EP2806204A1 - Tank zur Separation von Flüssigkeiten im Orbit - Google Patents

Tank zur Separation von Flüssigkeiten im Orbit Download PDF

Info

Publication number
EP2806204A1
EP2806204A1 EP13002659.4A EP13002659A EP2806204A1 EP 2806204 A1 EP2806204 A1 EP 2806204A1 EP 13002659 A EP13002659 A EP 13002659A EP 2806204 A1 EP2806204 A1 EP 2806204A1
Authority
EP
European Patent Office
Prior art keywords
tank
liquid
tank according
metal foam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13002659.4A
Other languages
English (en)
French (fr)
Other versions
EP2806204B1 (de
Inventor
Dr. Kei Philipp Behruzi
Dr. Nicolas Fries
Burkhard Schmitz
Horst Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Priority to EP13002659.4A priority Critical patent/EP2806204B1/de
Publication of EP2806204A1 publication Critical patent/EP2806204A1/de
Application granted granted Critical
Publication of EP2806204B1 publication Critical patent/EP2806204B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/008Details of vessels or of the filling or discharging of vessels for use under microgravity conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0171Shape complex comprising a communication hole between chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/06Vessel construction using filling material in contact with the handled fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0192Propulsion of the fluid by using a working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0304Heat exchange with the fluid by heating using an electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0379Localisation of heat exchange in or on a vessel in wall contact inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space

Definitions

  • the invention relates to a tank for separating a liquid from a gaseous phase and for storing the liquid separated from the gaseous phase for use in experiments in space under conditions of weightlessness, with a feed line through which a liquid, a gas or a mixture from both can be introduced into the tank, and with an outlet from the pure gas escapes.
  • the liquid introduced into such a tank which is generally referred to as a separator tank, is stored therein for the duration of a space experiment, the fuel metering being carried into this separator tank via an upstream tank.
  • a propellant usually an inert gas such as helium (He) or nitrogen (N 2 ), which is pressed under pressure into the upstream tank and in this way the liquid, the gas or a liquid Gas mixture through a piping system in the separator tank promotes.
  • a corresponding amount of gas is removed from the separator tank, these gases usually being discharged from the experiment module into the vacuum prevailing in orbit.
  • phase separators for the separation of a liquid from a gaseous phase has become known, wherein in this known device, a phase separator for operating states with low acceleration is used and the separation is carried out using superconducting magnets.
  • the describes US 48 48 987 A a phase separator in which pumps and a series of valves are provided.
  • a propeller which sets a liquid-gas mixture in rotation and in which a membrane of polyethylene or nylon, the liquid, in this case water, separated.
  • This latter known system is intended for use with fuel cells and is not suitable for separating cryogenic liquids.
  • US 44 35 196 A and the US 46 17 031 A become known Devices are limited to use in the earth's gravity field.
  • a porous bed structure in the form of a known Katalysatorbettn for generating gas from a liquid fuel, for example hydrazine, is provided.
  • a liquid / gas separator in which a titanium mesh is arranged, which is intended to retain gas bubbles by the action of capillary forces and surface tension.
  • the invention has the object of providing such a tank in such a way that in a simple manner safe phase separation for both cryogenic and non-cryogenic propellants and liquids at accelerations, such as occur during a space experiment in a sounding rocket, is ensured and that the Once stored in this tank, liquid can not leave the tank through either the inlet or the outlet
  • the invention solves this problem in that body are arranged in the tank of a spongy material in the form of a metal foam whose total pore volume is chosen to be greater than the volume of the liquid to be absorbed.
  • the formation of the tank according to the invention ensures that the liquid is absorbed capillary by the spongy material in the form of a metal foam and stored in this stable for the duration of the experiment.
  • the volume of the metal foam which is aluminum foam in a preferred embodiment of the inventive tank, is chosen larger than the volume of the total liquid to be absorbed according to the invention.
  • the liquid-gas mixture starting from the inlet opening, meandering guided by the acting as a separator tank tank according to the invention and the liquid is capillary discharged into the sponge-like material.
  • a metal mesh In front of the outlet from the separator tank is a metal mesh, which prevents any particles of the sponge-like material that are being detached from undesirably entering the outlet opening.
  • the liquid is stored in this way in the serving as a reservoir tank, which may initially expelled in this tank located propellant gas and is replaced by the liquid.
  • the tank is inventively designed such that the liquid is stored in this due to the capillary action of the metal foam.
  • Metal foams are therefore also suitable for the type of storage of cryogenic liquids provided according to the invention, since they have a very low structural mass, so that only a small amount of structural mass has to be cooled by the liquid. Furthermore, the high capillary pressure of the metal foam has a positive effect, so that liquids can be safely held in the metal foam even at high interference accelerations. The storage capacity is reached when the bodies of metal foam are completely saturated with liquid.
  • the volume of the metal foam is dimensioned such that the maximum amount of liquid is less than the pore volume of the metal foam.
  • the invention is particularly well-suited for such space-saving experiments under weightlessness which require the use of cryogenic liquids.
  • a storage or test tank 3 is connected via a feed line 2 to a compressed gas tank 1.
  • the test tank 3 can be emptied, so that either liquid or gas is discharged from the test tank 3.
  • the liquid or gas is discharged via line 4 into a separator tank 5.
  • This separator tank 5 stores the introduced liquid and, via a line 6 and further via degassing lines 7, discharges the gas escaping from the separator tank 5.
  • the structure of the separator tank 5 is particularly made Fig. 2 seen. It consists of in the case of this embodiment, annular plate elements or bodies 8 made of a metal foam, wherein the metal foam in this case is aluminum. These bodies 8 are inserted into the separator tank 5, wherein the separator tank 5 is bounded by an upper 9 and a lower lid 10 and is enclosed by a cylindrical shell 11.
  • the outer shape of the separator tank 5 shown here serves only as an example and can generally be adapted to the geometric conditions in a spacecraft.
  • the in Fig. 3 illustrated in detail inlet region into the separator tank 5 consists of a supply line 12, which opens into a circumferential injection channel 13.
  • This injection channel 13 is connected in the direction of the cylindrical shell 11 through a gap 14 with the interior of the separator tank 5.
  • a sleeve 16 is arranged, which is located in front of the pore openings 17 in the body 8 made of metal foam.
  • a further sleeve 18 made of a metal fabric, which is connected to an outlet 19 of the separator tank 5 is connected.
  • This sleeve of metal fabric 18 has the function of a screen or filter cartridge, ie, any contamination downstream, not shown in the figures devices or valves by particles are avoided by this sleeve 18.
  • Fig. 5 the flow path 20 through the separator tank 5 is shown.
  • the separation of the liquid from the gas is carried out by the capillary penetration of the liquid 21 into the sponge-like body 8 made of metal foam, as in Fig. 6 is shown.
  • the liquid-impregnated region of the metal foam is in Fig. 6 indicated by a dashed area 22.
  • the lines 23 indicate the momentary boundary between the liquid (dashed area 22) and the gas (in the rest of the metal foam).
  • the flow direction of the liquid-gas mixture is indicated by the arrow 24.
  • the cross section 20 between the individual metal foam bodies is adjusted accordingly. This cross section 20 between the individual metal foam bodies is getting wider in the flow direction 24. Accordingly, the recesses 15 in the spongy bodies 8 made of metal foam in the direction of the center of the Separatortanks 5 are always deeper, as shown in the FIGS. 4 and 5 evident.
  • the separator tank described above is suitable for both cryogenic and non-cryogenic liquids.
  • the representation according to Fig. 7 Finally shows an arrangement in which the separator tank 5 is used for cryogenic liquids. It is important that the temperature of the separator tank 5 is close to the liquid temperature. Therefore, in this case, the separator tank 5 is disposed together with the test container 3 inside a cryostat 25 in which heaters 26 are further provided. Finally, a gas supply device 27 and a gas sampling device 28 are shown schematically in this figure.
  • the separator tank 5 is initially filled with liquid, the temperature of which can be adjusted by presetting a pressure which is predetermined according to the saturation curve. The liquid then evaporates over time, so that the separator tank 5 assumes cryogenic temperatures at the beginning of the actual use. When the liquid has completely evaporated, the separator can be used. To accelerate the evaporation process, a heating device 26 is additionally provided, which serves to prepare the separator tank 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

In einem Tank zur Lagerung kryogener Flüssigkeiten oder lagerfähiger Flüssigkeiten für einen Einsatz in Weltraumexperimenten unter den Bedingungen der Schwerelosigkeit sind zur sicheren Trennung von Gas- und Flüssigkeitsphase Strukturen aus einem schwammartigen Material, insbesondere aus einem Metallschaum, angeordnet, deren Gesamtporenvolumen größer gewählt ist als das Volumen der aufzunehmenden Flüssigkeit. Die Strukturen sind als ineinander liegend angeordnete ringförmige Platten ausgebildet, die im Inneren der zylindrisch ausgebildeten Tanks angeordnet sind. Im Zentrum des Tanks ist eine Entnahmevorrichtung angeordnet, die sich vor den Porenöffnungen des Metallschaums befindet. Für Weltraumexperimente unter Schwerelosigkeit, die den Einsatz kryogener Flüssigkeiten erfordern, kann der Tank zusammen mit einem vorgeschalteten Vorratstank in einem Kryostaten angeordnet werden, der mit einer Heizvorrichtung versehen ist.

Description

  • Die Erfindung betrifft einen Tank zur Trennung einer flüssigen von einer gasförmigen Phase und zur Lagerung der aus der gasförmigen Phase abgetrennten Flüssigkeit für einen Einsatz bei Experimenten im Weltraum unter den Bedingungen der Schwerelosigkeit, mit einer Zuleitung, durch die eine Flüssigkeit, ein Gas oder ein Gemisch aus beiden in den Tank einleitbar ist, und mit einem Auslass, aus dem reines Gas austritt.
  • Die in einen solchen Tank, der im Allgemeinen als Separatortank bezeichnet wird, eingebrachte Flüssigkeit wird darin für die Dauer eines Weltraumexperimentes gelagert, wobei die Treibstoffzuhr in diesen Separatortank über einen vorgeschalteten Tank erfolgt. Zur Förderung der im vorgeschalteten Tank enthaltenen Flüssigkeit dient ein Treibgas, üblicherweise ein Inertgas wie Helium (He) oder Stickstoff (N2), das unter Druck in den vorgeschalteten Tank gepreßt wird und das auf diese Weise die Flüssigkeit, das Gas oder ein Flüssigkeits-Gas-Gemisch durch ein Rohrleitungssystem in den Separatortank fördert. Gleichzeitig wird aus dem Separatortank eine entsprechende Menge an Gas abgeführt, wobei diese Gase üblicherweise aus dem Experimentmodul in das im Orbit herrschende Vakuum entlassen werden. Wird jedoch bei diesem Vorgang ein Gas-Flüssigkeitsgemisch aus dem Tank in das Vakuum entlassen, so führen, je nach Mischungsverhältnis, die unterschiedlichen Dichten von Flüssigkeit und Gas zu einem nicht-konstanten Schubprofil, weshalb das Austreiben von Gemischen aus Flüssigkeit und Gas unerwünscht ist.
  • Für eine sichere Trennung der Gas- und Flüssigkeitsphasen werden in der Raumfahrttechnik bisher die folgenden Verfahren angewandt:
    • Durch die Erwärmung des Treibstoffs wird die aus dem Treibstofftank austretende Flüssigkeit verdampft. Dieses Verfahren erfordert einen vergleichsweise hohen Energieaufwand für die Verdampfung der Flüssigkeit.
    • Es wird eine zusätzliche Beschleunigung aufgebracht, die bewirkt, dass sich der Treibstoff zum Zeitpunkt der Druckentlastung nicht am Gasauslaß befindet. Dies erfordert eine gerichtete Beschleunigung mittels eines zusätzlichen Antriebssystems, was im Falle eines Experimentes unter Schwerelosigkeit ausgeschlossen ist, da es die Randbedingungen des Experimentes beeinträchtigen würde.
  • Daneben ist aus der US 40 27 494 A die Verwendung von Phasenseparatoren zur Trennung einer flüssigen von einer gasförmigen Phase bekannt geworden, wobei in dieser bekannten Vorrichtung ein Phasenseparator für Betriebszustände mit geringer Beschleunigung zum Einsatz kommt und die Trennung unter Verwendung supraleitender Magnete erfolgt. Desweiteren beschreibt die US 48 48 987 A einen Phasenseparator, bei dem Pumpen und eine Reihe von Ventilen vorgesehen sind. Schließlich wird bei einem in der US 70 77 885 B2 beschriebenen Phasenseparator ein Propeller verwendet, der ein Flüssigkeits-Gasgemisch in Rotation versetzt und bei dem eine Membran aus Polyethylen oder Nylon die Flüssigkeit, in diesem Fall Wasser, abtrennt. Dieses letztgenannte bekannte System ist für einen Einsatz zusammen mit Brennstoffzellen vorgesehen und eignet sich nicht zur Trennung kryogener Flüssigkeiten. Weitere, aus der US 44 35 196 A und der US 46 17 031 A bekannt gewordene Vorrichtungen sind auf einen Einsatz im Schwerefeld der Erde beschränkt.
  • Weiterhin ist in der US 40 27 494 A eine Anordnung beschrieben, bei der reine, von etwaigen Gasbeimischungen gereinigte Flüssigkeit gefördert wird, weshalb bei dieser bekannten Anordnung eine wabenartige Struktur direkt über einem enstprechenden Auslass angeordnet ist Dadurch wird sichergestellt, dass kein Gas in die entsprechende Auslassleitung gelangt.
  • Bei einer in der US 44 35196 A beschriebenen Anordnung ist eine poröse Bettstruktur in Form eines an sich bekannten Katalysatorbettn zur Erzeugung von Gas aus einem flüssigen Treibstoff, beispielsweise Hydrazin, vorgesehen. Zudem ist in dieser Druckschrift ein Flüssigkeits/Gas-Separator beschrieben, in dem ein Titannetz angeordnet ist, das dazu dienen soll, durch die Wirkung von Kapillarkräften und Oberflächenspannung Gasblasen zurückzuhalten.
  • Schließlich ist aus der DE 10 2007 005 539 B3 eine Anordnung der eingangs genannten Art bekannt geworden, bei der ein Separator als Bauteil in einem Treibstofftank angeordnet ist, wobei ein Flüssigkeits-Gas-Gemisch an verschiedenen Stellen des Treibstofftanks ein für die Lagerung vorgesehenes Reservoir erreichen kann.
  • Der Erfindung liegt die Aufgabe zugrunde, einen derartigen Tank so auszubilden, dass auf einfache Weise eine sichere Phasentrennung sowohl für kryogene als auch für nicht kryogene Treibstoffe und Flüssigkeiten bei Beschleunigungen, wie sie beispielsweise wahrend eines Weltraumexperimentes in einer Höhenforschungsrakete auftreten, gewährleistet ist und dass die einmal in diesem Tank gespeicherte Flüssigkeit den Tank weder durch den Ein- noch durch den Auslass wieder verlassen kann
  • Die Erfindung löst diese Aufgabe dadurch, dass in dem Tank Körper aus einem schwammartigen Material in Form eines Metallschaums angeordnet sind, deren Gesamtporenvolumen größer gewählt ist als das Volumen der aufzunehmenden Flüssigkeit.
  • Durch die Ausbildung des Tanks gemäß der Erfindung wird erreicht, dass die Flüssigkeit kapillar von dem schwammartigen Material in Form eines Metallschaums aufgenommen und in diesem für die Dauer des Experimentes stabil gelagert wird.
  • Das Volumen des Metallschaums, bei dem es sich in einer bevorzugten Ausführungsform des erfindungsgemäßen Tanks um Aluminiumschaum handelt, ist gemäß der Erfindung größer gewählt als das Volumen der insgesamt aufzunehmenden Flüssigkeit. Das Flüssigkeits-Gas-Gemisch wird, ausgehend von der Eintrittsöffnung, mäandernd durch den als Separatortank wirkenden Tank nach der Erfindung geführt und dabei wird die Flüssigkeit kapillar in das schwammartige Material abgeführt. Vor dem Auslass aus dem Separatortank befindet sich ein Metallgewebe, das verhindert, dass etwaige sich ablösende Partikel des schwammartigen Materials unerwünscht mit in die Auslassöffnung gelangen.
  • Die Flüssigkeit wird auf diese Weise in dem als Reservoir dienenden Tank zwischengespeichert, wobei sich unter Umständen zunächst in diesem Tank befindliches Treibgas ausgetrieben und durch die Flüssigkeit ersetzt wird. Der Tank ist dabei erfindungsgemäß derart ausgeführt, dass die Flüssigkeit aufgrund von der Kapillarwirkung des Metallschaums in diesem gespeichert wird. Metallschäume eignen sich auch deshalb zu der gemäß der Erfindung vorgesehenen Art der Lagerung kryogener Flüssigkeiten, da sie eine sehr geringe strukturelle Masse besitzen, so dass nur wenig strukturelle Masse durch die Flüssigkeit gekühlt werden muss. Weiter wirkt sich der hohe Kapillardruck des Metallschaums positiv aus, so dass Flüssigkeiten auch bei hohen Störbeschleunigungen sicher im Metallschaum gehalten werden können. Die Speicherkapazität ist dann erreicht, wenn die Körper aus Metallschaum vollständig mit Flüssigkeit getränkt sind. Aus diesem Grund ist erfindungsgemäß das Volumen des Metallschaumes so dimensioniert, dass die maximale Flüssigkeitsmenge geringer als das Porenvolumen des Metallschaumes ist. Die Erfindung eignet sich besonders gut für solche Weltraumexperimente unter Schwerelosigkeit, die den Einsatz kryogener Flüssigkeiten erfordern.
  • Nachfolgend soll die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:
  • Fig. 1
    einen typischen Aufbau einer Tankanordnung für ein Weltraumexperiment mit einem Vorrats- und einem Separatortank in schematischer Darstellung,
    Fig. 2
    einen Schnitt durch den Separatortank gemäß Fig. 1,
    Fig. 3
    einen Schnitt durch ein Detail des Separatortanks gemäß Fig. 2,
    Fig. 4
    weitere Details des Separatortanks gemäß Fig. 2 in perspektivischer Darstellung,
    Fig. 5
    eine Darstellung des Strömungsverlaufs durch den Separatortank gemäß Fig. 2 ,
    Fig. 6
    eine Prinzipdarstellung der Separation der Flüssigkeit vom Gas in einem Separatortank gemäß Fig. 2 und
    Fig. 7
    eine schematische Darstellung einer Anordnung mit einem Separatortank und einem Testtank für eine Verwendung kryogener Flüssigkeiten.
  • In den Figuren sind gleiche bzw. einander entsprechende Bauteile mit den gleichen Bezugszeichen versehen.
  • Bei der in Fig. 1 dargestellten Anordnung handelt es sich um eine typische Tankanordnung für ein Weltraumexperiment. Dabei ist ein Vorrats- oder Testtank 3 über eine Zuführleitung 2 mit einem Druckgastank 1 verbunden. Mithilfe des Druckgases kann der Testtank 3 entleert werden, so dass entweder Flüssigkeit oder Gas aus dem Testtank 3 abgeführt wird. Die Flüssigkeit oder das Gas werden über die Leitung 4 in einen Separatortank 5 abgeleitet. Dieser Separatortank 5 speichert die eingeleitete Flüssigkeit und führt über eine Leitung 6 und weiter über Entgasungsleitungen 7 das aus dem Separatortank 5 entweichende Gas ab.
  • Der Aufbau des Separatortanks 5 wird insbesondere aus Fig. 2 ersichtlich. Er besteht aus im Fall dieses Ausführungsbeispiels ringförmigen Plattenelementen oder Körpern 8 aus einem Metallschaum, wobei es sich bei dem Metallschaum in diesem Fall um Aluminium handelt. Diese Körper 8 sind in den Separatortank 5 eingesetzt, wobei der Separatortank 5 durch je einen oberen 9 und einen unteren Deckel 10 begrenzt ist und von einem zylindrischen Mantel 11 umschlossen ist. Die hier dargestellte äußere Form des Separatortanks 5 dient dabei nur als Beispiel und kann generell an die geometrischen Verhältnisse in einem Raumflugkörper angepasst werden.
  • Der in Fig. 3 im Detail dargestellte Einlaufbereich in den Separatortank 5 besteht aus einer Zuführleitung 12, die in einen umlaufenden Einspritzkanal 13 mündet. Dieser Einspritzkanal 13 ist in Richtung des zylindrischen Mantels 11 durch einen Spalt 14 mit dem Inneren des Separatortanks 5 verbunden.
  • In die Körper 8 aus Metallschaum sind, von Körper zu Körper alternierend, im Bereich des unteren 10 und oberen Deckels 9 Ausnehmungen 15 eingebracht, wie dies aus Fig. 4 ersichtlich ist. Die Darstellung gemäß Fig. 2 zeigt ferner, dass im Zentrum des Separatortanks 5 eine Hülse 16 angeordnet ist, die sich vor den Porenöffnungen 17 im Körper 8 aus Metallschaum befindet. Im Inneren der Hülse 16 befindet sich wiederum eine weitere Hülse 18 aus einem Metallgewebe, die mit einem Auslass 19 des Separatortanks 5 verbunden ist. Diese Hülse aus Metallgewebe 18 hat die Funktion einer Sieb- oder Filterkartusche, d.h., etwaige Verschmutzungen nachgeschalteter, in den Figuren nicht dargestellter Geräte oder Ventile durch Partikel werden durch diese Hülse 18 vermieden.
  • Nachfolgend soll der Separationsprozess, der zu einer Abscheidung von Flüssigkeit aus einem Flüssigkeits-Gas-Gemisch führt, näher erläutert werden. Dazu ist in Fig. 5 der Strömungsverlauf 20 durch den Separatortank 5 dargestellt. Die Separation der Flüssigkeit vom Gas erfolgt durch das kapillare Eindringen der Flüssigkeit 21 in die schwammartigen Körper 8 aus Metallschaum, wie dies in Fig. 6 gezeigt ist. Der mit Flüssigkeit getränkte Bereich des Metallschaumes ist dabei in Fig. 6 durch einen gestrichelt dargestellten Bereich 22 gekennzeichnet. Mit zunehmender Flüssigkeitsmenge dringt die Flüssigkeit 21 immer weiter in die schwammartigen Körper 8 aus Metallschaum ein. Fig. 6 stellt einen solchen Zustand während des Eindringprozesses exemplarisch dar. Die Linien 23 kennzeichnen dabei die momentane Grenze zwischen der Flüssigkeit (gestrichelter Bereich 22) und dem Gas (im Rest des Metallschaumes). Die Strömungsrichtung des Flüssigkeits-Gas-Gemisches ist durch den Pfeil 24 gekennzeichnet.
  • Ist das Porenvolumen der schwammartigen Körper 8 aus Metallschaum mindestens so groß gewählt wie die Gesamtmenge der eindringenden Flüssigkeit 21, so erfolgt eine vollständige Speicherung der Flüssigkeit im Metallschaum. Um eine etwa konstante Strömungsgeschwindigkeit des Flüssigkeits-Gas-Gemisches 24 und damit ein gleichmäßiges Eindringen der Flüssigkeit 21 in die schwammartigen Körper 8 aus Metallschaum zu gewährleisten, wird der Querschnitt 20 zwischen den einzelnen Metallschaum-Körpern entsprechend angepasst. Dieser Querschnitt 20 zwischen den einzelnen Metallschaum-Körpern wird in Strömungsrichtung 24 immer breiter. Entsprechend werden auch die Ausnehmungen 15 in den schwammartigen Körpern 8 aus Metallschaum in Richtung auf das Zentrum des Separatortanks 5 immer tiefer, wie dies aus den Figuren 4 und 5 hervorgeht.
  • Der vorangehend beschriebene Separatortank ist sowohl für kryogene als auch für nicht-kryogene Flüssigkeiten geeignet. Die Darstellung gemäß Fig. 7 zeigt abschließend eine Anordnung, in der der Separatortank 5 für kryogene Flüssigkeiten verwendet wird. Dabei ist wichtig, dass die Temperatur des Separatortanks 5 nahe der Flüssigkeitstemperatur liegt. Deshalb wird in diesem Fall der Separatortank 5 zusammen mit dem Testbehälter 3 im Inneren eines Kryostaten 25 angeordnet, in dem ferner Heizer 26 vorgesehen sind. Schließlich sind in dieser Figur schematisch je eine Gaszuführvorrichtung 27 sowie eine Gasentnahmevorrichtung 28 eingezeichnet.
  • Der Separatortank 5 wird zu Beginn mit Flüssigkeit gefüllt, deren Temperatur sich durch Vorgabe eines entsprechend der Sättigungskurve vorgegebenen Druckes einstellen lässt. Die Flüssigkeit verdampft daraufhin mit der Zeit, so dass der Separatortank 5 zu Beginn der eigentlichen Verwendung kryogene Temperaturen annimmt. Ist die Flüssigkeit vollständig verdampft, so ist der Separator verwendbar. Zur Beschleunigung des Verdampfungsprozesses ist zusätzlich eine Heizvorrichtung 26 vorgesehen, die der Vorbereitung des Separatortanks 5 dient.

Claims (11)

  1. Tank zur Trennung einer flüssigen von einer gasförmigen Phase und zur Lagerung von Flüssigkeit, für einen Einsatz bei Eperimenten im Weltraum unter den Bedingungen der Schwerelosigkeit, mit einer Zuleitung, durch die eine Flüssigkeit, ein Gas oder ein Gemisch aus beiden in den Tank einleitbar ist, und mit einem Auslass, aus dem reines Gas austritt, dadurch gekennzeichnet, dass in dem Tank (5) Körper (8) aus einem schwammartigen Material in Form eines Metallschaumes angeordnet sind, deren Gesamtporenvolumen größer gewählt ist als das Volumen der aufzunehmenden Flüssigkeit (21).
  2. Tank nach Anspruch 1, dadurch gekennzeichnet, dass der Metallschaum aus Aluminium besteht.
  3. Tank nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass er durch je einen,oberen (9) und einen unteren Deckel (10) begrenzt ist und von einem zylindrischen Mantel (11) umschlossen ist.
  4. Tank nach Anspruch 3, dadurch gekennzeichnet, dass eine Zuführleitung (12) in einen umlaufenden Einspritzkanal (13) mündet, der in Richtung des zylindrischen Mantels (11) durch einen Spalt (14) mit dem Inneren des Tanks (5) verbunden ist.
  5. Tank nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Körper (8) als ineinander liegend angeordnete ringförmige Platten ausgebildet sind.
  6. Tank nach Anspruch 5, dadurch gekennzeichnet, dass die Körper (8) alternierend an gegenüberliegenden Enden mit Ausnehmungen (15) versehen sind.
  7. Tank nach Anspruch 6, dadurch gekennzeichnet, dass die durch die Ausnehmungen (15) gebildeten Strömungsquerschnitte bezüglich des Strömungsverlaufes (20) konstant sind.
  8. Tank nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in seinem Zentrum eine Hülse (16) mit einer Entnahmevorrichtung (19) angeordnet ist, die sich vor den Porenöffnungen (17) in den schwammartigen Körpern (8) befindet.
  9. Tank nach Anspruch 8, dadurch gekennzeichnet, dass die Entnahmevorrichtung (19) durch eine Siebkartusche (18) vom Inneren des Tanks (5) abgetrennt ist.
  10. Tank nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das er zur Aufnahme kryogener Flüssigkeiten zusammen mit einem vorgeschalteten Vorratstank (3) in einem Kryostaten (25) angeordnet ist.
  11. Tank nach Anspruch 10, dadurch gekennzeichnet, dass in dem Kryostaten (25) eine Heizvorrichtung (26) vorgesehen ist.
EP13002659.4A 2013-05-22 2013-05-22 Tank zur Separation von Flüssigkeiten im Orbit Not-in-force EP2806204B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13002659.4A EP2806204B1 (de) 2013-05-22 2013-05-22 Tank zur Separation von Flüssigkeiten im Orbit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13002659.4A EP2806204B1 (de) 2013-05-22 2013-05-22 Tank zur Separation von Flüssigkeiten im Orbit

Publications (2)

Publication Number Publication Date
EP2806204A1 true EP2806204A1 (de) 2014-11-26
EP2806204B1 EP2806204B1 (de) 2017-05-24

Family

ID=48576173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13002659.4A Not-in-force EP2806204B1 (de) 2013-05-22 2013-05-22 Tank zur Separation von Flüssigkeiten im Orbit

Country Status (1)

Country Link
EP (1) EP2806204B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109653A (zh) * 2021-11-26 2022-03-01 西安交通大学 一种基于贮箱加强筋结构的筛网通道式液体获取装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027494A (en) 1975-09-12 1977-06-07 Nasa Low gravity phase separator
US4435196A (en) 1981-02-27 1984-03-06 Pielkenrood-Vinitex Beheer B.V. Multiphase separator
JPS6082107A (ja) * 1983-10-11 1985-05-10 Science & Tech Agency 多孔質膜を用いた遠心力利用の気泡分離方法及び装置
US4617031A (en) 1985-02-26 1986-10-14 Chevron Research Company Hybrid double hydrocyclone-gravity gas/liquid separator
US4848987A (en) 1988-08-16 1989-07-18 Administrator, National Aeronautics And Space Administration Vortex motion phase separator for zero gravity liquid transfer
WO2001085604A1 (de) * 2000-05-10 2001-11-15 Gfe Metalle Und Materialien Gmbh Tank zur reversiblen speicherung von wasserstoff
JP2002337798A (ja) * 2001-05-17 2002-11-27 Ishikawajima Harima Heavy Ind Co Ltd 液体用タンク
US20050268647A1 (en) * 2003-07-28 2005-12-08 Peter Finamore Storage container associated with a thermal energy management system
DE102004061027A1 (de) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Einrichtung und Verfahren zur Entnahme von Gas aus einem Behälter
US7077885B2 (en) 2001-09-20 2006-07-18 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas/liquid phase separator and the fuel cell-based power production unit equipped with one such separator
WO2007031064A1 (de) * 2005-09-17 2007-03-22 Astrium Gmbh Treibstofftank für kryogene flüssigkeiten
DE102007005539B3 (de) 2007-02-03 2008-08-14 Astrium Gmbh Tank zur Lagerung kryogener Flüssigkeiten oder lagerfähiger flüssiger Treibstoffe
EP1988326A1 (de) * 2007-05-03 2008-11-05 Air Products and Chemicals, Inc. Sobtions/aborbtions - System für Reingastechnologie
US20100213084A1 (en) * 2005-08-08 2010-08-26 Katsuhiko Hirose Hydrogen Storage Device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884224B1 (fr) * 2005-04-07 2008-11-21 Eads Astrium Sas Soc Par Actio Systeme de propulsion a gaz froid diphasique et reservoir pour un tel systeme de propulsion d'engin spatial

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027494A (en) 1975-09-12 1977-06-07 Nasa Low gravity phase separator
US4435196A (en) 1981-02-27 1984-03-06 Pielkenrood-Vinitex Beheer B.V. Multiphase separator
JPS6082107A (ja) * 1983-10-11 1985-05-10 Science & Tech Agency 多孔質膜を用いた遠心力利用の気泡分離方法及び装置
US4617031A (en) 1985-02-26 1986-10-14 Chevron Research Company Hybrid double hydrocyclone-gravity gas/liquid separator
US4848987A (en) 1988-08-16 1989-07-18 Administrator, National Aeronautics And Space Administration Vortex motion phase separator for zero gravity liquid transfer
WO2001085604A1 (de) * 2000-05-10 2001-11-15 Gfe Metalle Und Materialien Gmbh Tank zur reversiblen speicherung von wasserstoff
JP2002337798A (ja) * 2001-05-17 2002-11-27 Ishikawajima Harima Heavy Ind Co Ltd 液体用タンク
US7077885B2 (en) 2001-09-20 2006-07-18 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas/liquid phase separator and the fuel cell-based power production unit equipped with one such separator
US20050268647A1 (en) * 2003-07-28 2005-12-08 Peter Finamore Storage container associated with a thermal energy management system
DE102004061027A1 (de) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Einrichtung und Verfahren zur Entnahme von Gas aus einem Behälter
US20100213084A1 (en) * 2005-08-08 2010-08-26 Katsuhiko Hirose Hydrogen Storage Device
WO2007031064A1 (de) * 2005-09-17 2007-03-22 Astrium Gmbh Treibstofftank für kryogene flüssigkeiten
DE102007005539B3 (de) 2007-02-03 2008-08-14 Astrium Gmbh Tank zur Lagerung kryogener Flüssigkeiten oder lagerfähiger flüssiger Treibstoffe
EP1988326A1 (de) * 2007-05-03 2008-11-05 Air Products and Chemicals, Inc. Sobtions/aborbtions - System für Reingastechnologie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109653A (zh) * 2021-11-26 2022-03-01 西安交通大学 一种基于贮箱加强筋结构的筛网通道式液体获取装置
CN114109653B (zh) * 2021-11-26 2023-04-04 西安交通大学 一种基于贮箱加强筋结构的筛网通道式液体获取装置

Also Published As

Publication number Publication date
EP2806204B1 (de) 2017-05-24

Similar Documents

Publication Publication Date Title
DE102007005539B3 (de) Tank zur Lagerung kryogener Flüssigkeiten oder lagerfähiger flüssiger Treibstoffe
DE102008026320B3 (de) Tank zur Lagerung kryogener Flüssigkeiten und lagerfähiger Treibstoffe
EP2241505B1 (de) Blasenfalle für Treibstofftanks in Raumflugkörpern
EP1801011B1 (de) Treibstofftank
EP1748248B1 (de) Treibstofftank
DE102005044534B3 (de) Treibstofftank für kryogene Flüssigkeiten
DE2751167C3 (de) Vorrichtung zur Trennung von Gas und Flüssigkeit
DE3146262C2 (de)
DE2320245C2 (de) Speicherbehälter
US9108144B2 (en) Tank for separating liquid from gas under weightless conditions
DE2211355A1 (de) Schutzvorrichtung fuer einen fahrzeuginsassen
EP2806204B1 (de) Tank zur Separation von Flüssigkeiten im Orbit
DE102011122352B4 (de) Tank zur Separation von Flüssigkeiten im Orbit
DE1464037B2 (de) Verfahren und Vorrichtung zur Speisung eines elektrothermischen Strahlantriebs mit Treibstoffen
DE102015105736B3 (de) Verfahren und Vorrichtung zum Mischen eines Substrates
DE10040755C2 (de) Treibstofftank
DE10117557A1 (de) Behälter zur Lagerung kryogener Flüssigkeiten
DE19623017C1 (de) Treibstofftank
EP3210890A1 (de) Kühlung von treibstoff für ein triebwerk
EP4037966A1 (de) Fluidtank zur integration in eine struktur eines unbemannten fluggeräts
DE973448C (de) Heisswasserrakete, insbesondere Starthilfe fuer bemannte oder unbemannte Flugkoerper
DE3832471A1 (de) Ausbringung von gasen aus dem elektrolytbehaelter von h(pfeil abwaerts)2(pfeil abwaerts)/o(pfeil abwaerts)2(pfeil abwaerts)-brennstoffzellenbatterien
DE102006034508A1 (de) Schnellbetankungsvorrichtung eines Hochdrucktanks
DE102015222360B4 (de) Kraftfahrzeugbetriebsflüssigkeitstank mit Gefrierschutzvorrichtung
JP6063817B2 (ja) 軌道内で液体を分離するためのタンク

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20151215

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 896194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007318

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170524

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170924

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013007318

Country of ref document: DE

Representative=s name: ELBPATENT-MARSCHALL & PARTNER MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007318

Country of ref document: DE

Owner name: ARIANEGROUP GMBH, DE

Free format text: FORMER OWNER: ASTRIUM GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007318

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180522

Year of fee payment: 6

Ref country code: IT

Payment date: 20180518

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180522

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180522

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 896194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013007318

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524