EP2815195B1 - Heat treatment device - Google Patents
Heat treatment device Download PDFInfo
- Publication number
- EP2815195B1 EP2815195B1 EP13702328.9A EP13702328A EP2815195B1 EP 2815195 B1 EP2815195 B1 EP 2815195B1 EP 13702328 A EP13702328 A EP 13702328A EP 2815195 B1 EP2815195 B1 EP 2815195B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- quartz glass
- heating
- wall element
- wall
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
- F27D1/0006—Linings or walls formed from bricks or layers with a particular composition or specific characteristics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/62—Heating elements specially adapted for furnaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
Definitions
- the invention relates to a device for heat treatment, comprising a process chamber surrounded by a quartz glass furnace lining, a heating device and a reflector.
- Devices in this sense are particularly suitable for heating substrates to temperatures above 600 ° C.
- infrared heaters are often used as heating elements that emit entertaining, medium-wave and / or long-wave infrared radiation.
- the infrared radiators are often arranged within the process space and thus exposed to high temperatures; they therefore have a limited life.
- furnaces In order to ensure high process temperatures and low energy losses, these furnaces are provided with an insulating furnace lining, which, for example, consists of fireclay insulating stoves in many classic furnaces.
- Furnace linings made of chamotte have a comparatively high heat capacity. Since the furnace lining must first be heated after switching on the furnace, the high heat capacity of the lining leads to a relatively long heating time of the furnace with simultaneously high energy consumption.
- the use of furnace linings made of chamotte also limits the purity conditions in the process area. Furnaces with a furnace lining made of chamotte have a high weight and are therefore only limited mobile use.
- An electrically heated muffle furnace with a furnace lining of fireclay is for example from the DE 1 973 753 U known.
- the muffle furnace has as a heater infrared radiator with quartz-enclosed heating coils, which are arranged in the top wall of the process space.
- the arrangement of the infrared radiator within the process chamber although a short heating time and a uniform heating of the fuel to be achieved.
- the heating as well as the cooling time is extended by the furnace lining.
- the furnace lining must first be heated to operating temperature here.
- ovens with a fireclay furnace lining have low thermal shock resistance, so that premature opening of the furnace can cause cracks in the furnace lining.
- the furnaces should only be opened when their process space has cooled to a temperature below 400 ° C.
- furnace linings In addition to chamotte, other refractory materials, usually ceramic products and materials with an operating temperature of over 600 ° C are used as furnace linings.
- furnace linings made of quartz glass are used.
- a device for heat treatment of a substrate with a furnace lining of quartz glass is for example from US 4,883,424 known.
- the furnace lining should allow a quick heating and cooling of the heating material; it is cylindrical and surrounded by a reflector provided with a cover for cooling.
- a heater made of a nichrome alloy is arranged within the furnace lining.
- furnace linings made of quartz glass especially those with larger dimensions, expensive to manufacture. They usually have a cylindrical shape and are therefore only of limited use for many applications in which electric heating furnaces are used.
- the invention has for its object to provide a device for heat treatment with a furnace lining, which is easy to manufacture and in variable form, which allows a fast heating and cooling of the heating material and short process times and is characterized by a long service life.
- the furnace lining comprises a plurality of wall elements with a process chamber facing away from the process space and a side facing away from the process space, and that at least one of the wall elements comprises a plurality of quartz glass tubes, which via a SiO 2 -containing bonding compound are interconnected.
- the modification according to the invention has two significant additional features, firstly the furnace lining comprises a plurality of wall elements, and secondly at least one of the wall elements has a plurality of quartz glass tubes which are connected to one another via an SiO 2 -containing bonding compound ,
- the furnace lining can be made in variable form, for example in the form of a cuboid, a sphere, a cylinder, a pyramid or a cube.
- the shape of the furnace lining can also be adapted to the heating material to be heated.
- the individual wall elements are detachably or firmly connected to each other.
- the connection can be made, for example, via a joint connection, which comprises, for example, the purely mechanical, form-fitting assembly, the pressing or pressing in or the gluing of the wall elements.
- At least one of the wall elements has a plurality of quartz glass tubes. Quartz glass tubes are easy and inexpensive to manufacture. The quartz glass tubes have a cavity, which contributes to an insulation of the furnace lining; they can be stretched or bent. By connecting the quartz glass tubes with a SiO 2 -containing bonding compound, a wall element is obtained, which consists essentially of quartz glass. Such a wall element has a high temperature resistance. It allows high operating temperatures above 1,000 ° C.
- the furnace lining according to the invention has a low weight and thus a low heat capacity in comparison to a furnace lining made of chamotte. As a result, a rapid heating and cooling of the device is made possible.
- the device is also characterized by a high thermal shock resistance, so that it can be opened, for example, even at high temperatures. The life of the device is not affected by frequent, rapid temperature changes.
- the device according to the invention is suitable both for batch operation and for continuous operation.
- the SiO 2 -containing bonding compound simultaneously serves as a reflector and as a connecting means.
- a SiO 2 -containing compound compound is used which, for example, in the form of a slip, is applied to the quartz glass tubes to be joined, dried and optionally sintered.
- the SiO 2 -containing bonding compound preferably forms an opaque, diffusely highly reflective and porous quartz glass layer which has reflective properties and which therefore simultaneously serves as a reflector.
- the reflective properties of the bonding compound enable energy efficient operation of the device.
- the heating material can be heated faster by the reflector layer provided, so that in batch processes, the process times are shortened.
- the SiO 2 -containing bonding compound has a high temperature stability and thermal shock resistance. Due to the fact that the SiO 2 -containing bonding compound is applied to the side of the wall element facing the process space, an energy-efficient heat treatment of the heating material is made possible. In this case, both occurring energy losses are minimized and an energy input into the wall elements is reduced, so that the energy introduced by the heating device into the process space is increasingly available for the heat treatment of the heating material.
- the SiO 2 -containing bonding compound is applied to the side of a wall element facing away from the process space.
- a SiO 2 -containing bonding compound applied to the side facing away from the process space also leads to a reduction of occurring energy losses. Because the coating is applied to the side of the wall element facing away from the process space, it is exposed to lower temperatures and temperature fluctuations. In comparison with a coating which is applied to the side facing the process space, such a coating has a longer service life.
- the quartz glass tubes have a round cross section and if the outer diameter of the quartz glass tubes in the range of 4 mm to 50 mm.
- Round diameter quartz glass tubes are simple and inexpensive to manufacture.
- a quartz glass tube with an outer diameter of less than 4 mm has only a comparatively small cavity, so that loses the effect of the cavity on the isolation of the process chamber.
- a quartz glass tube with an outer diameter of more than 50 mm is expensive to process and affects a compact design of the device.
- a heating element is arranged, which is part of the heating device.
- one or more heating elements can be arranged and it can be equipped with heating elements several quartz glass tubes.
- the arrangement of the heating element in a quartz glass tube a small distance between the heating element and Schugut is achieved without affecting the quality of the irradiation intensity.
- the heating element is an infrared radiator having a radiator tube and a heating filament.
- a heating element in the form of an infrared radiator causes the material to be heated directly, so that a rapid and uniform heating of the heating material is achieved.
- the infrared radiator used can be designed, for example, for short-wave, medium-wave and / or long-wave infrared radiation emission; it has at least one Schufilament, which is surrounded by a radiator tube, for example made of quartz glass.
- quartz glass tube is the radiator tube of the infrared radiator.
- the quartz glass tube of the wall element is at the same time the radiator tube of the infrared radiator, the smallest possible distance between the heating element and the material to be heated can be achieved. In addition, the radiation losses occurring on the quartz glass tube and the radiator tube are minimized, so that the energy efficiency of the device is improved.
- the heating element is designed for medium-wave infrared radiation emission.
- the radiator tube of a medium-wave radiant heater can be open.
- the heating filament is directly accessible and can therefore be exchanged particularly easily and inexpensively. This embodiment thus facilitates assembly and maintenance of the device.
- the wall elements form a cuboid hollow body.
- the wall elements are part of the furnace lining.
- the wall elements are arranged such that they form a cuboid hollow body.
- the cuboid hollow body is surrounded on all sides by wall elements in the sense of the invention.
- Such a holster body is particularly suitable as a furnace lining for a furnace which is used in discontinuous operation.
- the cuboid hollow body can also be open on one or two sides.
- a furnace lining open on two sides is suitable for use in continuous continuous operation.
- the cuboid hollow body is a wall element forming the bottom plate, a wall element forming the cover plate and four, the side walls of the hollow body forming wall elements comprises.
- a furnace lining in the form of a cuboid hollow body with a bottom plate, a cover plate and four wall elements is particularly suitable as a furnace lining for a furnace which is used in discontinuous operation.
- the wall elements surround the process space, making the furnace lining suitable for applications with high purity requirements. Since the furnace lining is made of quartz glass, under process conditions no appreciable contamination through the furnace lining is to be expected.
- the wall elements of the furnace lining are connected in block construction, for example by galvanizing or toothing.
- the wall elements protrude alternately at the corpus corners or they finish flush at the corners.
- the connection of the wall elements in block construction a joint is obtained, which withstands high mechanical stresses and at the same time allows the replacement of individual wall elements.
- the oven casing comprises an insulation, for example in the form of a mineral fiber mat, and a sheet metal casing.
- the towering wall elements may be loosely or firmly connected to the oven shell for their fixation. In the simplest case, a fixing of the wall elements is already made possible by the fact that the wall elements are surrounded by the insulation and the sheet metal jacket.
- the furnace lining is cylindrical, and a wall surface forming the cylinder surface with a plurality of annularly curved quartz glass tubes, a wall forming the cover plate and a wall plate forming the bottom plate includes.
- a hollow-cylindrical furnace lining allows uniform illumination of the heating material on all sides, in particular if the material to be heated also has a cylindrical shape.
- the furnace lining also has wall elements in the form of a bottom and a cover plate.
- bottom plate and / or the cover plate have a plurality of quartz glass cylinders, which are connected to one another via the SiO 2 -containing bonding compound.
- a bottom and / or top plate made of quartz glass cylinders is easy and inexpensive to manufacture.
- the quartz glass cylinders also have a cavity which contributes to a thermal insulation of the device.
- a plurality of heating elements can be arranged in a bottom and / or a cover plate made of a plurality of quartz glass cylinders, so that the most uniform possible irradiation intensity relative to the heating material is achieved.
- the furnace lining is surrounded by a refractory high-temperature mat.
- FIG. 1 schematically shows a wall element of the device according to the invention for heat treatment, the total, the reference numeral 1 is assigned.
- the wall element 1 consists of four quartz glass tubes 4a-4d of transparent quartz glass.
- a single quartz glass tube 4a-4d has the dimensions length x width x height (L x W x H) 350 mm x 34 mm x 14 mm.
- the quartz glass tubes 4a-4d are arranged next to one another and connected to one another via an SiO 2 -containing bonding compound 5.
- the quartz glass tubes 4a-4d are alternately offset by 50 mm in the plane, so that the quartz glass tubes 4a and 4c on the one hand and the quartz glass tubes 4b and 4d on the other hand protrude from the composite.
- the entire wall element 1 is 140 mm wide and 400 mm long.
- the juxtaposed quartz glass tubes 4a-4d are in a fragile green state after coating; They are therefore transferred together with the tray in a sintering furnace afterwards.
- the sintering of the green body takes place at 1240 ° C for two hours in air atmosphere.
- the quartz glass tubes 4a-4d are mechanically stably connected to one another, so that a wall element 1 is obtained which consists of more than 99.9% quartz glass (SiO 2 ).
- the coating is applied to the side facing away from the process space 3 of the wall element 1; it is opaque and serves as a reflector layer.
- FIG. 2 A second embodiment of a wall element is in FIG. 2 shown schematically, which shows the wall element 20 in side view.
- the wall element 20 comprises four quartz glass cylinders 21a, 21b, 21c, 21d, which are connected to one another via an SiO 2 -containing compound 5.
- the quartz glass cylinders are arranged side by side and alternately offset by 50 mm.
- the side 22 as well as the opposite side (not shown) of the wall element 20 are coated only in the region of the connection with the SiO 2 -containing bonding compound 5.
- the individual quartz glass cylinders 21a, 21b, 21c, 21d have the following dimensions: (L x W x H) 350 mm x 34 mm x 14 mm; the entire wall element 20 is 140 mm wide and 400 mm long.
- the apparatus for heat treatment (not shown) on a furnace lining in the form of a cuboid hollow body;
- the furnace lining comprises a plurality of wall elements 1 made of quartz glass, a bottom plate and a cover plate.
- FIG. 3 shows a plan view of four vertically placed, connected to each other via a joint connection wall elements 1.
- the composite is the total reference numeral 30 assigned.
- the wall elements 1 are composed so that the mutually offset by 50 mm from each other ends of the wall elements 1 are nested and connected to each other in block construction.
- Each wall element 1 has a side 2 facing away from the process space 31 and a side 3 facing the process space 31.
- the process space 31 facing side 3 is coated with the SiO 2 -containing compound compound 5.
- the composite 30 is covered with a rectangular cover plate (not shown) consisting of eleven tubes of quartz glass.
- the tubes have a length of 400 mm, a width of 34 mm and a height of 14 mm; they are connected to each other via a SiO 2 -containing compound compound 5.
- the connection is made as for the wall elements 1 to FIG. 1 described.
- the individual tubes of the cover plate are arranged side by side. In contrast to the wall elements 1, the individual tubes of the cover plate are not offset from each other.
- the process space facing side of the rectangular cover plate is coated with the SiO 2 -containing bonding compound; the process space facing away from the side has no coating.
- the rectangular cover plate has the following dimensions: LxWxH 400x400x14 mm.
- the area of the lid is 0.16 m 2 .
- the bottom plate (not shown) is also made of round tubes made of quartz glass, which are connected to each other via the SiO 2 -containing compound compound 5.
- the base plate ten round tubes with an outer diameter of 10 mm and a length of 400 mm are connected to each other.
- the round tubes are arranged in a plane next to each other, but not offset from one another.
- each of the ten round tubes of the bottom plate a 350 mm long filament is inserted.
- the ends of the round tubes are finished with a ceramic base.
- the area difference (0.12 m 2 ) of the floor slab to the ceiling slab is designed with pipe sections.
- the tube sections are coated on the top with opaque, diffusely highly reflective quartz glass.
- the coating consists of very many and small quartz beads with a diameter of about 10 nanometers to 50 micrometers.
- the solid sintered and correspondingly porous SiO 2 material whose pores are filled with air, has an enormous surface due to the tiny structures: about 5 m 2 per gram of material. In the construction described here, approximately 670 grams of the opaque material are firmly applied, resulting in a surface in the furnace interior of approximately 3,350 m 2 . This large surface promotes the rapid indirect heating of the air in the pores via the direct heating of the quartz glass via infrared radiation.
- the furnace lining is surrounded by a single-layer thermal insulation.
- the insulation consists of a refractory high-temperature mat based on aluminum and silicon oxide; it has a thickness of 25 mm.
- the outside of the thermal insulation is surrounded by a sheet metal jacket. To allow the stove to be charged over the top, the lid can be opened.
- the entire irradiation device weighs about 10 kilograms and is suitable for mobile use.
- the process space 31 has a length of 320 mm, a width of 320 mm and a height of 145 mm.
- FIG. 5 is the temperature-time course of a sample shown, which has been positioned in the middle of the process chamber 31 of the device according to the invention.
- the sample is a quartz glass round tube with an outer diameter of 10 mm and a length of 50 mm.
- a ceramic NiCrNi thermocouple is provided within the quartz glass round tube.
- the outside of the quartz glass round tube has an encircling gold coating.
- the sample was placed on a quartz glass shelf spaced 30 mm from the heater.
- the device was put into operation at room temperature (so-called cold start), and the full electrical power (4 kW) was switched on. After 2 minutes, the temperature of the heating medium reaches 260 ° C, after 4 minutes 540 ° C. 900 ° C are reached after about 17.5 minutes, the maximum temperature of 950 ° C after 22 minutes.
- the maximum temperature was limited to 950 ° C and then the heating phase ended. If the quartz components and the heater wires are permanently operated below 1,000 ° C, the maintenance-free life of the furnace lining can reach 10,000 operating hours and more.
- the electrical power was lowered to a steady 1.6 kW.
- This temperature is suitable, for example, for applying directional reflectors to glass substrates, ie metallic layers such as gold.
- the closed structure not only uses the radiant energy, but also the resulting convective heat of the heated air contributes to the overall warming.
- the temperature gradient in the linear range (260 to 560 ° C) during heating is about 2.3 K / min; the required heating times are minimized.
- the lid of the structure removed and removed the sample with a pair of pliers.
- the sample still has a temperature greater than 600 ° C. Due to the excellent thermal shock resistance of the inner lining of the furnace made of pure quartz glass, a time-consuming cooling phase is not necessary, the total process time is reduced by several hours compared to conventional muffle furnaces, see Comparative Example 1.
- the sample can be changed immediately, so that the process can be started directly again can.
- the new inner lining of the furnace is made of quartz glass and the material and the radiators survive even temperatures up to almost 1000 ° C, cooling of the individual components by means of fans or cooling liquids is not necessary.
- the structure of the device differs from the structure of the device of embodiment 1 in that two, opposite wall elements 1 are completely removed.
- the openings are the preparation for a continuous introduction of the heating material to be heated.
- the furnace with the new interior lining in the form of the remaining two walls with lid and bottom is loaded centrally in the warm and switched-on state (electrical continuous power 1.5 kW).
- the product carrier has a distance of 60 mm to the heating field (floor).
- the quartz glass sample as described in Example 1 initially heats up from room temperature with a gradient of about 9 K / min and reaches the temperature of 600 ° C after only three minutes and a maximum temperature of 740 ° C after 14 minutes.
- the difference to the maximum temperature of 800 ° C from Example 1 is explained by convective losses through the two lateral openings and the slightly larger distance between the material to be heated and the radiation source.
- the structure of the furnace according to Example 3 corresponds to that of the device of Example 2.
- the furnace is operated in the warm and on state (continuous electric power 1.5 kW) and used for a continuous sintering process.
- the component is manually moved through the oven with a holder located outside the oven.
- the pipe moves at a distance of 60 mm to the heating field of the base plate.
- the coating on the tube After passing through the oven, the coating on the tube has a visually homogeneous surface with very good surface adhesion.
- the adhesion of the gold to the surface was determined by the tape peel test. This test involves that a commercially available adhesive tape, for example a 3M Scotch tape, is applied to the gilded surface and pulled off again with a jerk. If the adhesion of the gold is insufficient, metallic residues remain on the adhesive surface of the strip.
- the metallically coated surface showed no adverse effects from particles or foreign substances, since the new furnace lining made of SiO 2 works without contamination and without particle generation.
- a quartz tube coated on one side with a metal having a length of 300 mm, a width of 34 mm and a height of 14 mm was introduced for baking the coating, and the temperature-time course of the sample was determined.
- the heating curve (not shown) shows a gradient of 6.6 K / min between 700 and 1000 ° C, the furnace temperature is held at a maximum of 1000 ° C.
- the oven After switching off the oven, it takes 5.5 hours until the temperature reaches 600 ° C and the oven can be opened at the earliest to take the sample. To ensure a long service life of the lining (> 1 year) without cracking, the oven should not be opened below 400 ° C, as the bricks do not have a high thermal shock resistance.
- the structure of the device differs from that of Example 1 in that three juxtaposed bottom plates are provided as surface radiators.
- Each base plate consists of 10 round tubes, each with a filament of 400 watts.
- the total electrical power of the device is 12 kW.
- Ceramic bases are provided at the ends of the round tubes.
- the difference to the opposite surface of the cover (0.16 m 2 ) is designed with individual, on one side coated at the top pipe sections.
- the shortest distance between plate and surface spotlight is 30mm.
- the target temperature of 800 ° C, starting from room temperature 20 ° C, is reached after four minutes.
- the heating gradient is approximately 4.5 K / s in the linear range.
- a steel plate according to Example 4 with the same size and quality is heated in a conventional infrared module with nine short-wave radiators from one side.
- the infrared module has a power density of 100 kW / m 2 and a total electrical power of 38 kW.
- the heating gradient is initially about 14 K / s and then flattens off sharply.
- the maximum temperature of 640 ° C is reached after about 2 minutes. Due to the high convection losses on all sides and the high reflectivity, a higher temperature of the steel plate is only possible by heating by means of radiation, the target temperature of 800 ° C can not be achieved. A smaller distance between the plate and the heating field is not practicable, since the environment including the radiator heats up inadmissibly despite cooling in this temperature range.
- a steel plate of the same dimensions and identical quality from Comparative Example 2 is heated by two conventional infrared modules with short-wave radiators from two sides.
- the infrared modules have a power density of 100 kW / m 2 ; the electric power is 75 kW in total.
- the distance of the heating field from the material to be heated is 120 mm.
- the heating gradient is initially about 25-30 K / s, the maximum temperature of about 680 ° C sets after about 1.5 minutes, the target temperature of 800 ° C can not be achieved. From 500 ° C a significant warming (smoke) is the environment too observe.
- a wall element is designed such that it itself functions as a radiant heater and simultaneously heats the material to be heated from several sides.
- Five individual twin tubes of quartz glass with a length of 875 mm, a width of 34 mm and a height of 14 mm are bent annularly and then coated on the outside and connected to each other.
- the inner radius of the process chamber thus obtained is about 120 mm.
- the circular arc is opened a gap (about 30 mm); Through the gap, the electrical connections for power supply are led into a zone outside the process space.
- the five annular twin tubes are each equipped with two heating coils of a length of 70 cm each; they are assembled vertically one above the other in direct contact with a composite. Each heating coil has a power of 0.9 kW.
- the total power of the device is 9 kW.
- the bottom plate and the cover plate consist of joined individual tubes without heating elements, as described in Example 1.
- a steel plate as described in Embodiment 4 or Comparative Examples 2 or 3 is centrally placed vertically in the chamber.
- the mean distance between the steel plate and the inner wall is approx. 120 mm.
- a heating gradient of approx. 30 K / s achieves more than 1000 ° C after approx. 35 seconds.
- the electrical power is reduced to 1.6 kW.
- the furnace lining differs from the furnace lining according to embodiment 1 in that a wall element 1 is removed.
- the loading of the process space is favored by the open side; it is done by means of an automatic robot arm.
- the robot keeps the component to be heated in the hot zone for a defined time until the target temperature is reached. Thereafter, the component is placed in a mold. Finally, the next component in the infrared oven is brought to the target temperature again.
- a carbon fiber reinforced plastic (CFRP) is heated, here with the thermoplastic PPS (polyphenylsulfide).
- the surface spotlights After switching on, the surface spotlights will be operated with an electrical feed of 4 kW.
- the process room is initially heated for five minutes before the CFRP is kept in the hot zone.
- the heating gradient in the linear heating range is approximately 4.8 K / s on the side of the CFRP facing away from the radiator.
- the electrical heating is switched off to prevent premature overheating of the CFRP surface. Due to the internal lining of the furnace, the inside of the furnace continues to rise despite the open side due to the radiation of the walls with the help of warm air (convection).
- the target temperature of 260 ° C is reached reached to the spotlight side.
- the temperature continues to rise with a gradient of about 0.2 K / s up to 280 ° C and keeps the temperature in the following minute. Due to the homogeneous heating to 260 ° C, the PPS softens, so that a transformation of the material is easily possible.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Resistance Heating (AREA)
- Furnace Details (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Wärmebehandlung, umfassend einen von einer Ofenauskleidung aus Quarzglas umgebenen Prozessraum, eine Heizeinrichtung und einen Reflektor.The invention relates to a device for heat treatment, comprising a process chamber surrounded by a quartz glass furnace lining, a heating device and a reflector.
Vorrichtungen in diesem Sinne sind insbesondere zum Erwärmen von Substraten auf Temperaturen oberhalb von 600 °C geeignet.Devices in this sense are particularly suitable for heating substrates to temperatures above 600 ° C.
In industriellen Elektrowärmeöfen, die zum Erwärmen eines Heizgutes auf Temperaturen oberhalb von 600 °C eingesetzt werden, werden als Heizelemente häufig Infrarotstrahler eingesetzt, die kurzweilige, mittelwellige und/oder langwellige Infrarotstrahlung emittieren. Die Infrarotstrahler sind vielfach innerhalb des Prozessraumes angeordnet und damit hohen Temperaturen ausgesetzt; sie weisen daher eine begrenzte Lebensdauer auf.In industrial electric furnaces, which are used for heating a heating material to temperatures above 600 ° C, infrared heaters are often used as heating elements that emit entertaining, medium-wave and / or long-wave infrared radiation. The infrared radiators are often arranged within the process space and thus exposed to high temperatures; they therefore have a limited life.
Um hohe Prozesstemperaturen und geringe Energieverluste zu gewährleisten, sind diese Öfen mit einer isolierenden Ofenauskleidung versehen, die beispielsweise in vielen klassischen Öfen aus Isoliersteinen aus Schamotte besteht. Ofenauskleidungen aus Schamotte weisen allerdings eine vergleichsweise hohe Wärmekapazität auf. Da nach dem Einschalten des Ofens zunächst die Ofenauskleidung aufgeheizt werden muss, führt die hohe Wärmekapazität der Auskleidung zu einer verhältnismäßig langen Aufheizzeit des Ofens bei gleichzeitig hohem Energieverbrauch. Der Einsatz von Ofenauskleidungen aus Schamotte limitiert zudem auch die Reinheitsbedingungen im Prozessraum. Öfen mit einer Ofenauskleidung aus Schamotte haben ein hohes Gewicht und sind daher nur begrenzt mobil einsetzbar.In order to ensure high process temperatures and low energy losses, these furnaces are provided with an insulating furnace lining, which, for example, consists of fireclay insulating stoves in many classic furnaces. Furnace linings made of chamotte, however, have a comparatively high heat capacity. Since the furnace lining must first be heated after switching on the furnace, the high heat capacity of the lining leads to a relatively long heating time of the furnace with simultaneously high energy consumption. The use of furnace linings made of chamotte also limits the purity conditions in the process area. Furnaces with a furnace lining made of chamotte have a high weight and are therefore only limited mobile use.
Ein elektrisch beheizter Muffelbrennofen mit einer Ofenauskleidung aus Schamotte ist beispielsweise aus der
Zur Erzielung einer gleichmäßigen Temperatur im Prozessraum ist auch hier zunächst die Ofenauskleidung auf Betriebstemperatur zu erwärmen. Darüber hinaus weisen Öfen mit einer Ofenauskleidung aus Schamotte nur eine geringe Wärmeschockbeständigkeit auf, so dass bei einem vorzeitigen Öffnen des Ofens Risse in der Ofenauskleidung entstehen können. Um eine hohe Lebensdauer der Ofenauskleidung zu gewährleisten, sollten die Öfen erst dann geöffnet werden, wenn ihr Prozessraum auf eine Temperatur unterhalb von 400 °C abgekühlt ist.To achieve a uniform temperature in the process chamber, the furnace lining must first be heated to operating temperature here. In addition, ovens with a fireclay furnace lining have low thermal shock resistance, so that premature opening of the furnace can cause cracks in the furnace lining. In order to ensure a long service life of the furnace lining, the furnaces should only be opened when their process space has cooled to a temperature below 400 ° C.
Neben Schamotte werden auch andere feuerfeste Werkstoffe, in der Regel keramische Erzeugnisse und Werkstoffe mit einer Einsatztemperatur von über 600 °C als Ofenauskleidungen eingesetzt.In addition to chamotte, other refractory materials, usually ceramic products and materials with an operating temperature of over 600 ° C are used as furnace linings.
Für besondere Anforderungen, beispielsweise für Prozesse mit hohen Reinheitsanforderungen, werden Ofenauskleidungen aus Quarzglas eingesetzt. Eine Vorrichtung zur Wärmebehandlung eines Substrats mit einer Ofenauskleidung aus Quarzglas ist beispielsweise aus der
Allerdings sind Ofenauskleidungen aus Quarzglas, insbesondere solche mit größeren Abmessungen, aufwendig zu fertigen. Sie weisen in der Regel Zylinderform auf und sind daher für viele Anwendungen, in denen Elektrowärmeöfen eingesetzt werden, nur bedingt geeignet.However, furnace linings made of quartz glass, especially those with larger dimensions, expensive to manufacture. They usually have a cylindrical shape and are therefore only of limited use for many applications in which electric heating furnaces are used.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Wärmebehandlung mit einer Ofenauskleidung bereitzustellen, die einfach und in variabler Form zu fertigen ist, die ein schnelles Aufheizen und Abkühlen des Heizgutes und kurze Prozesszeiten ermöglicht und sich durch eine lange Lebensdauer auszeichnet.The invention has for its object to provide a device for heat treatment with a furnace lining, which is easy to manufacture and in variable form, which allows a fast heating and cooling of the heating material and short process times and is characterized by a long service life.
Diese Aufgabe wird ausgehend von einer Vorrichtung zur Wärmebehandlung mit den eingangs genannten Merkmalen erfindungsgemäß dadurch gelöst, dass die Ofenauskleidung mehrere Wandungselemente mit einer dem Prozessraum zugewandten und einer dem Prozessraum abgewandten Seite umfasst, und dass mindestens eines der Wandungselemente mehrere Quarzglasrohre aufweist, die über eine SiO2-haltige Verbindungsmasse miteinander verbunden sind.This object is achieved on the basis of a device for heat treatment with the features mentioned above according to the invention that the furnace lining comprises a plurality of wall elements with a process chamber facing away from the process space and a side facing away from the process space, and that at least one of the wall elements comprises a plurality of quartz glass tubes, which via a SiO 2 -containing bonding compound are interconnected.
Im Vergleich zu bekannten Vorrichtungen mit einer Ofenauskleidung aus Quarzglas weist die erfindungsgemäße Modifikation zwei wesentliche zusätzliche Merkmale auf, nämlich erstens umfasst die Ofenauskleidung mehrere Wandungselemente, und zweitens weist mindestens eines der Wandungselemente mehrere Quarzglasrohre auf, die über eine SiO2-haltige Verbindungsmasse miteinander verbunden sind.Compared to known devices with a furnace lining of quartz glass, the modification according to the invention has two significant additional features, firstly the furnace lining comprises a plurality of wall elements, and secondly at least one of the wall elements has a plurality of quartz glass tubes which are connected to one another via an SiO 2 -containing bonding compound ,
Durch den Aufbau der Ofenauskleidung aus mehreren Wandungselementen, kann die Ofenauskleidung in variabler Form, beispielsweise in Form eines Quaders, einer Kugel, eines Zylinders, einer Pyramide oder eines Würfels hergestellt werden. Die Form der Ofenauskleidung kann auch an das zu beheizende Heizgut angepasst sein. Die einzelnen Wandungselemente sind lösbar oder fest miteinander verbunden. Die Verbindung kann beispielsweise über eine Fügeverbindung erfolgen, die zum Beispiel das rein mechanische, formschlüssige Zusammensetzen, das An- oder Einpressen oder das Kleben der Wandungselemente umfasst.By constructing the furnace lining of several wall elements, the furnace lining can be made in variable form, for example in the form of a cuboid, a sphere, a cylinder, a pyramid or a cube. The shape of the furnace lining can also be adapted to the heating material to be heated. The individual wall elements are detachably or firmly connected to each other. The connection can be made, for example, via a joint connection, which comprises, for example, the purely mechanical, form-fitting assembly, the pressing or pressing in or the gluing of the wall elements.
Darüber hinaus ist vorgesehen, dass mindestens eines der Wandungselemente mehrere Quarzglasrohre aufweist. Quarzglasrohre sind einfach und kostengünstig zu fertigen. Die Quarzglasrohre weisen einen Hohlraum auf, der zu einer Isolierung der Ofenauskleidung beiträgt; sie können gestreckt oder gebogen sein. Durch das Verbinden der Quarzglasrohre mit einer SiO2-haltigen Verbindungsmasse wird ein Wandungselement erhalten, das im Wesentlichen aus Quarzglas besteht. Ein solches Wandungselement weist eine hohe Temperaturbeständigkeit auf. Es ermöglicht hohe Betriebstemperaturen oberhalb von 1.000 °C.In addition, it is provided that at least one of the wall elements has a plurality of quartz glass tubes. Quartz glass tubes are easy and inexpensive to manufacture. The quartz glass tubes have a cavity, which contributes to an insulation of the furnace lining; they can be stretched or bent. By connecting the quartz glass tubes with a SiO 2 -containing bonding compound, a wall element is obtained, which consists essentially of quartz glass. Such a wall element has a high temperature resistance. It allows high operating temperatures above 1,000 ° C.
Die erfindungsgemäße Ofenauskleidung weist im Vergleich zu einer Ofenauskleidung aus Schamotte ein geringes Gewicht und damit eine geringe Wärmekapazität auf. Hierdurch wird ein schnelles Aufheizen und Abkühlen der Vorrichtung ermöglicht. Die Vorrichtung zeichnet sich darüber hinaus durch eine hohe Wärmeschockbeständigkeit aus, so dass sie beispielsweise auch bei hohen Temperaturen geöffnet werden kann. Die Lebensdauer der Vorrichtung wird auch durch häufige, schnelle Temperaturwechsel nicht beeinträchtigt. Die erfindungsgemäße Vorrichtung ist sowohl für den Batch-Betrieb als auch für den kontinuierlichen Betrieb geeignet.The furnace lining according to the invention has a low weight and thus a low heat capacity in comparison to a furnace lining made of chamotte. As a result, a rapid heating and cooling of the device is made possible. The device is also characterized by a high thermal shock resistance, so that it can be opened, for example, even at high temperatures. The life of the device is not affected by frequent, rapid temperature changes. The device according to the invention is suitable both for batch operation and for continuous operation.
In einer bevorzugten Modifikation der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die SiO2-haltige Verbindungsmasse gleichzeitig als Reflektor und als Verbindungsmittel dient.In a preferred modification of the device according to the invention, it is provided that the SiO 2 -containing bonding compound simultaneously serves as a reflector and as a connecting means.
Zur Verbindung der Quarzglasrohre wird eine SiO2-haltige Verbindungsmasse eingesetzt, die beispielsweise in Form eines Schlickers auf die zu verbindenden Quarzglasrohre aufgebracht, getrocknet und gegebenenfalls gesintert wird. Vorzugsweise bildet die SiO2-haltige Verbindungsmasse eine opake, diffus hoch reflektierende und poröse Schicht aus Quarzglas, die reflektierende Eigenschaften aufweist und die deshalb gleichzeitig als Reflektor dient. Durch die reflektierenden Eigenschaften der Verbindungsmasse wird ein energieeffizienter Betrieb der Vorrichtung ermöglicht. Darüber hinaus lässt sich das Heizgut durch die vorgesehene Reflektorschicht schneller erwärmen, so dass bei Batchprozessen auch die Prozesszeiten verkürzt werden.To connect the quartz glass tubes, a SiO 2 -containing compound compound is used which, for example, in the form of a slip, is applied to the quartz glass tubes to be joined, dried and optionally sintered. The SiO 2 -containing bonding compound preferably forms an opaque, diffusely highly reflective and porous quartz glass layer which has reflective properties and which therefore simultaneously serves as a reflector. The reflective properties of the bonding compound enable energy efficient operation of the device. In addition, the heating material can be heated faster by the reflector layer provided, so that in batch processes, the process times are shortened.
Es hat sich bewährt, wenn die SiO2-haltige Verbindungsmasse auf die dem Prozessraum zugewandte Seite eines Wandungselements aufgebracht ist.It has proven useful if the SiO 2 -containing bonding compound is applied to the process space facing side of a wall element.
Die SiO2-haltige Verbindungsmasse weist eine hohe Temperaturstabilität und Wärmeschockbeständigkeit auf. Dadurch, dass die SiO2-haltige Verbindungsmasse auf die dem Prozessraum zugewandte Seite des Wandungselements aufgebracht ist, wird eine energieeffiziente Wärmebehandlung des Heizgutes ermöglicht. Dabei werden sowohl auftretende Energieverluste minimiert als auch ein Energieeintrag in die Wandungselemente vermindert, so dass die durch die Heizeinrichtung in den Prozessraum eingebrachte Energie vermehrt zur Wärmebehandlung des Heizgutes zur Verfügung steht.The SiO 2 -containing bonding compound has a high temperature stability and thermal shock resistance. Due to the fact that the SiO 2 -containing bonding compound is applied to the side of the wall element facing the process space, an energy-efficient heat treatment of the heating material is made possible. In this case, both occurring energy losses are minimized and an energy input into the wall elements is reduced, so that the energy introduced by the heating device into the process space is increasingly available for the heat treatment of the heating material.
In einer alternativen Ausführungsform ist vorgesehen, dass die SiO2-haltige Verbindungsmasse auf die dem Prozessraum abgewandte Seite eines Wandungselements aufgebracht ist.In an alternative embodiment, it is provided that the SiO 2 -containing bonding compound is applied to the side of a wall element facing away from the process space.
Auch eine auf die dem Prozessraum abgewandte Seite aufgebrachte SiO2-haltige Verbindungsmasse führt zu einer Reduktion auftretender Energieverluste. Dadurch, dass die Beschichtung auf die dem Prozessraum abgewandte Seite des Wandungselements aufgebracht ist, ist sie geringeren Temperaturen und Temperaturschwankungen ausgesetzt. Im Vergleich zu einer Beschichtung, die auf die dem Prozessraum zugewandte Seite aufgebracht ist, weist eine solche Beschichtung eine höhere Lebensdauer auf.A SiO 2 -containing bonding compound applied to the side facing away from the process space also leads to a reduction of occurring energy losses. Because the coating is applied to the side of the wall element facing away from the process space, it is exposed to lower temperatures and temperature fluctuations. In comparison with a coating which is applied to the side facing the process space, such a coating has a longer service life.
Es hat sich als günstig erwiesen, wenn die Quarzglasrohre einen runden Querschnitt aufweisen und wenn der Außendurchmesser der Quarzglasrohre im Bereich von 4 mm bis 50 mm liegt.It has proved to be advantageous if the quartz glass tubes have a round cross section and if the outer diameter of the quartz glass tubes in the range of 4 mm to 50 mm.
Quarzglasrohre mit rundem Durchmesser sind einfach und kostengünstig zu fertigen. Ein Quarzglasrohr mit einem Außendurchmesser von weniger als 4 mm weist nur einen vergleichsweise geringen Hohlraum auf, so dass sich der Effekt des Hohlraumes auf die Isolierung der Prozesskammer verliert. Ein Quarzglasrohr mit einem Außendurchmesser von mehr als 50 mm ist aufwendig zu verarbeiten und beeinträchtigt eine kompakte Bauform der Vorrichtung.Round diameter quartz glass tubes are simple and inexpensive to manufacture. A quartz glass tube with an outer diameter of less than 4 mm has only a comparatively small cavity, so that loses the effect of the cavity on the isolation of the process chamber. A quartz glass tube with an outer diameter of more than 50 mm is expensive to process and affects a compact design of the device.
In einer bevorzugten Modifikation der erfindungsgemäßen Vorrichtung ist vorgesehen, dass in mindestens einem der Quarzglasrohre ein Heizelement angeordnet ist, das Teil der Heizeinrichtung ist.In a preferred modification of the device according to the invention it is provided that in at least one of the quartz glass tubes, a heating element is arranged, which is part of the heating device.
Innerhalb eines Quarzglasrohres können ein oder mehrere Heizelemente angeordnet sein und es können mehrere Quarzglasrohre mit Heizelementen bestückt sein. Durch die Anordnung des Heizelements in einem Quarzglasrohr wird ein geringer Abstand zwischen Heizelement und Heizgut erreicht, ohne die Qualität der Bestrahlungsintensität zu beeinträchtigen.Within a quartz glass tube, one or more heating elements can be arranged and it can be equipped with heating elements several quartz glass tubes. The arrangement of the heating element in a quartz glass tube, a small distance between the heating element and Heizgut is achieved without affecting the quality of the irradiation intensity.
Es hat sich bewährt, wenn alle Quarzglasrohre eines Wandungselements mit Heizelementen belegt sind.It has proven useful if all quartz glass tubes of a wall element are covered with heating elements.
Dadurch, dass alle Quarzglasrohre eines Wandungselements mit Heizelementen belegt sind, wird eine möglichst homogene Bestrahlung des Heizgutes mit einer hohen Bestrahlungsintensität gewährleistet.Characterized in that all quartz glass tubes of a wall element are covered with heating elements, the most homogeneous possible irradiation of the heating material is ensured with a high irradiation intensity.
Es hat sich als günstig erwiesen, wenn das Heizelement ein Infrarotstrahler ist, der ein Strahlerrohr und ein Heizfilament aufweist.It has proven to be advantageous if the heating element is an infrared radiator having a radiator tube and a heating filament.
Ein Heizelement in Form eines Infrarotstrahlers bewirkt, dass das Heizgut unmittelbar beheizt wird, so dass eine schnelle und gleichmäßige Erwärmung des Heizguts erzielt wird. Der eingesetzte Infrarotstrahler kann beispielsweise für kurzwellige, mittelwellige und/oder langwellige Infrarotstrahlungsemission ausgelegt sein; er weist mindestens ein Heizfilament auf, das von einem Strahlerrohr, beispielsweise aus Quarzglas, umgeben ist.A heating element in the form of an infrared radiator causes the material to be heated directly, so that a rapid and uniform heating of the heating material is achieved. The infrared radiator used can be designed, for example, for short-wave, medium-wave and / or long-wave infrared radiation emission; it has at least one Heizfilament, which is surrounded by a radiator tube, for example made of quartz glass.
Es hat sich bewährt, wenn das Quarzglasrohr das Strahlerrohr des Infrarotstrahlers ist.It has proven useful if the quartz glass tube is the radiator tube of the infrared radiator.
Dadurch, dass das Quarzglasrohr des Wandungselements gleichzeitig das Strahlerrohr des Infrarotstrahlers ist, kann ein möglichst geringer Abstand zwischen dem Heizelement und dem zu bestrahlenden Heizgut erzielt werden. Darüber hinaus werden die an dem Quarzglasrohr und dem Strahlerrohr auftretenden Strahlungsverluste minimiert, so dass die Energieeffizienz der Vorrichtung verbessert wird.Because the quartz glass tube of the wall element is at the same time the radiator tube of the infrared radiator, the smallest possible distance between the heating element and the material to be heated can be achieved. In addition, the radiation losses occurring on the quartz glass tube and the radiator tube are minimized, so that the energy efficiency of the device is improved.
In einer vorteilhaften Ausgestaltung ist das Heizelement für mittelwellige InfrarotStrahlungsemission ausgelegt.In an advantageous embodiment, the heating element is designed for medium-wave infrared radiation emission.
Im Gegensatz zu Infrarotstrahlern für den kurzwelligen IR-Wellenlängenbereich, die zum Schutz des Heizfilaments mit einem Inertgas gefüllt und daher verschlossen sind, kann das Strahlerrohr eines mittelwelligen Heizstrahlers offen sein. Bei einem einseitig oder beidseitig offenen Strahlerrohr ist das Heizfilament unmittelbar zugänglich und kann deshalb besonders leicht und kostengünstig ausgetauscht werden. Diese Ausführungsform erleichtert somit Montage und Wartung der Vorrichtung.In contrast to infrared radiators for the short-wave IR wavelength range, which are filled to protect the heating filament with an inert gas and therefore sealed, the radiator tube of a medium-wave radiant heater can be open. In the case of a radiator tube which is open on one or both sides, the heating filament is directly accessible and can therefore be exchanged particularly easily and inexpensively. This embodiment thus facilitates assembly and maintenance of the device.
In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Wandungselemente einen quaderförmigen Hohlkörper bilden.In an advantageous embodiment of the device according to the invention it is provided that the wall elements form a cuboid hollow body.
Die Wandungselemente sind Teil der Ofenauskleidung. Vorzugsweise sind die Wandungselemente derart angeordnet, dass sie einen quaderförmigen Hohlkörper bilden. Beispielsweise ist der quaderförmige Hohlkörper an allen Seiten von Wandungselementen im Sinne der Erfindung umgeben. Ein solcher Holkörper ist insbesondere als Ofenauskleidung für einen Ofen, der im diskontinuierlichen Betrieb eingesetzt wird, geeignet. Darüber hinaus kann der quaderförmige Hohlkörper auch an einer oder an zwei Seiten offen ausgebildet sein. Insbesondere eine an zwei Seiten offene Ofenauskleidung ist für den Einsatz im kontinuierlichen Dauerbetrieb geeignet.The wall elements are part of the furnace lining. Preferably, the wall elements are arranged such that they form a cuboid hollow body. For example, the cuboid hollow body is surrounded on all sides by wall elements in the sense of the invention. Such a holster body is particularly suitable as a furnace lining for a furnace which is used in discontinuous operation. In addition, the cuboid hollow body can also be open on one or two sides. In particular, a furnace lining open on two sides is suitable for use in continuous continuous operation.
In einer bevorzugten Modifikation ist vorgesehen, dass der quaderförmigen Hohlkörper ein die Bodenplatte bildendes Wandungselement, ein die Deckplatte bildendes Wandungselement und vier, die Seitenwände des Hohlkörpers bildende Wandungselemente umfasst.In a preferred modification it is provided that the cuboid hollow body is a wall element forming the bottom plate, a wall element forming the cover plate and four, the side walls of the hollow body forming wall elements comprises.
Eine Ofenauskleidung in Form eines quaderförmigen Hohlkörpers mit einer Bodenplatte, einer Deckplatte und vier Wandungselementen ist insbesondere als Ofenauskleidung für einen Ofen, der im diskontinuierlichen Betrieb verwendet wird, geeignet. Die Wandungselemente umschließen den Prozessraum, wodurch die Ofenauskleidung auch für Anwendungen mit hohen Reinheitsanforderungen geeignet ist. Da die Ofenauskleidung aus Quarzglas gefertigt ist, sind unter Prozessbedingungen keine nennenswerten Verunreinigungen durch die Ofenauskleidung zu erwarten.A furnace lining in the form of a cuboid hollow body with a bottom plate, a cover plate and four wall elements is particularly suitable as a furnace lining for a furnace which is used in discontinuous operation. The wall elements surround the process space, making the furnace lining suitable for applications with high purity requirements. Since the furnace lining is made of quartz glass, under process conditions no appreciable contamination through the furnace lining is to be expected.
Es hat sich als vorteilhaft erwiesen, wenn mindestens zwei Wandungselemente in Blockbauweise miteinander verbunden sind, indem vorzugsweise zwei Wandungselemente an Korpusecken durch Verzinkung miteinander verbunden sind und/oder sich die Quarzglaszylinder eines ersten und eines zweiten Wandungselements an Korpusecken wechselweise überragen.It has proved to be advantageous if at least two wall elements are connected to one another in block construction, preferably by two wall elements are connected to Korpusecken by galvanizing each other and / or the quartz glass cylinder of a first and a second wall element on body corners protrude alternately.
Die Wandungselemente der Ofenauskleidung sind in Blockbauweise miteinander verbunden, beispielsweise durch Verzinkung oder Verzahnung. Die Wandungselemente überragen sich wechselweise an den Korpusecken oder sie schließen an den Ecken bündig ab. Durch die Verbindung der Wandungselemente in Blockbauweise wird eine Fügeverbindung erhalten, die hohen mechanischen Beanspruchungen standhält und gleichzeitig den Austausch einzelner Wandungselemente ermöglicht.The wall elements of the furnace lining are connected in block construction, for example by galvanizing or toothing. The wall elements protrude alternately at the corpus corners or they finish flush at the corners. The connection of the wall elements in block construction a joint is obtained, which withstands high mechanical stresses and at the same time allows the replacement of individual wall elements.
Es hat sich bewährt, wenn die überragenden Wandungselemente zu deren Fixierung mit einer die Ofenauskleidung umgebenden Ofenhülle verbunden sind.It has proven useful if the superior wall elements are connected to their fixation with a furnace casing surrounding the furnace lining.
Die Ofenhülle umfasst eine Isolierung, beispielsweise in Form einer Mineralfasermatte, und eine Blechummantelung. Die überragenden Wandungselemente können zu deren Fixierung lose oder fest mit der Ofenhülle verbunden sein. Im einfachsten Fall wird eine Fixierung der Wandungselemente schon dadurch ermöglicht, dass die Wandungselemente von der Isolierung und der Blechummantelung umgeben sind.The oven casing comprises an insulation, for example in the form of a mineral fiber mat, and a sheet metal casing. The towering wall elements may be loosely or firmly connected to the oven shell for their fixation. In the simplest case, a fixing of the wall elements is already made possible by the fact that the wall elements are surrounded by the insulation and the sheet metal jacket.
In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Ofenauskleidung zylinderförmig ausgebildet ist, und ein die Zylindermantelfläche bildendes Wandungselement mit mehreren ringförmig gebogenen Quarzglasrohren, ein die Deckplatte bildendes und ein die Bodenplatte bildendes Wandungselement umfasst.In a further preferred embodiment of the device according to the invention it is provided that the furnace lining is cylindrical, and a wall surface forming the cylinder surface with a plurality of annularly curved quartz glass tubes, a wall forming the cover plate and a wall plate forming the bottom plate includes.
Eine hohlzylinderförmige Ofenauskleidung ermöglicht eine allseitig gleichmäßige Bestrahlung des Heizgutes, insbesondere dann, wenn das Heizgut ebenfalls Zylinderform aufweist. Die Ofenauskleidung weist darüber hinaus Wandungselemente in Form einer Boden- und einer Deckplatte auf.A hollow-cylindrical furnace lining allows uniform illumination of the heating material on all sides, in particular if the material to be heated also has a cylindrical shape. The furnace lining also has wall elements in the form of a bottom and a cover plate.
Es hat sich bewährt, wenn die Bodenplatte und/oder die Deckplatte mehrere Quarzglaszylinder aufweisen, die über die SiO2-haltige Verbindungsmasse miteinander verbunden sind.It has proven useful if the bottom plate and / or the cover plate have a plurality of quartz glass cylinders, which are connected to one another via the SiO 2 -containing bonding compound.
Eine Boden- und/oder Deckplatte aus Quarzglaszylindern ist einfach und kostengünstig zu fertigen. Die Quarzglaszylinder weisen darüber hinaus einen Hohlraum auf, der zu einer thermischen Isolierung der Vorrichtung beiträgt. Des Weiteren können in eine Boden- und/oder eine Deckplatte aus mehreren Quarzglaszylindern mehrere Heizelemente angeordnet werden, so dass eine möglichst gleichmäßige Bestrahlungsintensität bezogen auf das Heizgut erreicht wird.A bottom and / or top plate made of quartz glass cylinders is easy and inexpensive to manufacture. The quartz glass cylinders also have a cavity which contributes to a thermal insulation of the device. Furthermore, a plurality of heating elements can be arranged in a bottom and / or a cover plate made of a plurality of quartz glass cylinders, so that the most uniform possible irradiation intensity relative to the heating material is achieved.
In einer vorteilhaften Ausgestaltung ist vorgesehen, dass die Ofenauskleidung von einer feuerfesten Hochtemperaturmatte umgeben ist.In an advantageous embodiment, it is provided that the furnace lining is surrounded by a refractory high-temperature mat.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und einer Zeichnung näher erläutert. Es zeigt in schematischer Darstellung im Einzelnen:
-
Figur 1 - eine erste Ausführungsform eines Wandungselements der erfindungsgemäßen Vorrichtung zur Wärmebehandlung in räumlicher Darstellung,
-
Figur 2 - eine zweite Ausführungsform eines Wandungselements der erfindungsgemäßen Vorrichtung zur Wärmebehandlung in Seitenansicht,
-
Figur 3 - eine Draufsicht auf vier miteinander verbundene Wandungselemente gemäß
Figur 1 , -
Figur 4 - vier miteinander verbundene Wandungselemente in räumlicher Darstellung, und
-
Figur 5 - einen Temperatur-Zeit-Verlauf einer in der erfindungsgemäßen Vorrichtung positionierten Probe.
- FIG. 1
- a first embodiment of a wall element of the device according to the invention for heat treatment in a spatial representation,
- FIG. 2
- a second embodiment of a wall element of the device according to the invention for heat treatment in side view,
- FIG. 3
- a plan view of four interconnected wall elements according to
FIG. 1 . - FIG. 4
- four interconnected wall elements in a spatial representation, and
- FIG. 5
- a temperature-time course of a positioned in the device according to the invention sample.
Im Folgenden wird die Herstellung des Wandungselements 1 näher erläutert:
- Zur
Verbindung der Quarzglasrohre 4a-4d wird als SiO2-haltige Verbindungsmasse 5 eine Suspension aus Quarzpulver und Wasser verwendet, mit der dievier Quarzglasrohre 4a-4d nacheinander einseitig beschichtet werden. Das Aufbringen der Suspension auf die Oberfläche der Quarzglasrohre 4a-4d erfolgt bei Raumtemperatur mit einem automatisierten Sprühverfahren. Die Dicke der Beschichtung beträgt etwa einen Millimeter. Vor dem Trocknen werden die einseitig beschichteten Quarzglasrohre 4a-4d mit der beschichteten Seite nach oben auf eine temperaturbeständige ebene Ablageplatte aus Quarzglas gelegt. Unmittelbar nach der Beschichtung, werden dieQuarzglasrohre 4a-4d axial zueinander angepresst, so dass im sukzessiven Aufbau ein stoffschlüssiger ebener Verbund in Form einer Platte entsteht.
- To connect the
quartz glass tubes 4a-4d, a suspension of quartz powder and water is used as the SiO 2 -containingcompound 5, with which the fourquartz glass tubes 4a-4d are successively coated on one side. The suspension is applied to the surface of thequartz glass tubes 4a-4d at room temperature using an automated spraying method. The thickness of the coating is about one millimeter. Before drying, the single-sided coatedquartz glass tubes 4a-4d are placed with the coated side up on a temperature-resistant flat storage plate made of quartz glass. Immediately after the coating, thequartz glass tubes 4a-4d are pressed axially relative to one another, so that a cohesive planar composite in the form of a plate is produced in the successive structure.
Die aneinandergepressten Quarzglasrohre 4a-4d befinden sich nach dem Beschichten im fragilen Grünzustand; sie werden daher im Anschluss zusammen mit der Ablageplatte in einen Sinterofen überführt. Das Sintern des Grünlings erfolgt bei 1240 °C für zwei Stunden in Luftatmosphäre. Nach dem Sintern sind die Quarzglasrohre 4a-4d mechanisch stabil miteinander verbunden, so dass ein Wandungselement 1 erhalten wird, das zu über 99.9% aus Quarzglas (SiO2) besteht. Im fertigen Wandungselement 1 ist die Beschichtung auf die dem Prozessraum abgewandte Seite 3 des Wandungselements 1 aufgebracht; sie ist opak und dient gleichzeitig als Reflektorschicht.The juxtaposed
Sofern in den
Eine zweite Ausführungsform eines Wandungselements ist in
Im ersten Ausführungsbeispiel weist die Vorrichtung zur Wärmebehandlung (nicht dargestellt) eine Ofenauskleidung in Form eines quaderförmigen Hohlkörpers auf; die Ofenauskleidung umfasst mehrere Wandungselemente 1 aus Quarzglas, eine Bodenplatte und eine Deckplatte.In the first embodiment, the apparatus for heat treatment (not shown) on a furnace lining in the form of a cuboid hollow body; The furnace lining comprises a plurality of
Der Verbund 30 ist mit einer rechteckigen Deckplatte (nicht dargestellt) abgedeckt, die aus elf Rohren aus Quarzglas besteht. Die Rohre weisen eine Länge von 400 mm, eine Breite von 34 mm und eine Höhe von 14 mm auf; sie sind miteinander über eine SiO2-haltigen Verbindungsmasse 5 verbunden. Die Verbindung erfolgt wie für die Wandungselemente 1 zu
Die Bodenplatte (nicht dargestellt) ist ebenfalls aus Rundrohren aus Quarzglas gefertigt, die über die SiO2-haltige Verbindungsmasse 5 miteinander verbunden sind. Zur Herstellung der Bodenplatte werden zehn Rundrohre mit einem Außendurchmesser von 10 mm und einer Länge von 400 mm miteinander verbunden. Die Rundrohre sind in einer Ebene nebeneinander, aber nicht versetzt zueinander angeordnet. Die Breite der Bodenplatte beträgt etwa 100 mm; sie hat eine Fläche von 400 x 100 mm2 = 0,04m2.The bottom plate (not shown) is also made of round tubes made of quartz glass, which are connected to each other via the SiO 2 -containing
In jedes der zehn Rundrohre der Bodenplatte ist ein 350 mm-langer Heizdraht (Filament) eingezogen. Die Enden der Rundrohre sind mit einem Keramiksockel abgeschlossen. Jedes Filament weist eine elektrische Leistung von 400 Watt auf, die Gesamtleistung beträgt 4 Kilowatt (kW). Da die Fläche des Heizfeldes der Bodenplatte 350 x 100 mm2 groß ist, ergibt sich eine Flächenleistung von 4 kW / 0,035 m2 = 114 kW/m2.In each of the ten round tubes of the bottom plate, a 350 mm long filament is inserted. The ends of the round tubes are finished with a ceramic base. Each filament has an electrical output of 400 watts, the total power is 4 kilowatts (kW). Since the area of the heating field of the bottom plate is 350 x 100 mm 2 , the area output is 4 kW / 0.035 m 2 = 114 kW / m 2 .
Die Flächendifferenz (0,12 m2) der Bodenplatte zur Deckenplatte ist mit Rohrabschnitten ausgelegt. Die Rohrabschnitte sind auf der Oberseite mit opakem, diffus hoch reflektivem Quarzglas beschichtet. Die Beschichtung besteht aus sehr vielen und kleinen Quarzkügelchen mit einem Durchmesser von circa 10 Nanometern bis 50 Mikrometern. Das fest gesinterte und entsprechend poröse SiO2-Material, dessen Poren mit Luft gefüllt sind, besitzt aufgrund der winzigen Strukturen eine enorme Oberfläche: pro Gramm des Materials etwa 5 m2. Beim hier beschriebenen Aufbau werden ungefähr 670 Gramm des opaken Materials fest aufgebracht, so dass sich eine Oberfläche im Ofeninnenraum von etwa 3.350 m2 ergibt. Diese große Oberfläche fördert die schnelle indirekte Erwärmung der Luft in den Poren über die direkte Erwärmung des Quarzglases über Infrarotstrahlung.The area difference (0.12 m 2 ) of the floor slab to the ceiling slab is designed with pipe sections. The tube sections are coated on the top with opaque, diffusely highly reflective quartz glass. The coating consists of very many and small quartz beads with a diameter of about 10 nanometers to 50 micrometers. The solid sintered and correspondingly porous SiO 2 material, whose pores are filled with air, has an enormous surface due to the tiny structures: about 5 m 2 per gram of material. In the construction described here, approximately 670 grams of the opaque material are firmly applied, resulting in a surface in the furnace interior of approximately 3,350 m 2 . This large surface promotes the rapid indirect heating of the air in the pores via the direct heating of the quartz glass via infrared radiation.
Die Ofenauskleidung ist von einer einlagigen thermischen Isolierung umgeben. Die Isolierung besteht aus einer feuerfesten Hochtemperaturmatte auf der Basis von Aluminium- und Siliziumoxid; sie weist eine Dicke von 25 mm auf. Die Außenseite der thermischen Isolierung ist mit einer Blechummantelung umgeben. Um eine Beschickung des Ofens über die Oberseite zu ermöglichen, kann der Deckel geöffnet werden. Die gesamte Bestrahlungsvorrichtung wiegt etwa 10 Kilogramm und ist für den mobilen Einsatz geeignet.The furnace lining is surrounded by a single-layer thermal insulation. The insulation consists of a refractory high-temperature mat based on aluminum and silicon oxide; it has a thickness of 25 mm. The outside of the thermal insulation is surrounded by a sheet metal jacket. To allow the stove to be charged over the top, the lid can be opened. The entire irradiation device weighs about 10 kilograms and is suitable for mobile use.
In den von der Ofenauskleidung umschlossenen Prozessraum 31 wird das zu erwärmende Heizgut eingebracht. Der Prozessraum 31 weist eine Länge von 320 mm, eine Breite von 320 mm und eine Höhe von 145 mm auf.In the enclosed by the furnace
In
Zur Bestimmung der Probentemperatur wurde die Vorrichtung bei Raumtemperatur in Betrieb genommen (sogenannter Kaltstart), und die volle elektrische Leistung (4 kW) eingeschaltet. Nach 2 Minuten erreicht die Temperatur des Heizgutes 260°C, nach 4 Minuten stellen sich 540°C ein. 900°C werden nach etwa 17.5 Minuten erreicht, die Maximaltemperatur von 950°C nach 22 Minuten.To determine the sample temperature, the device was put into operation at room temperature (so-called cold start), and the full electrical power (4 kW) was switched on. After 2 minutes, the temperature of the heating medium reaches 260 ° C, after 4 minutes 540 ° C. 900 ° C are reached after about 17.5 minutes, the maximum temperature of 950 ° C after 22 minutes.
Um die Quarzbauteile nicht zu gefährden, wurde die Maximaltemperatur auf 950°C begrenzt und anschließend die Aufheizphase beendet. Werden die Quarzbauteile und die Heizdrähte dauerhaft unterhalb von 1.000°C betrieben, kann die wartungsfreie Lebensdauer der Ofenauskleidung 10.000 Betriebsstunden und mehr erreichen.In order not to endanger the quartz components, the maximum temperature was limited to 950 ° C and then the heating phase ended. If the quartz components and the heater wires are permanently operated below 1,000 ° C, the maintenance-free life of the furnace lining can reach 10,000 operating hours and more.
Um anschließend eine Haltetemperatur von 800°C einzustellen, wurde die elektrische Leistung auf dauerhaft 1.6 kW erniedrigt. Diese Temperatur ist zum Beispiel geeignet für das Aufbringen von gerichteten Reflektoren auf Substrate aus Glas, also metallischen Schichten wie zum Beispiel Gold. Durch den geschlossenen Aufbau wird nicht nur die Strahlungsenergie genutzt, sondern auch die entstehende konvektive Wärme der erhitzten Luft trägt zur Gesamterwärmung bei. Der Temperaturgradient im linearen Bereich (260 bis 560°C) beträgt beim Aufheizen etwa 2.3 K/min; die benötigten Aufheizzeiten sind minimiert.To subsequently set a holding temperature of 800 ° C, the electrical power was lowered to a steady 1.6 kW. This temperature is suitable, for example, for applying directional reflectors to glass substrates, ie metallic layers such as gold. The closed structure not only uses the radiant energy, but also the resulting convective heat of the heated air contributes to the overall warming. The temperature gradient in the linear range (260 to 560 ° C) during heating is about 2.3 K / min; the required heating times are minimized.
Nach dem Heizprozess wurde unmittelbar nach Ausschalten der elektrischen Versorgung der Deckel des Aufbaus abgenommen und die Probe mit einer Zange entnommen. Die Probe hat dabei noch eine Temperatur größer 600°C. Aufgrund der ausgezeichneten Wärmeschockbeständigkeit der Innenauskleidung des Ofens aus reinem Quarzglas ist eine zeitaufwändige Abkühlphase nicht notwendig, die Gesamtprozesszeit wird gegenüber konventionellen Muffelöfen um mehrere Stunden verkürzt, siehe Vergleichsbeispiel 1. Die Probe kann sofort gewechselt werden, so dass der Prozess direkt wieder von neuem begonnen werden kann.After the heating process was immediately after switching off the electrical supply The lid of the structure removed and removed the sample with a pair of pliers. The sample still has a temperature greater than 600 ° C. Due to the excellent thermal shock resistance of the inner lining of the furnace made of pure quartz glass, a time-consuming cooling phase is not necessary, the total process time is reduced by several hours compared to conventional muffle furnaces, see Comparative Example 1. The sample can be changed immediately, so that the process can be started directly again can.
Da die neue Innenauskleidung des Ofens aus Quarzglas besteht und das Material sowie die Strahler selbst Temperaturen dauerhaft bis fast 1000°C überstehen, ist eine Kühlung der Einzelkomponenten mittels Ventilatoren oder Kühlflüssigkeiten nicht notwendig.Since the new inner lining of the furnace is made of quartz glass and the material and the radiators survive even temperatures up to almost 1000 ° C, cooling of the individual components by means of fans or cooling liquids is not necessary.
Der Aufbau der Vorrichtung unterscheidet sich vom Aufbau der Vorrichtung aus Ausführungsbeispiel 1 dahingehend, dass zwei, sich gegenüberliegende Wandungselemente 1 komplett entfernt sind. Die Öffnungen sind die Vorbereitung für eine kontinuierliche Einbringung des zu erwärmenden Heizguts. Der Ofen mit der neuartigen Innenauskleidung in Form der verbleibenden beiden Wände mit Deckel und Boden wird im warmen und eingeschalteten Zustand (elektrische Dauerleistung 1.5 kW) mittig beladen. Der Warenträger hat einen Abstand von 60 mm zum Heizfeld (Boden).The structure of the device differs from the structure of the device of
Die Probe aus Quarzglas, wie im Ausführungsbeispiel 1 beschrieben, heizt sich von Raumtemperatur anfangs mit einem Gradienten von etwa 9 K/min auf und erreicht nach nur drei Minuten die Temperatur von 600°C und nach 14 Minuten eine maximale Temperatur von 740°C. Der Unterschied zur Maximaltemperatur von 800°C aus Beispiel 1 erklärt sich durch konvektive Verluste durch die zwei seitlichen Öffnungen und den etwas größeren Abstand zwischen Heizgut und Strahlungsquelle.The quartz glass sample as described in Example 1 initially heats up from room temperature with a gradient of about 9 K / min and reaches the temperature of 600 ° C after only three minutes and a maximum temperature of 740 ° C after 14 minutes. The difference to the maximum temperature of 800 ° C from Example 1 is explained by convective losses through the two lateral openings and the slightly larger distance between the material to be heated and the radiation source.
Der Aufbau des Ofens gemäß Beispiel 3 entspricht dem der Vorrichtung aus Beispiel 2. Der Ofen wird im warmen und eingeschalteten Zustand (elektrische Dauerleistung 1.5 kW) betrieben und für einen kontinuierlichen Sinterprozess eingesetzt. Hierzu wird ein auf der Oberseite mit Gold beschichtetes Bauteil, beispielsweise ein Quarzrohr mit den Abmessungen LxBxH = 1000 x 34 x 14 mm, zum Einbrennen der Beschichtung so durch den Ofen geführt, dass das Bauteil mit der Geschwindigkeit von 200 mm/min durch die heiße Prozesskammer des Ofens läuft und auf der Gegenseite wieder herausgeführt wird. Das Bauteil wird mit einem außerhalb des Ofens befindlichen Halter manuell durch den Ofen bewegt. Das Rohr bewegt sich in einem Abstand von 60 mm zum Heizfeld der Bodenplatte.The structure of the furnace according to Example 3 corresponds to that of the device of Example 2. The furnace is operated in the warm and on state (continuous electric power 1.5 kW) and used for a continuous sintering process. For this purpose, a coated on the top with gold component, such as a quartz tube with the dimensions LxWxH = 1000 x 34 x 14 mm, led to burn the coating through the oven so that the component at the rate of 200 mm / min through the hot Process chamber of the furnace is running and out on the opposite side again. The component is manually moved through the oven with a holder located outside the oven. The pipe moves at a distance of 60 mm to the heating field of the base plate.
Nach dem Durchlaufen des Ofens weist die Beschichtung auf dem Rohr eine visuell homogene Oberfläche mit sehr guter Oberflächenhaftung auf. Die Haftung des Goldes auf der Oberfläche wurde mit dem Klebeband- Abrisstest ermittelt. Dieser Test beinhaltet, dass ein im Handel frei erhältliches Klebeband, zum Beispiel ein Scotch-Klebeband der Firma 3M, auf die vergoldete Oberfläche aufgebracht und mit einem Ruck wieder abgezogen wird. Ist die Haftfähigkeit des Goldes nicht ausreichend, bleiben metallische Rückstände auf der Klebefläche des Bandes zurück. Die metallisch beschichtete Oberfläche zeigte keinerlei Beeinträchtigungen durch Partikel oder Fremdstoffe, da die neue Ofenauskleidung aus SiO2 kontaminationsfrei und ohne Partikelgenerierung arbeitet.After passing through the oven, the coating on the tube has a visually homogeneous surface with very good surface adhesion. The adhesion of the gold to the surface was determined by the tape peel test. This test involves that a commercially available adhesive tape, for example a 3M Scotch tape, is applied to the gilded surface and pulled off again with a jerk. If the adhesion of the gold is insufficient, metallic residues remain on the adhesive surface of the strip. The metallically coated surface showed no adverse effects from particles or foreign substances, since the new furnace lining made of SiO 2 works without contamination and without particle generation.
Ein konventioneller Muffel-Temperofen umfasst eine elektrische Anschlussleistung 24 kW, eine Ofenauskleidung in Form einer Ausmauerung, und eine Prozesskammer, die folgende Nutzraum-Abmessungen aufweist: L x B x H = 1000 mm x 500 mm x 300 mm. In den Muffel-Temperofen wurde ein einseitig mit einem Metall beschichtetes Quarzrohr mit einer Länge von 300 mm, einer Breite von 34 mm und einer Höhe von 14 mm zum Einbrennen der Beschichtung eingebracht und der Temperatur-Zeit-Verlauf der Probe bestimmt. Die Aufheizkurve (nicht dargestellt) zeigt zwischen 700 und 1000°C einen Gradienten von 6,6 K/min, die Ofentemperatur wird bei maximal 1000°C gehalten. Nach Abschalten des Ofens dauert es 5,5 Stunden, bis die Temperatur 600°C erreicht und der Ofen frühestens zur Entnahme der Probe geöffnet werden kann. Zur Gewährleistung einer hohen Lebensdauer der Ausmauerung (> 1 Jahr) ohne Rissbildung sollte der Ofen erst unter 400°C geöffnet werden, da die Ausmauerungssteine keine hohe Wärmeschockbeständigkeit aufweisen.A conventional muffle annealing furnace has an electrical connection power of 24 kW, a furnace lining in the form of a lining, and a process chamber having the following useful space dimensions: L x W x H = 1000 mm x 500 mm x 300 mm. In the muffle annealing furnace, a quartz tube coated on one side with a metal having a length of 300 mm, a width of 34 mm and a height of 14 mm was introduced for baking the coating, and the temperature-time course of the sample was determined. The heating curve (not shown) shows a gradient of 6.6 K / min between 700 and 1000 ° C, the furnace temperature is held at a maximum of 1000 ° C. After switching off the oven, it takes 5.5 hours until the temperature reaches 600 ° C and the oven can be opened at the earliest to take the sample. To ensure a long service life of the lining (> 1 year) without cracking, the oven should not be opened below 400 ° C, as the bricks do not have a high thermal shock resistance.
Der Aufbau der Vorrichtung unterscheidet sich von dem aus Beispiel 1 dadurch, dass drei nebeneinander angeordnete Bodenplatten als Flächenstrahler vorgesehen sind. Jede Bodenplatte umfasst 10 Rundrohre, die mit jeweils einem Heizfilament mit einer Leistung von 400 Watt versehen sind. Die elektrische Gesamtleistung der Vorrichtung beträgt 12 kW. An den Enden der Rundrohre sind Keramiksockel vorgesehen. Die drei Flächenstrahler (Bodenplatten) nehmen insgesamt eine Fläche von 400 x 300 mm2 = 0,12 m2 ein. Die Differenz zur gegenüber liegenden Fläche des Deckels (0,16 m2) wird mit einzelnen, einseitig an der Oberseite beschichteten Rohrstücken ausgelegt.The structure of the device differs from that of Example 1 in that three juxtaposed bottom plates are provided as surface radiators. Each base plate consists of 10 round tubes, each with a filament of 400 watts. The total electrical power of the device is 12 kW. Ceramic bases are provided at the ends of the round tubes. The three panel radiators (floor panels) occupy a total area of 400 x 300 mm 2 = 0.12 m 2 . The difference to the opposite surface of the cover (0.16 m 2 ) is designed with individual, on one side coated at the top pipe sections.
Erwärmt wird eine Stahlplatte (L x B x H = 200 mm x 120 mm x 0.75 mm), deren Oberfläche leicht oxidiert ist. Der kürzeste Abstand zwischen Platte und Flächenstrahler beträgt 30mm. Die Zieltemperatur von 800°C, startend von Raumtemperatur 20°C, wird nach vier Minuten erreicht. Der Aufheizgradient beträgt im linearen Bereich ca. 4,5 K/s.A steel plate (L x W x H = 200 mm x 120 mm x 0.75 mm), the surface of which is slightly oxidized, is heated. The shortest distance between plate and surface spotlight is 30mm. The target temperature of 800 ° C, starting from
Eine Stahlplatte gemäß Beispiel 4 mit gleicher Abmessung und Qualität wird in einem konventionellen Infrarot-Modul mit neun kurzwelligen Strahlern von einer Seite erwärmt. Das Infrarot-Modul weist eine Leistungsdichte von 100 kW/m2 und eine elektrische Gesamt-Leistung von 38 kW auf. Das Heizfeld des Infrarot-Moduls hat eine Fläche L x B = 700 mm x 500 mm. Der Abstand des Heizfeldes zum Heizgut beträgt 120 mm.A steel plate according to Example 4 with the same size and quality is heated in a conventional infrared module with nine short-wave radiators from one side. The infrared module has a power density of 100 kW / m 2 and a total electrical power of 38 kW. The heating field of the infrared module has an area L x B = 700 mm x 500 mm. The distance of the heating field to the heating material is 120 mm.
Der Aufheizgradient beträgt anfangs ca. 14 K/s und flacht dann stark ab. Die Maximaltemperatur von 640°C wird nach etwa 2 min erreicht. Aufgrund der hohen Konvektionsverluste nach allen Seiten und der hohen Reflektivität ist eine höhere Temperatur der Stahlplatte nur durch Erwärmung mittels Strahlung nicht möglich, die Zieltemperatur von 800°C kann nicht erreicht werden. Ein kleinerer Abstand zwischen Platte und Heizfeld ist nicht praktikabel, da sich die Umgebung inklusive Strahler trotz Kühlung in diesem Temperaturbereich unzulässig erwärmt.The heating gradient is initially about 14 K / s and then flattens off sharply. The maximum temperature of 640 ° C is reached after about 2 minutes. Due to the high convection losses on all sides and the high reflectivity, a higher temperature of the steel plate is only possible by heating by means of radiation, the target temperature of 800 ° C can not be achieved. A smaller distance between the plate and the heating field is not practicable, since the environment including the radiator heats up inadmissibly despite cooling in this temperature range.
Eine Stahlplatte mit gleichen Abmessungen und identischer Qualität aus dem Vergleichsbeispiel 2 wird über zwei konventionelle Infrarot-Module mit kurzwelligen Strahlern von zwei Seiten erwärmt. Die Infrarot-Module weisen eine Leistungsdichte von je 100 kW/m2 auf; die elektrische Leistung beträgt insgesamt 75 kW. Das Heizfeld der Module hat jeweils eine Fläche L x B = 700 mm x 500 mm Der Abstand des Heizfeldes vom Heizgut beträgt 120 mm.A steel plate of the same dimensions and identical quality from Comparative Example 2 is heated by two conventional infrared modules with short-wave radiators from two sides. The infrared modules have a power density of 100 kW / m 2 ; the electric power is 75 kW in total. The heating field of the modules has an area L x W = 700 mm x 500 mm. The distance of the heating field from the material to be heated is 120 mm.
Der Aufheizgradient beträgt anfangs ca. 25-30 K/s, die Maximaltemperatur von ca. 680°C stellt sich nach etwa 1,5 Minuten ein, die Zieltemperatur von 800°C kann nicht erreicht werden. Ab 500°C ist eine deutliche Erwärmung (Rauchentwicklung) der Umgebung zu beobachten.The heating gradient is initially about 25-30 K / s, the maximum temperature of about 680 ° C sets after about 1.5 minutes, the target temperature of 800 ° C can not be achieved. From 500 ° C a significant warming (smoke) is the environment too observe.
In einer alternativen Ausführungsform ist ein Wandungselement, so ausgeführt, dass es selbst als Heizstrahler fungiert und von mehreren Seiten gleichzeitig das Heizgut erwärmt. Fünf einzelne Zwillingsrohre aus Quarzglas mit einer Länge von 875 mm, einer Breite von 34 mm und einer Höhe von 14 mm werden ringförmig gebogen und danach auf der Außenseite beschichtet und miteinander verbunden. Der Innenradius der so erhaltenen Prozesskammer beträgt circa 120 mm. Der Kreisbogen ist einen Spalt geöffnet (etwa 30 mm); durch den Spalt sind die elektrischen Anschlüsse zur Stromversorgung in eine Zone außerhalb des Prozessraumes geführt. Die fünf ringförmigen Zwillingsrohre werden mit je zwei Heizwendeln einer Länge von jeweils 70 cm bestückt; sie werden senkrecht übereinander in direktem Kontakt zu einem Verbund zusammengesetzt. Jede Heizwendel weist eine Leistung von 0,9 kW auf. Die Gesamtleistung der Vorrichtung beträgt 9 kW. Die Bodenplatte und die Deckplatte bestehen aus gefügten Einzelrohren ohne Heizelemente, wie in Ausführungsbeispiel 1 beschrieben.In an alternative embodiment, a wall element is designed such that it itself functions as a radiant heater and simultaneously heats the material to be heated from several sides. Five individual twin tubes of quartz glass with a length of 875 mm, a width of 34 mm and a height of 14 mm are bent annularly and then coated on the outside and connected to each other. The inner radius of the process chamber thus obtained is about 120 mm. The circular arc is opened a gap (about 30 mm); Through the gap, the electrical connections for power supply are led into a zone outside the process space. The five annular twin tubes are each equipped with two heating coils of a length of 70 cm each; they are assembled vertically one above the other in direct contact with a composite. Each heating coil has a power of 0.9 kW. The total power of the device is 9 kW. The bottom plate and the cover plate consist of joined individual tubes without heating elements, as described in Example 1.
Eine Stahlplatte wie im Ausführungsbeispiel 4 oder den Vergleichsbeispielen 2 oder 3 beschrieben wird mittig senkrecht in die Kammer platziert. Der mittlere Abstand der Stahlplatte zu der Innenwandung beträgt ca. 120 mm. Ausgehend von einer Starttemperatur von ca. 65°C werden mit einem Aufheizgradient von etwa 30 K/s nach ca. 35 Sekunden über 1000°C erreicht. Für eine Haltetemperatur auf ca. 800°C wird die elektrische Leistung auf 1,6 kW gedrosselt.A steel plate as described in
In einer weiteren Ausführungsform unterscheidet sich die Ofenauskleidung von der Ofenauskleidung gemäß Ausführungsbeispiel 1 dahingehend, dass ein Wandungselement 1 entfernt ist. Hierdurch ist die Beladung des Prozessraumes durch die offene Seite begünstigt; sie erfolgt mittels eines automatischen Roboterarms. Der Roboter hält das zu erwärmende Bauteil für eine definierte Zeit in die heiße Zone, bis die Zieltemperatur erreicht ist. Danach wird das Bauteil in ein Formwerkzeug gegeben. Schließlich wird wieder das nächste Bauteil im Infrarot-Ofen auf Zieltemperatur gebracht.In a further embodiment, the furnace lining differs from the furnace lining according to
Erwärmt wird ein mit Carbonfasern verstärkter Kunststoff (CFK), hier mit dem thermoplastischen Kunststoff PPS (Polyphenylsulfid). Die Platte aus CFK hat die Abmessungen L x B x H = 180 mm x 85 mm x 4 mm. Der Abstand der Flächenstrahler zur Platte beträgt 55 mm.A carbon fiber reinforced plastic (CFRP) is heated, here with the thermoplastic PPS (polyphenylsulfide). The CFK plate has the dimensions L x B x H = 180mm x 85mm x 4mm. The distance of the surface radiator to the plate is 55 mm.
Nach Einschalten werden die Flächenstrahler mit einer elektrischen Einspeisung von 4 kW betreiben. Der Prozessraum wird initial fünf Minuten erwärmt, bevor der CFK in die heiße Zone gehalten wird. Der Aufheizgradient im linearen Aufheizbereich beträgt auf der zum Strahler abgewandten Seite des CFK circa 4,8 K/s. Etwa 10 Sekunden nach der Einbringung des Heizguts in die Heizzone wird die elektrische Beheizung abgeschaltet, um eine vorzeitige Überhitzung der CFK-Oberfläche zu vermeiden. Aufgrund der Innenauskleidung des Ofens steigt durch die Abstrahlung der Wände mit Unterstützung von warmer Luft (Konvektion) die Temperatur im Innern trotz der offenen Seite weiter an, etwa 85 Sekunden nach dem Einbringen des CFK in den Prozessraum wird die Zieltemperatur von 260°C auf der zum Strahler abgewandten Seite erreicht. In den folgenden 100 aufgezeichneten Sekunden steigt die Temperatur mit einem Gradienten von etwa 0.2 K/s bis zu 280°C weiter an und hält die Temperatur weiter in der nachfolgenden Minute. Durch die homogene Erwärmung auf 260°C wird das PPS weich, so dass eine Umformung des Materials leicht möglich ist.After switching on, the surface spotlights will be operated with an electrical feed of 4 kW. The process room is initially heated for five minutes before the CFRP is kept in the hot zone. The heating gradient in the linear heating range is approximately 4.8 K / s on the side of the CFRP facing away from the radiator. About 10 seconds after the heating material has been introduced into the heating zone, the electrical heating is switched off to prevent premature overheating of the CFRP surface. Due to the internal lining of the furnace, the inside of the furnace continues to rise despite the open side due to the radiation of the walls with the help of warm air (convection). Approximately 85 seconds after the CFRP is introduced into the process room, the target temperature of 260 ° C is reached reached to the spotlight side. In the following 100 seconds recorded, the temperature continues to rise with a gradient of about 0.2 K / s up to 280 ° C and keeps the temperature in the following minute. Due to the homogeneous heating to 260 ° C, the PPS softens, so that a transformation of the material is easily possible.
Claims (16)
- Apparatus for heat treatment, comprising a process space that is surrounded by a furnace lining made of quartz glass, a heating facility, and a reflector, characterised in that the furnace lining comprises multiple wall elements (1) that have a side (3) facing the process space and a side (2) facing away from the process space, and in that at least one of the wall elements comprises multiple quartz glass tubes that are connected to each other by means of an SiO2-containing connecting mass (5).
- Apparatus according to claim 1, characterised in that the SiO2-containing connecting mass (5) concurrently serves as reflector and as connecting mass.
- Apparatus according to claim 1 or 2, characterised in that the SiO2-containing connecting mass (5) is applied onto the side of a wall element facing the process space.
- Apparatus according to any one of the claims 1 or 2, characterised in that the SiO2-containing connecting mass (5) is applied onto the side of a wall element facing away from the process space.
- Apparatus according to any one of the preceding claims, characterised in that the quartz glass tubes have a round cross-section and in that the outer diameter of the quartz glass tubes is in the range of 4 to 50 mm.
- Apparatus according to any one of the preceding claims, characterised in that at least one of the quartz glass tubes has a heating element that is part of the heating facility arranged in.
- Apparatus according to claim 6, characterised in that all quartz glass tubes of a wall element (1) are fitted with heating elements.
- Apparatus according to claim 6 or 7, characterised in that the heating element is an infrared emitter that comprises an emitter tube and a heating filament.
- Apparatus according to claim 8, characterised in that the quartz glass tube is the emitter tube of the infrared emitter.
- Apparatus according to any one of the preceding claims 6 to 9, characterised in that the heating element is designed for the emission of medium-wave infrared radiation.
- Apparatus according to any one of the preceding claims, characterised in that the wall elements (1) form a cuboid hollow body.
- Apparatus according to claim 11, characterised in that the cuboid hollow space comprises a wall element (1) forming the bottom plate, a wall element forming the cover plate, and four wall elements forming the side walls of the hollow body.
- Apparatus according to any one of the preceding claims, characterised in that at least two wall elements are connected to each other in block construction in that, preferably, two wall elements (1) are connected to each other by galvanizing on corners of the body and/or the quartz glass cylinders of a first and a second wall element alternatingly project beyond the other on corners of the body.
- Apparatus according to claim 13, characterised in that the projecting wall elements (1) are connected, in order to affix them, to a furnace shell that surrounds the furnace lining.
- Apparatus according to any one of the preceding claims 1 to 10, characterised in that the furnace lining is designed to be cylindrical and in that a wall element (1) that forms the cylinder jacket surface and has multiple quartz glass tubes curved in the shape of a ring comprises a wall element forming the cover plate and a wall element forming the bottom plate.
- Apparatus according to any one of the preceding claims 12 or 15, characterised in that the bottom plate and/or the cover plate comprise multiple quartz glass cylinders that are connected to each other by means of the SiO2-containing connecting mass (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13702328T PL2815195T3 (en) | 2012-02-17 | 2013-01-12 | Heat treatment device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012003030A DE102012003030A1 (en) | 2012-02-17 | 2012-02-17 | Apparatus for heat treatment |
PCT/EP2013/000074 WO2013120571A1 (en) | 2012-02-17 | 2013-01-12 | Heat treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2815195A1 EP2815195A1 (en) | 2014-12-24 |
EP2815195B1 true EP2815195B1 (en) | 2015-10-14 |
Family
ID=47632959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13702328.9A Not-in-force EP2815195B1 (en) | 2012-02-17 | 2013-01-12 | Heat treatment device |
Country Status (8)
Country | Link |
---|---|
US (1) | US9976807B2 (en) |
EP (1) | EP2815195B1 (en) |
JP (1) | JP6073376B2 (en) |
KR (1) | KR101734630B1 (en) |
CN (1) | CN104220830B (en) |
DE (1) | DE102012003030A1 (en) |
PL (1) | PL2815195T3 (en) |
WO (1) | WO2013120571A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015104932B3 (en) * | 2015-03-31 | 2016-06-02 | Heraeus Noblelight Gmbh | Apparatus for heat treatment |
DE102015113766B4 (en) * | 2015-08-19 | 2019-07-04 | Heraeus Noblelight Gmbh | Radiator module and use of the radiator module |
DE102015119763A1 (en) | 2015-11-16 | 2017-05-18 | Heraeus Quarzglas Gmbh & Co. Kg | infrared Heaters |
WO2022013137A1 (en) * | 2020-07-13 | 2022-01-20 | Heraeus Noblelight Gmbh | Medium-wave infrared emitter and method for producing same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT157690B (en) * | 1938-02-04 | 1940-01-10 | Siemens Schuckertwerke Wien | Induction furnace for melting metals, alloys, etc. like |
DE1973753U (en) | 1967-08-30 | 1967-11-30 | Berthold Widmaier Fa | ELECTRICALLY HEATED SMALL MUFFLE BURNING OVEN FOR ENAMELING PURPOSES, FOR EXAMPLE FOR THE MANUFACTURE OF JEWELERY AND THE LIKE. |
DE2522160A1 (en) | 1975-05-17 | 1976-11-25 | Philips Patentverwaltung | SOLAR PANEL |
DE2934106A1 (en) | 1979-08-23 | 1981-03-26 | Karl-Heinrich Prof. Dr.-Ing. 5100 Aachen Hausmann | PIPE HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF |
JPS5917587U (en) * | 1982-04-21 | 1984-02-02 | 株式会社デンコー | Plate-shaped infrared radiation heating device |
JPS6451619A (en) | 1987-08-21 | 1989-02-27 | Dainippon Screen Mfg | Heat treatment equipment for substrate |
CN2138260Y (en) * | 1991-06-24 | 1993-07-14 | 周永椒 | Quartz infrared electronic heater |
JP3299477B2 (en) * | 1997-02-07 | 2002-07-08 | 光信 宮城 | Manufacturing method of hollow waveguide |
DE10227566B4 (en) * | 2002-06-20 | 2007-09-27 | Dentsply Detrey Gmbh | Heating muffle for a kiln for producing a titanium-containing dental ceramic product, process for its production and use, and kiln containing the heating muffle |
JP2005127628A (en) | 2003-10-24 | 2005-05-19 | Murata Mfg Co Ltd | Heat treatment furnace |
US7563512B2 (en) * | 2004-08-23 | 2009-07-21 | Heraeus Quarzglas Gmbh & Co. Kg | Component with a reflector layer and method for producing the same |
DE102004054392A1 (en) * | 2004-08-28 | 2006-03-02 | Heraeus Quarzglas Gmbh & Co. Kg | Method for joining components made of high-siliceous material, as well as assembled from such components component composite |
JP4623416B2 (en) * | 2004-11-12 | 2011-02-02 | 国立大学法人長岡技術科学大学 | Infrared radiation snow melting method and apparatus |
JP5441243B2 (en) * | 2009-02-24 | 2014-03-12 | 信越石英株式会社 | Quartz glass jig for heat treatment of infrared transparent member |
-
2012
- 2012-02-17 DE DE102012003030A patent/DE102012003030A1/en not_active Ceased
-
2013
- 2013-01-12 CN CN201380009640.2A patent/CN104220830B/en not_active Expired - Fee Related
- 2013-01-12 KR KR1020147022753A patent/KR101734630B1/en active IP Right Grant
- 2013-01-12 WO PCT/EP2013/000074 patent/WO2013120571A1/en active Application Filing
- 2013-01-12 JP JP2014556940A patent/JP6073376B2/en not_active Expired - Fee Related
- 2013-01-12 EP EP13702328.9A patent/EP2815195B1/en not_active Not-in-force
- 2013-01-12 US US14/379,127 patent/US9976807B2/en not_active Expired - Fee Related
- 2013-01-12 PL PL13702328T patent/PL2815195T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN104220830B (en) | 2016-06-15 |
US9976807B2 (en) | 2018-05-22 |
KR101734630B1 (en) | 2017-05-11 |
WO2013120571A1 (en) | 2013-08-22 |
JP6073376B2 (en) | 2017-02-01 |
EP2815195A1 (en) | 2014-12-24 |
KR20140112084A (en) | 2014-09-22 |
DE102012003030A1 (en) | 2013-08-22 |
US20150010294A1 (en) | 2015-01-08 |
PL2815195T3 (en) | 2016-03-31 |
JP2015513058A (en) | 2015-04-30 |
CN104220830A (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2815195B1 (en) | Heat treatment device | |
DE69426494T2 (en) | MICROWAVE SUPPORTED TREATMENT OF MATERIALS | |
DE112007000703B4 (en) | Heat treatment furnace | |
KR101375570B1 (en) | Radiant heater | |
DE69217170T2 (en) | METHOD AND USE OF A DEVICE FOR BAKING ENAMEL ON METAL SURFACES, IN PARTICULAR ALUMINUM PARTS | |
DE2339768B2 (en) | ELECTRIC COOKING PLATE | |
EP0035254B1 (en) | Electric heating equipment for ranges or cooking tops | |
DE1800782B2 (en) | VACUUM SOLDERING FURNACE WITH ISOTHERMAL USEFUL SPACE | |
DE3224203A1 (en) | HIGH TEMPERATURE MELTING MELT | |
CN102226644B (en) | High-temperature sintering push plate kiln capable of working continuously | |
DE10163087B4 (en) | Infrared radiator for the thermal treatment of goods | |
DE102015104932B3 (en) | Apparatus for heat treatment | |
DE19917874A1 (en) | Wall cavity thermal insulation especially for high temperature heat treatment furnaces | |
TW201448658A (en) | Metal heating element and heating structure | |
DE102014003301A1 (en) | High temperature infrared radiator, process and application | |
WO1993016571A1 (en) | Microwave processing materials | |
EP2501659B1 (en) | Chamber furnace for producing foam glass plates or molded bodies made of foam glass | |
EP0495897A1 (en) | Radiant heat unit | |
DE10001330A1 (en) | Electric cooker plate has flat coating of electrical heating resistance material with binding material containing electrical resistance element of conducting carbon in contact with underside | |
CN202254832U (en) | Microwave kiln and kiln lining | |
US3342971A (en) | Method for brazing super alloys and refractory metals | |
CN202254775U (en) | Continuous-working high-temperature sintering push pedal kiln | |
CN102288036A (en) | Microwave furnace and furnace lining thereof | |
EP3029404B1 (en) | Industrial oven system | |
DE202015003970U1 (en) | Electric heating plate module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140728 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150706 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 755459 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013001344 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160114 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160214 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160115 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160215 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013001344 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160112 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
26N | No opposition filed |
Effective date: 20160715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20181220 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013001344 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502013001344 Country of ref document: DE Representative=s name: EULER, MATTHIAS, DR., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20181102 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190122 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013001344 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200131 Year of fee payment: 8 Ref country code: DE Payment date: 20200121 Year of fee payment: 8 Ref country code: GB Payment date: 20200124 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200121 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200112 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 755459 Country of ref document: AT Kind code of ref document: T Effective date: 20200112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200112 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013001344 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210112 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200112 |