EP2826124A1 - Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque - Google Patents

Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque

Info

Publication number
EP2826124A1
EP2826124A1 EP13709858.8A EP13709858A EP2826124A1 EP 2826124 A1 EP2826124 A1 EP 2826124A1 EP 13709858 A EP13709858 A EP 13709858A EP 2826124 A1 EP2826124 A1 EP 2826124A1
Authority
EP
European Patent Office
Prior art keywords
potential
circuit arrangement
branch
negative
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13709858.8A
Other languages
German (de)
English (en)
Inventor
Alexey Dobrenko
Marco Schilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCT POWER GMBH
Original Assignee
SUNWAYS AG PHOTOVOLTAIC Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNWAYS AG PHOTOVOLTAIC Tech filed Critical SUNWAYS AG PHOTOVOLTAIC Tech
Publication of EP2826124A1 publication Critical patent/EP2826124A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M11/00Power conversion systems not covered by the preceding groups
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a circuit arrangement for electrical systems for converting and adjusting a DC voltage.
  • the present invention further relates to a method and a photovoltaic system.
  • Photovoltaic systems are used to extract electrical energy from solar energy and to feed this electrical energy into a public energy grid or power grid.
  • inverters are usually used which convert the electrical direct current generated by the solar cells of the photovoltaic system into an alternating current. This alternating current can then be fed into the public grid.
  • the solar cells or solar cell strings are, for example, coupled directly to the inverter.
  • the negative pole of the solar cell array is coupled to the negative pole of the inverter and the positive pole of the solar cell array to the positive pole of the inverter.
  • Problematic with this Type of interconnection of solar cell and inverter is that under low sunlight, the DC voltage generated by the solar cells may fail too low to generate with the help of the inverter an alternating current, which can then be fed into the public grid.
  • the voltage in the negative and positive DC link must be greater than the amplitude of the mains voltage.
  • boost converters are used between the solar cell array and the inverter, which increase the amount of DC voltage generated by the solar cell array. This makes it possible to generate and supply an alternating current for a public power grid even if the solar cell arrangement supplies a DC voltage that is lower in magnitude than required for the public power grid.
  • the solar cell arrangement is connected to the inverter in such a way that the positive pole of the solar cell arrangement has a positive potential relative to the reference ground and the negative pole of the solar cell arrangement has a negative potential compared to the reference ground, this can lead to a creeping performance degradation of the solar cells due to the so-called PID effect lead.
  • the cause of this PID effect lies essentially in the negative po- Potential of the negative pole of the solar cell relative to the potential of the reference ground, which can lead to unwanted leakage currents. Overall, this leads to accelerated aging and a significant power loss of the solar cell array.
  • a corresponding circuit system is described for example in DE 10 2007 050 554 AI. If the potential of the positive pole of the solar cell is raised, so does the potential of the negative pole of the solar cell.
  • a method for operating electrical installations for converting and adjusting a DC voltage of a voltage source comprising the steps of: increasing a potential in a positive branch of the intermediate circuit of the electrical system such that a potential of a negative pole of the voltage source has a value greater than the potential which the negative pole has before increasing, or lowering the potential in a negative branch of the intermediate circuit of the electrical circuit Device in such a way that a positive pole output potential of the voltage source assumes a voltage value smaller than the potential which the positive pole has before sinking, and balancing the electric power between the positive branch of the intermediate circuit of the electrical system and the negative branch of the intermediate circuit of the electrical system ,
  • a photovoltaic system with a circuit arrangement according to the invention is a photovoltaic system with a circuit arrangement according to the invention.
  • the finding underlying the present invention is that it is not necessarily necessary to use in the intermediate circuit symmetric voltages with respect to the potential of the reference ground in order to increase the efficiency of the inverter.
  • the idea underlying the present invention is now to take this knowledge into account and to provide a circuit arrangement which does not just symmetrically design the potentials of the positive and of the negative intermediate circuit branch with respect to a reference potential. Rather, by the circuit arrangement, the amount of electrical power which is supplied to the positive DC voltage connection of the inverter, the amount of electrical power equalized, which is the negative
  • the circuit arrangement according to the invention has two operating modes. In the first operating mode symmetrical intermediate circuit voltages are provided for the inverter. This first operating mode can be used, for example, with solar modules which are not subject to the PID effect. In this operating mode, a solar system achieves the maximum efficiency. But if solar modules are used, which are subject to the PID effect (eg thin-film solar modules) and in which consequently the potential at the negative pole of the solar modules must be raised, the circuit arrangement is operated in the second mode.
  • the PID effect eg thin-film solar modules
  • the circuit arrangement is operated in such a way that the potential in the positive branch of the intermediate circuit is increased by the inverter in order to make the potential at the negative pole of the solar modules positive relative to reference potential, or the potential in the negative branch of the intermediate circuit is lowered Potential at the positive pole of the solar modules to make reference potential negative.
  • the potential may also correspond to the reference potential instead of being either greater or less than this.
  • the circuit arrangement according to the invention also makes it possible to regulate the potential of the negative intermediate circuit branch in such a way that it becomes asymmetrical with respect to the reference potential to the potential of the positive intermediate circuit branch.
  • the present invention provides a balancing device, which balances the branches of the intermediate circuit with respect to the electrical power.
  • the circuit arrangement can be operated with a group of solar cells, with solar cells connected in series and / or in parallel, with solar cell strings or the like.
  • At least one first boost converter is provided, which is designed to increase the amount of voltage between the negative and the positive pole of the voltage source of the electrical system and / or to equalize the amount of a mains voltage of a public power grid. This allows feed of current generated by the voltage source even if the voltage provided by the voltage source is smaller than a mains voltage of the public power grid.
  • the equalizer includes an inverting adjuster electrically coupled to the positive leg, the negative leg and a first node of the electrical system. This makes it possible to provide a very efficient and simple balancing device.
  • the first node has a reference potential.
  • the inverting controller is designed to compensate for the electrical power in the positive branch and the negative branch relative to the reference potential. This makes it possible to adapt the circuit arrangement to different reference potentials and applications.
  • an inverting actuator instead of an inverting actuator, an inverse converter or another type of DC / DC converter can be used.
  • the inverting actuator is arranged electrically between the at least one first boost converter and an electrical output of the vision arrangement. This makes it possible to compensate for electric power between the positive branch of the intermediate circuit of the electrical system and the negative branch of the intermediate circuit of the electrical system with a single compensating device, even if a plurality of solar cells in the photovoltaic system is used.
  • the first boost converter may be implemented as a multi-channel boost converter having at least two solar cell input terminals arranged in parallel. Instead of individual solar cells, it is also possible to connect to the first step-up converter a series and / or parallel connection of solar cells and / or at least one solar cell string or solar cell array.
  • the inverting adjuster comprises a controllable switch and a reverse-biased diode arranged in series therewith, which are electrically arranged between the positive branch and the negative branch.
  • the controllable switch can be, for example, a MOSFET, IGBT, JFET, bipolar transistor or other power semiconductor.
  • the inverting actuator includes an inductive element (coil, inductor) electrically disposed between a second node connected between the controllable switch and the diode and the first node. This allows a simple and less complex structure of the inverting actuator.
  • the compensation device has a control device, which is designed to control the inverting controller in such a way that the same electrical power is output at a positive output terminal of the circuit arrangement as at a negative output terminal of the circuit arrangement.
  • the control device may include, for example, a microprocessor or an FPGA or PLD. The use of such a control device allows a very flexible control of the inverting actuator.
  • Fig. 1 is a block diagram of an embodiment of a circuit arrangement according to the invention.
  • FIG. 2 shows a flow chart of an embodiment of a method according to the invention
  • FIG. 3 shows a block diagram of an embodiment of a photovoltaic plant according to the invention
  • FIG. 4 shows a further block diagram of an embodiment of a photovoltaic system according to the invention.
  • Fig. 1 shows a block diagram of a first embodiment of a circuit arrangement according to the invention.
  • the circuit arrangement designated by reference numeral 1 has a compensating device 4.
  • the compensating device 4 is coupled to a negative branch 3 and a positive branch 5 of the intermediate circuit of a photovoltaic plant 24 (not shown in FIG. 1).
  • the circuit arrangement 1 is designed as a discrete electrical circuit arrangement 1. In further embodiments, the circuit arrangement 1 can also be designed as integrated electronic circuit arrangement 1. In still further embodiments, the circuit arrangement 1 can also be designed as a component of an inverter 14.
  • the circuit arrangement 1 is formed in the example shown for a total electrical power of up to 10kW. In further embodiments, the circuit arrangement 1 can also be designed for a total electrical power of up to 1 MW, in particular also up to 100 kW or even 1 kW.
  • the circuit arrangement 1 has a control device which is designed to control the compensation device 4 and, if present, a first boost converter 2 (not shown).
  • the control device is designed in one embodiment as a microcontroller.
  • the control device is designed as a computer program product, which is executed on a microcontroller.
  • the computer program product can be an independently executable program (software).
  • the computer program product is designed as a computer program product module which is executed as a module of an operating system.
  • control device has a plurality of sensors for detecting voltages and currents in order to detect the currents and voltages which are provided by individual solar cells and which occur in the negative branch 3 and the positive branch 5 of the intermediate circuit, and the like Value to be determined.
  • control device is designed to control the compensation device 4 in such a way that the same electrical power is output at the positive output connection of the circuit arrangement 1 as at a negative output connection of the circuit arrangement 1.
  • a potential in a positive branch of the intermediate circuit of the electrical system 24 is increased such that a potential of a negative pole of the voltage source 18 assumes a value greater than the potential which the negative pole has before increasing, or becomes the potential in a negative branch of the intermediate circuit of the electrical system 24 is lowered such that an output potential of a positive pole of the voltage source 18 assumes a voltage value smaller than the potential, which has the positive pole before lowering.
  • the electrical power between the positive branch 5 of the intermediate circuit of the electrical system 24 and the negative branch 3 of the intermediate circuit of the electrical system 24 is compensated.
  • the potential of the positive branch 5 of the intermediate circuit is increased such that the potential at the negative pole of the solar cell is greater than or equal to the potential of a reference ground, eg ground.
  • the voltage of the negative branch 3 of the intermediate circuit is adjusted to the voltage of the public power grid.
  • the method of the invention includes increasing the electrical voltages provided by a plurality of solar cells in parallel.
  • FIG. 3 shows a block diagram of an embodiment of a photovoltaic system 24 according to the invention.
  • the photovoltaic system 24 here has a circuit arrangement according to the invention
  • FIG. 4 shows a further block diagram of an embodiment of a photovoltaic system 24 according to the invention.
  • the photovoltaic system 24 is shown in greater detail in terms of circuitry compared with the exemplary embodiment of FIG. 3.
  • the photovoltaic system 24 in FIG. 4 has a solar cell 18, which is electrically coupled to a first step-up converter 2.
  • FIG. 4 shows a further solar cell 18 with its own first step-up converter 2. That this second and further solar cells is provided, which by two dashed connecting lines, which the second solar cell 18 and its first boost converter
  • the first boost converter 2 may be e.g. a multi-channel step-up converter 2, which can adjust the output voltage separately for a plurality of solar cells 18 for each solar cell 18.
  • the compensating device (not explicitly shown) in FIG. 4 has an inverting actuator 6 and is arranged between the solar cells 18 with the corresponding boost converters 2 and the inverter 14 with the intermediate circuit capacitors 22, 23.
  • the inverter 14 has three input terminals.
  • the first intermediate circuit capacitor 22 is arranged between the positive input terminal of the inverter 14 and the ground input terminal of the inverter 14.
  • the second DC link capacitor 23 is arranged between the ground input terminal of the inverter 14 and the negative input terminal of the inverter 14.
  • the inverter 14 has only two input terminals.
  • the inverter 14 has three output terminals, each of which corresponds to one of the three phases 15-17 of a public power grid.
  • the three phases 15-17 are coupled at their node via a neutral conductor to the ground input terminal of the inverter 14.
  • Of the first node 7 is also coupled to the ground input terminal of the inverter 14.
  • the inverter 14 has only two output terminals or one output terminal. Further, in the coupling line between the neutral conductor and the reference point 7 of the circuit arrangement 1, various components, such as relays, coils and the like may be arranged.
  • the first boost converter 2 illustrated in FIG. 4 each have an inductive element 20, such as a coil.
  • the inductive element 20 is disposed between the negative pole of the corresponding solar cell 18 and a reverse-biased diode 21.
  • a switch 19 is provided in the first step-up converters, which couples the junction between inductance 20 and diode 21 with the positive pole of the solar cell 18 and the positive branch 5 of the intermediate circuit of the photovoltaic system 24.
  • the switch 19 is, for example, a semiconductor switch such as a MOSFET, JFET, bipolar transistor or the like.
  • the anode of the diode 21 is coupled to the negative branch 3 of the intermediate circuit of the photovoltaic system 24.
  • the compensating device 4 (not explicitly shown) has an inverting actuator 6.
  • the inverting controller 6 has a controllable switch 9 and a diode 10 arranged in series in the reverse direction, which are arranged electrically between the positive branch 5 and the negative branch 3.
  • the inverting controller 6 has an inductance 11, which is electrically connected between a second node 12, which is arranged between the switch 9 and the diode 10, and the first node 7 is arranged.
  • the inverting controller also called an inverted converter
  • the switch 9 is closed.
  • the inverse converter transfers the extracted energy into the negative branch 3 of the intermediate circuit. For this purpose, the switch 9 is opened.

Abstract

L'invention concerne un ensemble circuit pour des installations électriques servant à convertir et à adapter une tension alternative d'une source de tension, en particulier pour un inverseur solaire d'une installation photovoltaïque, comprenant une sortie électrique qui peut être couplée à un onduleur. A la sortie électrique, un potentiel dans une branche positive d'un circuit intermédiaire de l'installation électrique peut être élevé de telle sorte qu'un potentiel de sortie d'un pôle négatif de la source de tension prend une valeur supérieure au potentiel que le pôle négatif présente avant l'élévation, ou le potentiel dans une branche négative du circuit intermédiaire de l'installation électrique peut être abaissé de telle sorte qu'une tension de sortie d'un pôle positif de la source de tension prend une valeur inférieure au potentiel que le pôle positif présente avant l'abaissement. L'ensemble circuit comprend également un dispositif d'équilibrage qui est réalisé pour compenser en service de l'ensemble circuit la puissance électrique entre la branche positive du circuit intermédiaire de l'installation électrique et la branche négative du circuit intermédiaire de l'installation électrique. La présente invention concerne en outre un procédé et une installation photovoltaïque.
EP13709858.8A 2012-03-12 2013-03-08 Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque Withdrawn EP2826124A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203836.1A DE102012203836B4 (de) 2012-03-12 2012-03-12 Schaltungsanordnung und Verfahren zum Wandeln und Anpassen einer Gleichspannung, Photovoltaikanlage
PCT/EP2013/054735 WO2013135578A1 (fr) 2012-03-12 2013-03-08 Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque

Publications (1)

Publication Number Publication Date
EP2826124A1 true EP2826124A1 (fr) 2015-01-21

Family

ID=47891671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13709858.8A Withdrawn EP2826124A1 (fr) 2012-03-12 2013-03-08 Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque

Country Status (5)

Country Link
US (1) US9647570B2 (fr)
EP (1) EP2826124A1 (fr)
CN (1) CN104541427A (fr)
DE (1) DE102012203836B4 (fr)
WO (1) WO2013135578A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874303B1 (fr) * 2013-11-15 2019-01-02 Mitsubishi Electric R & D Centre Europe B.V. Onduleur DC-AC
JP6724681B2 (ja) * 2016-09-20 2020-07-15 オムロン株式会社 分散型電源システム及びdc/dcコンバータ
CN108063595A (zh) * 2017-12-29 2018-05-22 中节能太阳能科技哈密有限公司 光伏组件pid修复电路
CN110912398B (zh) * 2018-09-18 2021-09-28 台达电子工业股份有限公司 具异常能量保护的电源转换系统及其操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010000284U1 (de) * 2009-03-02 2010-05-06 Abb Research Ltd. Fünfpunkt-Wechselrichter
DE102009015388A1 (de) * 2009-03-27 2010-09-30 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Energieausgleich zwischen Zellen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450306A (en) * 1992-12-07 1995-09-12 Square D Company Closed loop pulse width modulator inverter with volt-seconds feedback control
DE19526836C2 (de) * 1995-07-22 1998-07-02 Fraunhofer Ges Forschung Vorrichtung zum Ladungsausgleich zwischen wenigstens zwei Energiespeichern oder -wandlern
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
ES2364984T3 (es) * 2007-06-20 2011-09-20 Powerlynx A/S Unidad de inversor eléctrico sin transformador para paneles solares de película fina.
DE102007050554B4 (de) * 2007-10-23 2011-07-14 Adensis GmbH, 01129 Photovoltaikanlage
US20090195079A1 (en) 2008-01-31 2009-08-06 Jens Barrenscheen Circuit for equalizing charge unbalances in storage cells
CH700210A1 (de) 2009-01-08 2010-07-15 Arthur Buechel Vorrichtung für Photovoltaikkraftwerke zur Einstellung des elektrischen Potentials an Photovoltaikgeneratoren.
DK2363947T3 (da) * 2010-03-03 2012-08-06 Sma Solar Technology Ag Vekselretter med elsystem med flere forsyninger
DE102010023262A1 (de) * 2010-06-09 2011-12-15 Danfoss Solar Inverters A/S Solarkraftwerk mit erhöhter Lebensdauer
JP5569204B2 (ja) * 2010-07-13 2014-08-13 サンケン電気株式会社 共振型インバータ装置
EP2684285A4 (fr) * 2011-03-09 2015-07-22 Solantro Semiconductor Corp Onduleur comportant des condensateurs de liaison cc ayant une plus grande durée de vie
CN102195287B (zh) * 2011-05-20 2014-01-22 江西中能电气科技有限公司 一种适用于三相四线电网系统的并联型有源电力滤波器
DE202011102068U1 (de) * 2011-06-07 2012-09-10 Voltwerk Electronics Gmbh Hochsetzsteller
DE102011055220B4 (de) * 2011-11-10 2017-02-09 Sma Solar Technology Ag Zuschalten eines Wechselrichters in einem Solarkraftwerk mit verschobenem Potentialmittelpunkt
JP5403090B2 (ja) * 2012-03-09 2014-01-29 富士電機株式会社 電力変換装置
ES2718807T3 (es) * 2012-06-07 2019-07-04 Abb Research Ltd Procedimiento de amortiguación de secuencia cero y equilibrado de tensión en un convertidor de tres niveles con condensadores de enlace de CC divididos y filtro LCL virtualmente conectado a tierra
US9413269B2 (en) * 2012-06-25 2016-08-09 Arizona Board Of Regents, For And On Behalf Of, Arizona State University Circuits and methods for photovoltaic inverters
DE102012112184A1 (de) * 2012-12-12 2014-06-12 Sma Solar Technology Ag Verfahren und Vorrichtung zum Schutz mehrerer Strings eines Photovoltaikgenerators vor Rückströmen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010000284U1 (de) * 2009-03-02 2010-05-06 Abb Research Ltd. Fünfpunkt-Wechselrichter
DE102009015388A1 (de) * 2009-03-27 2010-09-30 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Energieausgleich zwischen Zellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013135578A1 *

Also Published As

Publication number Publication date
DE102012203836A1 (de) 2013-09-12
CN104541427A (zh) 2015-04-22
WO2013135578A1 (fr) 2013-09-19
US9647570B2 (en) 2017-05-09
DE102012203836B4 (de) 2020-03-12
US20150062990A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
DE102008048841B3 (de) Trennschaltung für Wechselrichter
DE102011051954B4 (de) Photovoltaikanlage mit Vorspannung am Wechselrichter
WO2012168338A2 (fr) Convertisseur survolteur
EP3014725A1 (fr) Dispositif accumulateur d'énergie doté d'un circuit d'alimentation en tension continue et procédé pour fournir une tension continue à partir d'un dispositif accumulateur d'énergie
EP2104200A1 (fr) Procédé de commande d'un onduleur Multi-String pour installations photovoltaïques
DE102011051548A1 (de) Betriebsverfahren für einen Wechselrichter und netzfehlertoleranter Wechselrichter
WO2013000522A1 (fr) Ensemble condensateur conçu pour un circuit intermédiaire d'un transformateur de tension
DE102016116630A1 (de) Verfahren zum Betrieb eines Wechselrichters und Wechselrichter
DE102013221830A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
EP2826124A1 (fr) Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque
WO2009098093A2 (fr) Ensemble onduleur permettant l'injection d'énergie produite par voie photovoltaïque dans un réseau public
DE10225020A1 (de) Schaltungsanordnung, Verfahren zur Wechselstromerzeugung
DE102013007056A1 (de) Gleichspannungswandler
DE102018111154B4 (de) Ladesystem
DE102013212692A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
EP3363091B1 (fr) Dispositif et procédé pour commander un flux de charge dans un réseau à tension alternative
DE102014005124A1 (de) Schaltungsanordnung und Verfahren zum Austausch elektrischer Energie
DE102015111804B3 (de) Verfahren zum betrieb eines wechselrichters und wechselrichter, sowie photovoltaikanlage
DE102012202868A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012215975A1 (de) Verfahren zur Erhöhung der Lebensdauer des Zwischenkreiskondensators einer einen Wechselrichter aufweisenden elektrischen Anlage, elektrische Anlage und Steuereinheit für eine elektrische Anlage
EP2523339B1 (fr) Procédé et dispositif de génération d'énergie au moyen d'une installation photovoltaïque avec une compensation d'énergie entre les branches des générateurs photovoltaïques
DE102012210423A1 (de) Einspeisung von Solarenergie in ein Energieversorgungsnetz mittels Solarwechselrichter
DE102017203233A1 (de) Modularer Wechselrichter
DE102020004752A1 (de) DC-Modulierendes modulares elektrisches Umrichtersystem und zugehöriges Steuerungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
19U Interruption of proceedings before grant

Effective date: 20141013

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20151001

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SF SUNTECH DEUTSCHLAND GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RCT POWER GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180328