear guide.
  • the Japanese patent application with publication number JP 2001-293533 A shows components of a bending device of a spring manufacturing machine.
  • a vertically movable linear slide is mounted, which can be moved by means of a drive motor via a drive shaft, an eccentric and a connecting rod up and down.
  • the carriage carries on its front side a pivotable element which carries the bending tool.
  • Another drive motor generates via a drive shaft and a universal joint with axial length compensation, a pivoting movement of this pivoting element about a pivot axis which is mounted in the slide in the carriage.
  • the position of the pivot member can be changed on the carriage to change the position of the bending tool in Federachsraum.
  • the invention has for its object to provide a flexible, user-friendly spring coiling machine, the high Produce productivity coil springs, which are optimized in terms of sectional view, location of the cutting burr and other spring parameters according to their specification.
  • the invention provides a spring coiling machine with the features of claim 1 ready.
  • Advantageous developments are specified in the dependent claims. The wording of all claims is incorporated herein by reference.
  • the spring coiling machine has a programmable trajectory adjustment system for adjusting the shape and / or position of the trajectory to be traversed by the cutting tool.
  • the trajectory adjustment system makes it possible to flexibly and easily set different cutting types.
  • a rectilinear trajectory for a straight cut
  • an elliptical or egg-shaped trajectory mirror-symmetrical to a plane of symmetry with a predeterminable height-to-width ratio
  • an asymmetrical i.
  • Non-mirror-symmetric trajectory be set with a deviating from an ellipse shape or egg shape course.
  • These settings include, depending on the application, inter alia, an extension of the range of application of the straight section or a rotation section, an optimization of unit performance (machine output), an optimization of the sectional image of the finished coil spring, optimizing the position of the cutting burr on the finished coil spring and / or one Increase the service life of the cutting tools, especially when straight cutting, achievable.
  • the claimed invention utilizes a programmable trajectory adjustment system that allows an operator to perform a wide range of different trajectories for the cutting tool without manual intervention on the mechanical components of the cutting device to specify and to program these solely by control interventions.
  • the adjustment possibilities are made possible by the cutting tool drive system having a first drive controllable by the control device for generating a first movement of the cutting tool and a second drive controllable by the control device independently of the first drive for generating a second movement superimposed on the first movement of the cutting tool.
  • Different components of the cutting motion can be adjusted in almost any proportions to each other.
  • the first movement is a linear linear movement along a first direction and the second movement is a linear motion superimposed pivotal movement transverse to the first direction. It would also be possible to superpose two rectilinear linear movements in mutually perpendicular directions.
  • the cutting tool is mounted on a carriage which is linearly reciprocable along a linear guide in a first direction, and the linear guide is fixed to a pivot member which is pivotable about a pivot axis perpendicular to the first direction, the first one pivoting Drive with the carriage and the second drive is coupled to the pivot element.
  • the possibility of the shape and / or position of the cutting path (trajectory of the cutting tool) exclusively on settings for the make electrical drives is used in a variant of the spring coiling machine to manually approach one, two, three or more edge points or interference contours when programming the trajectory in a teach process and thereby to lay the trajectory so that the trajectory in subsequent operation always remains within these Störkonturen and no collisions can occur, for example, with wind tool or pitch tool.
  • the control device is configured for a teach-in programming.
  • the configuration is preferably such that, in a programming configuration, the cutting tool is manually positionable to one or more positions around a desired trajectory, the coordinates of the positions can be stored in a memory of the controller, the trajectory is calculable using the coordinates, and the cutting tool is an operating configuration under the control of the control means along the trajectory is movable.
  • the approached positions are interference points, which are defined as points which must not exceed the trajectory.
  • the spring coiling machine is equipped with a camera system which, with its image field, essentially covers the area of the forming tools from the front, i. detected parallel to the direction of the desired spring axis.
  • the position of the interfering contours can be determined from the images acquired using image processing.
  • This definition can be manual, semi-automatic or fully automatic.
  • a "virtual teaching process” is possible in which the machine axes or the tools, in particular the cutting tool, do not have to be moved.
  • the controller is configured for teach-in programming.
  • FIG Fig. 1 shows some structural elements of a CNC coil winding machine 100 according to an embodiment of the invention.
  • the Fig. 2 to 6 show details.
  • the spring coiling machine 100 has a feeding device 110 equipped with feed rollers 112, which can feed successive wire sections of a wire 115 and guided by a straightening unit 114 wire 115 with numerically controlled feed rate profile in the horizontal direction in the region of a forming device 120. Components of the forming devices are in the FIGS. 2 and 3 clearly visible.
  • the wire is guided on the exit side through a wire guide 116.
  • the feeder can also be referred to as a feeder, according to the wire feed can also be referred to as wire feed and the feed rate as the feed speed.
  • the wire is converted to a helical spring by means of numerically controlled tools of the forming device 120.
  • the tools include two angularly offset by 90 ° wind pins 122, 124 which are aligned in the radial direction to the central axis 118 and to the position of the desired spring axis and are intended to determine the diameter of the coil spring.
  • the position of the wind pens can be changed to the default setting for the spring diameter when setting along oblique directions as well as in the horizontal direction to set up the machine for different spring diameters. These movements can be carried out with the aid of suitable electric drives under the control of the numerical control.
  • a pitch tool 130 has a tip oriented substantially perpendicular to the spring axis which engages the turns of the developing spring.
  • the pitch tool is moved by means of a numerically controlled adjustment of the corresponding machine axis parallel to the axis 118 of the developing spring (ie perpendicular to the plane of the drawing). This is therefore also referred to in this application as "slope parallel".
  • the spring manufacturing advanced wire is pushed by the pitch tool according to the position of the pitch tool in the direction parallel to the spring axis, wherein the position of the pitch tool, the local slope of the spring is determined in the corresponding section. Gradient changes are effected by axis-parallel process of the pitch tool during spring production.
  • the forming device may have another, from below vertically deliverable pitch tool with a wedge-shaped tool tip, which is introduced when using this pitch tool between adjacent turns.
  • the adjustment movements of this pitch tool are perpendicular to the axis 118. This is therefore referred to in this application as "vertical pitch”.
  • the pitch tools can be brought into engagement as needed. Typically, only one of the pitch tools is engaged in a given spring coil process.
  • a numerically controllable cutting device 150 is mounted with a cutting tool 152, which separates the produced coil spring with a defined working movement of the supplied wire supply after completion of a forming operation.
  • the cutting tool is to be moved so that the cutting tool or its cutting edge 153 moves in a direction perpendicular to the axis 118 plane along a predefined, closed trajectory (cutting path).
  • the FIGS. 2 and 3 show by way of example with dotted lines some possible trajectories BK1, BK3, which will be explained later in detail.
  • a mandrel 155 cutting mandrel
  • a cutting mandrel which is located inside the developing spring and has an inclined cutting edge 156 which cooperates with the cutting tool 152 during separation.
  • the cutting tool 152 is also referred to below as a cutting blade or cutting knife 152.
  • the trajectory of the cutting tool which is also referred to as the cutting curve, is defined here as the trajectory traversed by the cutting edge 153 of the cutting tool in the working plane of the cutting tool lying perpendicular to the central axis 118.
  • the spring winding machine or the cutting device is designed so that the cutting path, that is, the trajectory of the cutting tool in the cutting movement, can be set and changed to almost any course within a design-related work area AB.
  • This adjustment requires no operator intervention in the mechanical components. Rather, the setting on the operating unit 104 of the spring coiling machine using the control unit 102 to program.
  • the course of the trajectory can be optimally adapted to different conditions in the spring production.
  • a cutting tool drive system for this purpose, which comprises two electrical drives 165, 175 which can be controlled independently of one another via the control unit 102 (cf. Fig. 6 ) coupled to the cutting tool 152 for transfer of tool movements. Both drives are electric servo drives.
  • a first drive serves to generate a linear reciprocating first movement of the cutting tool along a first direction 154, which runs in the longitudinal direction of the cutting tool 152.
  • the second drive generates a second movement of the cutting tool superimposed on this first movement and, in the example, acts as an actuator which during the linear reciprocating movement of the cutting tool in the first direction additionally rotates the reciprocating cutting tool about an axis perpendicular to the working plane generated.
  • the width of an elliptical trajectory (measured perpendicular to the first direction 154) can be adjusted. If no pivoting movement is carried out, so that solely the linear movement remains, a straight cut is feasible. Due to the size or amplitude of the linear movement, the height of the elliptical trajectory (measured parallel to the first direction), which corresponds to the stroke in the first direction 154 in the case of straight cutting, can be set in a rotational section within the design limits. By specifying corresponding starting points of the drives, the position of the trajectory, for example the position of an elliptical trajectory, can additionally be changed in order to be able to optimally position the latter to the cutting mandrel and to the wire.
  • the first drive with its associated components should provide some flywheel mass to provide enough kinetic energy to cut.
  • the second drive should have high dynamics to allow rapid movement changes when needed.
  • FIG. 2 the rest position of the cutting tool 152 is shown.
  • Fig. 3 shows a situation in which the cutting edge 153 of the cutting tool is just at the point of impact 117 on the wire when moving in the direction of the wire.
  • the dash-dotted lines represent some possible travel paths of the cutting edge of the cutting tool, so the trajectories, the theoretical edge of the embodiment, the cutting edge theoretically leave an approximately trapezoidal work area AB, when the first drive and the second drive each perform their maximum strokes.
  • this workspace almost arbitrarily shaped and placed trajectories can be displayed, of course, the required dynamics in the implementation of the cutting movements certain trajectory, such as those with corners or sharp curves, usually not practical.
  • the 4 to 6 schematically show various views of components of the cutting device 150 from Fig. 1 which the flexible attitude allow different trajectories.
  • a substantially rectangular pivot plate 160 is rotatably mounted on a horizontal pivot axis 161.
  • the reciprocating pivotal movement is realized via a horizontally oriented pivot shaft 162, which is driven by a second drive 165, which serves as a pivot drive.
  • the pivot shaft 162 has at its front end an eccentric pin 163 which carries a link 164 which is guided in a rectangular recess of the pivot plate 160 in the longitudinal direction of the pivot plate movable.
  • a linear guide 170 is mounted, which is aligned in the longitudinal direction of the pivot plate and a carriage 171 carries, on which a tool holder 155 is attached to the cutting tool 152.
  • the cutting tool protrudes from the tool holder at the lower end.
  • a connecting rod 172 is pivotally mounted by means of a retaining bolt, which is infinitely adjustable in its length and is connected at its other end with an eccentric pin 173, which is located on the front side of a cutting shaft 174. This is driven by the first drive 175.
  • the first and the second drive which are each formed by electric servo drives, are controlled by the control device 102 in principle independently of each other, but in a coordinated manner.
  • the "coupling" of the drives does not take place mechanically, but only via software, ie via the control program. This results in a high degree of flexibility in the generation of working movements of the cutting tool.
  • the first drive 175 drives via the cutting shaft 174, the substantially vertical linear cutting movement of the carriage 171st on, who carries the cutting tool 152.
  • the driven via the second drive 165 pivot shaft 162 acts only as an actuator and is operated intermittently, so usually does not perform 360 ° rotation.
  • the cutting shaft 174 is operated continuously in the same direction of rotation and varying rotational speed in order to provide the necessary energy and the speed for the separation process.
  • the first drive 175 (cutting drive) and the second drive 165 (rotary drive) can be controlled independently of each other, so that theoretically any superpositions of the linear movement along the first direction 154 and this in the transverse direction superimposed pivoting movement are possible.
  • the pivot member 160 may be fixed in the vertical position by a locking device that can be moved by machine commands in engagement or out of engagement with the pivot arm, so that the carriage 171 moves only in the vertical direction.
  • the locking device may e.g. having an electrically or pneumatically actuated bolt, which can be retracted from the back (from the machine side) in a hole on the back of the pivot plate.
  • Fig. 7 shows an example of a view of the control unit with a graphical user interface that supports the user in the adjustment.
  • a symbol 155 'for the cutting edge currently used In the rectangular graphic representation shown on the left, a symbol 155 'for the cutting edge currently used, a symbol 130' for the holder of the currently used cutting tool and a symbol 115 'for the wire are shown at the lower edge of the image.
  • the tools 155 and 130 form the relevant interference contours to be taken into account when designing the trajectory of the cutting blade. They are in the correct position generated by the control unit 102 in the correct position and in the correct size ratio.
  • the oblique, dashed line in extension of the oblique cutting edge helps in the correct adjustment of the cutting gap.
  • the kerf is defined here as the vertical distance between the cutting edge or the dashed line and a tangent parallel thereto to the trajectory BK1 or BK4 at the point of impact 117 on the wire. For optimum cutting results, this kerf should generally be in the range between 30 and 70 ° of the wire diameter.
  • buttons for setting trajectory parameters are provided to the operator to the right of the graphical representation.
  • ELB the ellipse width between a minimum value (0) and a maximum value (90) can be adjusted by pressing the arrow keys. These values each refer to a constant height of the ellipse.
  • This horizontal displacement of the trajectory allows, inter alia, the use of identical tools (mandrel, cutting blade) at different trajectories. If only the width of the ellipse could be adjusted, the center of the trajectory would remain unchanged and the point of impact of the cutting tool on the wire would move away from the mandrel or in the direction of the mandrel. The cutting conditions would usually worsen as a result. Without lateral adjustability, theoretically, the cutting blade would have to have a slightly different cutting geometry for each trajectory.
  • the underlying N button adjusts the slope of the trajectory.
  • the underlying button W causes a shift of the trajectory as a whole in the vertical direction.
  • the lower button D is used to enter the value for the current wire diameter.
  • Other configurations which in effect provide the same, equivalent or similar adjustment possibilities are possible.
  • the setting options are given by way of example only. Individual settings can be completely eliminated in variants. Adjustments can be implemented in different ways in practice become. For example, some or all parameters may be entered directly into the control software so that a user interface with sliders or the like is not necessary.
  • the vertical adjustment of the trajectory is usually not programmed, but can be realized by manual adjustment of the length of the connecting rod. It is also possible to store a number of predefined orbital base types in a memory of the control device, which are optimized, for example, with regard to production speed or other parameters. These can then be called up by the operator and, if necessary, fine-tuned by changing individual parameters and adapted to the conditions of the spring coil process currently being set up.
  • the system can be set for a straight cut ( Fig. 8A ), in which the cutting tool only moves vertically and a cutting tool and a cutting pin are each selected with a vertical cutting edge.
  • the ellipse width and the inclination are each set to zero for this purpose.
  • the wire feed is stopped for the cut.
  • this type of cut typically produces a cutting burr SG, which is directed inward in the direction of the center axis of the spring.
  • the system can also be set to a rotary cut or a rotating elliptical cut ( Fig. 8B ).
  • the cutting tool moves on an elliptical trajectory with horizontal and vertical motion component, wherein a fixed height-to-width ratio is set.
  • the cutting tool used and the cutting mandrel used in this case should have an inclined cutting edge or chamfer.
  • the cutting burr is generally directed in the direction of the wire's winder, so that the spring's inside diameter is not or hardly limited. For this purpose, only the ellipse width ELB is set to the desired value.
  • the embodiment makes this also available in conventional spring coiling machines frequently available cut types with an enlarged compared to the prior art spectrum with simplified adjustment.
  • the above-described straight cut (vertical tool movement in conjunction with knife and cutting cutter with vertical cut edge) can be modified to a modified straight cut ( Fig. 8C ).
  • a cutting tool and a cutting edge with a vertical cutting edge are also used.
  • the cutting tool does not move only vertically, but also has a slight horizontal component of motion, resulting in a narrow elliptical shape (with adjustable height-to-width ratio).
  • there is a cutting ridge which is directed primarily inward towards the spring center axis.
  • Typical ratios between height and width of the substantially elliptical trajectory may, for example, be in the range between 5: 1 and 30: 1, in particular in the range between 12: 1 and 25: 1.
  • the spring coiling machine operates with a continuous wire feed or wire feed in conjunction with a flying rotating cut.
  • the cutting tool moves with a horizontal and vertical component of motion on an elliptical trajectory with a relatively wide ellipse, ie smaller height-to-width ratio.
  • the cutting tool and cutting mandrel each have corresponding slanted cut edges.
  • vertical slope lower pitch tool
  • the circulation may be elliptical or circular, depending on the construction.
  • the rotational speed is usually non-uniform.
  • the wire In this continuous flywheel continuous wire feed mode, the wire is continuously advanced or retracted at a constant or varying finite feed rate. So there is no stoppage of wire feed over the production of many consecutive coil springs. This increases the piece performance. If the wire feed is running constantly, the wire supply, which is held on a reel, for example, not constantly accelerated and decelerated. This also applies to the drives of the feeder and the tools. As a result, the energy requirement per spring is reduced in comparison with methods with a standing cut, in which the wire feed for the cutting process must be stopped. In addition, there is no jerky pull on the wire and no stick-slip effect, whereby the quality of the springs produced can be significantly increased compared to methods with a standing cut.
  • the moving speed of the cutting tool along the trajectory is automatically coordinated with the drawing speed of the wire in such a manner that the shape of the trajectory is adapted to the rotational speed of the cutting tool such that the moving speed of the cutting edge in the horizontal direction (FIG. substantially parallel to the wire feed direction) in a time interval beginning before the penetration of the cutting edge into the wire until the cut contact between the cutting tool and the wire is greater than the wire feed speed.
  • the time interval in which the cutting tool is in engagement with the wire as "wire collision area”
  • the cutting tool should be accelerated so that its horizontal component (parallel to the wire feed speed) is greater than that of the wire before the beginning of the cut and only after leaving the wire, the wire speed falls below again. Therefore, in this mode usually flat elliptical trajectories are to be set with a relatively large width and correspondingly large horizontal component of the movement speed.
  • the elliptical orbits of the cutting tool described here by way of example represent only a few special forms of the theoretically possible Trajectories.
  • An example of an asymmetrical optimized trajectory shape with finite height-width ratio is the curve BK3 in Fig. 2 This results in the same advantages during the cut as in an elliptical curved path BK1, but less space is required on the side of the pitch tool 130, so that such trajectory shapes can be particularly useful in cramped conditions in the field of forming tools.
  • the cutting path can for example be placed so that the flattened part runs with a largely straight course parallel to the chamfer on the cutting edge.
  • many useful unsymmetrical trajectory shapes can be adjusted via suitable deformations.
  • the inclination of the cutting edge on the wire can be determined. Furthermore, the inclination or position of the remaining chisel can be determined via these settings.
  • the cut edge is spared or prevented outbreaks, since the cutting tool is relieved by the lateral moving away from the wire edge after completion of the cut of lateral lateral forces caused by the wire.
  • Fig. 9 is shown another constructive variant for components of the cutting device, which also all the above-described settings offers.
  • a tool holder cutting tool 952 mounted on a carriage 971, which is guided by a linear guide 970 linearly movable.
  • the linear guide is mounted on a plate-shaped pivot member 960 which is rotatably mounted on a horizontal pivot axis which is fixed to the vertical front wall of the spring coiling machine.
  • a first drive 975 drives the horizontal cutting shaft 974, which has on its front side an eccentric pin, which is rotatably mounted in a gate.
  • the gate is slidably guided perpendicular to the longitudinal direction of the carriage in a recess of the carriage 971.
  • a rotation of the cutting shaft causes in this way an up and down movement of the carriage 971 along the first direction 954, ie in the longitudinal direction of the pivot member 960.
  • the reciprocating pivotal movement of the pivot member is effected by the second drive 965, the pivot shaft 962th intermittently or reciprocally driving.
  • This has on its front side an eccentric pin, which is rotatably mounted in a gate, which is movably guided in a recess of the pivot member 960 in its longitudinal direction.
  • the pivot shaft 962 is disposed above the cutting shaft 974.
  • the arrangement in the embodiment of the 4 to 6 conversely, there is the cutting shaft above the pivot shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Description

  • Die Erfindung betrifft eine Federwindemaschine zur Herstellung von Schraubenfedern durch Federwinden gemäß dem Oberbegriff von Anspruch 1.
  • Schraubenfedern sind Maschinenelemente, die in zahlreichen Anwendungsbereichen in großen Stückzahlen und unterschiedlichen Ausgestaltungen benötigt werden. Schraubenfedern, die auch als gewundene Torsionsfedern bezeichnet werden, werden üblicherweise aus Federdraht herstellt und je nach der bei der Nutzung vorliegenden Belastung als Zugfedern oder Druckfedern ausgelegt. Druckfedern, insbesondere Tragfedern, werden beispielsweise in großen Mengen im Automobilbau benötigt.
  • Schraubenfedern werden heutzutage üblicherweise durch Federwinden mit Hilfe numerisch gesteuerter Federwindemaschinen hergestellt. Dabei wird ein Draht (Federdraht) unter der Steuerung durch ein NC-Steuerprogramm mittels einer Zuführeinrichtung einer Umformeinrichtung der Federwindemaschine zugeführt und mit Hilfe von Werkzeugen der Umformeinrichtung zu einer Schraubenfeder umgeformt. Zu den Werkzeugen gehören in der Regel ein oder mehrere bezüglich ihrer Stellung einstellbare Windestifte zur Festlegung und ggf. zur Veränderung des Durchmessers von Federwindungen und ein oder mehrere Steigungswerkzeuge, durch die die lokale Steigung der Federwindungen in jeder Phase des Fertigungsprozesses bestimmt wird. Nach Abschluss einer Umformoperation wird eine fertiggestellte Schraubenfeder unter der Steuerung durch das NC-Steuerprogramm mittels einer Schnitteinrichtung von dem zugeführten Draht abgetrennt.
  • Bei der Federherstellung ist häufig die Art des Schnitts von großer Bedeutung, da sie bestimmte Eigenschaften der fertigen Schraubenfeder mitbestimmt. Im Allgemeinen unterscheidet man drei Arten von Schnittverfahren, nämlich den sogenannten "Geradschnitt", den "Rotationsschnitt" und den "Torsionsschnitt". Beim Geradschnitt führt ein Schnittwerkzeug beim Trennen des Drahtes eine geradlinig lineare Schnittbewegung aus. Beim Rotationsschnitt wird die Schnittkante des Schnittwerkzeugs zum Trennen des Drahts entlang einer im Wesentlichen elliptischen Bahnkurve geführt. Beim Torsionsschnitt wird der Draht mechanisch so belastet, dass er durch eine Torsionsbeanspruchung abgetrennt werden kann. Durch Torsionsschnitt kann man einen gratfreien Schnitt erhalten. Bei den anderen beiden Schnittarten werden in der Regel an der Schnittfläche Schnittgrate erzeugt, die in manchen Fällen vor der weiteren Verwendung der Schraubenfedern durch Bürsten, Strahlen oder Schleifen beseitigt werden müssen.
  • Die europäische Patentanmeldung EP 0 804 979 A1 , welche die Basis für den Oberbegriff des Anspruchs 1 bildet, beschreibt Komponenten einer Schnitteinrichtung für eine Federwindemaschine, die es erlauben, die Schnitteinrichtung umzustellen, um wahlweise einen Geradschnitt oder einen Rotationsschnitt durchzuführen, bei dem das Schnittwerkzeug entlang einer tropfenförmigen Bahnkurve geführt wird. Das Schnittwerkzeug wird in einem Schlitten gehalten, der in einer Linearführung linear beweglich geführt ist. Die Linearführung ist schwenkbar gelagert. Ein Antriebsmotor ist über eine Antriebswelle, einen Exzenter und ein Pleuel mit dem Schlitten gekoppelt und kann dadurch die lineare Hin- und Herbewegung des Schnittwerkzeugs bewirken. Die Schwenkbewegung der Linearführung kann über eine zweite Antriebswelle bewirkt werden, die über einen Exzenter an der Linearführung angreift. Der Antriebsmotor kann wahlweise außer Eingriff mit der zweiten Antriebswelle oder in Eingriff mit der zweiten Antriebswelle stehen. Ist keine Antriebsverbindung eingestellt, so führt die Schnitteinrichtung einen Geradschnitt aus. Bei Ankopplung der zweiten Antriebswelle an den Antriebsmotor führt die Linearführung eine pendelnde Schwenkbewegung aus, so dass sich aus der Überlagerung der geradlinigen Linearbewegung und der Schwenkbewegung eine tropfenförmige Bahnkurve des Schnittwerkzeugs ergibt.
  • Das Patent US 7,055,356 B2 beschreibt Komponenten einer Schnitteinrichtung für eine Federherstellungsmaschine, die so konstruiert sind, dass das Schnittwerkzeug entlang einer im Wesentlichen elliptischen Bahnkurve bewegt werden kann. Die Form der Bahnkurve kann durch manuelle Verschiebung der Position eines Gleitelements entlang einer Linearführung geändert werden.
  • Die japanische Patentanmeldung mit Veröffentlichungsnummer JP 2001-293533 A zeigt Komponenten einer Biegeeinrichtung einer Federherstellungsmaschine. An der Vorderwand der Maschine ist ein in vertikaler Richtung linear beweglicher Schlitten angebracht, der mithilfe eines Antriebsmotors über eine Antriebswelle, einen Exzenter und ein Pleuel auf und ab bewegt werden kann. Der Schlitten trägt an seiner Vorderseite ein verschwenkbares Element, welches das Biegewerkzeug trägt. Ein weiterer Antriebsmotor erzeugt über eine Antriebswelle und ein Kardangelenk mit axialem Längenausgleich eine Schwenkbewegung dieses Schwenkelements um eine Schwenkachse, die in dem Gleitelement im Schlitten gelagert ist. Über eine weitere Welle mit einem Kardangelenk kann die Position des Schwenkelements auf dem Schlitten verändert werden, um die Position des Biegewerkzeugs in Federachsrichtung zu verändern.
  • AUFGABE UND LÖSUNG
  • Der Erfindung liegt die Aufgabe zugrunde, eine flexibel einsetzbare, bedienerfreundliche Federwindemaschine bereitzustellen, die mit hoher Produktivität Schraubenfedern herstellen kann, welche hinsichtlich Schnittbild, Lage des Schnittgrats und anderer Federparameter entsprechend ihrer Spezifikation optimiert sind.
  • Zur Lösung dieser Aufgabe stellt die Erfindung eine Federwindemaschine mit den Merkmalen von Anspruch 1 bereit. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Wortlaut sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.
  • Die Federwindemaschine gemäß der beanspruchten Erfindung hat ein programmierbares Bahnkurven-Einstellsystem zur Einstellung der Form und/oder Lage der von dem Schnittwerkzeug zu durchlaufenden Bahnkurve. Das Bahnkurven-Einstellsystem erlaubt es, flexibel und einfach unterschiedliche Schnittarten einzustellen. Dabei kann wahlweise eine geradlinige Bahnkurve (für einen Geradschnitt), eine zu einer Symmetrieebene spiegelsymmetrische elliptische oder eiförmige Bahnkurve mit einem vorgebbaren Verhältnis von Höhe zu Breite oder eine unsymmetrische, d.h. nicht-spiegelsymmetrische Bahnkurve mit einem von einer Ellipsenform oder Eiform abweichenden Verlauf eingestellt werden. Durch diese Einstellmöglichkeiten sind je nach Anwendungsfall unter anderem eine Erweiterung des Einsatzspektrums des Geradschnitts oder eines Rotationsschnitts, eine Optimierung der Stückleistung (Maschinenausbringung), eine Optimierung des Schnittbilds an der fertigen Schraubenfeder, eine Optimierung der Lage des Schnittgrats an der fertigen Schraubenfeder und/oder eine Erhöhung der Standzeit der Schnittwerkzeuge, insbesondere beim Geradschnitt, erzielbar.
  • Die beanspruchte Erfindung nutzt ein programmierbares Bahnkurven-Einstellsystem, wodurch es einem Bediener möglich ist, ohne manuelle Eingriffe an den mechanischen Komponenten der Schnitteinrichtung ein großes Spektrum unterschiedlicher Bahnkurven für das Schnittwerkzeug vorzugeben und diese allein durch Steuerungseingriffe zu programmieren.
  • Bei bevorzugten Ausführungsformen werden die Einstellmöglichkeiten dadurch ermöglicht, dass das Schnittwerkzeug-Antriebssystem einen durch die Steuereinrichtung ansteuerbaren ersten Antrieb zur Erzeugung einer ersten Bewegung des Schnittwerkzeugs und einen unabhängig von dem ersten Antrieb durch die Steuereinrichtung ansteuerbaren zweiten Antrieb zur Erzeugung einer der ersten Bewegung überlagerten zweiten Bewegung des Schnittwerkzeugs aufweist. Unterschiedliche Komponenten der Schnittbewegung können dadurch in fast beliebigen Verhältnissen zueinander eingestellt werden.
  • Vorzugsweise ist die erste Bewegung eine geradlinige Linearbewegung entlang einer ersten Richtung und die zweite Bewegung ist eine der Linearbewegung überlagerte Schwenkbewegung quer zur ersten Richtung. Es wäre auch möglich, zwei geradlinige Linearbewegungen in zueinander senkrechten Richtungen zu überlagern.
  • Bei einer Variante ist das Schnittwerkzeug an einem Schlitten befestigt, der entlang einer Linearführung in einer ersten Richtung geradlinig hin und her verfahrbar ist, und die Linearführung ist an einem Schwenkelement befestigt, das um eine senkrecht zur ersten Richtung verlaufende Schwenkachse schwenkbar ist, wobei der erste Antrieb mit dem Schlitten und der zweite Antrieb mit dem Schwenkelement gekoppelt ist. Hierdurch ist eine besonders steife Anordnung gegeben, die auch bei starken Schnittkräften nur relativ geringe Kippmomente erzeugt. Es wäre auch möglich, ein Schwenkelement auf einem linear verfahrbaren Schlitten zu befestigen.
  • Die Möglichkeit, die Form und/oder Lage der Schnittbahn (Bahnkurve des Schnittwerkzeuges) ausschließlich über Einstellungen für die elektrischen Antriebe vorzunehmen, wird bei einer Variante der Federwindemaschine dazu genutzt, beim Programmieren der Bahnkurve in einem Teach-Prozess manuell einen, zwei, drei oder mehr Randpunkte bzw. Störkonturen anzufahren und dadurch die Bahnkurve so zu legen, dass die Bahnkurve im späteren Betrieb immer innerhalb dieser Störkonturen bleibt und keine Kollisionen beispielsweise mit Windewerkzeug oder Steigungswerkzeug vorkommen können. Dazu ist die Steuereinrichtung für eine Teach-in Programmierung konfiguriert. Die Konfiguration ist vorzugsweise derart, dass in einer Programmierungskonfiguration das Schnittwerkzeug manuell an eine oder mehrere Positionen im Bereich einer gewünschten Bahnkurve positionierbar ist, die Koordinaten der Positionen in einem Speicher der Steuereinrichtung speicherbar sind, unter Verwendung der Koordinaten eine Bahnkurve berechenbar ist und das Schnittwerkzeug in einer Betriebskonfiguration unter der Steuerung durch die Steuereinrichtung entlang der Bahnkurve bewegbar ist. Üblicherweise handelt es sich bei den angefahrenen Positionen um Störpunkte, die als Punkte definiert werden, welche die Bahnkurve nicht überschreiten darf.
  • In einer Variante ist die Federwindemaschine mit einem Kamerasystem ausgestattet, das mit seinem Bildfeld den Bereich der Umformwerkzeuge im Wesentlichen von vorne, d.h. parallel zur Richtung der gewünschten Federachse erfasst. Aus den damit erfassten Bildern kann mit Mitteln der Bildverarbeitung die Position der Störkonturen bestimmt werden. Diese Festlegung kann manuell, halbautomatisch oder vollautomatisch erfolgen. Dadurch ist ein "virtueller Teach-Prozess" möglich, bei dem die Maschinenachsen bzw. die Werkzeuge, insbesondere das Schnittwerkzeug, nicht bewegt werden müssen. Auch in diesem Fall ist die Steuereinrichtung für eine Teach-in Programmierung konfiguriert.
  • Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
    • Fig. 1 zeigt eine schematische Übersichtsdarstellung einer Ausführungsform einer Federwindemaschine;
    • Fig. 2 und 3 zeigen vergrößerte Ansichten von Komponenten der Umformeinrichtung und verschiedene einstellbare Bahnkurven für das Schnittwerkzeug;
    • Fig. 4 bis 6 zeigen schematisch verschiedene Ansichten von Komponenten der Schnitteinrichtung aus Fig. 1;
    • Fig. 7 zeigt eine Ansicht einer grafischen Benutzeroberfläche, die den Benutzer bei der Einstellung der Bahnkurve unterstützt;
    • Fig. 8 zeigt in 8A bis 8E schematisch verschiedene Schnittarten; und
    • Fig. 9 zeigt eine Draufsicht auf Komponenten einer anderen Ausführungsform einer Schnitteinrichtung.
    DETAILLIERTE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
  • Die schematische Übersichtsdarstellung in Fig. 1 zeigt einige konstruktive Elemente einer CNC-Federwindemaschine 100 gemäß einer Ausführungsform der Erfindung. Die Fig. 2 bis 6 zeigen Details.
  • Die Federwindemaschine 100 hat eine mit Zuführrollen 112 ausgestattete Zuführeinrichtung 110, die aufeinanderfolgende Drahtabschnitte eines von einem Drahtvorrat kommenden und durch eine Richteinheit 114 geführten Drahtes 115 mit numerisch gesteuertem Vorschubgeschwindigkeitsprofil in horizontaler Richtung in den Bereich einer Umformeinrichtung 120 zuführen kann. Komponenten der Umformeinrichtungen sind in den Fig. 2 und 3 gut zu erkennen. Der Draht wird austrittsseitig durch eine Drahtführung 116 geführt. Die Zuführeinrichtung kann auch als Einzugseinrichtung bezeichnet werden, entsprechend kann der Drahtvorschub auch als Drahteinzug und die Vorschubgeschwindigkeit als Einzugsgeschwindigkeit bezeichnet werden.
  • Der Draht wird mit Hilfe von numerisch gesteuerten Werkzeugen der Umformeinrichtung 120 zu einer Schraubenfeder umgeformt. Zu den Werkzeugen gehören zwei um 90° winkelversetzt angeordnete Windestifte 122, 124, die in Radialrichtung zur Mittelachse 118 bzw. zur Lage der gewünschten Federachse ausgerichtet sind und dafür vorgesehen sind, den Durchmesser der Schraubenfeder zu bestimmen. Die Position der Windestifte kann zur Grundeinstellung für den Federdurchmesser beim Einrichten entlang schräg verlaufender Richtungen sowie in horizontaler Richtung verändert werden, um die Maschine für unterschiedliche Federdurchmesser einzurichten. Diese Bewegungen können mit Hilfe geeigneter elektrischer Antriebe unter Kontrolle der numerischen Steuerung vorgenommen werden.
  • Ein Steigungswerkzeug 130 hat eine im Wesentlichen senkrecht zur Federachse ausgerichtete Spitze, die neben den Windungen der sich entwickelnden Feder eingreift. Das Steigungswerkzeug ist mit Hilfe eines numerisch gesteuerten Verstellantriebs der entsprechenden Maschinenachse parallel zur Achse 118 der sich entwickelnden Feder (d.h. senkrecht zur Zeichnungsebene) verfahrbar. Dies wird in dieser Anmeldung daher auch als "Steigung parallel" bezeichnet. Der bei der Federherstellung vorgeschobene Draht wird vom Steigungswerkzeug entsprechend der Position des Steigungswerkzeugs in Richtung parallel zur Federachse abgedrängt, wobei durch die Position des Steigungswerkzeuges die lokale Steigung der Feder im entsprechenden Abschnitt bestimmt wird. Steigungsänderungen werden durch achsparalleles Verfahren des Steigungswerkzeugs während der Federherstellung bewirkt.
  • Die Umformeinrichtung kann ein weiteres, von unten vertikal zustellbares Steigungswerkzeug mit einer keilförmigen Werkzeugspitze haben, die bei Einsatz dieses Steigungswerkzeuges zwischen benachbarte Windungen eingeführt wird. Die Verstellbewegungen dieses Steigungswerkzeuges verlaufen senkrecht zur Achse 118. Dies wird in dieser Anmeldung daher auch als "Steigung senkrecht" bezeichnet. Die Steigungswerkzeuge können je nach Bedarf zum Eingriff gebracht werden. Typischerweise ist bei einen bestimmten Federwindeprozess nur eines der Steigungswerkzeuge im Eingriff.
  • Oberhalb der Federachse ist eine numerisch steuerbare Schnitteinrichtung 150 mit einem Schnittwerkzeug 152 angebracht, das nach Abschluss einer Umformoperation die hergestellte Schraubenfeder mit einer definierten Arbeitsbewegung vom zugeführten Drahtvorrat abtrennt. Das Schnittwerkzeug wird dazu so bewegt, dass sich das Schnittwerkzeug bzw. seine Schnittkante 153 in einer senkrecht zur Achse 118 liegenden Ebene entlang einer vordefinierten, geschlossenen Bahnkurve (Schnittbahn) bewegt. Die Fig. 2 und 3 zeigen beispielhaft mit strichpunktierten Linien einige mögliche Bahnkurven BK1, BK3, die später noch im Detail erläutert werden.
  • Als Gegenelement für das Schnittwerkzeug dient ein Dorn 155 (Abschneidedorn), der sich im Inneren der sich entwickelnden Feder befindet und eine schräge Schneidkante 156 aufweist, die beim Abtrennen mit dem Schneidwerkzeug 152 zusammenwirkt.
  • Das Schnittwerkzeug 152 wird im Folgenden auch als Schneidmesser oder Schnittmesser 152 bezeichnet. Die Bahnkurve des Schnittwerkzeugs, die auch als Schnittkurve bezeichnet wird, ist hier definiert als diejenige Bahnkurve, die von der Schnittkante 153 des Schnittwerkzeugs in der senkrecht zur Mittelachse 118 liegenden Arbeitsebene des Schnittwerkzeugs zurückgelegt wird.
  • Die Federwindemaschine bzw. die Schnitteinrichtung ist so ausgelegt, dass die Schnittbahn, das heißt die Bahnkurve des Schnittwerkzeugs bei der Schnittbewegung, innerhalb eines konstruktiv bedingten Arbeitsbereichs AB auf fast beliebige Verläufe eingestellt und verändert werden kann. Diese Einstellung erfordert keinen Eingriff eines Bedieners in die mechanischen Komponenten. Vielmehr ist die Einstellung über die Bedieneinheit 104 der Federwindemaschine mithilfe der Steuereinheit 102 zu programmieren. Der Verlauf der Bahnkurve kann dadurch optimal an unterschiedliche Gegebenheiten bei der Federherstellung angepasst werden.
  • Mithilfe eines frei programmierbaren Bahnkurven-Einstellsystems ist es dabei möglich, die Form und/oder die Lage der von dem Schnittwerkzeug zu durchlaufenden Bahnkurve durch Programmierung der Steuereinheit 102 vorzugeben. Dabei ist es möglich, zusätzlich zu den auch bei herkömmlichen Federwindemaschinen gelegentlich einstellbaren Schnittverfahren des Geradschnitts (Schnittwerkzeug wird entlang einer geradlinigen Bahnkurve hin- und herbewegt) und dem sogenannten Rotationsschnitt, bei dem das Schnittwerkzeug zum Trennen des Drahtes eine zu einer Symmetrieebene spiegelsymmetrische elliptische oder eiförmige Bahnkurve durchläuft, auch unsymmetrische Verläufe der Bahnkurve einzustellen, die einen von einer Ellipsenform oder Eiform abweichenden, nicht-spiegelsymmetrischen Verlauf haben.
  • Bei der Ausführungsform ist hierzu ein Schnittwerkzeug-Antriebssystem vorgesehen, das zwei über die Steuereinheit 102 unabhängig voneinander steuerbare elektrische Antriebe 165, 175 umfasst (vgl. Fig. 6), die zur Übertragung von Werkzeugbewegungen mit dem Schnittwerkzeug 152 gekoppelt sind. Beide Antriebe sind elektrische Servoantriebe. Ein erster Antrieb dient zur Erzeugung einer linear hin- und hergehenden ersten Bewegung des Schnittwerkzeuges entlang einer ersten Richtung 154, die in Längsrichtung des Schnittwerkzeugs 152 verläuft. Der zweite Antrieb erzeugt eine dieser ersten Bewegung überlagerte zweite Bewegung des Schnittwerkzeugs und fungiert im Beispielsfall als Stellantrieb, der während der linearen Hin- und Herbewegung des Schnittwerkzeugs in der ersten Richtung zusätzlich eine Schwenkbewegung des hin- und herbewegten Schnittwerkzeugs um eine senkrecht zur Arbeitsebene verlaufende Achse erzeugt. Durch die Überlagerung der Schwenkbewegung mit der linear hin- und hergehenden, im Wesentlichen vertikal verlaufenden Bewegung können variable Bahnkurven für das Schnittwerkzeug realisiert werden.
  • Durch die Größe bzw. Amplitude der Schwenkbewegung kann beispielsweise die Breite einer elliptischen Bahnkurve (gemessen senkrecht zur ersten Richtung 154) eingestellt werden. Wird keine Schwenkbewegung ausgeführt, so dass alleine die Linearbewegung verbleibt, ist ein Geradschnitt durchführbar. Durch die Größe bzw. Amplitude der Linearbewegung kann bei einem Rotationsschnitt innerhalb der konstruktiv vorgegebenen Grenzen die Höhe der elliptischen Bahnkurve (gemessen parallel zur ersten Richtung) eingestellt werden, die beim Geradschnitt dem Hub in der ersten Richtung 154 entspricht. Durch Vorgabe entsprechender Startpunkte der Antriebe kann zusätzlich die Lage der Bahnkurve, zum Beispiel die Lage einer elliptischen Bahnkurve, verändert werden, um diese optimal zum Abschneidedorn und zum Draht positionieren zu können.
  • Der erste Antrieb mit seinen zugehörigen Komponenten sollte eine gewisse Schwungmasse bereitstellen, damit genügend kinetische Energie für den Schnitt bereitsteht. Der zweite Antrieb sollte eine hohe Dynamik aufweisen, um bei Bedarf schnelle Bewegungsänderungen zu ermöglichen.
  • Zur weiteren Erläuterung ist in Fig. 2 die Ruheposition des Schnittwerkzeugs 152 dargestellt. Fig. 3 zeigt eine Situation, bei der sich die Schnittkante 153 des Schnittwerkzeugs bei der Bewegung in Richtung des Drahtes gerade am Auftreffpunkt 117 auf den Draht befindet. Die strichpunktierten Linien stellen einige mögliche Fahrwege der Schnittkante des Schnittwerkzeugs, also die Bahnkurven, dar. Die Schnittkante kann aufgrund der mechanischen Gegebenheiten des Ausführungsbeispiels theoretisch einen etwa trapezförmigen Arbeitsbereich AB abfahren, wenn der erste Antrieb und der zweite Antrieb jeweils ihre maximalen Hübe ausführen. Innerhalb dieses Arbeitsbereiches können fast beliebig geformte und platzierte Bahnkurven abgebildet werden, wobei natürlich die erforderliche Dynamik bei der Durchführung des Schnittbewegungen bestimmte Bahnkurvenverläufe, beispielsweise solche mit Ecken oder scharfen Kurven, meist nicht praktikabel macht. Innerhalb des Arbeitsbereiches können jedoch schmale oder breite Ellipsen, gerade Bahnen, schräge Bahnen, Formkurven, seitlich versetzte Ellipsen oder andere Bahnkurven erzeugt werden. Somit kann der Verlauf der Schnittbahn steuerungstechnisch optimal auf die Gegebenheiten angepasst werden.
  • Einige Beispiele für besonders vorteilhafte Bahnkurven unter unterschiedlichen Produktionsbedingungen werden unten näher erläutert, z.B. im Zusammenhang mit Fig. 8.
  • Die Fig. 4 bis 6 zeigen schematisch verschiedene Ansichten von Komponenten der Schnitteinrichtung 150 aus Fig. 1, welche die flexible Einstellung unterschiedlicher Bahnkurven ermöglichen. An der vertikalen Vorderwand 106 der Federwindemaschine 100 ist eine im Wesentlichen rechteckförmige Schwenkplatte 160 drehbar auf einer horizontalen Schwenkachse 161 gelagert. Die hin- und hergehende Schwenkbewegung wird über eine horizontal ausgerichtete Schwenkwelle 162 realisiert, die über einen zweiten Antrieb 165 angetrieben wird, welcher als Schwenkantrieb dient. Die Schwenkwelle 162 weist an ihrem vorderen Ende einen Exzenterbolzen 163 auf, der eine Kulisse 164 trägt, welche in einer Rechteck-Ausnehmung der Schwenkplatte 160 in Längsrichtung der Schwenkplatte beweglich geführt ist.
  • Auf der der Schwenkachse 161 abgewandten Vorderseite der Schwenkplatte 160 ist eine Linearführung 170 angebracht, die in Längsrichtung der Schwenkplatte ausgerichtet ist und einen Schlitten 171 trägt, an dem ein Werkzeughalter 155 für das Schneidwerkzeug 152 befestigt ist. Das Schneidwerkzeug ragt am unteren Ende aus dem Werkzeughalter heraus. Am oberen Ende ist mittels eines Haltebolzens ein Pleuel 172 schwenkbar angebracht, das in seiner Länge stufenlos verstellbar ist und an seinem anderen Ende mit einem Exzenterbolzen 173 verbunden ist, der sich an der Stirnseite einer Schnittwelle 174 befindet. Diese wird über den ersten Antrieb 175 angetrieben.
  • Der erste und der zweite Antrieb, die jeweils durch elektrische Servoantriebe gebildet werden, werden über die Steuereinrichtung 102 prinzipiell unabhängig voneinander, aber in koordinierter Weise, angesteuert. Die "Kopplung" der Antriebe erfolgt dabei nicht mechanisch, sondern ausschließlich über Software, also über das Steuerungsprogramm. Dadurch ergibt sich eine hohe Flexibilität bei der Generierung von Arbeitsbewegungen des Schnittwerkzeugs.
  • Der erste Antrieb 175 treibt über die Schnittwelle 174 die im Wesentlichen vertikal verlaufende lineare Schnittbewegung des Schlittens 171 an, der das Schnittwerkzeug 152 trägt. Die über den zweiten Antrieb 165 angetriebene Schwenkwelle 162 fungiert dagegen lediglich als Stellantrieb und wird intermittierend betätigt, führt also in der Regel keine 360°-Drehung aus. Die Schnittwelle 174 wird dagegen durchgehend in gleicher Drehrichtung und variierender Drehgeschwindigkeit betrieben, um die notwendige Energie und die Geschwindigkeit für den Trennvorgang bereitzustellen. Es wäre jedoch auch möglich, auch den Schnittantrieb (erster Antrieb) intermittierend zu betätigen. Dies kann beispielsweise sinnvoll sein, wenn die Höhe der Bahnkurve nach oben gegenüber der maximal erreichbaren Höhe reduziert werden soll.
  • Der erste Antrieb 175 (Schnittantrieb) und der zweite Antrieb 165 (Schwenkantrieb) sind unabhängig voneinander ansteuerbar, so dass theoretisch beliebige Überlagerungen der Linearbewegung entlang der ersten Richtung 154 und der dieser in Querrichtung überlagerten Schwenkbewegung möglich sind.
  • Das Schwenkelement 160 kann durch eine Arretiereinrichtung, die über Maschinenbefehle in Eingriff oder außer Eingriff mit dem Schwenkarm verfahren werden kann, in der vertikalen Position fixiert werden, so dass sich der Schlitten 171 ausschließlich in vertikaler Richtung bewegt. Die Arretiereinrichtung kann z.B. einen elektrisch oder pneumatisch betätigbaren Bolzen aufweisen, der von hinten (von der Maschinenseite) in eine Bohrung an der Rückseite der Schwenkplatte eingefahren werden kann. Durch die Arretierung wird die Anordnung hinsichtlich der Schwenkbewegung spielfrei und es ergibt sich für den vertikalen Schnitt eine Versteifung der Konstruktion, so dass große Schnittkräfte ohne übermäßige Belastung der Komponenten der Schnitteinrichtung übertragen werden können.
  • Das Bahnkurven-Einstellsystem der Ausführungsform ist sehr bedienerfreundlich ausgelegt, so dass die komplexen Einstellungen für die richtige Bahnkurve intuitiv auch von weniger erfahrenen Bedienern vorgenommen werden können. Fig. 7 zeigt beispielhaft eine Ansicht der Bedieneinheit mit einer grafischen Benutzeroberfläche, die den Benutzer bei den Einstellarbeiten unterstützt. In der links gezeigten, rechteckförmigen Grafik-Darstellung sind am unteren Bildrand ein Symbol 155' für den aktuell verwendeten Abschneidedorn, ein Symbol 130' für den Halter des aktuell verwendeten Steigungswerkzeugs sowie ein Symbol 115' für den Draht dargestellt. Die Werkzeuge 155 und 130 bilden im Beispielsfall die relevanten Störkonturen, die bei der Auslegung der Bahnkurve des Schnittmessers zu berücksichtigen sind. Sie sind in der durch die Steuereinheit 102 generierten Grafik lagerichtig und im richtigen Größenverhältnis dargestellt. Die schräg verlaufende, gestrichelte Linie in Verlängerung der schrägen Schnittkante (Fase am Abschneidedorn) hilft bei der richtigen Einstellung des Schnittspalts. Der Schnittspalt ist hier definiert als der senkrechte Abstand zwischen der Schneidkante bzw. der gestrichelten Linie und einer parallel dazu verlaufenden Tangente an die Bahnkurve BK1 oder BK4 im Auftreffpunkt 117 am Draht. Für optimale Schnittergebnisse sollte dieser Schnittspalt in der Regel im Bereich zwischen 30 und 70° des Drahtdurchmessers liegen.
  • An der Bedieneroberfläche werden dem Bediener rechts neben der grafischen Darstellung Schaltflächen zur Einstellung von Bahnkurvenparametern bereitgestellt. Mit der oberen Schaltfläche ELB lässt sich über Betätigung der Pfeil-Tasten die Ellipsenbreite zwischen einem Minimalwert (0) und einem Maximalwert (90) einstellen. Diese Werte beziehen sich jeweils auf eine konstante Höhe der Ellipse. Bei Einstellung des unteren Grenzwertes ELB=0 wird somit ein Geradschnitt (lineare Hin- und Herbewegung des Schneidwerkzeugs) ausgeführt.
  • Die darunterliegende Schaltfläche VH bewirkt über Betätigung der Pfeil-Tasten eine horizontale Verschiebung der gesamten geschlossenen Bahnkurve zwischen einem Minimalwert VH=0 und einem Maximalwert. Diese horizontale Verschiebbarkeit der Bahnkurve ermöglicht u.a. den Einsatz identischer Werkzeuge (Dorn, Schnittmesser) bei unterschiedlichen Bahnkurven. Würde nur die Breite der Ellipse einstellbar sein, so würde die Mitte der Bahnkurve unverändert bleiben und der Auftreffpunkt des Schnittwerkzeugs auf den Draht würde vom Dorn weg bzw. in Richtung des Dorns wandern. Die Schnittbedingungen würden sich dadurch in der Regel verschlechtern. Ohne seitliche Verstellbarkeit müsste theoretisch das Schnittmesser für jede Bahnkurve eine etwas andere Schnittgeometrie haben.
  • Es kann vorgesehen sein, dass die Verstellung der Ellipsenbreite und die Verstellung der horizontalen Lage der Bahnkurve in der Weise über Software verknüpft sind, dass nur Parameterkombinationen einstellbar sind, die die Lage des Auftreffpunktes nicht oder nur so geringfügig verlagern, dass ein optimaler Schnitt möglich bleibt. Gegebenenfalls kann ein Warnsignal generiert werden, wenn Parameter nicht ausreichend gut zueinander passen.
  • Über die darunterliegende Schaltfläche N lässt sich die Neigung der Bahnkurve einstellen. Ein Wert N=0 entspricht einer vertikal ausgerichteten Bahnkurve (lange Halbachse vertikal), bei negativen Werten wird die Bahnkurve nach links, das heißt in Richtung Einzug, und bei positiven Werten nach rechts in Richtung der Windestifte verkippt. Die darunterliegende Schaltfläche W bewirkt eine Verschiebung der Bahnkurve als Ganzes in vertikaler Richtung. Mit der unteren Schaltfläche D wird der Wert für den aktuellen Drahtdurchmesser eingegeben. Andere Konfigurationen, welche im Ergebnis die gleichen, äquivalente oder ähnliche Einstellmöglichkeiten bieten, sind möglich.
  • Die Einstellmöglichkeiten sind nur beispielhaft angegeben. Einzelne Einstellmöglichkeiten können bei Varianten auch völlig entfallen. Einstellmöglichkeiten können auf unterschiedliche Weise praktisch umgesetzt werden. Einige oder alle Parameter können z.B. direkt in die Steuerungssoftware eingegeben werden, so dass eine Bedieneroberfläche mit Schiebereglern oder dergleichen nicht nötig ist. Die vertikale Verstellung der Bahnkurve wird in der Regel nicht programmiert, sondern kann durch manuelle Verstellung der Länge des Pleuels realisiert werden. Es ist auch möglich, in einem Speicher der Steuereinrichtung eine Anzahl vordefinierter Bahnkurven-Basistypen zu hinterlegen, die z.B. hinsichtlich Produktionsgeschwindigkeit oder anderer Parameter optimiert sind. Diese können dann vom Bediener aufgerufen und ggf. über Veränderung einzelner Parameter noch feinjustiert und an die Bedingungen des aktuell einzurichtenden Federwindeprozesses angepasst werden.
  • Im Folgenden werden einige ausgewählte Schnittarten mit ihren spezifischen Anwendungsbereichen und Eigenschaften anhand von Fig. 8 erläutert. Es sind ggf. ein Teil des Scheidwerkzeugs SW, ein Teil des Abschneidedorns DO, das Endstück des verbleibenden Drahts DR mit Schittgrat SG und die Bahnkurve BK der Schneidkante des Schnittwerkzeugs schematisch gezeigt. Die verschiedenen Elemente sind aus Darstellungsgründen in Vertikalrichtung auseinandergezogen gezeigt.
  • Das System kann für einen Geradschnitt eingestellt werden (Fig. 8A), bei dem sich das Schneidwerkzeug nur vertikal bewegt und ein Schneidwerkzeug sowie ein Abschneidedorn jeweils mit senkrechter Schnittkante gewählt werden. Die Ellipsenbreite und die Neigung werden hierzu jeweils auf Null eingestellt. Der Drahtvorschub wird für den Schnitt angehalten. Am Draht entsteht bei dieser Schnittart typischerweise ein Schnittgrat SG, der nach innen in Richtung Federmittelachse gerichtet ist.
  • Das System kann auch auf einen Rotationsschnitt bzw. einen rotierenden elliptischen Schnitt eingestellt werden (Fig. 8B). Dabei bewegt sich das Schnittwerkzeug auf einer ellipsenförmigen Bahnkurve mit horizontaler und vertikaler Bewegungskomponente, wobei ein fixes Höhen-Breiten-Verhältnis eingestellt wird. Das verwendete Schneidwerkzeug und der verwendete Abschneidedorn sollen in diesem Fall eine schräg liegende Schnittkante bzw. Fase haben. Bei dieser Schnittart ist der Schnittgrat in der Regel in Winderichtung des Drahtes gerichtet, so dass der Federinnendurchmesser nicht oder kaum eingeschränkt ist. Hierzu wird lediglich die Ellipsenbreite ELB auf den gewünschten Wert eingestellt.
  • Die Ausführungsform ermöglicht diese auch bei konventionellen Federwindemaschinen häufig verfügbaren Schnittarten mit einem im Vergleich zum Stand der Technik vergrößerten Spektrum bei vereinfachter Einstellmöglichkeit. Der oben beschriebene Geradschnitt (vertikale Werkzeugbewegung in Verbindung mit Messer und Abschneidedorn mit senkrechter Schnittkante) kann modifiziert werden zu einem modifizierten Geradschnitt (Fig. 8C). Dabei werden ebenfalls ein Schneidwerkzeug und ein Abschneidedorn mit senkrechter Schnittkante verwendet. Das Schneidwerkzeug bewegt sich jedoch nicht ausschließlich vertikal, sondern hat auch eine geringfügige horizontale Bewegungskomponente, so dass sich eine schmale Ellipsenform (mit einstellbarem Höhen-Breiten-Verhältnis) ergibt. Auch hier ergibt sich ein Schnittgrat, der vorrangig nach innen in Richtung Federmittelachse gerichtet ist. Da jedoch aufgrund der leichten Ellipsenform die Aufwärtsbewegung des Schnittwerkzeuges nach der vertikalen Schnittbewegung in einen kleinen Abstand zur Schnittkante und zur Schnittfläche am Draht erfolgt, steht das Schneidwerkzeug beim Rückweg nicht mehr in Kontakt mit dem abgeschnittenen Draht. Dadurch kann der Werkzeugverschleiß erheblich reduziert werden. Typische Verhältnisse zwischen Höhe und Breite der im Wesentlichen elliptischen Bahnkurve können beispielsweise im Bereich zwischen 5:1 und 30:1, insbesondere im Bereich zwischen 12:1 und 25:1, liegen.
  • Weiterhin sind viele andere Varianten des Rotationsschnitts verfügbar. Bei der Schnittart "variabel rotierender Schnitt" (Fig. 8B) wird der Drahteinzug für die Schnittoperation angehalten. Es werden ein Messer (Schnittwerkzeug) und ein Abschneidedorn mit schräg liegenden Schnittkanten verwendet. Die Schnittkante des Werkzeuges bewegt sich entlang einer Ellipse mit variabel einstellbarem Höhen-Breiten-Verhältnis, typischerweise bei relativ schmalen bis mittelbreiten Ellipsen. Hierbei kann mit "Steigung senkrecht" oder "Steigung parallel" gearbeitet werden. Es ergibt sich ein Schnittgrat, der im Wesentlichen in Winderichtung des Drahtes angeordnet ist. Der Schnittgrat liegt somit innerhalb der ineren und äußeren Hüllkurve der Feder, ragt also nicht nach innen oder außen über die Feder hinaus.
  • Bei der Schnittart "fliegender rotierender Schnitt" (Fig. 8D) arbeitet die Federwindemaschine mit einem kontinuierlichen Drahtvorschub bzw. Drahteinzug in Verbindung mit einem fliegend rotierenden Schnitt. Dabei bewegt sich das Schnittwerkzeug mit horizontaler und vertikaler Bewegungskomponente auf einer elliptischen Bahnkurve mit relativ breiter Ellipse, also kleinerem Höhen-Breiten-Verhältnis. Hierdurch werden relativ hohe Horizontalkomponenten der Bewegung während des Schnitts erreicht. Schneidwerkzeug und Abschneidedorn haben jeweils korrespondierende schräg liegende Schnittkanten. Hier wird im Beispielsfall mit senkrechter Steigung (unteres Steigungswerkzeug) gearbeitet. Der Umlauf kann je nach Konstruktion elliptisch oder auch kreisförmig sein. Die Umlaufgeschwindigkeit ist normalerweise ungleichförmig.
  • Bei dieser Betriebsart des kontinuierlichen Drahtvorschubs mit rotierend fliegendem Schnitt wird der Draht kontinuierlich mit konstanter oder variierender endlicher Vorschubgeschwindigkeit vorgeschoben bzw. eingezogen. Es gibt also über die Produktion vieler aufeinanderfolgender Schraubenfedern keinen Stillstand der Drahtzufuhr. Dadurch steigt die Stückleistung. Wenn der Drahtvorschub konstant läuft, muss der Drahtvorrat, der zum Beispiel auf einem Haspel vorgehalten wird, nicht andauernd beschleunigt und abgebremst werden. Dies gilt auch für die Antriebe der Zufuhreinrichtung und der Werkzeuge. Dadurch sinkt der Energiebedarf pro Feder im Vergleich zu Verfahren mit stehendem Schnitt, bei denen der Drahtvorschub für den Schnittvorgang angehalten werden muss. Zudem gibt es keinen ruckartigen Zug auf den Draht und keinen Stick-Slip-Effekt, wodurch die Qualität der hergestellten Federn im Vergleich zu Verfahren mit stehendem Schnitt deutlich erhöht werden kann.
  • Bei der Betriebsart "fliegender Schnitt" erfolgt automatisch eine Koordination der Bewegungsgeschwindigkeit des Schnittwerkzeugs entlang der Bahnkurve mit der Einzugsgeschwindigkeit des Drahts in der Weise, dass die Form der Bahnkurve so an die Umlaufgeschwindigkeit des Schneidwerkzeug angepasst wird, dass die Bewegungsgeschwindigkeit der Schneidkante in horizontaler Richtung (im Wesentlichen parallel zur Drahtvorschubrichtung) in einem Zeitintervall beginnend vor dem Eindringen der Abschneidekante in den Draht bis zur Aufhebung des Schnittkontakts zwischen Schnittwerkzeug und Draht größer ist als die Drahtvorschubgeschwindigkeit. Bezeichnet man dasjenige Zeitintervall, in welchem das Schnittwerkzeug in Eingriff mit dem Draht steht, als "Drahtkollisionsbereich", so sollte das Schnittwerkzeug so beschleunigt werden, dass dessen Horizontalkomponente (parallel zur Drahtvorschubgeschwindigkeit) bereits vor Beginn des Schnitts größer ist als diejenige des Drahts und erst nach Austritt aus dem Draht die Drahtgeschwindigkeit wieder unterschreitet. Daher sind bei dieser Betriebsart in der Regel flache elliptische Bahnkurven mit relativ großer Breite und entsprechend großer Horizontalkomponente der Bewegungsgeschwindigkeit einzustellen.
  • Die hier beispielhaft beschriebenen elliptischen Bahnen des Schnittwerkzeuges stellen nur einige Sonderformen der theoretisch möglichen Bahnkurven dar. Ein Beispiel für eine unsymmetrische optimierte Bahnkurvenform mit endlichem Höhen-Breiten-Verhältnis stellt die Kurve BK3 in Fig. 2 dar. Bei dieser ergeben sich während des Schnitts die gleichen Vorteile wie bei einer elliptischen Kurvenbahn BK1, jedoch wird auf Seiten des Steigungswerkzeuges 130 weniger Platz benötigt, so dass solche Bahnkurvenformen besonders bei beengten Verhältnissen im Bereich der Umformwerkzeuge nützlich sein können. Es sind viele andere Bahnformen denkbar, zum Beispiel auch eine abgeflachte Ellipse im Bereich der Fase am Abschneidedorn (Fig. 8E). Hier kann die Schnittbahn z.B. so gelegt werden, dass der abgeflachte Teil mit weitgehend geradlinigem Verlauf parallel zur Fase am Abschneidedord verläuft. Aus der Grundform der Ellipse bzw. der Eiform können über geeignete Deformationen viele nützliche unsymmetrische Bahnkurvenformen eingestellt werden.
  • Einschränkungen der theoretisch möglichen Bahnkurven sind zum einen durch Störkanten bzw. Kollisionspunkte mit anderen Werkzeugen, wie Windefinger oder Steigungswerkzeuge, gegeben und zum anderen durch die Grenzen der Dynamik bzw. Leistungsfähigkeit der Antriebsmotoren bedingt. Diese Randbedingungen können unter anderem bei einer Verfahrensvariante berücksichtigt werden, bei der eine Teach-in-Programmierung erfolgt. Bei dieser Verfahrensvariante werden die potentiellen Kollisionspunkte im Bereich der Umformwerkzeuge vom Bediener mit dem Schnittwerkzeug manuell angefahren. Wenn das Schnittwerkzeug an einem Kollisionspunkt positioniert ist, wird diese Position durch eine Eingabe des Bedieners in die Steuerung übernommen, das heißt der Steuerung bekanntgemacht. Unter Verwendung dieser Positionen wird die Bahnkurve dann automatisch so berechnet, dass diese Kollisionsbereiche aus der vom Bediener gewählten Kurvenbahn ausgeklammert werden bzw. nicht angefahren, sondern umfahren werden.
  • Durch die beanspruchte Erfindung können unterschiedliche technische Aufgaben alternativ oder kumulativ gelöst werden. Zum einen ergibt sich eine Erweiterung des Einsatzspektrums gegenüber herkömmlichen Systemen mit Geradschnitt und rotierendem Schnitt. Nach Möglichkeit kann auch eine Optimierung der Stückleistung bzw. der Maschinenausbringung erreicht werden. In vielen Fällen ergibt sich eine Optimierung des Schnittbilds am durchtrennten Draht. Weiterhin kann sich eine Optimierung der Lage der am Draht verbleibenden Schnittgrate im Hinblick auf die beabsichtigte Verwendung oder Weiterverarbeitung der Federn ergeben. Nicht zuletzt können geeignete Einstellungen zu einer Erhöhung der Standzeit der Schnittwerkzeuge insbesondere beim Geradschnitt führen.
  • Durch Einstellung der Lage und Neigung der Bahnkurve bzw. Kurvenbahn beim Schneidvorgang, das heißt während das Schneidwerkzeug in Kontakt mit dem Draht ist, kann die Neigung der Schnittkante am Draht bestimmt werden. Weiterhin kann über diese Einstellmöglichkeiten die Neigung bzw. Lage des verbleibenden Schnittgrats bestimmt werden. Beim modifizierten Geradschnitt (schmale Ellipse) wird die Schnittkante geschont bzw. es werden Ausbrüche verhindert, da das Schnittwerkzeug durch das seitliche Wegfahren von der Drahtkante nach Vollendung des Schnitts von durch den Draht verursachten seitlichen Querkräften entlastet wird.
  • Diese Vorteile können dank der Programmierbarkeit der verschiedenen Bahnkurven ohne mechanischen Eingriff an der Federwindemaschine viel einfacher eingestellt werden als bei herkömmlichen Federwindemaschinen, die eine Möglichkeit zur Einstellung unterschiedlicher Bahnkurven hatten.
  • In Fig. 9 ist eine andere konstruktive Variante für Komponenten der Schnitteinrichtung gezeigt, die gleichfalls alle oben beschriebenen Einstellmöglichkeiten bietet. Auch hier ist das durch einen Werkzeughalter gehaltene Schnittwerkzeug 952 auf einem Schlitten 971 montiert, der durch eine Linearführung 970 linear beweglich geführt ist. Die Linearführung ist auf einem plattenförmigen Schwenkelement bzw. einer Schwenkplatte 960 montiert, welche drehbar auf einer horizontalen Schwenkachse montiert ist, die an der vertikalen Vorderwand der Federwindemaschine befestigt ist. Es sind zwei separate, durch die Steuereinrichtung 902 unabhängig voneinander ansteuerbare Antriebe für die Linearbewegung und die Schwenkbewegung vorgesehen. Ein erster Antrieb 975 treibt die horizontale Schnittwelle 974 an, die an ihrer Stirnseite einen Exzenterbolzen hat, der in einer Kulisse drehbar gelagert ist. Die Kulisse ist senkrecht zur Längsrichtung des Schlittens verschiebbar in einer Ausnehmung des Schlittens 971 geführt. Eine Drehung der Schnittwelle bewirkt auf diese Weise eine Auf- und Abbewegung des Schlittens 971 entlang der ersten Richtung 954, d.h. in Längsrichtung des Schwenkelements 960. Die hin- und her pendelnde Schwenkbewegung des Schwenkelements wird durch den zweiten Antrieb 965 bewirkt, der eine Schwenkwelle 962 intermittierend bzw. hin- und hergehend antreibt. Diese hat an ihrer Stirnseite einen Exzenterbolzen, der in einer Kulisse drehbar gelagert ist, welche in einer Ausnehmung des Schwenkelements 960 in dessen Längsrichtung beweglich geführt ist.
  • Bei dieser Ausführungsform ist somit die Schwenkwelle 962 oberhalb der Schnittwelle 974 angeordnet. Im Gegensatz dazu ist die Anordnung bei der Ausführungsform der Fig. 4 bis 6 umgekehrt, dort sitzt die Schnittwelle oberhalb der Schwenkwelle. Diese mechanischen Komponenten des Schnittwerkzeug-Antriebssystems können also in Abhängigkeit vom zur Verfügung stehenden Bauraum und anderen Anforderungen auf verschiedene Weise gestaltet und zueinander angeordnet sein.

Claims (8)

  1. Federwindemaschine (100) zur Herstellung von Schraubenfedern (200) durch Federwinden umfassend:
    eine Zuführeinrichtung (110) zum Zuführen von Draht (115) zu einer Umformeinrichtung (120),
    wobei die Umformeinrichtung mindestens ein Windewerkzeug (122, 124) sowie mindestens ein Steigungswerkzeug (130) aufweist,
    eine Schnitteinrichtung (150) zum Abtrennen einer fertig gestellten Schraubenfeder von dem zugeführten Draht nach Abschluss einer Umformoperation, wobei die Schnitteinrichtung ein Schnittwerkzeug aufweist, welches mittels eines Schnittwerkzeug-Antriebssystems entlang einer vorgebbaren geschlossenen Bahnkurve bewegbar ist;
    eine Steuereinrichtung (180) zur Steuerung der Zuführeinrichtung, der Umformeinrichtung und der Schnitteinrichtung auf Basis eines NC-Steuerprogramms,
    gekennzeichnet durch,
    ein programmierbares Bahnkurven-Einstellsystem zur Einstellung der Form und/oder Lage der von dem Schnittwerkzeug zu durchlaufenden Bahnkurve, wobei wahlweise eine geradlinige Bahnkurve, eine zu einer Symmetrieebene spiegelsymmetrische elliptische oder eiförmige Bahnkurve mit einem vorgebbaren Verhältnis von Höhe zu Breite oder eine unsymmetrische Bahnkurve mit einem von einer Ellipsenform oder Eiform abweichenden nicht-spiegelsymmetrischen Verlauf einstellbar ist.
  2. Federwindemaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Schnittwerkzeug-Antriebssystem einen durch die Steuereinrichtung (102, 902) ansteuerbaren ersten Antrieb (175, 975) zur Erzeugung einer ersten Bewegung des Schnittwerkzeugs (152, 952) und einen unabhängig von dem ersten Antrieb durch die Steuereinrichtung ansteuerbaren zweiten Antrieb (165, 965) zur Erzeugung einer der ersten Bewegung überlagerten zweiten Bewegung des Schnittwerkzeugs aufweist.
  3. Federwindemaschine nach Anspruch 2, dadurch gekennzeichnet, dass der erste Antrieb (175, 975) zur Erzeugung einer linear hin- und hergehenden ersten Bewegung des Schnittwerkzeuges entlang einer ersten Richtung (154, 954) ausgelegt ist, die in Längsrichtung des Schnittwerkzeugs (152, 952) verläuft, und dass der zweite Antrieb (165, 965) als Stellantrieb ausgelegt ist, der während der linearen Hin- und Herbewegung des Schnittwerkzeugs in der ersten Richtung zusätzlich eine Schwenkbewegung des hin- und herbewegten Schnittwerkzeugs um eine senkrecht zu einer Arbeitsebene verlaufende Achse erzeugt.
  4. Federwindemaschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das Schnittwerkzeug (152, 952) an einem Schlitten (171, 971) befestigt ist, der entlang einer Linearführung (170, 970) in einer ersten Richtung (154, 954) geradlinig hin und her verfahrbar ist, und dass die Linearführung an einem Schwenkelement (160, 960) befestigt ist, das um eine senkrecht zur ersten Richtung verlaufende Schwenkachse schwenkbar ist, wobei der erste Antrieb (175, 975) mit dem Schlitten und der zweite Antrieb (165, 965) mit dem Schwenkelement gekoppelt ist.
  5. Federwindemaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (102, 902) für eine Teach-in Programmierung konfiguriert ist.
  6. Federwindemaschine nach Anspruch 5, dadurch gekennzeichnet, dass die Steuereinrichtung derart konfiguriert ist, dass in einer Programmierungskonfiguration das Schnittwerkzeug (152, 952) manuell an eine oder mehrere Positionen im Bereich einer gewünschten Bahnkurve positionierbar ist, die Koordinaten der Positionen in einem Speicher der Steuereinrichtung speicherbar sind, unter Verwendung der Koordinaten eine Bahnkurve berechenbar ist und das Schnittwerkzeug in einer Betriebskonfiguration unter der Steuerung durch die Steuereinrichtung entlang der Bahnkurve bewegbar ist.
  7. Federwindemaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bahnkurven-Einstellsystem dafür konfiguriert ist, mindestens drei der folgenden Einstellungen unabhängig voneinander zu erlauben:
    (i) eine Ellipsenbreite der Bahnkurve zwischen einem Minimalwert 0 für einen Geradschnitt und einem Maximalwert bezogen auf eine maximale Höhe der Ellipse;
    (ii) eine horizontale Verschiebung der gesamten Bahnkurve zwischen einem Minimalwert und einem Maximalwert;
    (iii) eine Neigung der Bahnkurve zwischen einem Wert 0 für eine vertikal ausgerichtete Bahnkurve, einer Neigung der Bahnkurve in Richtung Zuführeinrichtung und einer Neigung der Bahnkurve in die entgegengesetzte Richtung;
    (iv) eine Verschiebung der Bahnkurve als Ganzes in vertikaler Richtung.
  8. Federwindemaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuführeinrichtung für eine kontinuierliche Zufuhr des Drahts konfiguriert ist und die Schnitteinrichtung (150) ein rotierend antreibbares Schnittwerkzeug (152) aufweist, wobei die Federwindemaschine derart konfiguriert ist, dass die fertige Schraubenfeder durch einen rotierenden fliegenden Schnitt vom zugeführten Draht abgetrennt wird.
EP14164046.6A 2013-04-18 2014-04-09 Federwindemaschine mit einstellbarer Schnitteinrichtung Active EP2826572B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013207028.4A DE102013207028B3 (de) 2013-04-18 2013-04-18 Federwindemaschine mit einstellbarer Schnitteinrichtung

Publications (2)

Publication Number Publication Date
EP2826572A1 EP2826572A1 (de) 2015-01-21
EP2826572B1 true EP2826572B1 (de) 2019-09-11

Family

ID=50473108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14164046.6A Active EP2826572B1 (de) 2013-04-18 2014-04-09 Federwindemaschine mit einstellbarer Schnitteinrichtung

Country Status (5)

Country Link
US (1) US20140311204A1 (de)
EP (1) EP2826572B1 (de)
CN (1) CN104107870B (de)
BR (1) BR102014009461A2 (de)
DE (1) DE102013207028B3 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148148B2 (ja) * 2013-10-18 2017-06-14 日本発條株式会社 ばね成形装置および成形方法
JP6420690B2 (ja) * 2015-02-26 2018-11-07 日本発條株式会社 コイリングマシンと、コイルばねの製造方法
JP6571994B2 (ja) * 2015-06-04 2019-09-04 日本発條株式会社 コイルばね製造装置と、コイルばねの製造方法
DE102016202796B4 (de) 2016-02-23 2017-08-31 Wafios Ag Scherenschnittsystem für Drahtverformungsmaschine sowie Drahtverformungsmaschine mit Scherenschnittsystem
DE102016204572A1 (de) * 2016-03-18 2017-09-21 Otto Bihler Handels-Beteiligungs-Gmbh Umformmaschine und Verfahren zur Positionskorrektur des Schlittenaggregates einer solchen Umformmaschine
US10618098B2 (en) * 2016-09-29 2020-04-14 Union Precision Hardware Co., Ltd. Servo-rotating all-function tool module for use with spring forming machine
CN107731571B (zh) * 2017-09-20 2024-02-20 南通南铭电子有限公司 一种全自动电容器引出线剪切焊接装置及工作方法
CN107598034A (zh) * 2017-09-25 2018-01-19 杭州富春弹簧有限公司 一种弹簧平切口的组合切断装置及其方法
CN107838329B (zh) * 2017-10-28 2020-03-17 曲阜天博汽车电器有限公司 螺旋压缩偏心弹簧的制作工艺及其弹簧产品
US20190291168A1 (en) * 2018-03-20 2019-09-26 Primetals Technologies USA LLC Automated wire rod trimming station
TWM575364U (zh) * 2018-08-10 2019-03-11 順耀機械有限公司 具有選擇性加工具配置之彈簧製造機
CN109332558B (zh) * 2018-11-06 2023-10-27 浙江万能弹簧机械有限公司 一种低噪音型高速卷簧机
JP7258545B2 (ja) 2018-12-28 2023-04-17 日本発條株式会社 コイリングマシンと、コイルばねの製造方法
CN109482787B (zh) * 2018-12-28 2024-04-02 江苏信息职业技术学院 长线自动剪裁机
CN113365755B (zh) * 2019-02-06 2023-05-05 日本发条株式会社 一种卷绕机、螺旋弹簧的制造方法及螺旋弹簧
CN112589006B (zh) * 2020-10-27 2023-04-18 国网浙江省电力有限公司开化县供电公司 一种剪切长度可调的线缆剪切机构
JP6901645B1 (ja) * 2021-03-30 2021-07-14 旭精機工業株式会社 ばね成形機
CN113441652B (zh) * 2021-07-09 2022-10-14 河南省鼎鼎实业有限公司 冷轧钢筋螺旋机
CN113669396B (zh) * 2021-08-20 2022-12-02 安庆谢德尔汽车零部件有限公司 端头采用预压处理的压缩弹簧及其绕制和检测方法
CN113681245B (zh) * 2021-09-18 2022-09-06 丹阳市新美龙汽车软饰件有限公司 一种汽车仪表盘及其制造工艺
CN117245021B (zh) * 2023-11-20 2024-01-23 自贡长盈精密技术有限公司 一种高精度可转角度铝材矫直装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138896A1 (de) * 1990-12-19 1992-07-02 Wafios Maschinen Wagner Universal-federwindemaschine mit schneideinrichtung
JPH0815635B2 (ja) * 1993-05-10 1996-02-21 株式会社板屋製作所 バネ切断機構
IT1282392B1 (it) * 1996-05-02 1998-03-20 Omd Officina Maccanica Domaso Dispositivo di taglio universale,particolarmente studiato per macchine avvolgitrici per la produzione di molle elicoidali
JP2812432B2 (ja) * 1996-08-23 1998-10-22 株式会社板屋製作所 スプリング製造装置
DE29621824U1 (de) * 1996-12-16 1997-02-27 Liao Chen Nan Schneidwerkzeugantriebsmechanismus für Federbiegemaschinen
US6178862B1 (en) * 1998-10-19 2001-01-30 Chen-Nan Liao Cutting tool assembly in coil spring winding machines
JP3641561B2 (ja) * 1999-03-29 2005-04-20 旭精機工業株式会社 コイル製造装置の工具作動機構
DE10017775A1 (de) * 2000-04-10 2001-10-18 Siemens Ag Eingabeverfahren für die Programmierung von industriellen Steuerungen
JP3607162B2 (ja) * 2000-04-12 2005-01-05 新興機械工業株式会社 ばね製造機のツール取付装置
JP3524505B2 (ja) * 2001-02-14 2004-05-10 株式会社板屋製作所 スプリング製造装置
DE10145707A1 (de) * 2001-09-17 2003-04-03 Hilti Ag Vorrichtung zum Ablängen von Draht
JP4393813B2 (ja) * 2003-07-22 2010-01-06 新興機械工業株式会社 ばね製造機の線材切断装置
US6951160B2 (en) * 2003-07-22 2005-10-04 David Wu Cutting device for spring manufacturing machines
JP4685981B2 (ja) * 2004-07-22 2011-05-18 新興機械工業株式会社 ばね製造機の線材切断装置
US8136379B2 (en) * 2007-06-05 2012-03-20 Kabushiki Kaisha Itaya Seisaku Sho Helical part manufacturing apparatus and control method thereof
DE102009022969B4 (de) * 2009-05-28 2016-08-04 Wafios Ag Schnittsystem für Drahtbearbeitungsmaschinen
US20100312391A1 (en) * 2009-06-05 2010-12-09 Abb Research Ltd. Calibration Of A Lead-Through Teaching Device For An Industrial Robot
DE102010014386B4 (de) * 2010-04-06 2012-01-19 Wafios Ag Verfahren zur Herstellung von Schraubenfedern durch Federwinden, sowie Federwindemaschine
DE102010014385B4 (de) * 2010-04-06 2011-12-08 Wafios Ag Verfahren und Vorrichtung zur Herstellung von Schraubenfedern durch Federwinden, sowie Federwindemaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2826572A1 (de) 2015-01-21
DE102013207028B3 (de) 2014-06-26
CN104107870A (zh) 2014-10-22
BR102014009461A2 (pt) 2015-01-06
US20140311204A1 (en) 2014-10-23
CN104107870B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
EP2826572B1 (de) Federwindemaschine mit einstellbarer Schnitteinrichtung
EP2697008B1 (de) Verfahren und federmaschine zur herstellung von federn
DE102010014385B4 (de) Verfahren und Vorrichtung zur Herstellung von Schraubenfedern durch Federwinden, sowie Federwindemaschine
DE102016100808B4 (de) Numerische Steuervorrichtung und Steuerverfahren
DE4447253C2 (de) Federherstellungsvorrichtung, sowie Drahtführung für eine Federherstellungsvorrichtung
DE102010017462B4 (de) Drahtformungsvorrichtung mit radial angeordnetem Schneidwerkzeug
EP3021995B1 (de) Verfahren und vorrichtung zur herstellung von schraubenfedern durch federwinden
EP2861368B1 (de) Verfahren zum erzeugen einer verzahnung und mit diesem verfahren betriebene verzahnungsmaschine
DE112013001648B4 (de) Pressenantrieb mit mehreren Arbeitsbereichen
DE102013112232B3 (de) Verfahren zur Bearbeitung eines Rohteils mittels eines Werkzeuges
DE102014113319B4 (de) Drahtformvorrichtung
WO2018055143A1 (de) Verfahren zur materialabtragenden bearbeitung von verrundungsflächen eines werkstückes
DE102005041175A1 (de) Verfahren zur adaptiven Vorschubregelung an numerisch gesteuerten Werkzeugmaschinen
EP2008736A1 (de) Werkzeugmaschine und Verfahren zum Ausschleusen eines Werkstückteils
DE102017003648A1 (de) Verfahren zur Verzahnbearbeitung eines Werkstücks
DE10134828B4 (de) Federherstellvorrichtung zum Herstellen von Federn mit verschiedenen Formen
DE3915784C1 (de)
WO2019001982A1 (de) Verfahren zur herstellung eines biegeteils und biegemaschine zur durchführung des verfahrens
DE60103309T2 (de) Gerät mit kombinierten Bewegungen zur Herstellung einer Reifenverstärkung auf der Basis eines Einzeldrahtes
DE2838128C3 (de) Vorrichtung zum Herstellen von unrunden Kolbenringen aus Metalldraht oder -band
DE102008053591B4 (de) Steuerungsverfahren für Stanzautomat
EP1457277B1 (de) Vorrichtung zum Richten von Baustahldraht
DE102012204662B3 (de) Wickelvorrichtung zur Herstellung von Wickelgütern und Verfahren zu deren Betrieb
EP3374305B1 (de) Fadenverlegevorrichtung
EP3655190B1 (de) Verfahren und laserscannvorrichtung zur bearbeitung einer oberfläche und laserscannvorrichtung mit laserscanner und einer bewegungsmechanik

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150702

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190416

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1177780

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012604

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012604

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1177780

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 10