EP2810848A2 - Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr - Google Patents

Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr Download PDF

Info

Publication number
EP2810848A2
EP2810848A2 EP14157745.2A EP14157745A EP2810848A2 EP 2810848 A2 EP2810848 A2 EP 2810848A2 EP 14157745 A EP14157745 A EP 14157745A EP 2810848 A2 EP2810848 A2 EP 2810848A2
Authority
EP
European Patent Office
Prior art keywords
track
frequency
signal
frequencies
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14157745.2A
Other languages
English (en)
French (fr)
Other versions
EP2810848B1 (de
EP2810848A3 (de
Inventor
Johannes Sütterlin
Jens Hopbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Bahn AG
Original Assignee
DB Netz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DB Netz AG filed Critical DB Netz AG
Publication of EP2810848A2 publication Critical patent/EP2810848A2/de
Publication of EP2810848A3 publication Critical patent/EP2810848A3/de
Application granted granted Critical
Publication of EP2810848B1 publication Critical patent/EP2810848B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/20Safety arrangements for preventing or indicating malfunction of the device, e.g. by leakage current, by lightning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/121Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using magnetic induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/121Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using magnetic induction
    • B61L2003/122German standard for inductive train protection, called "Induktive Zugsicherung"[INDUSI]

Definitions

  • the invention relates to a device and method for checking track magnets of the inductive fuse in track-bound traffic.
  • PZB point-shaped train control
  • track magnets are attached to the track at safety-relevant points, which indicate the condition of main and / or pre-signals or other devices to be secured, such as, for example, Transmitting railway crossings inductively to the rail vehicle.
  • DB AG essentially three different track magnet types are used, which are classified based on the rated frequency of the transmitted electromagnetic signals to 500 Hz, 1000 Hz and 2000 Hz track magnets.
  • the 1000 Hz track magnets are located at the site of pre-signals, the 2000 Hz track magnets at the location of main signals, the 500 Hz track magnets 150 to 250 meters ahead of the main signals. Depending on the operating conditions, the track magnets are switched on or off. Rail vehicles equipped with a PZB receiver will receive their signals as they travel over switched-on track magnets and evaluate their signals. As a result, the rail vehicle can be influenced by the PZB for safety reasons, right up to automatic emergency braking when the signal is overrun.
  • the DE 703 573 and DE 703 621 each describe test equipment for measuring resonance frequency and damping of the track magnets.
  • the DE 545 101 describes a test device that simulates the vehicle-side component of the inductive train protection.
  • Track magnetometers available in the state of the art have a frequency generator for generating a test frequency which is connected to a controllable constant current source which is galvanically connected to the track magnet.
  • the generator frequency By varying the generator frequency, the resonant frequency of the track magnet is determined by determining the phase difference between current and voltage at the track magnet. The phase difference is determined using a phase meter. At a phase difference of zero, the resonance frequency is reached. To determine the quality, the frequencies are determined successively in which the phase difference between current and voltage at the track magnet is +/- 45 °.
  • the frequency generator varies the applied to the controllable constant current source test frequency. The frequencies thus determined represent the upper and lower limit frequency of the track magnet.
  • the quality of the track magnet then results as a quotient of resonance frequency and the difference of the cutoff frequencies.
  • a disadvantage of this method is, inter alia, that in addition to current and voltage measuring devices, an additional phase meter is required, which has to measure three different phase angles. In addition, with this device, it is not possible to check the solenoids of recent speed testers, as they can not be switched by a single frequency.
  • the object of the present invention is to provide a method and a device with which it is possible to test track magnets as efficiently and accurately as possible, wherein the new solenoids should also be able to be switched by speed check devices.
  • the central idea of the invention for the device described in claim 1 is the use of multiple frequency generators in a track magnet tester.
  • the frequency generators must be able to be controlled both separately and synchronously.
  • the device is also able to continuously tune the test frequency, the phase position between the signals of two different frequency generators remains stable when they are driven synchronously.
  • the tuning range from 400 Hz to 2400 Hz contains the relevant track magnetic frequencies of 500 Hz, 1000 Hz and 2000 Hz.
  • the test frequency of a frequency generator is switched to a constant current source.
  • the constant current source is thus a modulated with the test frequency output current, which can be applied via a connecting device, for example via cable to the resonant circuit of the track-side track magnet to be tested.
  • Measuring instruments can be used to measure the voltage and current and their relative phase position on the track magnet. Due to the tunability of the test frequency can be determined with the device, the phase shift as a function of frequency. The measurement results can not only be displayed on a display, but also partially stored and analyzed based on the track magnet.
  • phase position can advantageously be selected differently between the signals of a plurality of frequency generators, elegant possibilities for determining the resonant frequency and the quality of the resonant circuit in the track magnet arise with the same measuring method.
  • the frequency generators are adjustable so that the phase difference between the reference signal of one frequency generator and that of the one further frequency generator + 45 ° and between the reference signal and that of the second further frequency generator is -45 °.
  • the frequency generators are adjustable so that the phase difference between the reference signal of one frequency generator and that of the one further frequency generator + 45 ° and between the reference signal and that of the second further frequency generator is -45 °.
  • the reference signal with the phase position defined as 0 ° on the track magnet is fed, can be tapped at the track magnet signal of the excited parallel resonant circuit in each case with the reference signal and the signals with the phase position + 45 ° and -45 °.
  • phase difference between current and voltage at the excited parallel resonant circuit in the track magnet is zero, or minimal, when the resonant frequency is reached.
  • the phase difference is + 45 ° or -45 °.
  • An advantageous possibility of determining a frequency with a minimal phase difference between two sinusoidal signals is realized by the use of two comparators whose outputs are combined in an exclusive OR gate. Each signal is converted in a separate comparator into a square wave signal. By combining in an exclusive-OR gate supplies the circuit at the output of a square wave signal whose width or pulse length is dependent on the phase difference of the signals.
  • DDS chips Direct Digital Synthesis
  • Such proven standard components are inexpensive, accurate and readily available. They can be controlled with the aid of microcontrollers and thus synchronized with each other with little circuit complexity and make it possible to realize constant phase differences between DDS chips of the same frequency.
  • the frequency generators are followed by steep edge filters.
  • the filters filter out higher frequencies. This is necessary in order to obtain no appreciable deviations from the set phase positions.
  • the system clock of the DDS chips is also filtered out.
  • the filter removes the DC component of the signal since the test signal after the DDS chip is further amplified for further processing.
  • the track magnet tester advantageously has at least one own excitation coil for emitting an electromagnetic signal which can be driven by the constant current source.
  • the track magnet tester advantageously has at least one own excitation coil for emitting an electromagnetic signal which can be driven by the constant current source.
  • the signals from at least two frequency generators can be interconnected in front of the constant current source so that the sum signal can be switched to the exciter coil.
  • a current signal after the constant current source which represents a mixture of two signals with two identical or different frequencies.
  • the switching magnets of the new speed checking devices can also be switched on or off. While it is possible in conventional GPE older design to switch the solenoids with a single frequency of 1000 Hz, recent GPE solenoids have filter assemblies that filter out disturbing influences of vehicle components for safety reasons. Such GPE solenoids require that at least two of the three track magnet frequencies be present simultaneously to switch a GPE solenoid.
  • a DDS chip generates a 1000 Hz signal and another a 2000 Hz signal and both signals are applied as a sum signal to the constant current source, the signal emitted by the excitation coil, the prerequisite for a switching signal for the new GPE switching magnet fulfill.
  • a programmable, integrated electronic circuit controls and monitors the device and analyzes and at least partially stores the measured values.
  • microprocessors are also suitable for this purpose.
  • a microprocessor controls the frequency generators and thus adjusts the frequencies to be generated and their phase angles. Furthermore, it receives the measuring signals of the measuring instruments and evaluates them automated to regulate the frequency generators, to switch the required depending on the measurement task components and to obtain the test results accordingly.
  • other programmable circuits can be used without departing from the invention, eg, FPGA, external CPU, etc.
  • a method for checking the resonant frequency and the quality of track magnets of the inductive fuse is described in claim 10.
  • the method uses a test apparatus having three frequency generators as set forth in the device claims. Due to a fixed phase difference between test and reference signal can be using the method both the resonant frequency and the quality of the parallel resonant circuit to be examined track magnet for track-bound traffic with the same measurement method efficiently determine.
  • the order of the determination of resonant frequency and the cutoff frequencies is irrelevant in principle. In the description of the method, the determination of the resonant frequency will be discussed here for the sake of clarity only.
  • the resonant frequency of a parallel resonant circuit can be determined by measuring the phase shift between current and voltage at the resonant circuit.
  • the resonant frequency can therefore be determined by examining the phase difference between an alternating current introduced into the resonant circuit and an ac voltage generated with the same frequency and phase as a function of the frequency.
  • the frequency at which this phase difference becomes zero or minimum is the sought resonance frequency.
  • a continuous signal with a defined frequency is generated by a frequency generator.
  • a part of the signal is used as a reference signal in the form of an AC voltage.
  • Another part of the signal is fed as a test signal in a constant current source whose output signal is fed as an alternating current in the resonant circuit to be examined.
  • the sinusoidal current signal picked up at the resonant circuit is now generally phase-shifted from the reference signal. This phase shift changes with the frequency.
  • the frequency is determined at which a minimum phase difference between test and reference signal occurs.
  • the device automatically analyzes the measured values and stores the resonance frequency of the associated track magnet.
  • the resonance frequency f R has been determined, the upper and lower limit frequency f O , f U must still be determined.
  • phase-shifted reference signals of the same frequency are generated and the frequency again tuned continuously. Since the phase position to be taken between the signals has already been suitably chosen, as in the determination of the resonant frequency, it is only necessary to investigate at which frequency the phase difference becomes zero or minimal. As soon as the phase difference between reference and test signal becomes minimal, the associated cutoff frequency is found and stored accordingly. After the frequencies to be determined have been measured and stored, the quality of the resonant circuit is calculated and stored. Furthermore, the data is analyzed as to whether they are compatible with the tolerance values stored in the device in a data memory. If so, the track magnet is considered functional. Since the track magnets to be examined on the section are listed in a kind of work list, the results of the test can be directly assigned to the track magnets on the list, which facilitates the evaluation of the data and the planning and execution of maintenance or repair work.
  • a very efficient method according to claim 11 can be used to determine the frequencies with minimum phase difference.
  • test and reference signal are each applied to an input of its own comparator.
  • the sinusoidal signals are converted into rectangular signals.
  • Both square-wave signals are combined in an exclusive OR gate and thereby logically analyzed.
  • the width of the square-wave signal thus also changes in a frequency-dependent manner according to the exclusive-OR element.
  • the resonant frequency of the associated track magnet is the frequency that has a rectangular signal with minimum width when fed by in-phase test and reference signals after the exclusive OR gate.
  • the cut-off frequencies are determined by comparison of the fed into the track magnet test signal with corresponding + 45 ° or -45 ° phase-shifted reference signals by test and reference signals are fed as before each on their own comparators. Both square wave signals are combined in an exclusive OR gate and thereby logically analyzed as described above. Finally, at the output of the exclusive-OR gate there is a square-wave signal whose width depends on the phase difference of the square-wave signals.
  • the upper and lower limit frequencies of the associated track magnet are the frequencies that have a rectangular signal with minimum width when fed by appropriately phase-shifted test and reference signals after the exclusive OR gate.
  • the presence of at least two frequency generators can be used to check according to claim 12, whether a speed checking device (GPE) can be switched on or off correctly or not.
  • GPE speed checking device
  • newer GPE solenoids have filter assemblies which, for safety reasons, filter out interfering influences of vehicle components.
  • Such GPE solenoids require that at least two of the three track magnet frequencies are present simultaneously to switch a GPE shift solenoid. It is thus particularly advantageous if different frequencies (500 Hz, 1000 Hz or 2000 Hz) are generated by at least two frequency generators and these two signals are applied to the constant current source as a sum signal.
  • a signal is emitted by the excitation coil, which contains the corresponding signal components, so that the requirements for a switching signal for the new GPE switching magnets are met.
  • the maintenance engineer then monitors whether the GPE status displays indicate the desired switching status and thus whether the GPE was switched on or off as desired.
  • a simple inductive quick test of the track magnets is additionally possible according to claim 13, if the device still has its own test resonant circuits with resonance frequencies 500 Hz, 1000 Hz and 2000 Hz, which can interact inductively with the track resonant circuit.
  • the device When the device is brought close to the track resonant circuit, it can be determined from the voltage measured at the exciter coil whether or not the signal radiated by the test circuit meets the resonant frequency of the track magnet. Since the voltage values at the exciter coil differ even with non-active track magnets from those with active track magnets, a complete quick check of the track magnet can be done. For each of the three different track magnet types, voltage threshold values Us are respectively defined for this, which are compared with the voltages measured at the exciter coil.
  • the frequency of the track magnet corresponds to the frequency of the test resonant circuit, which has caused a threshold value overshoot. If the voltage at the excitation coil remains below the threshold value Us at all three frequencies, the track magnet is considered inactive.
  • Fig. 1 shows a block diagram of an exemplary tester with three frequency generators, which are realized by means of three DDS chips.
  • the frequency generators are each followed by steep-slope low-pass filters and amplifiers.
  • the middle frequency generator generates a signal whose phase angle is defined as 0 ° and which is fed into a constant current source (KSQ). All three signals can be used as reference signals via a changeover switch. To do this, measure the falling voltage and compare the phase angles between the test current fed to the track magnet (GM) and the voltage of the reference signal using comparators and an exclusive-OR gate.
  • a microcontroller controls the process and evaluates the measurement results.
  • the microcontroller can be operated via a keyboard.
  • a controller-controlled display shows the user the required information.
  • the voltage at the track magnet is tapped via the RMS / DC converter and read into the microcontroller. This can also measure the parallel resistance of the track magnet and regulate the constant current source in a given range.
  • the device also includes an excitation coil, which is also controlled by the KSQ.
  • the device also has three series resonant circuits which can be connected by means of relays for inductive excitation of the track magnets at frequencies 500 Hz, 1000 Hz and 2000 Hz.
  • the digital potentiometer in front of the KSQ is used to adjust the signal level.
  • the microcontroller also has two EEPROM memory modules for storing the measured data as well as for storing the reference or limit values for analyzing the measurement results.
  • the measured data are saved with the current time.
  • FIG. 2 shows an exemplary block diagram of the control loop for determining the target pulse length, ie the width of the square wave signal after the exclusive OR gate.
  • the microcontroller uses the DDS chips to generate the measurement and test signals at a specific frequency.
  • the appropriate voltage values for controlling the KSQ are set via the digital potentiometer and returned to the ⁇ C as controller by means of two RMS / DC converters at the measuring points RP 'and RP, thus monitoring compliance with the permissible tolerance ranges.
  • the pulse length is measured and transmitted to the ⁇ C, which then continues to drive the DDS chips.
  • control clock is given not only to the clock inputs of the DDS chips, but also to a D flip-flop, along with the control line from the ⁇ C. This ensures that the corresponding inputs of the DDS chips are always in sync with the clock.
  • the DDS chips produce as output a sinusoidal signal with a resolution of 10 bits and an amplitude of 1.2 V S. Since the signal is amplified for further processing and still contains a DC component, it must be filtered. This is done by the filters at the outputs of the DDS chips.
  • the cutoff frequency of the filters is around 1.2 MHz to keep the phase shift of the signal as low as possible ( ⁇ 1 °). This ensures that there are no significant deviations from the required phase shifts.
  • Another aspect for the use of a steep-edged filter is the fact that the DDS chips are clocked at 10 MHz and the system clock has to be removed from the useful signal.
  • the DC component is also eliminated in the filters.
  • a voltage of 0.6 V S is established at the output of the filter.
  • all three signals are amplified by a factor of 20 by a non-inverting operational amplifier.
  • the output of the amplifier is fed to a digital potentiometer, which is controlled via an SPI bus.
  • the signal is applied to the controllable constant current source. From there, the signal can be switched to the track magnet.
  • the measuring voltage is approx. 70 V S. Since the measuring voltage can not be applied directly to an AD converter of the microcontroller, it must be rectified and adjusted in terms of level.
  • two DDS chips can be interconnected via a digital potentiometer, so that their signals can also be mixed with different frequencies to form a sum signal. Subsequently, the sum signal can be switched via the voltage-controlled constant current source to the exciter coil.
  • the device To inductively measure track magnets, the device includes a coil with ferrite core and three taps. In conjunction with corresponding switching relays and capacitors, series resonant circuits with different resonance frequencies (500 Hz, 1000 Hz, 2000 Hz) are formed.
  • the resonant frequency measurement method relies on a DDS chip to pass the signal with a 0 ° phase shift to the controllable constant current source via an electronic potentiometer. At this the track magnet is connected.
  • the track magnet consists of a parallel resonant circuit, which has its highest resistance at resonance. If the frequency is now varied, the phase shift between voltage and current at the track magnet also changes. When the phase shift becomes zero, the resonance frequency is found. The frequencies at which there is a phase shift of -45 ° or + 45 ° between current and voltage, represent the 3 dB cutoff frequencies. To determine the quality of the resonant circuit in the track magnet, all three DDS chips are now programmed with the same frequency but different phase angles. If the phase angle of the middle DDS chip in Fig. 1 defined as 0 °, the phase angles + 45 ° and -45 °, respectively, result for the other DDS chips.
  • the track magnet is subjected to a frequency sweep between 400 Hz and 2400 Hz, which is controlled by the microcontroller. It makes sense in the first measuring step to determine a suitable starting frequency, which is dependent on the rated frequency (500 Hz, 1000 Hz or 2000 Hz) of the track magnet to be examined.
  • the microcontroller generates a frequency of 2300 Hz to determine the nominal frequency with the aid of the DDS chips.
  • the digital potentiometer is set to a constant value and held there.
  • the microcontroller then reads in and evaluates the voltage values from the RMS / DC converter. Depending on the values, it is detected whether a track magnet is connected at all or whether the line is short-circuited.
  • the measurement is aborted and all outputs are set to zero. If a track magnet is connected, the frequency is reduced in 8 Hz increments until the connected parallel resonant circuit of the track magnet has a certain resistance value. This is achieved as soon as the RMS / DC converter detects a voltage of at least 30 V at the measuring point RP. The frequency found is used as starting frequency for the further process. Depending on the found starting frequency, a corresponding parameter set for the measuring algorithm is loaded.
  • the step size of the frequency jumps depends on the nominal frequency and the content of the parameter set.
  • the upper limit frequency is determined, then the resonance frequency and then the lower limit frequency. From this, the quality of the track magnet is calculated.
  • the + 45 ° signal is switched to one comparator and the signal to the other, which is galvanically brought to the track magnet by the 0 ° -DDS chip signal via the constant current source and tapped there.
  • the outputs of the two comparators are then combined in an exclusive OR gate and fed to the microcontroller. This varies the frequency, the square wave signal, ie its pulse length, becomes increasingly narrow at the output of the exclusive OR gate, the closer one gets to the upper limit frequency until a minimum occurs. When the minimum is reached, the first cutoff frequency is found.
  • the minimum is usually not nearly zero, but is a few microseconds. This is due to the signal propagation delays through the digital potentiometer and the KSQ which always readjust the measuring signal at about 45-50 V rms at the track magnets. This results in unavoidable signal delays, which must be taken into account in the pulse length determination. For this reason, a self-calibration is performed every time the device is switched on. In this case, not the track magnet is measured, but an internal ohmic resistance. The pulse length, which is determined in this measurement, is stored as calibration pulse length in the device. This also compensates for temperature influences and component aging. Due to the principle, there is the disadvantage that two identical target values can be measured when determining the pulse length.
  • the frequency is changed in a predetermined manner, starting from the starting frequency only in one direction.
  • the override of the current source is constantly monitored by the microcontroller via the RMS / DC converter at the measuring point RP 'and brought to a level of max. Limited to 51.4 V eff .
  • the power source is controlled so that the track magnet is at a voltage between 45.5 V eff and 48.5 V eff .
  • the 0 ° signal is then switched to both comparators. Then the frequency is varied again until the square wave reaches its minimum.
  • Another object of the exciter coil is to inject a sufficiently strong signal into a solenoid to turn on or off the attached SPE (GPE).
  • GPE SPE
  • different frequencies are generated by two DDS chips, namely 1000 Hz and 2000 Hz.
  • the two frequencies are applied to a digital potentiometer where they are mixed to form a sum signal.
  • the sum signal can be switched via the voltage-controlled constant current source to the exciter coil.
  • a frequency of 1000 Hz is generated at the beginning of the measurement by two DDS chips. These are up-regulated linearly by the digital potentiometer and set to a maximum value which is determined during calibration in the factory. Only after reaching this value is a DDS chip switched to 2000 Hz and both frequencies combined.
  • the sum signal When the sum signal is applied to the excitation coil, it will be applied to the excitation coil for a total of 3 seconds to ensure safe turn-on / turn-off.
  • the maintenance engineer now uses the status displays of the GPE to check whether the gear changes have actually taken place as specified or not.
  • the inductive quick test is explained by way of example. It serves to determine the track magnet type.
  • the track magnet tester is placed on the track magnet and the measurement of the nominal frequency is determined via an inductive coupling. In addition, it is determined whether the track magnet is in an effective or inoperative state.
  • the track magnet tester has its own test resonant circuits with resonant frequencies 500 Hz, 1000 Hz and 2000 Hz, which can interact inductively with the track resonant circuit.
  • Thresholds Us are defined for this purpose. If the voltage measured at the excitation coil exceeds the threshold Us at one frequency while remaining below the respective sword Us at the two other frequencies, the frequency at which the threshold Us was exceeded is rated as the nominal frequency of the track magnet.
  • the following voltages on the exciter coil are measured on a track magnet as a function of the exciter frequency set on the tester: f [Hz] Excitation coil voltage 500 5.1V 1000 6.4V 2000 18.3 v
  • the track magnet is considered to be inactive.
  • a 500 Hz track magnet has an excitation coil voltage of less than 8 V at an excitation coil frequency of 500 Hz and 1000 Hz and an excitation coil voltage of less than 13 V at an excitation coil frequency of 2000 Hz, it is considered inactive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung sowie Verfahren zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr. Durch die Verwendung mehrerer durchstimmbarer Frequenzgeneratoren in einem Gleismagnete-Prüfgerät und eine geschickte Kombination unterschiedlicher Phasenlagen von Signalen gleicher Prüffrequenzen kann die Güte von Gleismagneten effizient ermittelt werden. Hierfür werden Prüf- und Referenzsignale erzeugt, deren Phasenlage zueinander dem Phasenunterschied zwischen Strom und Spannung bei einem Gleismagnetenschwingkreis bei der Resonanzfrequenz sowie bei der oberen und unteren Grenzfrequenz entsprechen. Die Frequenzen, bei denen der Phasenunterschied zwischen den geeignet gewählten Prüf- und Referenzsignalen minimal wird, stellen die gesuchten Resonanz- und Grenzfrequenzen dar, aus denen die Güte berechnet wird. Durch eine Mischung zweier Frequenzen können außerdem auch Schaltmagnete von modernen Geschwindigkeitsprüfeinrichtungen überprüft werden.

Description

  • Die Erfindung betrifft eine Vorrichtung sowie Verfahren zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr.
  • Bei der Punktförmigen Zugbeeinflussung (PZB) werden durch elektromagnetisch induzierte Signale zwischen Streckenpunkten am Gleis und Schienenfahrzeugen Informationen zur Sicherung des spurgeführten Verkehrs ausgetauscht. Streckenseitig sind an sicherheitsrelevanten Stellen sogenannte Gleismagnete am Gleis angebracht, die den Zustand von Haupt-/ und Vorsignalen oder sonstigen zu sichernden Einrichtungen wie z.B. Bahnübergängen induktiv an das Schienenfahrzeug übermitteln. Im Schienennetz der DB AG werden hierfür im Wesentlichen drei unterschiedliche Gleismagnettypen eingesetzt, die anhand der Nennfrequenz der übertragenen elektromagnetischen Signale klassifiziert werden zu 500 Hz, 1000 Hz und 2000 Hz-Gleismagneten. Die 1000 Hz-Gleismagnete befinden sich am Standort von Vorsignalen, die 2000 Hz-Gleismagnete am Standort von Hauptsignalen, die 500 Hz-Gleismagnete 150 bis 250 Meter vor den Hauptsignalen. Abhängig von den betrieblichen Rahmenbedingungen sind die Gleismagnete ein- oder ausgeschaltet. Schienenfahrzeuge, die mit einem PZB-Empfänger ausgerüstet sind, empfangen bei der Überfahrt über eingeschaltete Gleismagnete deren Signale und werten diese aus. Dadurch kann das Schienenfahrzeug durch die PZB sicherungstechnisch beeinflusst werden, bis hin zur automatischen Zwangsbremsung bei überfahrenem Halt zeigenden Signal.
  • Für einen sicheren Bahnbetrieb ist ein Funktionieren der Gleismagnete eine unabdingbare Voraussetzung. Daher wurden entsprechende Prüfungsverfahren und -vorrichtungen für die Gleismagnete entwickelt. Die DE 703 573 und DE 703 621 beschreiben jeweils Prüfgeräte zur Messung von Resonanzfrequenz und Dämpfung der Gleismagnete. Die DE 545 101 beschreibt ein Prüfgerät, welches die fahrzeugseitige Komponente der induktiven Zugsicherung simuliert.
    Die genannten Dokumente stellen den Stand der Technik in den dreißiger und vierziger Jahren des 20. Jahrhunderts dar.
  • Im heutigen Stand der Technik verfügbare Gleismagnetprüfgeräte wie z.B. das Quante GMP 900, verfügen über einen Frequenzgenerator zum Erzeugen einer Prüffrequenz, die an eine steuerbare Konstantstromquelle angeschlossen ist, welche galvanisch mit dem Gleismagneten verbunden ist. Durch Variation der Generatorfrequenz wird die Resonanzfrequenz des Gleismagneten ermittelt, indem die Phasendifferenz zwischen Strom und Spannung am Gleismagneten ermittelt wird. Die Phasendifferenz wird dabei mithilfe eines Phasenmessers ermittelt. Bei einer Phasendifferenz von Null, ist die Resonanzfrequenz erreicht. Zur Gütebestimmung werden nacheinander die Frequenzen ermittelt, bei denen die Phasendifferenz zwischen Strom und Spannung am Gleismagneten +/- 45° betragen. Hierzu variiert der Frequenzgenerator die an die steuerbare Konstantstromquelle angelegte Prüffrequenz.
    Die so ermittelten Frequenzen stellen die obere und untere Grenzfrequenz des Gleismagneten dar. Die Güte des Gleismagneten ergibt sich dann als Quotient von Resonanzfrequenz und der Differenz der Grenzfrequenzen.
    Ein Nachteil dieses Verfahrens liegt u.a. darin, dass es neben Strom- und Spannungsmessgeräten eines zusätzlichen Phasenmessers bedarf, der drei verschiedene Phasenlagen messen muss. Außerdem ist es mit diesem Gerät nicht möglich, die Schaltmagnete neuerer Geschwindigkeitsprüfeinrichtungen zu prüfen, da diese durch eine einzige Frequenz nicht mehr geschaltet werden können.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung bereitzustellen, mit denen es möglich ist, Gleismagnete möglichst effizient und genau zu prüfen, wobei auch die neuen Schaltmagnete von Geschwindigkeitsprüfeinrichtungen geschaltet werden können sollen.
  • Diese Aufgaben werden durch die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren nach den unabhängigen Ansprüchen 1 bzw. 10 gelöst. Weiterhin werden in Anspruch 12 ein Verfahren zur Prüfung von Schaltmagneten von Geschwindigkeitsprüfeinrichtungen sowie in Anspruch 13 ein Verfahren zu einer schnellen Grobprüfung von Gleismagneten zur Verfügung gestellt.
  • Vorteilhafte Weiterbildungen sind Gegenstände der abhängigen Ansprüche.
  • Der zentrale Erfindungsgedanke für die in Anspruch 1 beschriebene Vorrichtung liegt in der Verwendung mehrerer Frequenzgeneratoren in einem Gleismagnete-Prüfgerät. Durch eine geschickte Kombination unterschiedlicher Phasenlagen von Signalen gleicher Prüffrequenzen bzw. einer Mischung von unterschiedlichen Frequenzen kann eine solche Vorrichtung die vielfältigen Messund Prüfaufgaben effizient durchführen. Hierzu müssen die Frequenzgeneratoren sowohl getrennt als auch synchron angesteuert werden können.
    Die Vorrichtung ist weiterhin in der Lage, die Prüffrequenz kontinuierlich durchzustimmen, wobei die Phasenlage zwischen den Signalen zweier unterschiedlicher Frequenzgeneratoren stabil bleibt, wenn diese synchron angesteuert werden. Der Durchstimmbereich von 400 Hz bis 2400 Hz enthält die relevanten Gleismagnetfrequenzen von 500 Hz, 1000 Hz und 2000 Hz.
    Die Prüffrequenz eines Frequenzgenerators ist auf eine Konstantstromquelle geschaltet. Am Ausgang der Konstantstromquelle liegt somit ein mit der Prüffrequenz modulierter Ausgangsstrom vor, welcher über eine Verbindungsvorrichtung, z.B. über Kabel, an den Schwingkreis des zu prüfenden streckenseitigen Gleismagneten angelegt werden kann. Mithilfe von Messgeräten lassen sich Spannung und Strom und deren relative Phasenlage am Gleismagneten messen. Aufgrund der Durchstimmbarkeit der Prüffrequenz kann mit der Vorrichtung die Phasenverschiebung in Abhängigkeit der Frequenz ermittelt werden.
    Die Messergebnisse lassen sich nicht nur an einem Display anzeigen, sondern teilweise auch auf den Gleismagneten bezogen speichern und analysieren.
  • Da die Phasenlage vorteilhaft zwischen den Signalen mehrerer Frequenzgeneratoren unterschiedlich wählbar ist, ergeben sich elegante Möglichkeiten zur Bestimmung der Resonanzfrequenz und der Güte des Schwingkreises im Gleismagneten mit demselben Messverfahren.
  • Besonders vorteilhaft ist es, wenn die Frequenzgeneratoren so einstellbar sind, dass der Phasenunterschied zwischen dem als Referenz dienenden Ausgangssignal des einen Frequenzgenerators und dem des einen weiteren Frequenzgenerators +45° und zwischen dem Referenzsignal und dem des zweiten weiteren Frequenzgenerators -45° beträgt. Somit erhält man drei Signale gleicher Frequenz, mit den relativen Phasenlagen -45°, 0° und +45° zueinander. Wenn das Referenzsignal mit der als 0° definierten Phasenlage auf den Gleismagneten eingespeist wird, lässt sich das am Gleismagneten abgreifbare Signal des angeregten Parallelschwingkreises jeweils mit dem Referenzsignal und den Signalen mit der Phasenlage +45° sowie -45° vergleichen.
    Der Phasenunterschied zwischen Strom und Spannung am erregten Parallelschwingkreis im Gleismagneten ist null, bzw. minimal, bei Erreichen der Resonanzfrequenz. Bei Erreichen der oberen bzw. unteren Grenzfrequenz ist der Phasenunterschied +45° bzw. -45°. Somit lassen sich durch Vergleich des Messsignals mit den drei erzeugten Signalen die zugehörigen Frequenzen besonders effizient ermitteln.
  • Eine vorteilhafte Möglichkeit, eine Frequenz mit minimalem Phasenunterschied zwischen zwei sinusförmigen Signalen zu bestimmen, wird durch die Verwendung zweier Komparatoren realisiert, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt sind. Jedes Signal wird dabei in einem eigenen Komparator zu einem Rechtecksignal umgewandelt. Durch die Zusammenführung in einem Exklusiv-Oder-Glied liefert die Schaltung an dessen Ausgang ein Rechtecksignal, dessen Breite bzw. Impulslänge abhängig vom Phasenunterschied der Signale ist.
  • Als Frequenzgeneratoren werden vorteilhaft DDS-Chips (Direct Digital Synthesis) eingesetzt. Solche bewährten Standard-Bauteile sind kostengünstig, präzise und gut verfügbar. Sie lassen sich mithilfe von Mikrocontrollern steuern und somit auch mit geringem schaltungstechnischen Aufwand miteinander synchronisieren und ermöglichen es, konstante Phasenunterschiede zwischen DDS-Chips gleicher Frequenz zu realisieren.
  • Vorteilhaft ist es weiterhin, wenn den Frequenzgeneratoren steilflankige Filter nachgeschaltet sind. Mithilfe der Filter werden höhere Frequenzen herausgefiltert. Dies ist erforderlich, um keine nennenswerten Abweichungen von den eingestellten Phasenlagen zu erhalten. Mit einem wirksamen Filter wird auch der Systemtakt der DDS-Chips herausgefiltert. Außerdem entfernt der Filter den Gleichanteil des Signals, da das Prüfsignal nach dem DDS-Chip zur weiteren Verarbeitung noch verstärkt wird.
  • Um die Parallelschwingkreise in den Gleismagneten induktiv erregen zu können, verfügt die Gleismagnete-Prüfvorrichtung vorteilhaft über mindestens eine eigene Erregerspule zum Abstrahlen eines elektromagnetischen Signals, die von der Konstantstromquelle ansteuerbar ist. Somit kann durch bloße Näherung der Prüfvorrichtung an den Gleismagneten der Schwingkreis im Gleismagneten zu Schwingungen angeregt werden. Dies kann beispielsweise im Rahmen einer einfachen Schnellprüfung der Gleismagnete erfolgen. Anhand der gemessenen Spannung, die sich an der Erregerspule bei unterschiedlichen Frequenzen (500 Hz, 1000 Hz und 2000 Hz) einstellt, wenn der Schwingkreis im Gleismagneten durch die Erregerspule erregt wird, kann auf die Nennfrequenz des Gleismagneten geschlossen werden, bzw. dessen Nichtwirksamkeit erfasst werden.
  • Besonders vorteilhaft ist es, wenn die Signale von mindestens zwei Frequenzgeneratoren vor der Konstantstromquelle zusammenschaltbar sind, sodass das Summensignal auf die Erregerspule schaltbar ist. Dadurch liegt nach der Konstantstromquelle ein Strom-Signal vor, das eine Mischung aus zwei Signalen mit zwei gleichen oder unterschiedlichen Frequenzen darstellt. Mit einer derart ausgestalteten Vorrichtung lassen sich auch die Schaltmagnete der neuen Geschwindigkeitsprüfeinrichtungen (GPE) ein- bzw. ausschalten. Während es bei herkömmlichen GPE älterer Bauart möglich ist, die Schaltmagnete mit einer einzigen Frequenz von 1000 Hz zu schalten, so verfügen neuere GPE-Schaltmagnete über Filterbaugruppen, die aus Sicherheitsgründen störende Einflüsse von Fahrzeugkomponenten ausfiltern. Bei solchen GPE-Schaltmagneten ist es erforderlich, dass mindestens zwei der drei Gleismagnetfrequenzen gleichzeitig vorhanden sind, um einen GPE-Schaltmagneten zu schalten. Wenn beispielsweise ein DDS-Chip ein 1000 Hz-Signal und ein anderer ein 2000 Hz-Signal erzeugt und beide Signale als Summensignal auf die Konstantstromquelle gelegt werden, so kann das von der Erregerspule emittierte Signal die Voraussetzungen an ein Schaltsignal für die neuen GPE-Schaltmagneten erfüllen.
  • Besonders vorteilhaft ist es, wenn ein programmierbarer, integrierter elektronischer Schaltkreis die Vorrichtung steuert und überwacht und die Messwerte analysiert und zumindest teilweise abspeichert. Hierfür eignen sich insbesondere auch Mikroprozessoren. Ein Mikroprozessor steuert die Frequenzgeneratoren an und stellt somit die zu erzeugenden Frequenzen und deren Phasenlagen ein. Weiterhin empfängt er die Messsignale der Messgeräte und wertet diese automatisiert zum Regeln der Frequenzgeneratoren, zum Schalten der je nach Messaufgabe erforderlichen Komponenten und zum Gewinnen der Prüfergebnisse entsprechend aus.
    Anstelle eines Mikroprozessors können auch andere programmierbare Schaltkreise verwendet werden, ohne die Erfindung zu verlassen, z.B. FPGA, externe CPU, etc.
  • Ein Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung ist in Anspruch 10 beschrieben. Das Verfahren verwendet eine Prüfvorrichtung, die über drei Frequenzgeneratoren verfügt, wie sie in den Vorrichtungsansprüchen dargelegt sind.
    Aufgrund einer festgelegten Phasendifferenz zwischen Prüf- und Referenzsignal lassen sich mithilfe des Verfahrens sowohl die Resonanzfrequenz als auch die Güte des Parallelschwingkreises im zu untersuchenden Gleismagneten für spurgebundenen Verkehr mit dem gleichen Messverfahren effizient bestimmen. Die Reihenfolge der Bestimmung von Resonanzfrequenz und den Grenzfrequenzen ist dabei im Prinzip unerheblich.
    Bei der Beschreibung des Verfahrens wird hier lediglich aus Gründen der Anschaulichkeit zuerst auf die Bestimmung der Resonanzfrequenz eingegangen.
    Die Resonanzfrequenz eines Parallelschwingkreises lässt sich ermitteln, indem die Phasenverschiebung zwischen Strom und Spannung am Schwingkreis gemessen wird. Bei der Resonanzfrequenz verschwindet theoretisch die Phasenverschiebung, bzw. wird praktisch gesehen minimal. Die Resonanzfrequenz lässt sich daher ermitteln, indem der Phasenunterschied zwischen einem in den Schwingkreis eingebrachten Wechselstrom und einer mit der gleichen Frequenz und Phasenlage erzeugten Wechselspannung in Abhängigkeit von der Frequenz untersucht wird.
    Die Frequenz, bei der dieser Phasenunterschied null, bzw. minimal wird, ist die gesuchte Resonanzfrequenz.
    Hierfür wird von einem Frequenzgenerator ein kontinuierliches Signal mit einer definierten Frequenz erzeugt. Ein Teil des Signals wird als Referenzsignal in Form einer Wechselspannung verwendet. Ein weiterer Teil des Signals wird als Prüfsignal in eine Konstantstromquelle eingespeist, deren Ausgangssignal als Wechselstrom in den zu untersuchenden Schwingkreis eingespeist wird. Das am Schwingkreis abgegriffene, sinusförmige Stromsignal ist nun im Allgemeinen phasenverschoben zum Referenzsignal. Diese Phasenverschiebung ändert sich mit der Frequenz. Durch Durchstimmen der Frequenz wird diejenige Frequenz ermittelt, bei der ein minimaler Phasenunterschied zwischen Prüf- und Referenzsignal auftritt.
    Die Vorrichtung analysiert die Messwerte automatisch und speichert die Resonanzfrequenz des zugehörigen Gleismagneten.
  • Nachdem nun die Resonanzfrequenz fR ermittelt wurde, müssen noch die obere und untere Grenzfrequenz fO, fU bestimmt werden. Die Güte Q des Schwingkreises ergibt sich dann zu Q = fR / (fO - fU). Es ist bekannt, dass bei Erreichen einer Grenzfrequenz der Phasenunterschied zwischen Strom und Spannung am Schwingkreis +45° bzw. -45° beträgt.
    Da drei Frequenzgeneratoren, die synchronisiert zueinander getaktet werden können, vorhanden sind, kann das bei der Messung der Resonanzfrequenz verwendete Verfahren in abgewandelter Form auch zur Bestimmung der Grenzfrequenzen verwendet werden. Dazu wird das in den Gleismagneten eingespeiste Prüfsignal mit entsprechend phasenverschobenen Referenzsignalen verglichen.
    Von den anderen Frequenzgeneratoren werden die zum Prüfsignal um +45° bzw. -45° phasenverschobenen Referenzsignale gleicher Frequenz erzeugt und die Frequenz wieder kontinuierlich durchgestimmt.
    Da die zu treffende Phasenlage zwischen den Signalen bereits passend gewählt wurde, wird hier, wie bei der Bestimmung der Resonanzfrequenz nur noch untersucht, bei welcher Frequenz der Phasenunterschied null, bzw. minimal wird. Sobald der Phasenunterschied zwischen Referenz- und Prüfsignal minimal wird, ist die zugehörige Grenzfrequenz gefunden und wird entsprechend gespeichert. Nachdem so die zu ermittelnden Frequenzen gemessen und gespeichert wurden, wird die Güte des Schwingkreises berechnet und gespeichert. Weiterhin werden die Daten analysiert, ob sie zu den in der Vorrichtung in einem Datenspeicher gespeicherten Toleranzwerten kompatibel sind. Wenn ja, wird der Gleismagnet als funktionsfähig bewertet.
    Da im Gerät die auf dem Streckenabschnitt zu untersuchenden Gleismagnete in einer Art Arbeitsliste aufgeführt sind, können die Ergebnisse der Prüfung den Gleismagneten auf der Liste direkt zugeordnet werden, was die Auswertung der Daten und die Planung sowie Durchführung von Wartungs- oder Instandsetzungsarbeiten erleichtert.
  • Bei Verwendung einer Vorrichtung gemäß Anspruch 4 kann ein sehr effizientes Verfahren gemäß Anspruch 11 zur Bestimmung der Frequenzen mit minimalem Phasenunterschied verwendet werden.
    Hierfür werden Prüf- und Referenzsignal jeweils an einen Eingang eines eigenen Komparators gelegt. Die sinusförmigen Signale werden dabei in Rechtecksignale umgewandelt. Beide Rechtecksignale werden in einem ExklusivOder-Glied zusammengeführt und dadurch logisch analysiert. Am Ausgang des Exklusiv-Oder-Glieds liegt schließlich ein Rechtecksignal vor, dessen Breite vom Phasenunterschied der Rechtecksignale abhängt. Je schmaler das Rechtecksignal ist, desto geringer ist der Phasenunterschied. Beim kontinuierlichen Durchstimmen der Frequenz des vom Frequenzgenerator erzeugten Signals verändert sich demnach auch frequenzabhängig die Breite des Rechtecksignals nach dem Exklusiv-Oder-Glied. Als Resonanzfrequenz des zugehörigen Gleismagneten gilt die Frequenz, die bei Einspeisung von phasengleichen Prüf- und Referenzsignalen nach dem Exklusiv-Oder-Glied ein Rechtecksignal mit minimaler Breite aufweist.
    Die Grenzfrequenzen werden durch Vergleich des in den Gleismagneten eingespeisten Prüfsignals mit entsprechend +45° bzw. -45° phasenverschobenen Referenzsignalen bestimmt, indem Prüf- und Referenzsignale wie zuvor jeweils auf eigene Komparatoren eingespeist werden.
    Beide Rechtecksignale werden in einem Exklusiv-Oder-Glied zusammengeführt und dadurch wie oben beschrieben logisch analysiert. Am Ausgang des Exklusiv-Oder-Glieds liegt schließlich ein Rechtecksignal vor, dessen Breite vom Phasenunterschied der Rechtecksignale abhängt. Als obere und untere Grenzfrequenzen des zugehörigen Gleismagneten gelten die Frequenzen, die bei Einspeisung von entsprechend phasenverschobenen Prüf- und Referenzsignalen nach dem Exklusiv-Oder-Glied ein Rechtecksignal mit minimaler Breite aufweisen.
  • Besonders vorteilhaft kann das Vorhandensein von mindestens zwei Frequenzgeneratoren genutzt werden, um gemäß Anspruch 12 zu prüfen, ob eine Geschwindigkeitsprüfeinrichtung (GPE) korrekt ein- bzw. ausgeschaltet werden kann oder nicht. Wie bereits im beschreibenden Teil zur Vorrichtung dargelegt wurde, verfügen neuere GPE-Schaltmagnete über Filterbaugruppen, die aus Sicherheitsgründen störende Einflüsse von Fahrzeugkomponenten ausfiltern. Bei solchen GPE-Schaltmagneten ist es erforderlich, dass mindestens zwei der drei Gleismagnetfrequenzen gleichzeitig vorhanden sind, um einen GPE-Schaltmagneten zu schalten.
    Es ist also besonders vorteilhaft, wenn von mindestens zwei Frequenzgeneratoren jeweils unterschiedliche Frequenzen (500 Hz, 1000 Hz oder 2000 Hz) erzeugt werden und diese beiden Signale als Summensignal auf die Konstantstromquelle gelegt werden. Somit wird von der Erregerspule ein Signal emittiert, welches die entsprechenden Signalanteile enthält, so dass die Voraussetzungen an ein Schaltsignal für die neuen GPE-Schaltmagneten erfüllt werden. Danach wird vom Instandhalter beobachtet, ob die Statusanzeigen der GPE den gewünschten Schaltzustand anzeigen und somit geprüft, ob die GPE wie gewünscht ein- bzw. ausgeschaltet wurde.
  • Eine einfache induktive Schnellprüfung der Gleismagnete ist gemäß Anspruch 13 zusätzlich möglich, wenn die Vorrichtung noch über eigene Prüfschwingkreise mit Resonanzfrequenzen 500 Hz, 1000 Hz und 2000 Hz verfügt, die induktiv mit dem Gleismagnetenschwingkreis wechselwirken können. Wenn die Vorrichtung in die Nähe des Gleismagnetenschwingkreises gebracht wird, lässt sich anhand der an der Erregerspule gemessenen Spannung feststellen, ob das vom Prüfschwingkreis abgestrahlte Signal die Resonanzfrequenz des Gleismagneten trifft oder nicht. Da sich die Spannungswerte an der Erregerspule auch bei nicht aktiven Gleismagneten von denen bei aktiven Gleismagneten unterscheiden, kann eine vollständige Schnellprüfung des Gleismagneten erfolgen.
    Für jeden der drei unterschiedlichen Gleismagnettypen werden hierfür jeweils Spannungsschwellwerte Us festgelegt, welche mit den an der Erregerspule gemessenen Spannungen verglichen werden. Sobald eine gemessene Erregerspulenspannung für eine der drei Frequenzen einen solchen Schwellwert überschreitet und die anderen beiden Messwerte bei den anderen Frequenzen unter ihrem jeweiligen Schwellwert liegen, entspricht die Frequenz des Gleismagneten der Frequenz des Prüfschwingkreises, die eine Schwellwertüberschreitung bewirkt hat. Bleibt die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der Schwellwerte Us, wird der Gleismagnet als inaktiv gewertet.
  • Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels, das durch zwei Figuren dargestellt wird, näher erläutert.
  • Das punktförmige Zugsicherungssystem PZB 90, welches bei der Deutschen Bahn eingesetzt wird, muss in regelmäßigen Abständen inspiziert werden. Das System besteht aus Einrichtungen, die sich auf der Fahrzeugseite befinden und den dazugehörigen Streckeinrichtungen.
    Streckenseitig befinden sich so genannte Gleismagnete am Schienenweg, die sowohl Signalinformationen von der Strecke an das Fahrzeug übermitteln als auch Geschwindigkeitsüberwachungen realisieren.
    Aus elektrischer Sicht stellen Gleismagnete Parallelschwingkreise dar, die mit 500 Hz, 1000 Hz und 2000 Hz Nennfrequenz eingesetzt werden. Im Rahmen der Inspektion müssen die elektrischen Parameter dieser Magnete überprüft werden.
    Dazu gehören folgende Werte:
    • Resonanzfrequenz
    • Güte
    • Isolationswiderstand
    • Parallelwiderstand
  • Fig. 1 zeigt ein Blockschaltbild einer beispielhaften Prüfvorrichtung mit drei Frequenzgeneratoren, die mithilfe von drei DDS-Chips realisiert sind. Den Frequenzgeneratoren sind jeweils steilflankige Tiefpassfilter und Verstärker nachgeschaltet. Der mittlere Frequenzgenerator erzeugt ein Signal, dessen Phasenlage als 0° definiert wird und das in eine Konstantstromquelle (KSQ) eingespeist wird. Über einen Umschalter können alle drei Signale als Referenzsignale verwendet werden. Dazu misst man die abfallende Spannung und vergleicht die Phasenlagen zwischen dem am Gleismagneten (GM) eingespeisten Prüfstrom und der Spannung des Referenzsignals mithilfe von Komparatoren und einem Exklusiv-Oder-Gatter. Ein Mikrokontroller steuert den Vorgang und wertet die Messergebnisse aus. Der Mikrokontroller kann über eine Tastatur bedient werden. Ein vom Controller gesteuertes Display zeigt dem Benutzer die erforderlichen Informationen an.
    Über den RMS/DC-Wandler wird am Messpunkt RP die Spannung am Gleismagneten abgegriffen und in den Mikrocontroller eingelesen. Damit lässt sich auch der Parallelwiderstand des Gleismagneten messen sowie die Konstantstromquelle in einem vorgegebenen Bereich regeln.
    Zur Vorrichtung gehört auch eine Erregerspule, die ebenfalls von der KSQ angesteuert wird.
  • Außerdem verfügt die Vorrichtung noch über drei mittels Relais anschaltbare Reihenschwingkreise zum induktiven Erregen der Gleismagnete bei Frequenzen 500 Hz, 1000 Hz und 2000 Hz.
    Das Digitalpotentiometer vor der KSQ dient zum Einstellen des Signalpegels.
  • Der Mikrocontroller verfügt weiterhin über zwei EEPROM-Speicherbausteine zum Abspeichern der Messdaten sowie zum Abspeichern der Referenz- bzw. Grenzwerte zur Analyse der Messergebnisse. Die Messdaten werden dabei mit der aktuellen Uhrzeit versehen gespeichert. Zudem besteht die Möglichkeit eines Datenaustausches mit einem PC über eine Schnittstelle.
  • Figur 2 zeigt ein beispielhaftes Blockschaltbild des Regelkreises zum Ermitteln der Zielimpulslänge, d.h. der Breite des Rechtecksignals nach dem ExklusivOder-Glied. Der Mikrocontroller (µC) erzeugt mithilfe der DDS-Chips die Mess- und Prüfsignale mit bestimmter Frequenz. Über das digitale Potentiometer werden die passenden Spannungswerte zum Steuern der KSQ eingestellt und mithilfe zweier RMS/DC-Wandler an den Messpunkten RP' und RP auf den µC als Regler zurückgeführt und somit die Einhaltung der zulässigen Toleranzbereiche überwacht. In einem zweiten Kreis wird die Impulslänge gemessen und an den µC übermittelt, der daraufhin die Ansteuerung der DDS-Chips weiterführt.
  • Damit die Frequenzausgabe aller drei DDS-Chips synchron erfolgt, müssen diese gleichzeitig angesteuert werden. Zu diesem Zweck wird der Steuer-Takt nicht nur auf die Takteingänge der DDS-Chips gegeben, sondern auch auf ein D-Flip-Flop, zusammen mit der Steuerleitung vom µC. Damit wird gewährleistet, dass die entsprechenden Eingänge der DDS-Chips immer synchron mit dem Takt sind.
  • Die DDS-Chips erzeugen als Ausgangssignal ein Sinussignal mit einer Auflösung von 10 Bit und einer Amplitude von 1,2 VS. Da das Signal zur weiteren Verarbeitung noch verstärkt wird und noch einen Gleichanteil enthält, muss es gefiltert werden. Dies übernehmen die Filter an den Ausgängen der DDS-Chips. Die Grenzfrequenz der Filter liegt bei ca. 1,2 MHz, um die Phasendrehung des Signals so gering wie möglich zu halten (< 1°). Damit wird gewährleistet, dass es keine nennenswerten Abweichungen von den erforderlichen Phasenverschiebungen gibt.
  • Ein weiterer Aspekt für den Einsatz eines steilflankigen Filters ist die Tatsache, dass die DDS-Chips mit 10 MHz getaktet sind und der Systemtakt aus dem Nutzsignal entfernt werden muss.
    Der Gleichanteil wird in den Filtern ebenfalls eliminiert.
    Dadurch stellt sich am Ausgang des Filters eine Spannung von 0,6 VS ein. Anschließend werden alle drei Signale durch einen nicht invertierenden Operationsverstärker um den Faktor 20 verstärkt.
    Das Ausgangssignal des Verstärkers wird auf ein digitales Potentiometer geführt, der über einen SPI-Bus angesteuert wird.
    Anschließend wird das Signal auf die steuerbare Konstantstromquelle gegeben. Von dort kann das Signal auf den Gleismagneten geschaltet werden.
  • Um Messfehler zu vermeiden müssen Gleismagnete mit einer bestimmten Spannung gemessen werden. Die Messspannung beträgt ca. 70 VS. Da die Messspannung nicht direkt auf einen AD-Wandler des Mikrocontrollers gegeben werden kann, muss sie gleichgerichtet und vom Pegel her angepasst werden.
  • Weiterhin sind zwei DDS-Chips über ein digitales Potentiometer zusammenschaltbar, sodass deren Signale auch mit unterschiedlichen Frequenzen zu einem Summensignal gemischt werden können. Im Anschluss daran kann das Summensignal über die spannungsgesteuerte Konstantstromquelle auf die Erregerspule geschaltet werden.
  • Um Gleismagnete induktiv zu messen, enthält die Vorrichtung eine Spule mit Ferritkern und drei Anzapfungen. In Verbindung mit entsprechenden Schaltrelais sowie Kondensatoren werden Reihenschwingkreise mit verschiedenen Resonanzfrequenzen (500 Hz, 1000 Hz, 2000 Hz) gebildet.
  • Mit dieser Vorrichtung lässt sich nun das Verfahren zur Überprüfung eines Gleismagneten effizient durchführen.
  • Das Messverfahren für die Resonanzfrequenz beruht darauf, dass ein DDS-Chip das Signal mit einer Phasenverschiebung von 0° über ein elektronisches Potentiometer auf die steuerbare Konstantstromquelle gibt. An dieser ist der Gleismagnet angeschlossen.
  • Der Gleismagnet besteht aus einem Parallelschwingkreis, welcher bei Resonanz seinen höchsten Widerstand hat. Wird nun die Frequenz variiert, ändert sich auch die Phasenverschiebung zwischen Spannung und Strom am Gleismagneten. Wird die Phasenverschiebung zu null, ist die Resonanzfrequenz gefunden. Die Frequenzen bei denen eine Phasenverschiebung von -45° bzw. +45° zwischen Strom und Spannung vorliegt, stellen die 3 dB-Grenzfrequenzen dar.
    Zur Bestimmung der Güte des Schwingkreises im Gleismagneten werden nun alle drei DDS-Chips mit der gleichen Frequenz, aber unterschiedlichen Phasenlagen programmiert.
    Wird die Phasenlage des mittleren DDS-Chips in Fig. 1 als 0° definiert, ergeben sich für die anderen DDS-Chips die Phasenlagen +45° bzw. -45°.
  • Um die gesuchten Parameter zu ermitteln wird der Gleismagnet mit einem Frequenzsweep zwischen 400 Hz und 2400 Hz beaufschlagt, der über den Mikrokontroller gesteuert wird.
    Es ist sinnvoll im ersten Mess-Schritt eine passende Startfrequenz zu ermitteln, die abhängig von der Nennfrequenz (500 Hz, 1000 Hz bzw. 2000 Hz) des zu untersuchenden Gleismagneten ist.
    Der Mikrocontroller erzeugt zur Ermittlung der Nennfrequenz mit Hilfe der DDS-Chips eine Frequenz von 2300 Hz. Das digitale Potentiometer wird dabei auf einen konstanten Wert eingestellt und auch gehalten. Von dem Mikrocontroller werden dann die Spannungswerte vom RMS/DC-Wandler eingelesen und ausgewertet. Entsprechend der Werte wird erkannt, ob überhaupt ein Gleismagnet angeschlossen ist oder ob die Leitung kurzgeschlossen ist. Im Fehlerfall wird die Messung abgebrochen und alle Ausgaben werden auf null gesetzt.
    Wenn ein Gleismagnet angeschlossen ist, wird die Frequenz in 8 Hz-Schritten verringert, bis der angeschlossene Parallelschwingkreis des Gleismagneten einen bestimmten Widerstandswert aufweist.
    Dieser ist erreicht, sobald vom RMS/DC-Wandler eine Spannung von mindestens 30 V am Messpunkt RP ermittelt wird. Die gefundene Frequenz wird als Startfrequenz für das weitere Verfahren verwendet.
    In Abhängigkeit der gefundenen Startfrequenz wird ein entsprechender Parametersatz für den Messalgorithmus geladen.
  • Die Schrittweite der Frequenzsprünge ist abhängig von der Nennfrequenz und dem Inhalt des Parametersatzes.
  • In diesem Beispiel wird zunächst die obere Grenzfrequenz bestimmt, dann die Resonanzfrequenz und dann die untere Grenzfrequenz. Daraus wird dann die Güte des Gleismagneten berechnet.
    Zunächst wird also auf den einen Komparator das +45°-Signal geschaltet und auf den anderen das Signal, welches vom 0°-DDS-Chip-Signal über die Konstantstromquelle galvanisch an den Gleismagneten gebracht und dort abgegriffen wird.
    Die Ausgänge der beiden Komparatoren werden dann in einem Exklusiv-Oder-Gatter zusammengeführt und dem Mikrocontroller zugeführt. Dieser variiert die Frequenz, wobei das Rechtecksignal, d.h. dessen Impulslänge, am Ausgang des Exklusiv-Oder-Gatters immer schmaler wird, je näher man der oberen Grenzfrequenz kommt, bis sich ein Minimum einstellt.
    Beim Erreichen des Minimums ist die erste Grenzfrequenz gefunden.
  • Das Minimum ist in der Regel nicht nahezu null, sondern beträgt wenige Mikrosekunden. Dies liegt an den Signallaufzeiten durch das Digitalpotentiometer und die KSQ, welche das Messsignal immer auf ca. 45-50 Veff am Gleismagneten nachregeln. Dabei entstehen unvermeidbare Signallaufzeiten, die bei der Impulslängenermittlung berücksichtigt werden müssen. Aus diesem Grund wird bei jedem Einschalten des Gerätes eine Selbstkalibrierung durchgeführt. Bei dieser wird nicht der Gleismagnet gemessen, sondern ein interner ohmscher Widerstand. Die Impulslänge, die bei dieser Messung ermittelt wird, wird als Kalibrier-Impulslänge im Gerät hinterlegt. Dadurch werden zusätzlich auch Temperatureinflüsse und Bauteilalterungen ausgeglichen.
    Prinzipbedingt ergibt sich der Nachteil, dass sich beim Ermitteln der Impulslänge zwei identische Zielwerte messen lassen. Hierbei ist nur einer der tatsächliche Wert, während der andere ein fiktiver Wert ist. Aus diesem Grund wird die Frequenz in vorgegebener Weise ausgehend von der Startfrequenz nur in eine Richtung verändert. Während des Ermittelns der Impulslänge wird durch den Mikrocontroller über den RMS/DC-Wandler am Messpunkt RP' ständig das Übersteuern der Stromquelle überwacht und auf einen Pegel von max. 51,4 Veff begrenzt. Zusätzlich wird die Stromquelle so geregelt, dass am Gleismagneten eine Spannung zwischen 45,5 Veff und 48,5 Veff anliegt.
  • Um die Resonanzfrequenz zu bestimmen, wird dann das 0°-Signal auf beide Komparatoren geschaltet. Dann wird wieder die Frequenz variiert, bis das Rechtecksignal sein Minimum erreicht.
  • Um die zweite Grenzfrequenz zu bestimmen, wird das -45° Signal auf den einen Komparator geschaltet und das obige Verfahren erneut angewendet. Mit den Messwerten, die auf diese Weise ermittelt wurden, wird mithilfe der Beziehung Q = fR / (fo - fu) die Güte Q des Gleismagneten bestimmt.
  • Eine weitere Aufgabe der Erregerspule ist das Einkoppeln eines ausreichend starken Signals in einen Schaltmagneten, um die daran angeschlossene Geschwindigkeitsprüfeinrichtung (GPE) ein- bzw. auszuschalten. Bei den herkömmlichen GPE ist es ausreichend, die Erregerspule mit 1000 Hz zu erregen. Aufgrund der durch den ICE3 und den ICE T auftretenden Störsignale waren die Hersteller der GPE dazu gezwungen, ihre Auswerteeinheiten neu zu gestalten. Um die GPE sicher ein- bzw. ausschalten zu können, müssen von den drei Frequenzen mindestens zwei gleichzeitig vorhanden sein.
  • In diesem Beispiel werden daher von zwei DDS-Chips unterschiedliche Frequenzen erzeugt, nämlich 1000 Hz und 2000 Hz. Nach anschließender Filterung werden die beiden Frequenzen auf ein digitales Potentiometer gegeben, wo sie zu einem Summensignal gemischt werden. Im Anschluss daran kann das Summensignal über die spannungsgesteuerte Konstantstromquelle auf die Erregerspule geschaltet werden.
    Um auch jene GPE-Schaltmagnete schalten zu können, die aus dem Standby-Betrieb mit einem bestimmten Mindestpegel aufgeweckt werden müssen, wird zu Beginn der Messung durch zwei DDS-Chips jeweils eine Frequenz von 1000 Hz erzeugt. Diese werden linear durch das Digitalpotentiometer hochgeregelt und auf einen Maximalwert, der bei der Kalibrierung im Werk ermittelt wird, eingestellt.
    Erst nach Erreichen dieses Wertes wird ein DDS-Chip auf 2000 Hz umgeschaltet und beide Frequenzen zusammengeführt. Wenn das Summensignal auf die Erregerspule geschaltet wird, liegt es über einen Zeitraum von insgesamt 3 Sekunden an der Erregerspule an, um ein sicheres Ein- bzw. Ausschalten zu gewährleisten. Der Instandhalter prüft nun anhand der Statusanzeigen der GPE, ob die Schaltvorgänge tatsächlich wie vorgegeben abgelaufen sind oder nicht.
  • Zuletzt wird beispielhaft die Induktive Schnellprüfung erläutert. Sie dient zur Ermittlung des Gleismagnetentyps. Dabei wird das Gleismagnete-Prüfgerät auf den Gleismagneten gestellt und die Messung der Nennfrequenz wird über eine Induktive Kopplung ermittelt. Zusätzlich wird ermittelt, ob sich der Gleismagnet in einem wirksamen oder unwirksamen Zustand befindet.
    Das Gleismagnete-Prüfgerät verfügt über eigene Prüfschwingkreise mit Resonanzfrequenzen 500 Hz, 1000 Hz und 2000 Hz, die induktiv mit dem Gleismagnetenschwingkreis wechselwirken können. Durch das Aufsetzen des Gleismagnete-Prüfgerät auf den Gleismagneten, lässt sich anhand der an der Erregerspule bei jeder der drei Frequenzen im Prüfgerät gemessenen Spannung feststellen, ob das vom Prüfschwingkreis abgestrahlte Signal die Resonanzfrequenz des Gleismagneten trifft oder nicht. Hierfür werden Schwellwerte Us definiert. Wenn die an der Erregerspule gemessene Spannung den Schwellwert Us bei einer Frequenz überschreitet, während sie bei den beiden anderen Frequenzen unter dem jeweiligen Schwert Us bleibt, wird die Frequenz, bei der der Schwellwert Us überschritten wurde, als Nennfrequenz des Gleismagneten gewertet.
  • In diesem Beispiel werden folgende Schwellwerte verwendet:
    • Us (500 Hz) = 8 V, Us (1000 Hz) = 8 V und Us (2000 Hz) = 13 V
  • Auf einem Gleismagneten werden beispielsweise folgende Spannungen an der Erregerspule in Abhängigkeit von der am Prüfgerät eingestellten Erregerfrequenz gemessen:
    f[Hz] Erregerspulenspannung
    500 5,1 V
    1000 6,4 V
    2000 18,3 V
  • Die Werte der Erregerspulenspannung bleiben für 500 Hz und 1000 Hz jeweils unter dem zugehörigen Schwellwert Us(f), während der Messwert für 2000 Hz über dem zugehörigen Schwellwert Us(f) liegt. Der Gleismagnet wurde daher als aktiver 2000 Hz-Gleismagnet geprüft.
  • Bleibt die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der von der Frequenz abhängigen Grenzwerte Us(f) für aktive Gleismagnete, wird der Gleismagnet als inaktiv gewertet. Wenn in diesem Beispiel also ein 500 Hz-Gleismagnet bei einer Erregerspulenfrequenz von 500 Hz und 1000 Hz eine Erregerspulenspannung von unter 8 V und bei einer Erregerspulenfrequenz von 2000 Hz eine Erregerspulenspannung von unter 13 V aufweist, wird er als inaktiv gewertet.

Claims (13)

  1. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, wobei die Vorrichtung über mindestens ein Modul zum Erzeugen eines elektromagnetischen Signals mit einer Prüffrequenz verfügt, die zum Ansteuern einer Konstantstromquelle dient, wobei die Prüffrequenz in einem Frequenzbereich von 400 Hz bis 2400 Hz kontinuierlich durchstimmbar ist, wobei der mit der Prüffrequenz modulierte Ausgangsstrom der Konstantstromquelle über eine Verbindungsvorrichtung an den streckenseitigen Gleismagneten anschließbar ist und den Schwingkreis des Gleismagneten erregt, und die Vorrichtung über Messeinheiten zum Messen der Phasenverschiebung zwischen Strom und Spannung am Gleismagneten verfügt, dadurch gekennzeichnet, dass die Vorrichtung über mindestens drei Frequenzgeneratoren verfügt, die getrennt oder synchron ansteuerbar sind.
  2. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 1, wobei alle Frequenzgeneratoren bei synchroner Ansteuerung Signale mit gleicher Frequenz erzeugen, die sich hinsichtlich ihrer Phasenlage unterscheiden können.
  3. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 2, wobei der Phasenunterschied so einstellbar ist, dass er zwischen dem als Referenz dienenden Ausgangssignal des einen Frequenzgenerators und dem des einen weiteren Frequenzgenerators +45° und zwischen dem Referenzsignal und dem des zweiten weiteren Frequenzgenerators -45° beträgt.
  4. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 2 oder 3, wobei die Vorrichtung zwei Komparatoren enthält, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt sind, wobei in jeden Komparator ein eigenes Signal einspeisbar ist.
  5. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei die Frequenzgeneratoren mittels DDS-Chips realisiert sind.
  6. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei den Frequenzgeneratoren steilflankige Filter nachgeschaltet sind, welche höhere Frequenzen herausfiltern.
  7. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei die Vorrichtung über mindestens eine eigene Erregerspule zum Abstrahlen eines elektromagnetischen Signals verfügt, die von der Konstantstromquelle ansteuerbar ist.
  8. Vorrichtung zum Überprüfen von Schaltmagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 7, wobei die Signale von mindestens zwei Frequenzgeneratoren vor der Konstantstromquelle zusammenschaltbar sind, sodass das Summensignal auf die Erregerspule schaltbar ist.
  9. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei ein programmierbarer, integrierter elektronischer Schaltkreis die Vorrichtung steuert und überwacht und die Messwerte analysiert und zumindest teilweise abspeichert.
  10. Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass
    a. die Resonanzfrequenz eines Gleismagneten bestimmt wird, indem mithilfe eines Frequenzgenerators ein kontinuierliches Signal generiert wird, welches in einen Prüf- und einen Referenzteil aufgespalten wird, wobei der Prüfanteil des Signals in den Gleismagneten eingespeist wird, und das am Gleismagneten anstehende, resultierende Signal mit dem Referenzanteil hinsichtlich ihres Phasenunterschieds verglichen wird, wobei die Frequenz des Signals kontinuierlich durchgestimmt wird, und analysiert wird, bei welcher Frequenz der Phasenunterschied minimal wird, und diese Frequenz als Resonanzfrequenz abgespeichert wird,
    b. mithilfe von drei synchronisiert getakteten Frequenzgeneratoren die oberen und unteren Grenzfrequenzen des Gleismagneten ermittelt werden, indem das von einem Frequenzgenerator erzeugte Prüfsignal in den Gleismagneten eingespeist wird, und die von den beiden anderen Frequenzgeneratoren erzeugten, jeweils zum Prüfsignal um +45° bzw. -45° phasenverschobenen Referenzsignale gleicher Frequenz nacheinander mit dem am Gleismagneten anstehenden, resultierenden Signal hinsichtlich ihres Phasenunterschieds verglichen werden, wobei die Frequenz des Signals jeweils kontinuierlich durchgestimmt wird, und jeweils analysiert wird, bei welchen Frequenzen der Phasenunterschied jeweils minimal wird, und diese beiden Frequenzen als obere bzw. untere Grenzfrequenzen abgespeichert werden,
    c. die Güte des Gleismagneten berechnet wird, indem das Verhältnis der Resonanzfrequenz zur Differenz der Grenzfrequenzen gebildet wird,
    d. die bestimmten Daten zu Güte und Resonanzfrequenz gespeichert und hinsichtlich der erlaubten Toleranzwerte analysiert werden und in einer Arbeitsliste dem untersuchten Gleismagneten eindeutig zugeordnet werden.
  11. Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 10 wobei das Minimum des Phasenunterschieds zwischen Prüf- und Referenzsignal bestimmt wird, indem die Prüf- und Referenzsignale jeweils einen eigenen Komparator durchlaufen, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt werden, und das nach dem Exklusiv- Oder-Glied vorliegende Rechtecksignal daraufhin analysiert wird, bei welcher Frequenz es eine minimale Breite aufweist, und diese Frequenz als Frequenz mit minimalem Phasenunterschied zwischen Prüf- und Referenzsignal abgespeichert wird.
  12. Verfahren zum Überprüfen der Geschwindigkeitsprüfeinrichtung mittels Schaltmagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass
    a. von mindestens zwei Frequenzgeneratoren jeweils unterschiedliche Frequenzen (500 Hz, 1000 Hz oder 2000 Hz) erzeugt werden,
    b. die unterschiedlichen Frequenzen zu einem Summensignal zusammengeführt werden,
    c. mithilfe einer Erregerspule das Summensignal auf die Spule des Schaltmagneten eingekoppelt wird,
    d. mithilfe der Statusanzeigen der Geschwindigkeitsprüfeinrichtung überprüft wird, ob die Geschwindigkeitsprüfeinrichtung korrekt ein- bzw. ausgeschaltet wurde oder nicht.
  13. Verfahren zur induktiven Schnellprüfung von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass ein Gleismagnet mithilfe einer am Gleismagneten platzierten Erregerspule induktiv von außen nacheinander bei allen drei Gleismagnetfrequenzen 500 Hz, 1000 Hz und 2000 Hz angeregt wird, wobei
    a. für jeden der drei unterschiedlichen Gleismagnettypen jeweils Spannungsschwellwerte Us für die an der Erregerspule abzugreifende Spannung festgelegt werden,
    b. die beim Platzieren der aktiven Erregerspule am Gleismagneten an der Erregerspule gemessene Spannung für jede der drei Frequenzen mit den zugehörigen Spannungsschwellwerten Us verglichen wird,
    c. falls eine gemessene Erregerspulenspannung für eine der drei Frequenzen einen zugehörigen Schwellwert Us überschreitet und die anderen beiden Messwerte bei den anderen beiden Frequenzen unter ihrem jeweiligen Schwellwert Us liegen, die Frequenz des Gleismagneten gleich jener Frequenz des Erregerkreises gesetzt wird, die eine Schwellwertüberschreitung bewirkt hat,
    d. Falls die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der Schwellwerte Us liegt, der Gleismagnet als inaktiv gewertet wird.
EP14157745.2A 2013-06-06 2014-03-05 Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr Active EP2810848B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013210567.3A DE102013210567B3 (de) 2013-06-06 2013-06-06 Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr

Publications (3)

Publication Number Publication Date
EP2810848A2 true EP2810848A2 (de) 2014-12-10
EP2810848A3 EP2810848A3 (de) 2017-06-07
EP2810848B1 EP2810848B1 (de) 2018-06-13

Family

ID=50238181

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14157745.2A Active EP2810848B1 (de) 2013-06-06 2014-03-05 Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr

Country Status (2)

Country Link
EP (1) EP2810848B1 (de)
DE (1) DE102013210567B3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425106A (zh) * 2015-11-11 2016-03-23 国网山西省电力公司晋城供电公司 一种电缆故障检测试验系统及其工作方法
EP3424796A1 (de) 2017-07-06 2019-01-09 ALSTOM Transport Technologies Vorrichtung zur bestimmung von mindestens einer eigenschaft einer eisenbahn-resonanzschaltung und streckenseitiges zugsicherungssystem mit solch einer vorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109625038B (zh) * 2018-12-27 2020-12-18 合肥工大高科信息科技股份有限公司 一种轨道电路状态鉴别系统和方法
CN112946362B (zh) * 2021-03-31 2022-06-21 歌尔股份有限公司 振动电机的谐振频率检测方法、装置、终端设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE545101C (de) 1930-12-07 1932-02-27 Ver Eisenbahn Signalwerke G M Einrichtung zum Pruefen von Streckenmagneten der induktiven Zugbeeinflussung
DE703573C (de) 1939-08-16 1941-03-12 Ver Eisenbahn Signalwerke G M Pruefgeraet fuer Gleismagnete
DE703621C (de) 1939-08-16 1941-03-13 Ver Eisenbahn Signalwerke G M einflussung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127277A1 (de) * 2001-05-28 2002-12-05 Siemens Ag System zur induktiven Zugsicherung
DE102009032099A1 (de) * 2009-07-03 2011-01-05 Siemens Aktiengesellschaft Einrichtung zum Detektieren eines mittels eines magnetischen Gleichfeldes übertragenen Informations-Signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE545101C (de) 1930-12-07 1932-02-27 Ver Eisenbahn Signalwerke G M Einrichtung zum Pruefen von Streckenmagneten der induktiven Zugbeeinflussung
DE703573C (de) 1939-08-16 1941-03-12 Ver Eisenbahn Signalwerke G M Pruefgeraet fuer Gleismagnete
DE703621C (de) 1939-08-16 1941-03-13 Ver Eisenbahn Signalwerke G M einflussung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425106A (zh) * 2015-11-11 2016-03-23 国网山西省电力公司晋城供电公司 一种电缆故障检测试验系统及其工作方法
CN105425106B (zh) * 2015-11-11 2018-02-09 国网山西省电力公司晋城供电公司 一种电缆故障检测试验系统及其工作方法
EP3424796A1 (de) 2017-07-06 2019-01-09 ALSTOM Transport Technologies Vorrichtung zur bestimmung von mindestens einer eigenschaft einer eisenbahn-resonanzschaltung und streckenseitiges zugsicherungssystem mit solch einer vorrichtung

Also Published As

Publication number Publication date
EP2810848B1 (de) 2018-06-13
DE102013210567B3 (de) 2014-05-15
EP2810848A3 (de) 2017-06-07

Similar Documents

Publication Publication Date Title
EP2754086B1 (de) Verfahren zum prüfen einer antennenspule
EP2810848B1 (de) Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr
AT511807A4 (de) Verfahren und vorrichtung zur online-erkennung einer zustandsverschlechterung einer isolierung in einer elektrischen maschine
EP2403745B1 (de) Vorrichtungen zur detektion des belegt- oder freizustandes eines gleisabschnitts sowie verfahren zum betreiben solcher vorrichtungen
DE102011105063A1 (de) Detektion eines Fremdkörpers in einem induktiven Übertragungsweg
EP2954338B1 (de) Verfahren und vorrichtung zum prüfen eines schaltkreises
DE102014223234B3 (de) Verfahren und Vorrichtung zur Diagnose elektrischer Weichen
EP3053176A1 (de) Verfahren und vorrichtung zum überwachen zumindest eines elektronischen schaltkontakts für ein fahrzeug
EP3643579A1 (de) Vorrichtung und verfahren zur überwachung einer weiche
EP3795451B1 (de) Verfahren zum orten eines fahrzeugs an einer für einen halt des fahrzeugs vorgesehenen station
WO2013050244A1 (de) Verfahren und vorrichtung zur schienenbrucherkennung
EP3041727B1 (de) Eurobalisenfahrzeugeinrichtung und verfahren zum betreiben einer eurobalisenfahrzeugeinrichtung
DE19820207C2 (de) Vorrichtung zum Überprüfen der Antenne eines in einem Kraftfahrzeug vorhandenen Systems, insbesondere Wegfahrsperrensystem
WO2013083850A2 (de) Prüfeinrichtung zur durchführung von funktionstests an energieerzeugern
EP2701018B1 (de) Verfahren zur sicheren Parametrierung eines Feldgeräts
DE102012215994A1 (de) Verfahren und Schaltungsanordnung zum Bestimmen eines Arbeitsbereichs eines Ultraschall-Schwinggebildes
EP1340988B1 (de) Verfahren und Vorrichtung zur Messung der Impedanz eines elektrischen Energieversorgungsnetzes
DE102021108192A1 (de) Schaltungen und verfahren zum detektieren von leitungskurzschlüssen und/oder leitungsunterbrechungen in differenziell betriebenen leitungsnetzen
DE102023103783B3 (de) Achszählersystem zum Überwachen eines Gleisabschnitts eines Schienensystems
DE102008056700A1 (de) Drehzahlsensor zum Ermitteln von &#34;langsamen (Nulldrehzahl) und schnellen&#34; Drehzahlen sowie zur gleichzeitigen Ermittlung der Drehrichtung
DE69606297T2 (de) Detektiergerät für eine kurzschlussverbindung für einen gleisabschnitt
EP1777532A1 (de) Prüfverfahren und Treibereinrichtung für eine Antenne
EP2685581A1 (de) Versorgung eines Schienenfahrzeugs mit elektrischer Energie über eine abgeschirmte Energieversorgungsleitung
DE3034659A1 (de) Sicherheitsvorrichtung fuer ein spurgefuehrtes, gleisfreies fahrzeug und verfahren zum betrieb der vorrichtung
DE102022210180A1 (de) Überwachung der korrekten Funktion eines Hauptschalters eines Schienenfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140305

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 1/20 20060101ALI20170503BHEP

Ipc: B61L 3/12 20060101AFI20170503BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20171016

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE BAHN AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1008187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008510

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008510

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181015

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 10

Ref country code: AT

Payment date: 20230317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11