JP2009067370A - Roof panel for automobile - Google Patents

Roof panel for automobile Download PDF

Info

Publication number
JP2009067370A
JP2009067370A JP2007264931A JP2007264931A JP2009067370A JP 2009067370 A JP2009067370 A JP 2009067370A JP 2007264931 A JP2007264931 A JP 2007264931A JP 2007264931 A JP2007264931 A JP 2007264931A JP 2009067370 A JP2009067370 A JP 2009067370A
Authority
JP
Japan
Prior art keywords
panel
roof panel
temperature
automobile
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007264931A
Other languages
Japanese (ja)
Inventor
Ikuo Iwai
郁夫 祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007264931A priority Critical patent/JP2009067370A/en
Publication of JP2009067370A publication Critical patent/JP2009067370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for suppressing the temperature rise of a roof panel of the automobile (temperature rise in a cabin of an automobile) under the solar light irradiation. <P>SOLUTION: Large number of hanging bell type projections are arranged and laid on the surface of the roof panel of the automobile in the most densely filled type disposition, a surface area S of the panel is expanded from 1.5 times to 2 times of the cross sectional area So projected in the vertical direction of the panel and the energy of radiation heat transfer of the panel is increased by shaping the surface shape of the projection in a rotational quadratic surface where a heat radiation emitted from the projection surface is easily discharged in the air. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車室内の快適な温度環境を提供できる自動車の構造に関し、特に、炎天下における駐車時のルーフパネル温度上昇、およびそれに伴う室内温度上昇を抑制するための、自動車のルーフパネルの形状に関するものである。The present invention relates to a structure of an automobile capable of providing a comfortable temperature environment in an automobile room, and more particularly, to a shape of a roof panel of an automobile for suppressing an increase in the temperature of a roof panel during parking in hot weather and an accompanying increase in the indoor temperature. Is.

自動車を長時間、直射日光の下に置くと、ルーフパネルが高温となり、これが室内温度上昇を招く。真夏の炎天下では、70℃以上に達することがあり(特許文献1参照)、不快感が増して、自動車の利便性、快適性を損なっている。このような温度上昇の抑制は、自動車業界長年の課題であった。
特開2004−21796(第5頁、第45行)
When a car is placed in direct sunlight for a long time, the roof panel becomes hot, which causes an increase in indoor temperature. Under midsummer hot weather, it may reach 70 ° C. or higher (see Patent Document 1), increasing discomfort and impairing the convenience and comfort of automobiles. Controlling such temperature rise has been a challenge for many years in the automobile industry.
JP-A-2004-21796 (5th page, 45th line)

因みに、人間の皮膚組織の破壊は、70℃ならば1秒、45℃ならば1時間で発生すると言われている。また、触って、熱くも冷たくも感じない温度は、体温なみの35℃程度である。これらが、自動車室内の温度環境改善の指標となる。Incidentally, it is said that the destruction of human skin tissue occurs in 1 second at 70 ° C. and in 1 hour at 45 ° C. In addition, the temperature at which the user feels neither hot nor cold is about 35 ° C., which is similar to body temperature. These serve as indicators for improving the temperature environment in the automobile interior.

直射日光下の自動車室内温度上昇は、主に二つの経路を経て起こる。
一つは、窓ガラスを透過した太陽光により、室内備品(ダッシュボード、ハンドル、座席など)が放射加熱されて引起される室内空気の温度上昇であるが、この問題は、赤外線カットガラスの採用、駐車時のフロントマスク設置などの、入射太陽光の低減措置により、概ね解決されている。
Car interior temperature rise under direct sunlight occurs mainly through two routes.
One is the rise in indoor air temperature caused by radiant heating of indoor equipment (dashboards, handles, seats, etc.) by sunlight transmitted through the window glass. In general, it has been solved by measures to reduce incident sunlight, such as installing a front mask when parking.

しかしながら、今一つの経路−太陽光の熱放射がルーフパネルを加熱し、この高温のルーフが対流熱伝達、放射熱伝達によって室内備品、室内空気を加熱する経路−に由来する課題については、未だにこれといった有効な解決策が見出されていない。ルーフの上部空間に隙間を置いて遮光板を設置し、ルーフパネル温度の上昇を抑制する提案もあったが(特許文献2参照)、あまり有効でないらしく、普及していない。
特開2003−80954
However, there is still a problem that arises from the other route-the heat radiation of sunlight heats the roof panel, and this high temperature roof heats indoor equipment and indoor air by convective heat transfer and radiant heat transfer. No effective solution has been found. There has also been a proposal to suppress the rise in the temperature of the roof panel by installing a light shielding plate with a gap in the upper space of the roof (see Patent Document 2).
JP 2003-80954 A

また、赤外線を反射する塗装を施して、太陽光エネルギーの吸収を抑制する方式の、家屋の屋根などに適用される降温技術(例えば、非特許文献1参照)は、塗装色が特殊のため、デザインの自由度が優先される自動車への適用は困難である。
中井一寿ほか“遮熱塗装システムの開発”、塗装の研究、No.144 Oct.2005
In addition, a technique for lowering the temperature applied to the roof of a house, etc., which applies a coating that reflects infrared rays and suppresses absorption of solar energy (see, for example, Non-Patent Document 1), has a special coating color, It is difficult to apply to automobiles where design freedom is a priority.
Kazuhisa Nakai et al. “Development of thermal barrier coating system”, painting research, No. 144 Oct. 2005

本発明は、太陽光照射下の自動車ルーフパネルの温度上昇を抑制する手段を提供しようとするものである。パネル温度上昇の抑制は、室内温度上昇の抑制につながるが、これは、ルーフパネルと室内備品、室内空気との間では十分な熱交換が行われるので、断熱材の有無によって温度上昇の速度に多少の違いがあるにせよ、それらの温度は略同じになる、という理由による。The present invention seeks to provide means for suppressing the temperature rise of an automobile roof panel under sunlight irradiation. Suppression of the panel temperature rise leads to suppression of the indoor temperature rise. This is because sufficient heat exchange is performed between the roof panel, the indoor fixtures, and the indoor air. The reason is that the temperatures are about the same, albeit with some differences.

そもそもルーフパネルの温度は、パネルに流入する、太陽光の単位時間当りエネルギーPsunが、パネルの放射熱伝達としてパネル上方へ流出する単位時間当りエネルギーPrと、パネル上面の境界層(対流層)を通しての対流熱伝達として流出する単位時間当りエネルギーPcの和を凌駕して、パネルを加熱するとき、上昇を開始する。そして、PrもPcも温度Tの増加関数なので、PsunとPr+Pcの差は時間とともに減少し、
Psun=Pr+Pc (1)
となって、エネルギー収支0となったところで、ルーフパネルは平衡温度Tbに達する。
In the first place, the temperature of the roof panel depends on the energy Pr per unit time of sunlight that flows into the panel, the energy Pr per unit time that flows out of the panel as radiant heat transfer of the panel, and the boundary layer (convection layer) on the upper surface of the panel. When the panel is heated exceeding the sum of the energy Pc per unit time flowing out as convective heat transfer, the rise starts. Since both Pr and Pc are increasing functions of temperature T, the difference between Psun and Pr + Pc decreases with time,
Psun = Pr + Pc (1)
When the energy balance becomes 0, the roof panel reaches the equilibrium temperature Tb.

太陽光の放射照度は天候や太陽位置によって変化するが、本発明の目的は、太陽光による地上放射照度が略最大となると予想される、晴天の日の、太陽が天頂にある状況でさえも、自動車の快適性を損なわないようにすることである。即ち、晴天の日の直上位置の太陽を仮定したときの、ルーフへの太陽光流入エネルギーPsunによって到達した、ルーフパネルの平衡温度Tbを、先述の目標温度指標まで下げることが本発明の課題である。
式1より、低い温度でもエネルギー流出が大きくなるように工夫すれば、低い平衡温度Tbが達成されると予想される。即ちルーフパネルの温度上昇抑制を期待できる。本発明では特にルーフパネルの放射熱伝達のエネルギーPrの増大を目論む。
Although the irradiance of sunlight varies depending on the weather and sun position, the purpose of the present invention is even on sunny days where the sun is at the zenith, where the ground irradiance from sunlight is expected to be substantially maximum. In order not to impair the comfort of the car. That is, it is an object of the present invention to lower the equilibrium temperature Tb of the roof panel, which is reached by the sunlight inflow energy Psun to the roof, assuming the sun directly above the sunny day to the above-mentioned target temperature index. is there.
From Equation 1, it is expected that a low equilibrium temperature Tb can be achieved if the energy outflow is increased even at a low temperature. That is, it can be expected that the temperature rise of the roof panel is suppressed. The present invention specifically aims at increasing the energy Pr of the radiant heat transfer of the roof panel.

なお、式1では、パネル下面における放射熱伝達および対流熱伝達を無視したが、これは、ルーフパネル温度の上昇過程で、先述のように、パネルと室内空気、室内備品の間の温度差は小さく、対流熱伝達は極小、放射熱伝達は流入と流出が略同じということで、パネル下面におけるエネルギー収支はいつでも0とみなせるということが、理由である。In Equation 1, radiant heat transfer and convective heat transfer on the lower surface of the panel are ignored, but this is the process of increasing the roof panel temperature, and as described above, the temperature difference between the panel and the room air and the indoor equipment is The reason is that convective heat transfer is small, and radiant heat transfer has almost the same inflow and outflow, so that the energy balance on the lower surface of the panel can always be regarded as zero.

本発明による自動車ルーフパネルの形状の典型例を図1に示す。
自動車1のルーフパネル2の外面に、拡大平面図−3、A−A’部の断面図−4に示すように、釣鐘型突起を多数敷き詰めて、パネル表面積(突起の曲面表面積と谷底面の面積の総和)を拡大し、突起のないときのパネル表面積の1.5倍から2倍程度に大きくしたことを特徴とするものである。以下に記すように、パネルの放射熱伝達Pr、対流熱伝達Pcは、ともにパネル表面積に比例するので、このようなパネル表面積の拡大は、パネルからの流出エネルギーを増加させる。
A typical example of the shape of an automobile roof panel according to the present invention is shown in FIG.
A large number of bell-shaped protrusions are spread on the outer surface of the roof panel 2 of the automobile 1 as shown in an enlarged plan view-3 and a sectional view-4 of the AA ′ portion, and the panel surface area (the curved surface area of the protrusion and the bottom of the valley) The total area) is enlarged, and is increased from 1.5 times to about 2 times the panel surface area when there is no protrusion. As will be described below, the radiant heat transfer Pr and the convective heat transfer Pc of the panel are both proportional to the panel surface area. Therefore, such an increase in the panel surface area increases the outflow energy from the panel.

絶対温度TKのルーフパネルが外表面より空間に放出する単位時間、単位面積当り放射エネルギー(放射発散度)MW/mは、次のステファン・ボルツマンの法則に従う。
M(T)=εδT (2)
ここで、εは放射率で、図1のルーフパネルには塗装を施したので約0.9、また、δはステファン・ボルツマン定数で、5.6696×10−8Wm−2−4である。(非特許文献2参照)
然して、パネルの放射熱伝達としてパネル上方へ流出する(放射される)単位時間当りエネルギーPrは、パネル表面積Smに比例するので、
Pr=SM(T)=SεδT (3)
と表される。
照明学会編“ライティングハンドブック”p12(オーム社、1987)
The unit time and the radiant energy (radiant divergence) MW / m 2 per unit area that the roof panel having the absolute temperature TK emits into the space from the outer surface follow the following Stefan-Boltzmann law.
M (T) = εδT 4 (2)
Here, ε is an emissivity, and the roof panel of FIG. 1 is coated so that it is about 0.9, and δ is a Stefan-Boltzmann constant, which is 5.6696 × 10 −8 Wm −2 K −4 . is there. (See Non-Patent Document 2)
However, since the energy Pr per unit time that flows out (radiated) as the panel radiant heat transfer is proportional to the panel surface area Sm 2 ,
Pr = SM (T) = SεδT 4 (3)
It is expressed.
The Illuminating Society of Japan “Lighting Handbook” p12 (Ohm, 1987)

パネル上面の境界層を通して対流熱伝達として流出する単位時間当りエネルギーPcは、
Pc=Sη(T−Ta) (4)
と表され、ここでTaは周囲温度(K)、ηは熱伝達率で、静止した空気中、1〜25(Wm−2−1)である。(非特許文献3参照)
竹内正雄“熱計算入門II”p93(財団法人省エネルギーセンター、1988)
Energy per unit time Pc flowing out as convective heat transfer through the boundary layer on the upper surface of the panel is
Pc = Sη (T−Ta) (4)
Where Ta is the ambient temperature (K), η is the heat transfer coefficient, and is 1 to 25 (Wm −2 K −1 ) in still air. (See Non-Patent Document 3)
Masao Takeuchi "Introduction to Thermal Calculation II" p93 (Energy Conservation Center, 1988)

一方、パネルに流入する、太陽光の単位時間当りエネルギーPsunは、太陽光の、地上における放射照度Esunに、ルーフパネル受光面積Soと吸収率μを乗じて得られる。
Psun=SoμEsun
そして、通常の塗装の放射率εと吸収率μは略等しいので、
Psun=SoεEsun (5)
となる。ここで、受光面積Soは、晴天のときの太陽光が平行光であるため、パネルの実際表面積ではなく、ルーフパネルを過ぎる光線束の、光線に垂直な断面の面積であることに留意する必要がある。太陽が天頂にあるとき、この受光面積Soは、図2に示すようなルーフパネル5の垂直方向(太陽光線7の方向)の投影断面積6に相当する。
On the other hand, the energy Psun per unit time of sunlight flowing into the panel is obtained by multiplying the irradiance Esun of sunlight on the ground by the roof panel light receiving area So and the absorption rate μ.
Psun = SoμEsun
And since the emissivity ε and the absorptivity μ of normal coating are almost equal,
Psun = SoεEsun (5)
It becomes. Here, it is necessary to note that the light receiving area So is not the actual surface area of the panel but the area of the cross section perpendicular to the light beam of the light bundle passing through the roof panel, because the sunlight in a sunny day is parallel light. There is. When the sun is at the zenith, the light receiving area So corresponds to a projected sectional area 6 in the vertical direction of the roof panel 5 as shown in FIG.

さて、上述したように、このPsunにPr+Pcが等しくなったとき、ルーフ温度は平衡温度Tbまで上昇し、安定する。即ち、ルーフ温度Tbは、式1に式3、式4、式5を代入し、次式から求められる。
SoεEsun=S(εδT+η(T−Ta)) (6)
この式を見れば、SをSoに対し大きくすれば、ルーフパネルの到達温度を低減できることが分かる。平行光照射の場合、熱放射面積Sと太陽光受光面積Soは異なること、多数の突起を設けてS>Soとできること、これによってルーフパネル温度を低減できることに着目して成されたのが、本発明である。
As described above, when Pr + Pc becomes equal to Psun, the roof temperature rises to the equilibrium temperature Tb and is stabilized. That is, the roof temperature Tb is obtained from the following equation by substituting Equation 3, Equation 4, and Equation 5 into Equation 1.
SoεEsun = S (εδT 4 + η (T−Ta)) (6)
From this equation, it can be seen that if S is made larger than So, the temperature reached by the roof panel can be reduced. In the case of parallel light irradiation, the heat radiation area S was different from the sunlight receiving area So, and it was possible to reduce the roof panel temperature by providing a large number of protrusions so that S> So. The present invention.

このような発想は、本発明をもって嚆矢とする。周囲が熱放射体で囲まれていて、拡散光を受光する状態(例えば曇天の日、また、冷却対象がエンジンであるときのエンジンルーム)では、流入する放射エネルギーは実際面積Sに比例する。その場合、表面積を増やしても、放射エネルギーの流入、流出ともに増加する訳で、これが、従来、温度低減の手段としての表面積増加が省みられなかった理由である。
なお、対流熱伝達による流出エネルギーPcも、表面積Sの拡大によって増加する。これを利用するのが、所謂、放熱フィンによる表面積拡大であるが、自動車ルーフパネルにおいては、太陽光のエネルギーに比べ、対流熱伝達エネルギーの絶対値が小さく、対流熱伝達エネルギー低減によるルーフパネル温度の低減効果は限定される。
Such an idea is referred to as “Yuya” with the present invention. In a state where the periphery is surrounded by a heat radiator and receives diffused light (for example, on a cloudy day, or in an engine room when the object to be cooled is an engine), the inflowing radiant energy is proportional to the actual area S. In that case, even if the surface area is increased, both the inflow and outflow of radiant energy increase, and this is the reason why the increase in the surface area as a means for reducing the temperature could not be omitted conventionally.
The outflow energy Pc due to convective heat transfer also increases as the surface area S increases. The so-called radiating fins are used to increase the surface area, but in automobile roof panels, the absolute value of convective heat transfer energy is smaller than that of sunlight, and the roof panel temperature is reduced by reducing convective heat transfer energy. The reduction effect is limited.

ところで、ルーフパネル上面に多数の突起を設けて、表面積を拡大し、パネルの放射熱伝達エネルギーの増加を図る場合には、面積比S/So以外にいま一つ考慮すべきパラメータがある。即ち、突起表面を発した光線が、隣接の突起にぶつかったとき、吸収されて、パネル外に放射されず、面積比拡大効果が減殺される、という現象である。パネルを発した放射の内、パネル外へ放出される放射の割合を“出射率”と呼ぶならば、突起付きパネルの放射熱伝達エネルギーの増加率は、面積比S/Soと出射率との積βとなる。このβを用いて、式6は次のように書き換えられる。
εEsun=βS(εδT+η(T−Ta)) (7)
By the way, when a large number of protrusions are provided on the upper surface of the roof panel to increase the surface area and increase the radiant heat transfer energy of the panel, there is another parameter to be considered in addition to the area ratio S / So. That is, when the light beam emitted from the projection surface hits an adjacent projection, it is absorbed and not emitted outside the panel, and the area ratio expansion effect is reduced. If the ratio of the radiation emitted from the panel to the outside of the panel is referred to as “emission rate”, the increase rate of the radiant heat transfer energy of the panel with protrusions is the ratio of the area ratio S / So and the emission rate. The product β. Using this β, Equation 6 can be rewritten as follows.
εEsun = βS (εδT 4 + η (T−Ta)) (7)

具体的な数値的検討を進める。
先ず、備えるべき最大の放射照度は、晴天の日の、太陽位置が天頂位置にあるときと仮定し、このときの地上の放射照度Esunを約1KW/mと仮定する。地球上、大気層入射前の、太陽光線に垂直な平面上の放射照度(太陽定数)は1370W/mであり、普通の晴天で、太陽が天頂にあるときの大気透過率は約0.75であるから、(非特許文献4参照)Esun=1370×0.75≒1KW/mと計算される。
照明学会編“ライティングハンドブック”p205(オーム社、1987)
Advance specific numerical studies.
First, it is assumed that the maximum irradiance to be provided is a sunny day when the sun position is at the zenith position, and the irradiance Esun on the ground at this time is assumed to be about 1 kW / m 2 . The irradiance (solar constant) on a plane perpendicular to the sun's rays before entering the atmosphere layer on the earth is 1370 W / m 2 , and the atmospheric transmittance when the sun is at the zenith is about 0. Therefore, it is calculated that Esun = 1370 × 0.75≈1 kW / m 2 (see Non-Patent Document 4).
The Illuminating Society of Japan "Lighting Handbook" p205 (Ohm, 1987)

塗装パネルの放射率(=吸収率)εは先述のとおり0.9、周囲温度Taは、夏場の温度上昇が問題となることが多いと見て、30℃を仮定する。そして、熱伝達率ηとしては、先述の文献値1〜25(Wm−2−1)の内、現状の自動車(β=1)の夏場、太陽直射下(放射照度1KW/m)での到達ルーフ温度Tbを65℃と見て、この値を式6に代入して得られるηの値、10Wm−2−1を選択する。The emissivity (= absorption rate) ε of the painted panel is 0.9 as described above, and the ambient temperature Ta is assumed to be 30 ° C., assuming that the temperature rise in summer often becomes a problem. As the heat transfer coefficient η, among the above-mentioned literature values 1 to 25 (Wm −2 K −1 ), in the summer of the current automobile (β = 1), under direct sunlight (irradiance 1 KW / m 2 ). Assuming that the reached roof temperature Tb is 65 ° C., the value of η obtained by substituting this value into the equation 6 is selected as 10 Wm −2 K −1 .

これらの値を式7に代入すると、図3のグラフのような、突起付きパネルの放射熱伝達エネルギーの増加率βと到達ルーフパネル温度Tbとの関係が得られる。このグラフを見るに、βを1.5程度とするならば、少し熱いと感じる程度(先述のように1時間かかって火傷する程度)の45℃のルーフパネル最高温度を実現できる。また、βoを1.9くらいとするならば、熱いとは感じない、人肌温度より低い35℃を実現できる、とわかる。When these values are substituted into Equation 7, a relationship between the increase rate β of the radiant heat transfer energy of the panel with protrusions and the ultimate roof panel temperature Tb as shown in the graph of FIG. 3 is obtained. As can be seen from this graph, if β is set to about 1.5, the maximum roof panel temperature of 45 ° C. can be realized, which is a little hot (it takes about 1 hour as described above). Also, if βo is set to about 1.9, it can be understood that 35 ° C. lower than the human skin temperature can be realized without feeling hot.

放射熱伝達の増加率β、つまり面積比S/Soと放射光出射率の積は、突起の形状と並べ方によって異なるる。図4の表に、突起の種々の形状、配置のときの面積比S/So、出射率、および増加率βの計算結果を示す。No.1〜No.10は、回転二次曲面から成る釣鐘型であり、曲面の開き具合4種(開き具合は二次曲線係数CCで表せる。各形状を図5に表示。)、高さ2種(直径Dの1倍と半分)、配置方法2種(図6−8の格子状配置と、図6−9の最密充填配置)を組合わせて計算した。No.11は四角錐(高さが幅Dの半分)の最密配置、No.12は図7−10のように半割円筒を並べたもの(かまぼこ型)、No.13は図7−11のように幅D=高さの切妻屋根型である。The increase rate β of the radiant heat transfer, that is, the product of the area ratio S / So and the emitted light emission rate varies depending on the shape and arrangement of the protrusions. The table of FIG. 4 shows the calculation results of various shapes of protrusions, area ratio S / So at the time of arrangement, emission rate, and increase rate β. No. 1-No. Reference numeral 10 denotes a bell shape composed of a rotating quadratic curved surface, and the opening degree of the curved surface is 4 kinds (the opening degree can be expressed by a quadratic curve coefficient CC. Each shape is shown in FIG. 5), and the height is 2 kinds (of the diameter D). The calculation was performed by combining two arrangement methods (the lattice arrangement in FIGS. 6-8 and the close-packed arrangement in FIGS. 6-9). No. No. 11 is a close-packed arrangement of square pyramids (height is half of the width D). 12 is an arrangement of half cylinders (kamaboko type) as shown in FIG. Reference numeral 13 denotes a gable roof type having a width D = height as shown in FIG.

図4の表を見るに、回転二次曲面から成る釣鐘型突起を並べたものが他よりも優れている、中でも回転放物面型突起を最密充填配置したものが高い放射熱伝達エネルギー増加率βを示している。そして、釣鐘型突起は高さが高いほど出射率が大きく、回転放物面型突起の最密充填配置の場合、増加率βは、高さH:直径D=1:2にてβ=1.5、1:1にてβ=2に達する。As can be seen from the table in FIG. 4, the arrangement of bell-shaped protrusions composed of a rotating quadratic curved surface is superior to the others, and the one with the close-packed arrangement of rotating paraboloid-shaped protrusions increases the radiant heat transfer energy. The rate β is shown. The height of the bell-shaped projection increases as the height increases. In the case of the close-packed arrangement of the paraboloid-shaped projections, the rate of increase β is β = 1 at height H: diameter D = 1: 2. .5, 1: 1 reaches β = 2.

このようにルーフパネルの放射エネルギーを増加させるならば、図3より、前者のケース(高さH:直径D=1:2の回転放物面型突起の最密充填配置)で、45℃以下の平衡温度Tbが達成される、とわかる。また、後者のケース(高さH:直径D=1:1の回転放物面型突起の最密充填配置)で35℃以下である。If the radiant energy of the roof panel is increased in this way, from FIG. 3, the former case (height H: diameter D = 1: 2 close-packed arrangement of rotating parabolic projections) is 45 ° C. or less. It can be seen that the equilibrium temperature Tb is achieved. Moreover, it is 35 degrees C or less in the latter case (height H: close-packed arrangement of rotating paraboloid type protrusions having a diameter D = 1: 1).

先述のように、上記の平衡温度Tbとは、晴天の日の直上の太陽で照射されたときのルーフパネル温度である。即ち、ルーフパネル上面に多数の適切な形状の突起を設置して、パネルの放射熱伝達を大きくすることにより、晴天の日の直上の太陽で照射されたときのルーフパネル温度を、安全に触れ得る温度、或いは触って熱いと感じない温度まで低減することができる。そして、パネル温度の低減は、自動車の室内温度低減につながり、自動車の利便性、快適性を増す。As described above, the equilibrium temperature Tb is a roof panel temperature when irradiated with the sun immediately above a sunny day. That is, by installing a large number of appropriately shaped protrusions on the top surface of the roof panel to increase the radiant heat transfer of the panel, the roof panel temperature when exposed to the sun directly above on a sunny day can be safely touched. It can be reduced to the temperature at which it is obtained or touched and not felt hot. And the reduction in panel temperature leads to a reduction in the indoor temperature of the automobile, increasing the convenience and comfort of the automobile.

直射太陽光の下にルーフパネルを暴露しても35℃以上に昇温することはないようにした場合と、45℃程度まで昇温することはあるが、ルーフパネルを安価に製造できる場合の、2実施例を以下に記す。Even if the roof panel is exposed to direct sunlight, the temperature does not rise to 35 ° C or higher, and the temperature rises to about 45 ° C, but the roof panel can be manufactured at low cost. Two examples are described below.

ルーフパネル上面に、最密充填配置の、高さH:直径D=1:1の回転放物面型突起を設置する。下面は平面とする。このように背の高い突起を持つパネルは、鋳物にて製作可能である。自動車用のルーフパネルは軽量である必要があるから、アルミダイカストを使用する。また、突起の直径Dは1mmΦ程度とし、パネル全厚を1.5mm程度に抑える。On the top surface of the roof panel, a paraboloid type protrusion having a height H: diameter D = 1: 1 in a close-packed arrangement is installed. The lower surface is a plane. A panel having such a tall protrusion can be manufactured by casting. Since the roof panel for automobiles needs to be lightweight, aluminum die casting is used. The diameter D of the protrusion is about 1 mmΦ, and the total panel thickness is suppressed to about 1.5 mm.

凹凸のあるパネル上面には、通常の塗装を施す。放射率の小さい金属研磨面を指定したりして、自動車のデザインの自由度を制限しないのが、本発明の特長でもある。Normal coating is applied to the top surface of the uneven panel. It is also a feature of the present invention that a metal polished surface with a low emissivity is not specified to limit the degree of freedom in automobile design.

ルーフパネル上面に、最密充填配置の、高さH:直径D=1:2の回転放物面型突起を設置する。下面には、どの箇所も一定の肉厚となるよう、上面突起に相対する凹部を設ける。図8に示す、このような両面凹凸の形状で、直径Dが高さHの半分と背の低い突起であれば、安価な鋼板のプレスにて製作可能である。0.5mmの肉厚の鋼板を使用する場合、5mmΦ程度の突起の直径Dが適当である。On the top surface of the roof panel, a parabolic projection having a height H: diameter D = 1: 2 in a close-packed arrangement is installed. The lower surface is provided with a recess facing the upper surface protrusion so that every part has a constant thickness. If it is such a double-sided uneven shape as shown in FIG. 8 and the diameter D is a half of the height H and a short projection, it can be manufactured by an inexpensive steel plate press. When a steel plate having a thickness of 0.5 mm is used, a projection diameter D of about 5 mmΦ is appropriate.

図8のようなパネル下面の表面積増大は、自動車室内への放射熱伝達の増加をもたらす。しかし、これは室内温度の上昇速度を速めるだけで、パネルの平衡温度には影響せず、支障をきたさない。An increase in the surface area of the lower surface of the panel as shown in FIG. 8 results in an increase in radiant heat transfer into the automobile compartment. However, this only increases the rate of increase in the room temperature, does not affect the equilibrium temperature of the panel, and does not cause any trouble.

本発明による自動車用ルーフパネルの実施形態を示す模式図。The schematic diagram which shows embodiment of the roof panel for motor vehicles by this invention. “垂直方向投影の断面積”を説明する模式図。The schematic diagram explaining "the cross-sectional area of a vertical direction projection." ルーフパネル平衡温度Tbと放射熱伝達増加率βの関係を表すグラフ。The graph showing the relationship between roof panel equilibrium temperature Tb and radiant heat transfer increase rate (beta). 諸種パネル表面形状の放射熱伝達増加率βの計算結果を示す表。The table | surface which shows the calculation result of the radiation heat transfer increase rate (beta) of various panel surface shapes. 計算対称となった二次曲面突起の断面形状を比較する図。The figure which compares the cross-sectional shape of the quadratic curved surface protrusion used as the calculation symmetry. 突起の配置方法を示す模式図。The schematic diagram which shows the arrangement | positioning method of protrusion. かまぼこ型および切妻型の突起を並べて成るパネルの模式図。The schematic diagram of the panel which arranges a kamaboko type and gable type projection. 両面凹凸の形状のパネルの模式図。The schematic diagram of the panel of the shape of both sides unevenness.

符号の説明Explanation of symbols

1 自動車
2 ルーフパネル
3 ルーフパネル拡大図
4 ルーフパネル断面図
5 突起付きルーフパネル
6 ルーフパネルの垂直方向投影の断面積
7 太陽光の光線
8 格子状配置
9 最密充填型配置
10 かまぼこ型パネル
11 切妻屋根型パネル
12 両面凹凸の形状の断面
DESCRIPTION OF SYMBOLS 1 Car 2 Roof panel 3 Roof panel enlarged view 4 Roof panel sectional view 5 Projected roof panel 6 Cross-sectional area 7 of the vertical projection of the roof panel 7 Ray of light 8 Lattice arrangement 9 Close-packed arrangement 10 Kamaboko panel 11 Gable roof-type panel 12

Claims (2)

パネルの上面に多数の突起を設けて、該パネルの表面積を、該パネルの垂直方向投影の断面積よりも大きくしたことを特徴とする自動車用のルーフパネル。A roof panel for an automobile, wherein a large number of protrusions are provided on the upper surface of the panel so that the surface area of the panel is larger than the cross-sectional area of the vertical projection of the panel. 前記パネルの上面に、回転二次曲面の表面形状の釣鐘型突起を、多数、格子状または最密充填型に配列して成ることを特徴とする、請求項1に記載の自動車用のルーフパネル。2. The roof panel for an automobile according to claim 1, wherein a number of bell-shaped protrusions having a surface shape of a rotating quadratic curved surface are arranged on the upper surface of the panel in a lattice shape or a close-packed type. .
JP2007264931A 2007-09-10 2007-09-10 Roof panel for automobile Pending JP2009067370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264931A JP2009067370A (en) 2007-09-10 2007-09-10 Roof panel for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264931A JP2009067370A (en) 2007-09-10 2007-09-10 Roof panel for automobile

Publications (1)

Publication Number Publication Date
JP2009067370A true JP2009067370A (en) 2009-04-02

Family

ID=40604063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264931A Pending JP2009067370A (en) 2007-09-10 2007-09-10 Roof panel for automobile

Country Status (1)

Country Link
JP (1) JP2009067370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110393A (en) * 2013-12-06 2015-06-18 三菱自動車工業株式会社 Vehicle roof structure
CN113997876A (en) * 2021-09-29 2022-02-01 湖北吉兴汽车部件有限公司 Automobile heat-insulation roof and processing technology thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110393A (en) * 2013-12-06 2015-06-18 三菱自動車工業株式会社 Vehicle roof structure
CN113997876A (en) * 2021-09-29 2022-02-01 湖北吉兴汽车部件有限公司 Automobile heat-insulation roof and processing technology thereof
CN113997876B (en) * 2021-09-29 2023-07-28 湖北吉兴汽车部件有限公司 Automobile heat insulation roof and processing technology thereof

Similar Documents

Publication Publication Date Title
Chen et al. Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings
Scartezzini et al. Anidolic daylighting systems
JP5389925B2 (en) Transparent perforated plate glass for heat recovery and air heating by sunlight
JP4228771B2 (en) Thermal insulation and heat dissipation structure for automobiles
KR20130126098A (en) Airconditioner unified cutain wall using solar heat
JP2009067370A (en) Roof panel for automobile
JP4595568B2 (en) Double roof structure
KR101745277B1 (en) Heating panel for vehicle
Lamba et al. Thermal modeling of a building integrated radiative cooler for space cooling applications
ES2768337T3 (en) Rear Vented Awning for Rail Vehicle Roof Units
Ambadi et al. Experimental investigation on thermal performance of an actively cooled light shelf
JP4075383B2 (en) Panel structure
CN106100542A (en) A kind of sidewall window solar energy photovoltaic panel shading system
JP4306246B2 (en) Vehicle heat dissipation device and vehicle using this device
JP4325180B2 (en) Interior heat dissipation structure
US20180313547A1 (en) Component, arrangement of components and system and the use thereof
US20180209665A1 (en) Transpired Solar Collector
KR100976053B1 (en) Sauna system of sun
NL2023637B1 (en) Method to avoid overheating of one or more solar panels of a parked solar vehicle.
Rugh et al. Comparison of indoor vehicle thermal soak tests to outdoor tests
Yang et al. Building-integrated photovoltaics: effect on the cooling load component of building façades
KR200235577Y1 (en) Solar heat sink assembly
JPH0391622A (en) Rooftop water cistern type cooling device
JP6101006B2 (en) Indirect heat storage wall system
TWM647905U (en) Rain shading structure