JP4623416B2 - Infrared radiation snow melting method and apparatus - Google Patents

Infrared radiation snow melting method and apparatus Download PDF

Info

Publication number
JP4623416B2
JP4623416B2 JP2004329680A JP2004329680A JP4623416B2 JP 4623416 B2 JP4623416 B2 JP 4623416B2 JP 2004329680 A JP2004329680 A JP 2004329680A JP 2004329680 A JP2004329680 A JP 2004329680A JP 4623416 B2 JP4623416 B2 JP 4623416B2
Authority
JP
Japan
Prior art keywords
infrared
snow melting
heater
case body
infrared heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004329680A
Other languages
Japanese (ja)
Other versions
JP2006138141A (en
Inventor
信之助 宮内
一徳 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2004329680A priority Critical patent/JP4623416B2/en
Publication of JP2006138141A publication Critical patent/JP2006138141A/en
Application granted granted Critical
Publication of JP4623416B2 publication Critical patent/JP4623416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Resistance Heating (AREA)

Description

本発明は例えば降雪地域の横断歩道の信号待ち付近やバス停の周辺、地下道の入り口付近、点字ブロック、トンネルの出入口付近の積雪を赤外線放射により融雪、融氷する際に用いられる赤外線放射融雪方法及びその装置に関するものである。   The present invention is, for example, an infrared radiation melting method for melting snow by melting infrared radiation near a signal waiting on a pedestrian crossing in a snowfall area, near a bus stop, near an entrance of an underpass, Braille blocks, and the entrance of a tunnel by infrared radiation, and It relates to the device.

従来この種の赤外線融雪装置として、赤外線ヒータから放射される赤外線を融雪部位に照射し、該赤外線のもつ熱エネルギにより融雪する構造のものが知られている。
特開昭63−86289号公報 実開昭63−27538号公報
2. Description of the Related Art Conventionally, as this type of infrared snow melting apparatus, an apparatus having a structure in which infrared radiation emitted from an infrared heater is irradiated to a snow melting site and the snow is melted by the thermal energy of the infrared radiation is known.
JP-A-63-86289 Japanese Utility Model Publication No. 63-27538

これら従来構造の場合、上記赤外線ヒータの発熱体の表面温度が400℃〜700℃未満の温度領域、その殆どが550℃の表面温度に設定されている。   In the case of these conventional structures, the surface temperature of the heating element of the infrared heater is set to a temperature range of 400 ° C. to less than 700 ° C., most of which is set to a surface temperature of 550 ° C.

この赤外線は電磁波の一種であり、熱エネルギをもつ光の波であり、一般的に、0.8〜5μmの波長で、温度では約400℃〜2500℃の範囲の赤外線が工業用として用いられている。   This infrared ray is a kind of electromagnetic wave and is a wave of light having thermal energy. Generally, infrared rays having a wavelength of 0.8 to 5 μm and a temperature range of about 400 ° C. to 2500 ° C. are used for industrial purposes. ing.

ここに、最大エネルギ波長(λmax)と光源絶対温度(T)とは、λ=2897/T(ウインの変位則)の関係にあることが知られ、統一されてはいないが、最大エネルギー波長(μm)が3.5μm〜5.0μm、400℃〜700℃の「長波長赤外線(低温領域)」(遠赤外線ともいう。)、最大エネルギー波長(μm)が2.0μm〜3.5μm、700℃〜1200℃の「中波長赤外線(高温領域)」、最大エネルギー波長(μm)が1.0μm〜2.0μm、1200℃〜2500℃の「短波長赤外線(高々温領域)」(近赤外線ともいう。)の三つに分類されているから、従来構造のものは、「長波長赤外線(低温領域)」に属する赤外線を用いていたということになる。   Here, it is known that the maximum energy wavelength (λmax) and the light source absolute temperature (T) have a relationship of λ = 2897 / T (Winn's displacement law), and although not unified, the maximum energy wavelength ( μm) is 3.5 μm to 5.0 μm, 400 ° C. to 700 ° C. “long wavelength infrared (low temperature region)” (also called far infrared), and the maximum energy wavelength (μm) is 2.0 μm to 3.5 μm, 700 "Medium Wavelength Infrared (High Temperature Range)" of ℃ to 1200 ℃, "Short Wavelength Infrared (High Temperature Range)" of Maximum Energy Wavelength (μm) of 1.0 to 2.0μm, 1200 ℃ to 2500 ℃ (both near infrared rays) In other words, the conventional structure uses infrared rays belonging to “long wavelength infrared rays (low temperature region)”.

この「長波長赤外線(低温領域)」に属する赤外線に限って用いていた理由であるが、赤外線放射加熱融雪にあっては、目的物質(雪)に赤外線を大気中を介して照射し、目的物質の中でエネルギが共振吸収され、吸収されたエネルギは分子又は原子を振動させ、振動させられた分子間で摩擦熱が発生するという加熱原理となっていることから、大気中の主組成分に対する赤外線の吸収状態を考慮しなければならないからである。これら大気に対する赤外線の吸収状態を考慮すると、赤外線の透過帯域として最良の波長域は3.75μm〜4μmの間と、8.7μmと、11μmの三つの波長域(いわゆる窓と称されている。)とされているが、8.7μm及び11μmの波長域では赤外線ヒータの発熱体が大型となり、使用の融通性が低く、この結果、上記「長波長赤外線(低温領域)」の分類に属する3.75μm〜4μmの間の長波長赤外線(低温領域)が技術常識として用いられていたのである。   This is the reason why it is used only for infrared rays belonging to this "long wavelength infrared ray (low temperature region)". In infrared radiation heating and melting snow, the target substance (snow) is irradiated with infrared rays through the atmosphere, and the purpose is Energy is absorbed and absorbed in the substance, and the absorbed energy is a heating principle in which molecules or atoms vibrate and frictional heat is generated between the oscillated molecules. This is because it is necessary to consider the absorption state of infrared rays with respect to the above. Considering these infrared absorption states with respect to the atmosphere, the best wavelength range for the infrared transmission band is between 3.75 μm to 4 μm, 8.7 μm, and 11 μm (referred to as a so-called window). However, in the wavelength range of 8.7 μm and 11 μm, the heating element of the infrared heater becomes large, and the flexibility of use is low. As a result, it belongs to the category of “long wavelength infrared rays (low temperature region)” 3 Long wavelength infrared rays (low temperature region) between .75 μm and 4 μm were used as technical common sense.

しかしながら、上記「長波長赤外線(低温領域)」の分類に属する赤外線を用いる場合、赤外線の透過帯域として最良の波長域ではあるが、使用目的上、屋外で使用されることから、寒風が赤外線ヒータの表面に吹き付けられ、赤外線ヒータの表面温度の急速な温度降下が生じ、有効エネルギは発熱体の表面絶対温度の4乗と対象物の絶対温度の4乗の差に比例するというステファン・ボルツマンの法則から明らかなとおり、「長波長赤外線(低温領域)」であることから、赤外線ヒータの表面温度の降下はヒーター効率に大きく影響し、融雪効率を急速に低下させるということを数回に亘る実験結果により確証するに至ったのである。   However, when infrared rays belonging to the above-mentioned “long wavelength infrared ray (low temperature region)” are used, although it is the best wavelength region as an infrared transmission band, it is used outdoors for the purpose of use. Stefan Boltzmann says that the surface temperature of the infrared heater is rapidly reduced, and the effective energy is proportional to the difference between the fourth power of the absolute temperature of the heating element and the fourth power of the absolute temperature of the object. As is clear from the law, since it is “long-wave infrared (low temperature region)”, several experiments have been conducted to show that a drop in the surface temperature of the infrared heater has a large effect on the heater efficiency and rapidly reduces the snow melting efficiency. It was confirmed by the result.

本発明はこれらの不都合を解決することを目的とするもので、本発明のうちで、請求項1記載の方法の発明は、赤外線ヒータから放射される赤外線を融雪部位に照射し、該赤外線のもつ熱エネルギにより融雪するに際し、上記赤外線ヒータの発熱体は透明石英ガラス管内に配置され、該赤外線ヒータはケース体内に配置され、該ケース体内の該赤外線ヒータからの赤外線をケース体の開口空間を介して融雪部位に向けて照射可能に設けられ、該開口空間を複数個の小空間に形成可能な仕切構造部が設けられ、該仕切構造部は上記開口空間を複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられ、かつ、該赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であることを特徴とする赤外線放射融雪方法にある。 The present invention aims to solve these disadvantages. Among the present inventions, the invention of the method according to claim 1 irradiates the snow melting site with infrared rays radiated from an infrared heater. When melting snow by the heat energy possessed, the heating element of the infrared heater is disposed in a transparent quartz glass tube, the infrared heater is disposed in the case body, and infrared rays from the infrared heater in the case body are passed through the opening space of the case body. A partition structure portion is provided so as to be able to irradiate the snow melting region through the plurality of small spaces, and the partition structure portion includes a plurality of strip-like or honeycomb-shaped openings. Infrared radiation fusion characterized in that it can be formed in a lattice-like small space and the maximum energy wavelength of the heating element of the infrared heater is a medium wavelength infrared ray of 2.0 μm to 3.5 μm Snow is on the way.

又、請求項記載の装置の発明は、赤外線ヒータから放射される赤外線を融雪部位に照射し、該赤外線のもつ熱エネルギにより融雪する赤外線放射融雪装置において、上記赤外線ヒータの発熱体を透明石英ガラス管内に配置し、該赤外線ヒータをケース体内に配置し、該ケース体内の該赤外線ヒータからの赤外線をケース体の開口空間を介して融雪部位に向けて照射可能に設け、該開口空間を複数個の小空間に形成可能な仕切構造部を設け、該仕切構造部は上記開口空間を複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられ、かつ、該赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であることを特徴とする赤外線放射融雪装置にある。 The invention of apparatus according to claim 2 irradiates infrared rays emitted from the infrared heaters to snow melting site, the infrared radiation snow melting apparatus for melting snow by a heat energy of the said infrared transparent quartz heating elements of the infrared heaters It is arranged in a glass tube, the infrared heater is arranged in the case body, infrared rays from the infrared heater in the case body are provided to be able to irradiate a snow melting site through the opening space of the case body, and a plurality of the opening spaces are provided. A partition structure portion that can be formed in each small space is provided, and the partition structure portion is provided so that the opening space can be formed in a plurality of strip-like, honeycomb-like, or lattice-like small spaces, and the infrared heater The infrared radiation snow melting device is characterized in that the maximum energy wavelength of the heating element is a medium wavelength infrared ray of 2.0 μm to 3.5 μm .

又、請求項記載の装置の発明は、上記仕切構造部は上記開口空間を複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられていることを特徴とするものである。 According to a third aspect of the present invention, the partition structure is characterized in that the opening space is provided so that the opening space can be formed in a plurality of strip-like, honeycomb-like, or lattice-like small spaces. is there.

本発明は上述の如く、請求項1又は記載の発明にあっては、赤外線ヒータから放射される赤外線は融雪部位に向けて照射され、融雪部位の雪の融雪が行われることになり、この際、上記赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であるから、ステファン・ボルツマンの法則から明らかなように、赤外線ヒータからなるヒータユニットを小型軽量化することができ、小型軽量で融雪効率の高いヒータユニットを製作することができ、赤外線ヒータを小型化することによりヒーターユニットの設置の融通性が高まって用途の拡大を図ることができ、かつ、照射角度を容易に可変設定することができ、融雪部位を集中的に照射することができ、照射効率を向上することができ、更に、雪風による発熱体の表面温度の降下防止対策を容易に行うことができ、ヒーターユニットの軽量化により一層使用の融通性を高めることができ、かつ、上記赤外線ヒータの発熱体は透明石英ガラス管内に配置されているから、赤外線の透過率が高く、発熱体を外気などの対流熱損失から保護することができ、それだけ、赤外線照射効率を良好に維持することができ、一層融雪効率を高めることができ、さらに、上記赤外線ヒータをケース体内に配置し、ケース体内の該赤外線ヒータからの赤外線をケース体の開口空間を介して融雪部位に向けて照射可能に設け、該開口空間を複数個の小空間に形成可能な仕切構造部を設けてなるから、上記開口空間は仕切構造部により複数個の小空間に形成され、赤外線ヒータからの赤外線は複数個の小空間を介して融雪部位に向けて照射されることになると共に、ケース体内に寒風が開口空間を介して吹き込もうとしても、開口空間は複数個の小空間に形成されているので、この寒風の吹き込みが抑制され、寒風がケース体の奥側に配置された赤外線ヒータの表面に吹き付けられたり、赤外線ヒータ近くの暖かい空気を外に逃がすことを防ぐことができ、赤外線ヒータの表面温度の降下を抑制することができ、融雪効率を向上することができる。 As described above, in the invention according to the first or second aspect , the infrared ray emitted from the infrared heater is irradiated toward the snow melting portion, and the snow melting of the snow melting portion is performed. At this time, since the maximum energy wavelength of the heating element of the infrared heater is a medium wavelength infrared ray of 2.0 μm to 3.5 μm, the heater unit composed of the infrared heater is reduced in size and weight as apparent from Stefan-Boltzmann's law. It is possible to manufacture a heater unit that is small and lightweight and has high snow melting efficiency. By reducing the size of the infrared heater, the flexibility of installation of the heater unit can be increased, and the application can be expanded. The angle can be easily variably set, the snow melting part can be irradiated intensively, the irradiation efficiency can be improved, and the heating element of the snow wind can be improved. It is easy to take measures to prevent the temperature of the surface from dropping, and the heater unit can be made lighter so that it can be used more flexibly. The heating element of the infrared heater is disposed in the transparent quartz glass tube. Infrared transmittance is high, the heating element can be protected from convective heat loss such as outside air, the infrared irradiation efficiency can be maintained well, snow melting efficiency can be further improved, and An infrared heater is disposed in the case body, and infrared rays from the infrared heater in the case body are provided so as to be able to irradiate the snow melting site through the opening space of the case body, and the opening space can be formed in a plurality of small spaces. Since the partition structure portion is provided, the opening space is formed into a plurality of small spaces by the partition structure portion, and the infrared rays from the infrared heater are transmitted to the snow melting site through the plurality of small spaces. Even if cold air is blown into the case body through the opening space, the opening space is formed in a plurality of small spaces, so that the blowing of this cold wind is suppressed, Can be prevented from being blown to the surface of the infrared heater arranged on the back side of the case body or escaping the warm air near the infrared heater to the outside, and the surface temperature drop of the infrared heater can be suppressed, Snow melting efficiency can be improved.

又、請求項3記載の装置の発明にあっては、上記仕切構造部として、上記開口空間を複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられているから、ケース体の剛性及び機械的強度を高めることができ、耐久性を高めることができる。 Further, in the invention of the apparatus according to claim 3 , since the opening space is provided as the partition structure portion so as to be formed in a plurality of strip-like, honeycomb-like, or lattice-like small spaces, the case The rigidity and mechanical strength of the body can be increased, and the durability can be increased.

図1乃至図7は本発明の実施の形態例を示し、1はケース体であって、ケース体1内に棒状の赤外線ヒータ2・2を二個並列状に配置してヒーターユニットを構成し、赤外線ヒータ2・2に図外の給電部から電力を供給し、赤外線ヒータ2・2からの赤外線Lをケース体1の開口空間Rを介して融雪部位Mに向けて照射可能に設けられている。   1 to 7 show an embodiment of the present invention. Reference numeral 1 denotes a case body. A heater unit is configured by arranging two rod-shaped infrared heaters 2 and 2 in parallel in the case body 1. Electric power is supplied to the infrared heaters 2 and 2 from a power supply unit (not shown) so that the infrared rays L from the infrared heaters 2 and 2 can be irradiated toward the snow melting region M through the opening space R of the case body 1. Yes.

この場合、赤外線ヒータ2は、コイル状の発熱体2aを保護用の透明石英ガラス管2b内に挿通配置してなり、赤外線ヒータ2は発熱体2aの表面温度が700℃〜1200℃の温度領域内で使用されるに適した構造のものが用いられ、発熱体2aへの給電により、上記最大エネルギー波長(μm)が2.0μm〜3.5μm、700℃〜1200℃の「中波長赤外線(高温領域)」の分類に属する、発熱体2aの表面温度が700℃〜1200℃の温度領域(最大エネルギー波長(μm)が2.0μm〜3.5μm)内に入るようにして使用される。   In this case, the infrared heater 2 is formed by inserting a coil-shaped heating element 2a through a protective transparent quartz glass tube 2b, and the infrared heater 2 has a temperature range where the surface temperature of the heating element 2a is 700 ° C. to 1200 ° C. The structure having a structure suitable for use in the inside is used, and by supplying power to the heating element 2a, the above-mentioned maximum energy wavelength (μm) is 2.0 μm to 3.5 μm, 700 ° C. to 1200 ° C. The surface temperature of the heating element 2a belonging to the category “high temperature region)” is used in a temperature range of 700 ° C. to 1200 ° C. (maximum energy wavelength (μm) is 2.0 μm to 3.5 μm).

この発熱体2aの表面温度が700℃〜1200℃の温度領域にしているのは、700℃以下になると実用面から希望する大きさよりも大型化した装置となり、実用上、装置の大型化は使用の融通性等の不都合を生じ、1200℃以上になると耐熱構造により構造が複雑化し易く、雪面での反射を考慮すると融雪効率が低下するからである。   The surface temperature of the heating element 2a is set to a temperature range of 700 ° C. to 1200 ° C. When the temperature is 700 ° C. or less, the device becomes larger than the size desired from a practical viewpoint. This is because inconvenience such as flexibility is caused, and when the temperature is 1200 ° C. or higher, the structure is easily complicated by the heat-resistant structure, and the snow melting efficiency is lowered when reflection on the snow surface is taken into consideration.

3は仕切構造部であって、この場合、上記ケース体内に断面コ状の二個の反射板4・4を内装し、各反射板4・4内に複数個の仕切板5・5・5・・・を配置固定し、反射板4及び仕切板5により複数個の短冊状の小空間R・R・R・・・を形成するようにしている。 Reference numeral 3 denotes a partition structure portion. In this case, two reflecting plates 4 and 4 having a U-shaped cross section are provided in the case body, and a plurality of partition plates 5, 5, 5 are provided in each reflecting plate 4, 4. Are arranged and fixed, and a plurality of strip-shaped small spaces R 1 , R 1 , R 1 ... Are formed by the reflecting plate 4 and the partition plate 5.

尚、この仕切構造部3として、上記ケース体内に反射機能を兼ねた格子状の仕切部材を配置し、仕切部材により複数個の格子状の小空間R・R・R・・・を形成したり、平面六角形状の複数個の小空間R・R・R・・・からなるハニカム構造のものも適用することができる。 As the partition structure portion 3, a lattice-shaped partition member having a reflection function is disposed in the case body, and a plurality of lattice-shaped small spaces R 1 , R 1 , R 1 . A honeycomb structure having a plurality of small spaces R 1 , R 1 , R 1 .

この実施の形態例は上記構成であるから、図1の如く、例えば、路肩に支柱Fを立設し、支柱Fにケース体1を吊下状に取り付け、積雪があると自動的に赤外線ヒータ2・2に図外の給電部から電力が供給され、赤外線ヒータ2・2からの赤外線Lはケース体1の開口空間Rを介して融雪部位Mに向けて照射され、融雪部位Mの雪Sの融雪が行われることになる。   Since this embodiment has the above-described configuration, as shown in FIG. 1, for example, a support column F is erected on the road shoulder, and the case body 1 is attached to the support column F in a suspended manner. Electric power is supplied to the power supply unit 2 and 2 from the power supply unit (not shown), and the infrared rays L from the infrared heaters 2 and 2 are irradiated toward the snow melting region M through the opening space R of the case body 1. Snow melting will be performed.

この際、上記赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であるから、ステファン・ボルツマンの法則から明らかなように、赤外線ヒータ2からなるヒータユニットを小型軽量化することができ、小型軽量で融雪効率の高いヒータユニットを製作することができ、赤外線ヒータ2を小型化することによりヒーターユニットの設置の融通性が高まって用途の拡大を図ることができ、かつ、照射角度を容易に可変設定することができ、融雪部位を集中的に照射することができ、照射効率を向上することができ、更に、雪風による発熱体2aの表面温度の降下防止対策を容易に行うことができ、ヒーターユニットの軽量化により一層使用の融通性を高めることができる。 At this time, since the maximum energy wavelength of the heating element of the infrared heater is a medium wavelength infrared ray of 2.0 μm to 3.5 μm, the heater unit including the infrared heater 2 is small and light, as is apparent from Stefan-Boltzmann's law. A heater unit with a small and light weight and high snow melting efficiency can be manufactured, and by reducing the size of the infrared heater 2, the flexibility of installation of the heater unit can be increased and the application can be expanded. In addition, the irradiation angle can be easily variably set, the snow melting part can be intensively irradiated, the irradiation efficiency can be improved, and the surface temperature of the heating element 2a can be prevented from dropping due to snow wind. The flexibility of use can be further improved by reducing the weight of the heater unit.

又、この場合、上記赤外線ヒータ2の発熱体2aは透明石英ガラス管2b内に配置されているから、赤外線の透過率が高く、発熱体を外気などの対流熱損失から保護することができ、それだけ、赤外線照射効率を良好に維持することができ、一層融雪効率を高めることができる。   In this case, since the heating element 2a of the infrared heater 2 is disposed in the transparent quartz glass tube 2b, the infrared transmittance is high, and the heating element can be protected from convective heat loss such as outside air, Accordingly, infrared irradiation efficiency can be maintained well, and snow melting efficiency can be further increased.

又、この場合、上記開口空間Rは仕切構造部3により複数個の小空間R・R・R・・・に形成され、赤外線ヒータ2・2からの赤外線Lは複数個の小空間R・R・R・・・を介して融雪部位Mに向けて照射されることになると共に、ケース体1内に寒風が開口空間Rを介して吹き込もうとしても、開口空間Rは複数個の短冊状の小空間R・R・R・・・に形成されているので、この寒風Kの吹き込みが抑制され、寒風Kがケース体内の奥側に配置された赤外線ヒータ2の表面に吹き付けられたり、赤外線ヒータ2近くの暖かい空気を外に逃がすことを防ぐことができ、赤外線ヒータ2・2の表面温度の降下を抑制することができ、融雪効率を向上することができる。 In this case, the opening space R is formed into a plurality of small spaces R 1 , R 1 , R 1 ... By the partition structure portion 3, and the infrared rays L from the infrared heaters 2 and 2 are a plurality of small spaces. Irradiation toward the snow melting site M through R 1 , R 1 , R 1 ... And the cold air is blown into the case body 1 through the opening space R, the opening space R Are formed in a plurality of strip-shaped small spaces R 1 , R 1 , R 1 ..., So that the blowing of the cold wind K is suppressed, and the infrared heater in which the cold wind K is disposed on the back side in the case body. 2 and the warm air near the infrared heater 2 can be prevented from escaping to the outside, the surface temperature drop of the infrared heaters 2 and 2 can be suppressed, and the snow melting efficiency can be improved. it can.

又、この場合、上記仕切構造部3として、上記開口空間Rを複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられているから、ケース体1の剛性及び機械的強度を高めることができ、耐久性を高めることができる。 Further, in this case, since the opening space R is provided as the partition structure portion 3 so as to be formed in a plurality of strip-like, honeycomb-like, or lattice- like small spaces, the rigidity and mechanical strength of the case body 1 are provided. The durability can be increased.

尚、本発明は上記実施の形態例に限られるものではなく、ケース体1の構造、赤外線ヒータ2の構造や材質、数、仕切構造部3の構造等は適宜変更して設計される。   The present invention is not limited to the above embodiment, and the structure of the case body 1, the structure and material of the infrared heater 2, the number, the structure of the partition structure portion 3, and the like are appropriately changed and designed.

以上、所期の目的を充分達成することができる。   As described above, the intended purpose can be sufficiently achieved.

本発明の実施の形態例の使用状態図である。It is a use state figure of the example of an embodiment of the invention. 本発明の実施の形態例のヒーターユニットの断面図である。It is sectional drawing of the heater unit of the embodiment of this invention. 本発明の実施の形態例のヒーターユニットの平面図である。It is a top view of the heater unit of the embodiment of the present invention. 本発明の実施の形態例の赤外線ヒータの横断面図である。It is a cross-sectional view of the infrared heater of the embodiment of the present invention. 本発明の実施の形態例の部分分解斜視図である。It is a partial exploded perspective view of the example of an embodiment of the invention. 本発明の実施の形態例のヒーターユニットの横断面図である。It is a cross-sectional view of the heater unit of the embodiment of the present invention. 本発明の実施の形態例のヒーターユニットの縦断面図である。It is a longitudinal cross-sectional view of the heater unit of the embodiment of this invention.

L 赤外線
M 融雪部位
R 開口空間
小空間
1 ケース体
2 赤外線ヒータ
2a 発熱体
2b 透明石英ガラス管
3 仕切構造部
L Infrared M Snow melting part R Open space R 1 Small space 1 Case body 2 Infrared heater 2a Heating element 2b Transparent quartz glass tube 3 Partition structure

Claims (3)

赤外線ヒータから放射される赤外線を融雪部位に照射し、該赤外線のもつ熱エネルギにより融雪するに際し、上記赤外線ヒータの発熱体は透明石英ガラス管内に配置され、該赤外線ヒータはケース体内に配置され、該ケース体内の該赤外線ヒータからの赤外線をケース体の開口空間を介して融雪部位に向けて照射可能に設けられ、該開口空間を複数個の小空間に形成可能な仕切構造部が設けられ、かつ、該赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であることを特徴とする赤外線放射融雪方法。 When irradiating the snow melting site with infrared radiation radiated from an infrared heater and melting snow by the thermal energy of the infrared radiation, the heating element of the infrared heater is disposed in a transparent quartz glass tube, the infrared heater is disposed in the case body, Provided to be able to irradiate infrared rays from the infrared heater in the case body toward the snow melting site through the opening space of the case body, provided with a partition structure portion capable of forming the opening space into a plurality of small spaces, And the infrared radiation snow melting method , wherein the maximum energy wavelength of the heating element of the infrared heater is a medium wavelength infrared ray of 2.0 μm to 3.5 μm . 赤外線ヒータから放射される赤外線を融雪部位に照射し、該赤外線のもつ熱エネルギにより融雪する赤外線放射融雪装置において、上記赤外線ヒータの発熱体を透明石英ガラス管内に配置し、該赤外線ヒータをケース体内に配置し、該ケース体内の該赤外線ヒータからの赤外線をケース体の開口空間を介して融雪部位に向けて照射可能に設け、該開口空間を複数個の小空間に形成可能な仕切構造部を設け、かつ、該赤外線ヒータの発熱体の最大エネルギー波長が2.0μm〜3.5μmの中波長赤外線であることを特徴とする赤外線放射融雪装置。 In an infrared radiation snow melting apparatus that irradiates a snow melting portion with infrared radiation emitted from an infrared heater and melts the snow by the thermal energy of the infrared radiation, the heating element of the infrared heater is disposed in a transparent quartz glass tube, and the infrared heater is disposed inside the case body. A partition structure that is arranged to be capable of irradiating infrared rays from the infrared heater in the case body toward the snow melting site through the opening space of the case body, and capable of forming the opening space into a plurality of small spaces. An infrared radiation snow melting apparatus provided and having a maximum energy wavelength of a heating element of the infrared heater of 2.0 to 3.5 μm . 上記仕切構造部は上記開口空間を複数個の短冊状やハニカム状、格子状の小空間に形成可能に設けられていることを特徴とする請求項2記載の赤外線放射融雪装置。  3. The infrared radiation snow melting apparatus according to claim 2, wherein the partition structure is provided so that the opening space can be formed into a plurality of strip-like, honeycomb-like, or lattice-like small spaces.
JP2004329680A 2004-11-12 2004-11-12 Infrared radiation snow melting method and apparatus Active JP4623416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329680A JP4623416B2 (en) 2004-11-12 2004-11-12 Infrared radiation snow melting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329680A JP4623416B2 (en) 2004-11-12 2004-11-12 Infrared radiation snow melting method and apparatus

Publications (2)

Publication Number Publication Date
JP2006138141A JP2006138141A (en) 2006-06-01
JP4623416B2 true JP4623416B2 (en) 2011-02-02

Family

ID=36619135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329680A Active JP4623416B2 (en) 2004-11-12 2004-11-12 Infrared radiation snow melting method and apparatus

Country Status (1)

Country Link
JP (1) JP4623416B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812697B2 (en) * 2007-06-05 2011-11-09 株式会社ニーズプロダクト Snow-prevention device for signal lights and lightning display boards
JP5900881B2 (en) * 2012-01-05 2016-04-06 中日本高速道路株式会社 Snow melting equipment
DE102012003030A1 (en) 2012-02-17 2013-08-22 Heraeus Noblelight Gmbh Apparatus for heat treatment
CN111576318B (en) * 2020-05-18 2021-12-31 广平县隆合新能源销售有限公司 Optical catalysis road surface snow cleaning equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241304A (en) * 1998-02-25 1999-09-07 Yuichiro Mizushiro Snow-melting device and method
JP2001006851A (en) * 1999-04-19 2001-01-12 Susumu Kitagawa Far infrared heater
JP2002069961A (en) * 2000-08-29 2002-03-08 Niigata Atorasu Kk Far infrared snow melting device
JP2003213646A (en) * 2002-01-21 2003-07-30 Koichi Takada Far infrared light type snow melting apparatus
JP2004172103A (en) * 2002-10-28 2004-06-17 Yuni Rotto:Kk Ice melting device and cold storage warehouse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241304A (en) * 1998-02-25 1999-09-07 Yuichiro Mizushiro Snow-melting device and method
JP2001006851A (en) * 1999-04-19 2001-01-12 Susumu Kitagawa Far infrared heater
JP2002069961A (en) * 2000-08-29 2002-03-08 Niigata Atorasu Kk Far infrared snow melting device
JP2003213646A (en) * 2002-01-21 2003-07-30 Koichi Takada Far infrared light type snow melting apparatus
JP2004172103A (en) * 2002-10-28 2004-06-17 Yuni Rotto:Kk Ice melting device and cold storage warehouse

Also Published As

Publication number Publication date
JP2006138141A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
ES2283871T3 (en) APPARATUS AND PROCEDURE FOR CURVING AND / OR GLASS TEMPERATE USING AN INFRARED FILTER.
EP2106560B1 (en) Thermally switched optical downconverting filter
JP5450331B2 (en) Method and apparatus for uniformly heating glass and / or glass ceramic using infrared radiation
CA2730835C (en) Thermally switched optical downconverting filter
ES2677557T3 (en) Localized heat techniques that incorporate an adjustable infrared element or elements for vacuum insulated glass units, and / or devices for them
JP5937524B2 (en) Infrared furnace, infrared heating method, and steel plate manufactured using the same
JP4623416B2 (en) Infrared radiation snow melting method and apparatus
WO2014118722A4 (en) Infrared furnace and method for infrared heating
JP2011033276A (en) Solar heat collecting structure
ES2380124T3 (en) Electric radiant heater
KR101095461B1 (en) Far infrared ray irradiating tube type heater having winding shape duct
US6377741B1 (en) Wave guides and material comprising wave guides and its applications
KR200350610Y1 (en) Far infrared ray irradiating tube type heater having fins
JP7492706B2 (en) Snow melting equipment
JP2005222907A (en) Infrared snow melting apparatus
JPH01297139A (en) Apparatus for heating gas stream
ES2294406T3 (en) INFRARED WARMING ELEMENT AND VACUUM CHAMBER WITH SUBSTRATE HEATING SPECIALLY FOR EMPTY COATING FACILITIES.
EP3045836B1 (en) Heating device
CN201059677Y (en) Heating heater air curtain type reflector
JP2022153247A (en) agricultural house structure
JP2022153248A (en) agricultural house structure
JP2009067370A (en) Roof panel for automobile
JP2013067533A (en) Optical fiber drawing furnace
JPH04258491A (en) Blind
CZ306734B6 (en) A furnace for heating an object with infrared radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4623416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250