EP2802943B1 - Clockwork with tilted balances - Google Patents

Clockwork with tilted balances Download PDF

Info

Publication number
EP2802943B1
EP2802943B1 EP13703132.4A EP13703132A EP2802943B1 EP 2802943 B1 EP2802943 B1 EP 2802943B1 EP 13703132 A EP13703132 A EP 13703132A EP 2802943 B1 EP2802943 B1 EP 2802943B1
Authority
EP
European Patent Office
Prior art keywords
movement
balance
regulating members
movement according
balances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13703132.4A
Other languages
German (de)
French (fr)
Other versions
EP2802943A1 (en
Inventor
Grégory Bruttin
Sébastien Pospieszny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Priority to EP13703132.4A priority Critical patent/EP2802943B1/en
Publication of EP2802943A1 publication Critical patent/EP2802943A1/en
Application granted granted Critical
Publication of EP2802943B1 publication Critical patent/EP2802943B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of unbalance of the weights, e.g. tourbillon

Definitions

  • the present invention relates to a mechanical clockwork movement for a timepiece such as a wristwatch.
  • the regulating member which measures the time and imposes a clocked movement on the various mobiles generally comprises a rocker secured to a shaft on which is also mounted a spiral via a ferrule, and an escapement to maintain oscillations of the pendulum.
  • the accuracy of the movement depends on the regularity of the pendulum oscillations.
  • One of the most influential parameters on the regularity of the oscillations is the position of the watch.
  • the oscillation amplitude of the pendulum of a clock oriented in a horizontal plane is typically about 320 °. This amplitude can decrease by about 40 ° when the watch is oriented vertically, due to the fact that the friction of the pivots of the balance shaft in their bearings become larger.
  • the center of gravity of a conventional flat hairspring is not on the axis of the balance-spring, and moves even during expansions and contractions of the hairspring, an unbalance is generated in a vertical position, which will create either an advance or a delay, this is called the Grossmann effect.
  • the walking of the watch also varies between the different vertical positions. In a given vertical position of the watch, the oscillations of the pendulum will produce a delay if the center of gravity of the spiral is above the axis of balance and the advance if this center of gravity is below the balance shaft.
  • this pyramid forms part of a cube of which three of the faces are formed of a square obtained by the addition of a second right triangle adjacent to the three right triangles. This is not possible because angles that make between them the axes of the pendulums on the figure 2 are all different from 90 °, which is incompatible with a cubic arrangement. It should also be noted that this document WO 2011/058157 it remains in the form of schematic diagrams and gives no example of a construction which concretely makes it possible to carry out the movement described.
  • the present invention aims to remedy, at least in part, the aforementioned drawbacks and to propose an alternative approach to compensate for the effects of gravity on the progress of a movement.
  • a watch movement according to the appended claim 1, particular embodiments being defined in the dependent claims.
  • a watch movement comprises, mounted in a frame, a mobile center 1, two barrels 2a, 2b located on either side of the mobile center 1, two mobile of mean 3a, 3b located on either side of the center mobile 1, four second mobiles 4a, 4b, 4c, 4d and four regulating members 5a, 5b, 5c, 5d.
  • the frame comprises a plate 6 and bridges, in particular a first axle 7a receiving pivots of the shafts of the mobile of average 3a and second mobiles 4a, 4b, a second axle 7b receiving pivots of the shafts of the mobile of mean 3b and second movers 4c, 4d, a center bridge 7 'and two barrel bridges 7 ", 7'''.
  • Each regulating member 5a to 5d comprises an escapement 8a to 8d, a balance 9a to 9d and a spiral 10a to 10d, the spiral being mounted on the same shaft as the balance by a ferrule 11a to 11d (cf. figure 2 ), in the usual way.
  • Each exhaust 8a to 8d typically comprises an escape wheel, comprising a wheel and an escape pinion, an anchor and a double plate mounted on the balance shaft.
  • Differentials which will be described later, allow the display members of the movement (not shown) to display a time corresponding to the average of the times measured by the four regulating members 5a to 5d, thus conferring on the movement a high precision of market.
  • Each regulating member 5a to 5d is disposed in a plane inclined at 45 ° relative to the plane of the plate 6 or, which amounts to the same, of the movement.
  • the axis 12a to 12d of each balance 9a to 9d that is to say the imaginary axis around which each balance oscillates, forms an angle of 45 ° with the plane of the plate 6 or movement.
  • the pendulums 9a to 9d form the ends of a cross whose center is at the center of the movement and whose two branches are perpendicular.
  • the rockers diametrically opposed to each other 9a, 9c have their axes 12a, 12c which intersect the axis 13 of the movement in one and the same point 14.
  • the two other rockers opposite each other 9b, 9d have their axes 12b, 12d which intersect the axis 13 of the movement at the same point 15 which is typically on the same side of the plate 6 as the point 14 but distinct from the latter because the regulating members 5a, 5c are at a position raised by compared to the regulatory bodies 5b, 5d, as shown in figures 3 and 5 in order to allow the second wheels of the second wheels 4a, 4b and the second wheels of the second wheels 4c, 4d to overlap (cf. figure 1 ).
  • the angle between them the axes 12a, 12c of the pendulums 9a, 9c is 90 °.
  • the angle between them the axes 12b, 12d of the pendulums 9b, 9d is 90 °.
  • the axes 12a, 12c of the pair of pendulums 9a, 9c are not parallel to any of the axes 12b, 12d of the other pair of pendulums 9b, 9d, thus providing coverage of all directions of the space.
  • the orthogonality between the axes of the rockers of the same pair 9a, 9c or 9b, 9d makes it possible to effectively compensate the effects of gravity on these rockers and to particularly well cover the possible positions of the movement between the horizontal and the vertical ( flat-hung). Thanks to this orthogonality, the average of the oscillation amplitudes of the rockers of a given pair remains substantially constant between the different angular positions of the movement in the diametral plane containing the axes of these rockers.
  • the table below indicates the amplitude of oscillation (in degrees) of each pendulum for five different positions of the movement, namely: a first position P1 where the movement is in a horizontal plane and the rockers are thus inclined by 45 ° with respect to this horizontal plane, a second position P2 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9a is horizontal and the opposite balance 9c is vertical, a third position P3 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9b is horizontal and the opposite balance 9d is vertical, a fourth position P4 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9c is horizontal and the opposite balance 9a is vertical, - And a fifth position P5 where the movement is inclined by 45 ° relative to a horizontal plane, the balance 9d is horizontal and the opposite balance 9b is vertical.
  • the positions P2 to P5 are extreme positions of the movement in that they are the positions in which the gait differences between the rockers due to the differences in friction of the balance pins in their Bearings are the largest.
  • the average of the oscillation amplitudes of the rockers in the positions P1 to P5 is the same, namely 300 °.
  • the figure 8 shows graphs Ga to Gd representing the oscillation amplitude of the pendulums 9a to 9d, respectively, as a function of the position of the movement. It can be seen that the opposite rockers of the same pair have their oscillation amplitudes which compensate each other and that the average of the oscillation amplitudes remains the same whatever the position of the movement, this average corresponding to the amplitude of the oscillation amplitude.
  • the angle of 90 ° between the axes of the rockers of the same pair could be obtained with an inclination of the rockers relative to the plate different from 45 °.
  • one of the rockers could be flat and the other perpendicular to the plate, or one could be at 30 ° and the other at 60 ° relative to the plate.
  • the inclination of 45 ° is however preferred because, thus, the balance 9a to 9d are never in their most unfavorable position in terms of sensitivity to gravity, namely the vertical position, when the movement is in one of its reference positions, namely the horizontal "dial at the top” and “dial at the bottom” and vertical "3 hours at the top", “6 o'clock at the top”, “9 hours up "and” 12 hours up ".
  • the difference in path between the reference positions of the movement is therefore small.
  • the attachment points 16a to 16d of the spirals 10a to 10d to the rings 11a to 11d are positioned in such a way that the deviations due to the decentering and the displacement of the center of gravity of the spirals (Grossmann effect) counterbalance each other.
  • the figure 2 shows in schematic top view the balance 9a to 9d, the rings 11a to 11d and the beginning of the inner curve of the spirals 10a to 10d.
  • the rockers 9a to 9d are shown flat on the plate 6.
  • the attachment points 16a to 16d of the spirals to the ferrules are offset relative to each other.
  • the angular position of the attachment point 16a measured in a reference whose center is on the axis 12a of the balance 9a, is offset by 180 ° relative to the angular position of the attachment point 16c, measured in a same reference but whose center is on the axis 12c of the balance 9c.
  • the angular position of the attachment point 16b measured in a coordinate system whose center is on the axis 12b of the balance 9b, is offset by 180 ° with respect to the angular position of the attachment point 16d, measured in the same reference but whose center is on the axis of the balance 9d.
  • the angular positions of the attachment points are offset by 90 ° between each balance of a pair 9a, 9c or 9b, 9d and each balance of the other pair 9b, 9d or 9a, 9c.
  • the table below shows the deviation (in seconds / day) of each pendulum due to the Grossmann effect for five different positions of the movement, namely: a first position P1 'where the movement is in a horizontal plane (in this position, the Grossmann effect does not occur), a second position P2 'where the movement is in a vertical plane and the balances 9a and 9b are at the top (cf.
  • the positions P2 'to P5' are extreme positions of the movement in that they are the positions in which the gimbals between the pendulums due to the Grossmann effect are the greatest. As can be seen, the average of the gimbals in the positions P1 'to P5' is 0 seconds / day.
  • the figure 9 shows graphs Ga 'to Gd' representing the deviation due to the Grossmann effect of the pendulums 9a to 9d, respectively, as a function of the position of the movement. It can be seen that the opposing pendulums of the same pair have their differences of course which compensate each other and that the average of the differences of march remains null whatever is the position of the movement. The differences between the different vertical positions of the movement are therefore significantly reduced.
  • the movement according to the present invention thus makes it possible to greatly reduce both the variations in the path between the horizontal and vertical positions (due to differences in the friction of the balance pins in their bearings) and the variations in the path between the different vertical positions (due the decentering and the displacement of the centers of gravity of the spirals).
  • the center mobile 1 comprises, around a center shaft 20, a roadway 21 frictionally mounted on the shaft 20 and carrying a minute hand (not shown), an hour wheel 22 free to rotate around the shaft 20 and carrying an hour hand (not shown), a differential gear 23 and a center pinion 24 integral with the shaft 20.
  • the center pinion 24 meshes with the two barrels 2a, 2b (whose associated ratchets n have not been shown) which, thus arranged in parallel, add their torques to drive the center shaft 20.
  • the hour wheel 22 and the roadway 21 mesh respectively with the pinion and the wheel of a timer wheel 25 ( cf. figure 1 ).
  • the timer wheel is connected to the time-setting rod 26 by a time-setting train 27.
  • the differential gear 23 comprises, in addition to the shaft 20 which constitutes it. input, a first output wheel 28 free in rotation relative to the shaft 20, a pinion 29 integral with the wheel 28, a second output wheel 30 free to rotate relative to the shaft 20, a central gear 31 integral with the shaft 20, and a satellite mobile comprising a pinion 32 which meshes with the central pinion 31 and a wheel 33 which is integral with the pinion 32 and which meshes with the pinion 29, the pivots of this satellite mobile being respectively mounted in the second output wheel 30 and in a bridge 34 fixed to the wheel 30.
  • the two average mobiles 3a, 3b each comprise, around an average shaft 35a, 35b, a pinion of average 36a, 36b integral with the shaft 35a, 35b and a differential gear 37a, 37b.
  • the average gear 36a meshes with, and is driven by, the first output gear 28 of the differential gear 23
  • the average gear 36b meshes with, and is driven by, the second output gear 30 of the differential gear 23.
  • the differential gear 37a, 37b of each mobile of average 3a, 3b is of the same type as the differential gearing 23 of the center mobile 1.
  • the average shaft 35a, 35b constitutes entry.
  • One, 38a, of the output wheels of the differential gear 37a meshes with, and drives, a pinion (not shown) of the second wheel 4a, while the other wheel 39a meshes with, and drives, a pinion 40b of the mobile of the second 4b.
  • one, 38b, of the output wheels of the differential gear 37b meshes with, and drives, a pinion 40c of the second gear 4c, while the other output gear 39b meshes with, and drives, a pinion (not shown) of the mobile of the second 4d.
  • the wheels of the second movable 4a to 4d meshing by means of bevel gears with the exhaust gears of the regulating members 5a to 5d.
  • the differential gears 23, 37a, 37b are closer to the barrels 2a, 2b, that is to say where the torque is Most important.
  • This arrangement compensates for the disadvantages of a differential gear that are its weight and inertia.
  • the structure as described above has the advantage of a small footprint because the four regulating members 5a to 5d are driven by the same motor member, constituted by the two barrels 2a, 2b, and a single mobile. average is used for two regulating bodies.
  • the use of two barrels in parallel makes it possible to increase the torque necessary for driving the regulating members. It also allows, by the arrangement of these barrels 2a, 2b on either side of the mobile center 1, to balance the transmitted torque and to reduce the air pressure on the pivots of the mobile center 1.
  • drive members connected by the differentials could separate separately the regulating members 5a to 5d.
  • a single barrel could be used to drive the four regulating members 5a to 5d.
  • Each regulating member 5a to 5d is mounted in a frame 41 (cf. figures 3 and 6 ) comprising an exhaust door 42, an exhaust bridge 43 and a rocker bridge 44 fixed to the exhaust door 42.
  • the pivots of the balance shaft rotate in bearings 45, 46 (cf. figures 3 and 5 ), preferably anti-shock, respectively equipping the exhaust door 42 and the rocker bridge 44.
  • the escape wheel and the anchor are mounted between the exhaust port 42 and the exhaust bridge 43.
  • the frames 41 of the organs regulators 5a to 5d are fixed to the frame of the movement, for example by means of screws, against bearing surfaces 47 of the axles 7a, 7b which are inclined by 45 ° so as to obtain the inclination of 45 ° of the rockers 9a to 9d relative to the plate 6, while allowing said platen to remain flat.
  • These inclined surfaces 47 are represented at figure 7 and, schematically, at the figure 5 .
  • the frames 41 of the regulating members 5a, 5b are fixed on the first gearbridge 7a, while the frames 41 of the regulating members 5c, 5d are fixed on the second gearbridge 7b.
  • a single pair of pendulums could be provided instead of two.
  • the movement could include more than two pairs of pendulums.
  • the axes of the balances of the same pair could not be secant, that is to say, not be in the same plane, as long as they remain orthogonal.
  • orthogonal is meant that said axes form a right angle, if they are in the same plane, or that a straight line parallel to one of these axes crosses the other axis at a right angle, if these axes are not in the same plane.

Description

La présente invention concerne un mouvement d'horlogerie mécanique pour une pièce d'horlogerie telle qu'une montre-bracelet.The present invention relates to a mechanical clockwork movement for a timepiece such as a wristwatch.

Dans un mouvement d'horlogerie mécanique, l'organe régulateur qui mesure le temps et impose un mouvement cadencé aux différents mobiles comprend généralement un balancier solidaire d'un arbre sur lequel est également monté un spiral par l'intermédiaire d'une virole, ainsi qu'un échappement pour entretenir les oscillations du balancier. La précision de la marche du mouvement dépend de la régularité des oscillations du balancier. L'un des paramètres qui influent le plus sur la régularité des oscillations est la position de la montre. L'amplitude d'oscillation du balancier d'une montre orientée dans un plan horizontal est typiquement d'environ 320°. Cette amplitude peut diminuer de l'ordre de 40° lorsque l'on oriente la montre à la verticale, en raison du fait que les frottements des pivots de l'arbre de balancier dans leurs paliers deviennent plus importants. De plus, comme le centre de gravité d'un spiral plat conventionnel n'est pas sur l'axe du balancier-spiral, et se déplace même lors des expansions et contractions du spiral, un balourd est généré en position verticale, qui va créer soit une avance soit un retard de marche, c'est ce que l'on appelle l'effet Grossmann. Ainsi, la marche de la montre varie également entre les différentes positions verticales. Dans une position verticale donnée de la montre, les oscillations du balancier produiront du retard si le centre de gravité du spiral est au-dessus de l'axe de balancier et de l'avance si ce centre de gravité est au-dessous de l'axe de balancier.In a mechanical clockwork movement, the regulating member which measures the time and imposes a clocked movement on the various mobiles generally comprises a rocker secured to a shaft on which is also mounted a spiral via a ferrule, and an escapement to maintain oscillations of the pendulum. The accuracy of the movement depends on the regularity of the pendulum oscillations. One of the most influential parameters on the regularity of the oscillations is the position of the watch. The oscillation amplitude of the pendulum of a clock oriented in a horizontal plane is typically about 320 °. This amplitude can decrease by about 40 ° when the watch is oriented vertically, due to the fact that the friction of the pivots of the balance shaft in their bearings become larger. In addition, since the center of gravity of a conventional flat hairspring is not on the axis of the balance-spring, and moves even during expansions and contractions of the hairspring, an unbalance is generated in a vertical position, which will create either an advance or a delay, this is called the Grossmann effect. Thus, the walking of the watch also varies between the different vertical positions. In a given vertical position of the watch, the oscillations of the pendulum will produce a delay if the center of gravity of the spiral is above the axis of balance and the advance if this center of gravity is below the balance shaft.

On peut choisir la position angulaire du point d'attache du spiral à la virole de telle sorte que, dans une position verticale prédéterminée de la montre, typiquement la position considérée comme la plus courante, une avance de marche due au décentrage du centre de gravité du spiral compense un retard de marche dû à la position verticale par rapport à la position horizontale, minimisant ainsi l'influence de la gravité dans cette position prédéterminée. Cette solution n'a qu'un effet limité car elle ne résout pas le problème pour les autres positions verticales de la montre. Une alternative est d'utiliser un spiral Breguet, c'est-à-dire un spiral ayant une courbe extérieure sortant du plan du spiral et conformée pour que le centre de gravité du spiral reste sur l'axe du balancier. Mais ce type de spiral est assez difficile à mettre en place. De plus, il ne résout pas le problème de l'écart de marche entre les positions horizontale et verticale.It is possible to choose the angular position of the point of attachment of the hairspring to the shell so that, in a predetermined vertical position of the watch, typically the position considered to be the most common, a march advance due to the decentering of the center of gravity of the hairspring compensates for a delay in operation due to the vertical position relative to the horizontal position, minimizing thus the influence of gravity in this predetermined position. This solution has only a limited effect because it does not solve the problem for the other vertical positions of the watch. An alternative is to use a Breguet hairspring, that is to say a hairspring having an outer curve coming out of the plane of the hairspring and shaped so that the center of gravity of the hairspring remains on the axis of the balance. But this type of hairspring is quite difficult to put in place. In addition, it does not solve the problem of the gap between the horizontal and vertical positions.

Pour augmenter la précision d'un mouvement d'horlogerie mécanique, il est également connu d'équiper le mouvement de deux balanciers et d'un engrenage différentiel agencé pour moyenner les marches des balanciers, comme cela est décrit dans le brevet CH 156801 . Une telle solution réduit l'écart de marche dû à la gravité, mais d'une manière assez limitée.To increase the precision of a mechanical clockwork movement, it is also known to equip the movement with two rockers and a differential gear arranged to average the steps of the rockers, as described in the patent CH 156801 . Such a solution reduces the deviation due to gravity, but in a rather limited way.

Une autre solution a été proposée dans la demande de brevet WO 2011/058157 , consistant à équiper le mouvement de balanciers inclinés et d'engrenages différentiels, les balanciers étant agencés de manière à définir un polyèdre régulier. Deux exemples de réalisation sont décrits dans ce document WO 2011/058157 et illustrés par ses figures 1 et 2 respectivement. Dans le premier exemple, quatre ensembles comprenant chacun un barillet, un rouage de finissage et un balancier sont orientés de telle sorte que des plans perpendiculaires aux axes de pivotement des balanciers définissent un tétraèdre régulier. Les axes des balanciers font ainsi entre eux un angle d'environ 70°, correspondant à l'angle diédral du tétraèdre régulier. Dans le deuxième exemple, trois ensembles comprenant chacun un barillet, un rouage de finissage et un balancier sont orientés de telle sorte que des plans perpendiculaires aux axes de pivotement des balanciers définissent les trois côtés, en forme de triangles rectangles isocèles, d'une pyramide à base triangulaire équilatérale. Selon ce document WO 2011/058157 , cette pyramide forme une partie d'un cube dont trois des faces sont formées d'un carré obtenu par l'adjonction d'un deuxième triangle rectangle adjacent aux trois triangles rectangles. Ceci n'est pas possible car les angles que font entre eux les axes des balanciers sur la figure 2 sont tous différents de 90°, ce qui est incompatible avec un agencement cubique. Il est à noter par ailleurs que ce document WO 2011/058157 en reste à des schémas de principe et ne donne aucun exemple de construction permettant concrètement de réaliser le mouvement décrit.Another solution has been proposed in the patent application WO 2011/058157 , consisting in equipping the movement with inclined pendulums and differential gears, the rockers being arranged to define a regular polyhedron. Two examples of embodiments are described in this document WO 2011/058157 and illustrated by his figures 1 and 2 respectively. In the first example, four sets each comprising a barrel, a work train and a rocker are oriented so that planes perpendicular to the pivot axes of the rockers define a regular tetrahedron. The axes of the balances are thus between them an angle of about 70 °, corresponding to the dihedral angle of the regular tetrahedron. In the second example, three sets each comprising a barrel, a work train and a rocker are oriented so that planes perpendicular to the pivot axes of the rockers define the three sides, in the form of isosceles right triangles, of a pyramid equilateral triangular basis. According to this document WO 2011/058157 , this pyramid forms part of a cube of which three of the faces are formed of a square obtained by the addition of a second right triangle adjacent to the three right triangles. This is not possible because angles that make between them the axes of the pendulums on the figure 2 are all different from 90 °, which is incompatible with a cubic arrangement. It should also be noted that this document WO 2011/058157 it remains in the form of schematic diagrams and gives no example of a construction which concretely makes it possible to carry out the movement described.

Enfin, les mécanismes à tourbillon sont une autre solution connue pour améliorer la précision de marche d'un mouvement. Ces mécanismes ont toutefois l'inconvénient d'être compliqués et coûteux à mettre en oeuvre. En outre, leur effet se limite à moyenner les marches dans les différentes positions verticales de la montre, sans répondre au problème de l'écart de marche entre les positions horizontale et verticale.Finally, the tourbillon mechanisms are another known solution for improving the running accuracy of a movement. These mechanisms, however, have the disadvantage of being complicated and expensive to implement. Moreover, their effect is limited to averaging the steps in the different vertical positions of the watch, without answering the problem of the difference between the horizontal and vertical positions.

La présente invention vise à remédier, en partie au moins, aux inconvénients précités et à proposer une autre approche pour compenser les effets de la gravité sur la marche d'un mouvement. A cette fin, il est proposé un mouvement d'horlogerie selon la revendication 1 annexée, des modes de réalisation particuliers étant définis dans les revendications dépendantes.The present invention aims to remedy, at least in part, the aforementioned drawbacks and to propose an alternative approach to compensate for the effects of gravity on the progress of a movement. For this purpose, there is provided a watch movement according to the appended claim 1, particular embodiments being defined in the dependent claims.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins schématiques annexés, dans lesquels :

  • la figure 1 est une vue plane, prise depuis le côté cadran, d'un mouvement selon l'invention ;
  • la figure 2 est une vue plane simplifiée du mouvement selon l'invention, montrant les points d'attache de spiraux à des viroles ;
  • la figure 3 est une vue de côté montrant un décalage en hauteur entre deux organes régulateurs équipant le mouvement selon l'invention ;
  • la figure 4 est une vue en coupe selon l'axe 3 heures - 9 heures d'une partie du mouvement selon l'invention ;
  • la figure 5 est une vue en coupe, prise suivant une ligne brisée, du mouvement selon l'invention ;
  • la figure 6 est une vue en perspective, prise depuis le côté fond, d'une partie du mouvement selon l'invention ;
  • la figure 7 est une vue en perspective d'une partie d'un pont de rouage du mouvement selon l'invention ;
  • la figure 8 montre des graphes représentant l'amplitude d'oscillation de balanciers du mouvement selon l'invention en fonction de la position dudit mouvement ; et
  • la figure 9 montre des graphes représentant l'écart de marche dû à l'effet Grossmann des balanciers du mouvement selon l'invention en fonction de la position dudit mouvement.
Other features and advantages of the present invention will appear on reading the following detailed description given with reference to the appended diagrammatic drawings, in which:
  • the figure 1 is a plan view, taken from the dial side, of a movement according to the invention;
  • the figure 2 is a simplified plan view of the movement according to the invention, showing the points of attachment of spirals to ferrules;
  • the figure 3 is a side view showing an offset in height between two regulating members equipping the movement according to the invention;
  • the figure 4 is a sectional view along the axis 3 hours - 9 hours of a part of the movement according to the invention;
  • the figure 5 is a sectional view, taken along a broken line, of the movement according to the invention;
  • the figure 6 is a perspective view, taken from the bottom side, of a part of the movement according to the invention;
  • the figure 7 is a perspective view of a portion of a gear wheel of the invention;
  • the figure 8 shows graphs representing the oscillation amplitude of the rockers of the movement according to the invention as a function of the position of said movement; and
  • the figure 9 shows graphs representing the walking gap due to the Grossmann effect of the rockers of the movement according to the invention as a function of the position of said movement.

En référence aux figures 1 à 7, un mouvement d'horlogerie selon un mode de réalisation préféré de l'invention comprend, montés dans un bâti, un mobile de centre 1, deux barillets 2a, 2b situés de part et d'autre du mobile de centre 1, deux mobiles de moyenne 3a, 3b situés de part et d'autre du mobile de centre 1, quatre mobiles de seconde 4a, 4b, 4c, 4d et quatre organes régulateurs 5a, 5b, 5c, 5d. Le bâti comprend une platine 6 et des ponts, notamment un premier pont de rouage 7a recevant des pivots des arbres du mobile de moyenne 3a et des mobiles de seconde 4a, 4b, un deuxième pont de rouage 7b recevant des pivots des arbres du mobile de moyenne 3b et des mobiles de seconde 4c, 4d, un pont de centre 7' et deux ponts de barillet 7", 7'''. Chaque organe régulateur 5a à 5d comprend un échappement 8a à 8d, un balancier 9a à 9d et un spiral 10a à 10d, le spiral étant monté sur le même arbre que le balancier par une virole 11a à 11d (cf. figure 2), de manière usuelle. Chaque échappement 8a à 8d comprend typiquement un mobile d'échappement, comprenant une roue et un pignon d'échappement, une ancre et un double plateau monté sur l'arbre du balancier. Des différentiels, qui seront décrits plus loin, permettent aux organes d'affichage du mouvement (non représentés) d'afficher un temps correspondant à la moyenne des temps mesurés par les quatre organes régulateurs 5a à 5d, conférant ainsi au mouvement une grande précision de marche.With reference to Figures 1 to 7 , a watch movement according to a preferred embodiment of the invention comprises, mounted in a frame, a mobile center 1, two barrels 2a, 2b located on either side of the mobile center 1, two mobile of mean 3a, 3b located on either side of the center mobile 1, four second mobiles 4a, 4b, 4c, 4d and four regulating members 5a, 5b, 5c, 5d. The frame comprises a plate 6 and bridges, in particular a first axle 7a receiving pivots of the shafts of the mobile of average 3a and second mobiles 4a, 4b, a second axle 7b receiving pivots of the shafts of the mobile of mean 3b and second movers 4c, 4d, a center bridge 7 'and two barrel bridges 7 ", 7'''. Each regulating member 5a to 5d comprises an escapement 8a to 8d, a balance 9a to 9d and a spiral 10a to 10d, the spiral being mounted on the same shaft as the balance by a ferrule 11a to 11d (cf. figure 2 ), in the usual way. Each exhaust 8a to 8d typically comprises an escape wheel, comprising a wheel and an escape pinion, an anchor and a double plate mounted on the balance shaft. Differentials, which will be described later, allow the display members of the movement (not shown) to display a time corresponding to the average of the times measured by the four regulating members 5a to 5d, thus conferring on the movement a high precision of market.

Chaque organe régulateur 5a à 5d est disposé dans un plan incliné de 45° par rapport au plan de la platine 6 ou, ce qui revient au même, du mouvement. En d'autres termes, l'axe 12a à 12d de chaque balancier 9a à 9d, c'est-à-dire l'axe imaginaire autour duquel chaque balancier oscille, forme un angle de 45° avec le plan de la platine 6 ou du mouvement. En vue de dessus du mouvement (figure 1), les balanciers 9a à 9d forment les extrémités d'une croix dont le centre est au centre du mouvement et dont les deux branches sont perpendiculaires. Les balanciers diamétralement opposés l'un à l'autre 9a, 9c ont leurs axes 12a, 12c qui coupent l'axe 13 du mouvement en un même point 14. Les deux autres balanciers opposés l'un à l'autre 9b, 9d ont leurs axes 12b, 12d qui coupent l'axe 13 du mouvement en un même point 15 qui typiquement est du même côté de la platine 6 que le point 14 mais distinct de ce dernier car les organes régulateurs 5a, 5c sont à une position surélevée par rapport aux organes régulateurs 5b, 5d, comme montré aux figures 3 et 5, pour permettre aux roues de seconde des mobiles de seconde 4a, 4b et aux roues de seconde des mobiles de seconde 4c, 4d de se chevaucher (cf. figure 1).Each regulating member 5a to 5d is disposed in a plane inclined at 45 ° relative to the plane of the plate 6 or, which amounts to the same, of the movement. In other words, the axis 12a to 12d of each balance 9a to 9d, that is to say the imaginary axis around which each balance oscillates, forms an angle of 45 ° with the plane of the plate 6 or movement. In top view of the movement ( figure 1 ), the pendulums 9a to 9d form the ends of a cross whose center is at the center of the movement and whose two branches are perpendicular. The rockers diametrically opposed to each other 9a, 9c have their axes 12a, 12c which intersect the axis 13 of the movement in one and the same point 14. The two other rockers opposite each other 9b, 9d have their axes 12b, 12d which intersect the axis 13 of the movement at the same point 15 which is typically on the same side of the plate 6 as the point 14 but distinct from the latter because the regulating members 5a, 5c are at a position raised by compared to the regulatory bodies 5b, 5d, as shown in figures 3 and 5 in order to allow the second wheels of the second wheels 4a, 4b and the second wheels of the second wheels 4c, 4d to overlap (cf. figure 1 ).

De la sorte, l'angle que font entre eux les axes 12a, 12c des balanciers 9a, 9c est de 90°. De même, l'angle que font entre eux les axes 12b, 12d des balanciers 9b, 9d est de 90°. De plus, les axes 12a, 12c de la paire de balanciers 9a, 9c ne sont parallèles à aucun des axes 12b, 12d de l'autre paire de balanciers 9b, 9d, offrant ainsi une couverture de toutes les directions de l'espace. L'orthogonalité entre les axes des balanciers d'une même paire 9a, 9c ou 9b, 9d permet de compenser efficacement les effets de la gravité sur ces balanciers et de particulièrement bien couvrir les positions possibles du mouvement entre l'horizontale et la verticale (plat-pendu). Grâce à cette orthogonalité, la moyenne des amplitudes d'oscillation des balanciers d'une paire donnée reste sensiblement constante entre les différentes positions angulaires du mouvement dans le plan diamétral contenant les axes de ces balanciers.In this way, the angle between them the axes 12a, 12c of the pendulums 9a, 9c is 90 °. Similarly, the angle between them the axes 12b, 12d of the pendulums 9b, 9d is 90 °. In addition, the axes 12a, 12c of the pair of pendulums 9a, 9c are not parallel to any of the axes 12b, 12d of the other pair of pendulums 9b, 9d, thus providing coverage of all directions of the space. The orthogonality between the axes of the rockers of the same pair 9a, 9c or 9b, 9d makes it possible to effectively compensate the effects of gravity on these rockers and to particularly well cover the possible positions of the movement between the horizontal and the vertical ( flat-hung). Thanks to this orthogonality, the average of the oscillation amplitudes of the rockers of a given pair remains substantially constant between the different angular positions of the movement in the diametral plane containing the axes of these rockers.

A titre d'illustration, le tableau ci-dessous indique l'amplitude d'oscillation (en degrés) de chaque balancier pour cinq positions différentes du mouvement, à savoir :
- une première position P1 où le mouvement est dans un plan horizontal et les balanciers sont donc inclinés de 45° par rapport à ce plan horizontal,
- une deuxième position P2 où le mouvement est incliné de 45° par rapport à un plan horizontal, le balancier 9a est horizontal et le balancier opposé 9c est vertical,
- une troisième position P3 où le mouvement est incliné de 45° par rapport à un plan horizontal, le balancier 9b est horizontal et le balancier opposé 9d est vertical,
- une quatrième position P4 où le mouvement est incliné de 45° par rapport à un plan horizontal, le balancier 9c est horizontal et le balancier opposé 9a est vertical,
- et une cinquième position P5 où le mouvement est incliné de 45° par rapport à un plan horizontal, le balancier 9d est horizontal et le balancier opposé 9b est vertical. P1 P2 P3 P4 P5 Balancier 9a 300 320 300 280 300 Balancier 9b 300 300 320 300 280 Balancier 9c 300 280 300 320 300 Balancier 9d 300 300 280 300 320 Moyenne 300 300 300 300 300
As an illustration, the table below indicates the amplitude of oscillation (in degrees) of each pendulum for five different positions of the movement, namely:
a first position P1 where the movement is in a horizontal plane and the rockers are thus inclined by 45 ° with respect to this horizontal plane,
a second position P2 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9a is horizontal and the opposite balance 9c is vertical,
a third position P3 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9b is horizontal and the opposite balance 9d is vertical,
a fourth position P4 where the movement is inclined at 45 ° with respect to a horizontal plane, the balance 9c is horizontal and the opposite balance 9a is vertical,
- And a fifth position P5 where the movement is inclined by 45 ° relative to a horizontal plane, the balance 9d is horizontal and the opposite balance 9b is vertical. P1 P2 P3 P4 P5 9a pendulum 300 320 300 280 300 Balance 9b 300 300 320 300 280 9c pendulum 300 280 300 320 300 9d pendulum 300 300 280 300 320 Average 300 300 300 300 300

Les positions P2 à P5 sont des positions extrêmes du mouvement en ce sens que ce sont les positions dans lesquelles les écarts de marche entre les balanciers dus aux différences de frottement des axes de balancier dans leurs paliers sont les plus grands. Comme on peut le voir, la moyenne des amplitudes d'oscillation des balanciers dans les positions P1 à P5 est la même, à savoir 300°. La figure 8 montre des graphes Ga à Gd représentant l'amplitude d'oscillation des balanciers 9a à 9d, respectivement, en fonction de la position du mouvement. On peut constater que les balanciers opposés d'une même paire ont leurs amplitudes d'oscillation qui se compensent et que la moyenne des amplitudes d'oscillation reste la même quelle que soit la position du mouvement, cette moyenne correspondant à l'amplitude d'oscillation des balanciers lorsque le mouvement est à l'horizontale. Les écarts de marche entre la position horizontale et les positions non horizontales du mouvement sont ainsi significativement réduits. Cet effet est obtenu grâce à l'orthogonalité entre les axes des balanciers d'une même paire qui fait que, dans les positions extrêmes du mouvement, l'un des balanciers est horizontal tandis que son balancier opposé est vertical. Un autre avantage de l'orthogonalité entre les axes des balanciers d'une même paire est que la moyenne des marches des balanciers est moins sensible aux erreurs de marche de chacun des balanciers. En effet, comme la moyenne est effectuée entre des valeurs qui sont éloignées les unes des autres, un écart de marche d'un balancier par rapport à sa marche théorique (dû par exemple à une imprécision de réglage) aura moins d'influence qu'avec des balanciers faisant un angle différent de 90° entre eux.The positions P2 to P5 are extreme positions of the movement in that they are the positions in which the gait differences between the rockers due to the differences in friction of the balance pins in their Bearings are the largest. As can be seen, the average of the oscillation amplitudes of the rockers in the positions P1 to P5 is the same, namely 300 °. The figure 8 shows graphs Ga to Gd representing the oscillation amplitude of the pendulums 9a to 9d, respectively, as a function of the position of the movement. It can be seen that the opposite rockers of the same pair have their oscillation amplitudes which compensate each other and that the average of the oscillation amplitudes remains the same whatever the position of the movement, this average corresponding to the amplitude of the oscillation amplitude. oscillation of the rockers when the movement is horizontal. The operating deviations between the horizontal position and the non-horizontal positions of the movement are thus significantly reduced. This effect is obtained thanks to the orthogonality between the axes of the balances of the same pair which makes that, in the extreme positions of the movement, one of the pendulums is horizontal while its opposite pendulum is vertical. Another advantage of the orthogonality between the axes of the rockers of the same pair is that the average step of the rockers is less sensitive to the walking errors of each of the rockers. Indeed, as the average is performed between values that are distant from each other, a difference in the operation of a balance relative to its theoretical step (due for example to an inaccuracy of adjustment) will have less influence than with pendulums making a different angle of 90 ° between them.

L'angle de 90° entre les axes des balanciers d'une même paire pourrait être obtenu avec une inclinaison des balanciers par rapport à la platine différente de 45°. Par exemple, l'un des balanciers pourrait être à plat et l'autre perpendiculaire à la platine, ou l'un pourrait être à 30° et l'autre à 60° par rapport à la platine. L'inclinaison de 45° est toutefois préférée car, ainsi, les balanciers 9a à 9d ne se trouvent jamais dans leur position la plus défavorable en terme de sensibilité à la gravité, à savoir la position verticale, lorsque le mouvement est dans l'une de ses positions de référence, à savoir les positions horizontales « cadran en haut » et « cadran en bas » et verticales « 3 heures en haut », « 6 heures en haut », « 9 heures en haut» et « 12 heures en haut». La différence de marche entre les positions de référence du mouvement est donc faible.The angle of 90 ° between the axes of the rockers of the same pair could be obtained with an inclination of the rockers relative to the plate different from 45 °. For example, one of the rockers could be flat and the other perpendicular to the plate, or one could be at 30 ° and the other at 60 ° relative to the plate. The inclination of 45 ° is however preferred because, thus, the balance 9a to 9d are never in their most unfavorable position in terms of sensitivity to gravity, namely the vertical position, when the movement is in one of its reference positions, namely the horizontal "dial at the top" and "dial at the bottom" and vertical "3 hours at the top", "6 o'clock at the top", "9 hours up "and" 12 hours up ". The difference in path between the reference positions of the movement is therefore small.

Selon une autre caractéristique avantageuse de la présente invention, les points d'attache 16a à 16d des spiraux 10a à 10d aux viroles 11a à 11d sont positionnés de telle sorte que les écarts de marche dus au décentrage et au déplacement du centre de gravité des spiraux (effet Grossmann) se compensent mutuellement. La figure 2 montre en vue de dessus schématique les balanciers 9a à 9d, les viroles 11a à 11d et le début de la courbe intérieure des spiraux 10a à 10d. Pour simplifier, les balanciers 9a à 9d sont montrés à plat sur la platine 6. Comme on peut le voir, les points d'attache 16a à 16d des spiraux aux viroles sont décalés les uns par rapport aux autres. Plus précisément, la position angulaire du point d'attache 16a, mesurée dans un repère dont le centre est sur l'axe 12a du balancier 9a, est décalée de 180° par rapport à la position angulaire du point d'attache 16c, mesurée dans un même repère mais dont le centre est sur l'axe 12c du balancier 9c. La position angulaire du point d'attache 16b, mesurée dans un repère dont le centre est sur l'axe 12b du balancier 9b, est décalée de 180° par rapport à la position angulaire du point d'attache 16d, mesurée dans un même repère mais dont le centre est sur l'axe du balancier 9d. De plus, les positions angulaires des points d'attache sont décalés de 90° entre chaque balancier d'une paire 9a, 9c ou 9b, 9d et chaque balancier de l'autre paire 9b, 9d ou 9a, 9c.According to another advantageous characteristic of the present invention, the attachment points 16a to 16d of the spirals 10a to 10d to the rings 11a to 11d are positioned in such a way that the deviations due to the decentering and the displacement of the center of gravity of the spirals (Grossmann effect) counterbalance each other. The figure 2 shows in schematic top view the balance 9a to 9d, the rings 11a to 11d and the beginning of the inner curve of the spirals 10a to 10d. For simplicity, the rockers 9a to 9d are shown flat on the plate 6. As can be seen, the attachment points 16a to 16d of the spirals to the ferrules are offset relative to each other. More specifically, the angular position of the attachment point 16a, measured in a reference whose center is on the axis 12a of the balance 9a, is offset by 180 ° relative to the angular position of the attachment point 16c, measured in a same reference but whose center is on the axis 12c of the balance 9c. The angular position of the attachment point 16b, measured in a coordinate system whose center is on the axis 12b of the balance 9b, is offset by 180 ° with respect to the angular position of the attachment point 16d, measured in the same reference but whose center is on the axis of the balance 9d. In addition, the angular positions of the attachment points are offset by 90 ° between each balance of a pair 9a, 9c or 9b, 9d and each balance of the other pair 9b, 9d or 9a, 9c.

A titre d'illustration, le tableau ci-dessous indique l'écart de marche (en secondes/jour) de chaque balancier dû à l'effet Grossmann pour cinq positions différentes du mouvement, à savoir :
- une première position P1' où le mouvement est dans un plan horizontal (dans cette position, l'effet Grossmann ne se produit pas),
- une deuxième position P2' où le mouvement est dans un plan vertical et les balanciers 9a et 9b sont en haut (cf. figure 2),
- une troisième position P3' où le mouvement est dans un plan vertical et les balanciers 9d et 9a sont en haut,
- une quatrième position P4' où le mouvement est dans un plan vertical et les balanciers 9c et 9d sont en haut,
- et une cinquième position P5' où le mouvement est dans un plan vertical et les balanciers 9b et 9c sont en haut. P1' P2' P3' P4' P5' Balancier 9a 0 5 0 -5 0 Balancier 9b 0 0 -5 0 5 Balancier 9c 0 -5 0 5 0 Balancier 9d 0 0 5 0 -5 Moyenne 0 0 0 0 0
As an illustration, the table below shows the deviation (in seconds / day) of each pendulum due to the Grossmann effect for five different positions of the movement, namely:
a first position P1 'where the movement is in a horizontal plane (in this position, the Grossmann effect does not occur),
a second position P2 'where the movement is in a vertical plane and the balances 9a and 9b are at the top (cf. figure 2 )
a third position P3 'where the movement is in a vertical plane and the pendulums 9d and 9a are at the top,
a fourth position P4 'where the movement is in a vertical plane and the pendulums 9c and 9d are at the top,
and a fifth position P5 'where the movement is in a vertical plane and the pendulums 9b and 9c are at the top. P1 ' P2 ' P3 ' P4 ' P5 ' 9a pendulum 0 5 0 -5 0 Balance 9b 0 0 -5 0 5 9c pendulum 0 -5 0 5 0 9d pendulum 0 0 5 0 -5 Average 0 0 0 0 0

Les positions P2' à P5' sont des positions extrêmes du mouvement en ce sens que ce sont les positions dans lesquelles les écarts de marche entre les balanciers dus à l'effet Grossmann sont les plus grands. Comme on peut le voir, la moyenne des écarts de marche des balanciers dans les positions P1' à P5' est de 0 seconde/jour. La figure 9 montre des graphes Ga' à Gd' représentant l'écart de marche dû à l'effet Grossmann des balanciers 9a à 9d, respectivement, en fonction de la position du mouvement. On peut constater que les balanciers opposés d'une même paire ont leurs écarts de marche qui se compensent et que la moyenne des écarts de marche reste nulle quelle que soit la position du mouvement. Les écarts de marche entre les différentes positions verticales du mouvement sont donc significativement réduits.The positions P2 'to P5' are extreme positions of the movement in that they are the positions in which the gimbals between the pendulums due to the Grossmann effect are the greatest. As can be seen, the average of the gimbals in the positions P1 'to P5' is 0 seconds / day. The figure 9 shows graphs Ga 'to Gd' representing the deviation due to the Grossmann effect of the pendulums 9a to 9d, respectively, as a function of the position of the movement. It can be seen that the opposing pendulums of the same pair have their differences of course which compensate each other and that the average of the differences of march remains null whatever is the position of the movement. The differences between the different vertical positions of the movement are therefore significantly reduced.

Le mouvement selon la présente invention permet ainsi de grandement réduire à la fois les variations de marche entre les positions horizontale et verticale (dues aux différences de frottement des axes de balancier dans leurs paliers) et les variations de marche entre les différentes positions verticales (dues au décentrage et au déplacement des centres de gravité des spiraux).The movement according to the present invention thus makes it possible to greatly reduce both the variations in the path between the horizontal and vertical positions (due to differences in the friction of the balance pins in their bearings) and the variations in the path between the different vertical positions (due the decentering and the displacement of the centers of gravity of the spirals).

La structure du mouvement selon l'invention va maintenant être décrite plus en détail.The structure of the movement according to the invention will now be described in more detail.

Comme montré aux figures 4 et 5, le mobile de centre 1 comprend, autour d'un arbre de centre 20, une chaussée 21 montée à friction sur l'arbre 20 et portant une aiguille des minutes (non représentée), une roue des heures 22 libre en rotation autour de l'arbre 20 et portant une aiguille des heures (non représentée), un engrenage différentiel 23 et un pignon de centre 24 solidaire de l'arbre 20. Le pignon de centre 24 engrène avec les deux barillets 2a, 2b (dont les rochets associés n'ont pas été représentés) qui, disposés ainsi en parallèle, additionnent leurs couples pour entraîner l'arbre de centre 20. La roue des heures 22 et la chaussée 21 engrènent respectivement avec le pignon et la roue d'un mobile de minuterie 25 (cf. figure 1). La roue de minuterie est reliée à la tige de mise à l'heure 26 du mouvement par l'intermédiaire d'un rouage de mise à l'heure 27. L'engrenage différentiel 23 comprend, outre l'arbre 20 qui en constitue l'entrée, une première roue de sortie 28 libre en rotation par rapport à l'arbre 20, un pignon 29 solidaire de la roue 28, une deuxième roue de sortie 30 libre en rotation par rapport à l'arbre 20, un pignon central 31 solidaire de l'arbre 20, et un mobile satellite comprenant un pignon 32 qui engrène avec le pignon central 31 et une roue 33 qui est solidaire du pignon 32 et qui engrène avec le pignon 29, les pivots de ce mobile satellite étant montés respectivement dans la deuxième roue de sortie 30 et dans un pont 34 fixé à la roue 30.As shown in figures 4 and 5 , the center mobile 1 comprises, around a center shaft 20, a roadway 21 frictionally mounted on the shaft 20 and carrying a minute hand (not shown), an hour wheel 22 free to rotate around the shaft 20 and carrying an hour hand (not shown), a differential gear 23 and a center pinion 24 integral with the shaft 20. The center pinion 24 meshes with the two barrels 2a, 2b (whose associated ratchets n have not been shown) which, thus arranged in parallel, add their torques to drive the center shaft 20. The hour wheel 22 and the roadway 21 mesh respectively with the pinion and the wheel of a timer wheel 25 ( cf. figure 1 ). The timer wheel is connected to the time-setting rod 26 by a time-setting train 27. The differential gear 23 comprises, in addition to the shaft 20 which constitutes it. input, a first output wheel 28 free in rotation relative to the shaft 20, a pinion 29 integral with the wheel 28, a second output wheel 30 free to rotate relative to the shaft 20, a central gear 31 integral with the shaft 20, and a satellite mobile comprising a pinion 32 which meshes with the central pinion 31 and a wheel 33 which is integral with the pinion 32 and which meshes with the pinion 29, the pivots of this satellite mobile being respectively mounted in the second output wheel 30 and in a bridge 34 fixed to the wheel 30.

Les deux mobiles de moyenne 3a, 3b comprennent chacun, autour d'un arbre de moyenne 35a, 35b, un pignon de moyenne 36a, 36b solidaire de l'arbre 35a, 35b et un engrenage différentiel 37a, 37b. Le pignon de moyenne 36a engrène avec, et est entraîné par, la première roue de sortie 28 de l'engrenage différentiel 23 et le pignon de moyenne 36b engrène avec, et est entraîné par, la deuxième roue de sortie 30 de l'engrenage différentiel 23. L'engrenage différentiel 37a, 37b de chaque mobile de moyenne 3a, 3b est du même type que l'engrenage différentiel 23 du mobile de centre 1. L'arbre de moyenne 35a, 35b en constitue l'entrée. L'une, 38a, des roues de sortie de l'engrenage différentiel 37a engrène avec, et entraîne, un pignon (non représenté) du mobile de seconde 4a, tandis que l'autre roue de sortie 39a engrène avec, et entraîne, un pignon 40b du mobile de seconde 4b. De même, l'une, 38b, des roues de sortie de l'engrenage différentiel 37b engrène avec, et entraîne, un pignon 40c du mobile de seconde 4c, tandis que l'autre roue de sortie 39b engrène avec, et entraîne, un pignon (non représenté) du mobile de seconde 4d. Les roues des mobiles de seconde 4a à 4d engrènent au moyen d'engrenages coniques avec les pignons d'échappement des organes régulateurs 5a à 5d.The two average mobiles 3a, 3b each comprise, around an average shaft 35a, 35b, a pinion of average 36a, 36b integral with the shaft 35a, 35b and a differential gear 37a, 37b. The average gear 36a meshes with, and is driven by, the first output gear 28 of the differential gear 23 and the average gear 36b meshes with, and is driven by, the second output gear 30 of the differential gear 23. The differential gear 37a, 37b of each mobile of average 3a, 3b is of the same type as the differential gearing 23 of the center mobile 1. The average shaft 35a, 35b constitutes entry. One, 38a, of the output wheels of the differential gear 37a meshes with, and drives, a pinion (not shown) of the second wheel 4a, while the other wheel 39a meshes with, and drives, a pinion 40b of the mobile of the second 4b. Similarly, one, 38b, of the output wheels of the differential gear 37b meshes with, and drives, a pinion 40c of the second gear 4c, while the other output gear 39b meshes with, and drives, a pinion (not shown) of the mobile of the second 4d. The wheels of the second movable 4a to 4d meshing by means of bevel gears with the exhaust gears of the regulating members 5a to 5d.

Tels qu'ils sont disposés, sur les mobiles de centre 1 et de moyenne 3a, 3b, les engrenages différentiels 23, 37a, 37b sont au plus près des barillets 2a, 2b, c'est-à-dire là où le couple est le plus important. Cette disposition permet de compenser les inconvénients d'un engrenage différentiel que sont son poids et son inertie.As they are arranged, on the mobiles of center 1 and average 3a, 3b, the differential gears 23, 37a, 37b are closer to the barrels 2a, 2b, that is to say where the torque is Most important. This arrangement compensates for the disadvantages of a differential gear that are its weight and inertia.

La structure telle que décrite ci-dessus présente l'avantage d'un faible encombrement du fait que les quatre organes régulateurs 5a à 5d sont entraînés par un même organe moteur, constitué par les deux barillets 2a, 2b, et qu'un seul mobile de moyenne est utilisé pour deux organes régulateurs. L'utilisation de deux barillets en parallèle permet d'augmenter le couple nécessaire à l'entraînement des organes régulateurs. Elle permet en outre, par la disposition de ces barillets 2a, 2b de part et d'autre du mobile de centre 1, d'équilibrer le couple transmis et de diminuer les pressions hertziennes sur les pivots du mobile de centre 1. En variante toutefois, des organes moteurs reliés par les différentiels pourraient entraîner séparément les organes régulateurs 5a à 5d. Dans une autre variante, un seul barillet pourrait être utilisé pour entraîner les quatre organes régulateurs 5a à 5d.The structure as described above has the advantage of a small footprint because the four regulating members 5a to 5d are driven by the same motor member, constituted by the two barrels 2a, 2b, and a single mobile. average is used for two regulating bodies. The use of two barrels in parallel makes it possible to increase the torque necessary for driving the regulating members. It also allows, by the arrangement of these barrels 2a, 2b on either side of the mobile center 1, to balance the transmitted torque and to reduce the air pressure on the pivots of the mobile center 1. Alternatively, , drive members connected by the differentials could separate separately the regulating members 5a to 5d. In another variant, a single barrel could be used to drive the four regulating members 5a to 5d.

Chaque organe régulateur 5a à 5d est monté dans un bâti 41 (cf. figures 3 et 6) comprenant un porte-échappement 42, un pont d'échappement 43 et un pont de balancier 44 fixés au porte-échappement 42. Les pivots de l'arbre de balancier tournent dans des paliers 45, 46 (cf. figures 3 et 5), de préférence antichocs, équipant respectivement le porte-échappement 42 et le pont de balancier 44. Le mobile d'échappement et l'ancre sont montés entre le porte-échappement 42 et le pont d'échappement 43. Les bâtis 41 des organes régulateurs 5a à 5d sont fixés au bâti du mouvement, par exemple au moyen de vis, contre des surfaces d'appui 47 des ponts de rouage 7a, 7b qui sont inclinées de 45° de manière à obtenir l'inclinaison de 45° des balanciers 9a à 9d par rapport à la platine 6, tout en permettant à ladite platine de rester plate. Ces surfaces inclinées 47 sont représentées à la figure 7 et, de manière schématique, à la figure 5. Dans l'exemple de réalisation représenté, les bâtis 41 des organes régulateurs 5a, 5b sont fixés sur le premier pont de rouage 7a, tandis que les bâtis 41 des organes régulateurs 5c, 5d sont fixés sur le deuxième pont de rouage 7b.Each regulating member 5a to 5d is mounted in a frame 41 (cf. figures 3 and 6 ) comprising an exhaust door 42, an exhaust bridge 43 and a rocker bridge 44 fixed to the exhaust door 42. The pivots of the balance shaft rotate in bearings 45, 46 (cf. figures 3 and 5 ), preferably anti-shock, respectively equipping the exhaust door 42 and the rocker bridge 44. The escape wheel and the anchor are mounted between the exhaust port 42 and the exhaust bridge 43. The frames 41 of the organs regulators 5a to 5d are fixed to the frame of the movement, for example by means of screws, against bearing surfaces 47 of the axles 7a, 7b which are inclined by 45 ° so as to obtain the inclination of 45 ° of the rockers 9a to 9d relative to the plate 6, while allowing said platen to remain flat. These inclined surfaces 47 are represented at figure 7 and, schematically, at the figure 5 . In the exemplary embodiment shown, the frames 41 of the regulating members 5a, 5b are fixed on the first gearbridge 7a, while the frames 41 of the regulating members 5c, 5d are fixed on the second gearbridge 7b.

Bien que le mode de réalisation de l'invention décrit ci-dessus et illustré dans les dessins soit le mode préféré, des modifications pourraient être faites sans sortir de la portée des revendications annexées. Par exemple, une seule paire de balanciers pourrait être prévue, au lieu de deux. A l'inverse, le mouvement pourrait comporter plus de deux paires de balanciers. Les axes des balanciers d'une même paire pourraient ne pas être sécants, c'est-à-dire ne pas être dans un même plan, pour autant qu'ils restent orthogonaux. Par « orthogonal », on entend que lesdits axes forment un angle droit, s'ils sont dans un même plan, ou qu'une droite parallèle à l'un de ces axes coupe l'autre axe en formant un angle droit, si ces axes ne sont pas dans le même plan.Although the embodiment of the invention described above and illustrated in the drawings is the preferred embodiment, modifications could be made without departing from the scope of the appended claims. For example, a single pair of pendulums could be provided instead of two. Conversely, the movement could include more than two pairs of pendulums. The axes of the balances of the same pair could not be secant, that is to say, not be in the same plane, as long as they remain orthogonal. By "orthogonal" is meant that said axes form a right angle, if they are in the same plane, or that a straight line parallel to one of these axes crosses the other axis at a right angle, if these axes are not in the same plane.

Claims (14)

  1. Timepiece movement comprising driving means (2a, 2b), first, second and third regulating members (5a, 5c, 5b) each comprising a balance (9a, 9c, 9b), and linking means (1, 3a, 3b, 4a-4d) linking the driving means to the regulating members, the axes (12a, 12c) of the balances of the first and second regulating members (5a, 5c) being substantially orthogonal to each other, characterised in that it further comprises a fourth regulating member (5d) comprising a balance (9d) and linked to the driving means (2a, 2b) by the linking means (1, 3a, 3b, 4a-4d), and in that the axes (12b, 12d) of the balances (9b, 9d) of the third and fourth regulating members (5b, 5d) are substantially orthogonal to each other and non-parallel to the axes (12a, 12c) of the balances (9a, 9c) of the first and second regulating members (5a, 5c).
  2. Movement according to claim 1, characterised in that the axes (12a, 12c) of the balances (9a, 9c) of the first and second regulating members (5a, 5c) are substantially secant.
  3. Movement according to claim 1 or 2, characterised in that the axes (12b, 12d) of the balances (9b, 9d) of the third and fourth regulating members (5b, 5d) are substantially secant.
  4. Movement according to any of claims 1 to 3, characterised in that the balances (9a-9d) of the first to fourth regulating members (5a-5d) are arranged, in top view of the movement, so as to form the ends of a cross.
  5. Movement according to any of claims 1 to 4, characterised in that the linking means (1, 3a, 3b, 4a-4d) comprise a centre mobile (1) arranged to be driven by the driving means (2a, 2b), first and second third mobiles (3a, 3b) arranged to be driven by the centre mobile (1), first and second fourth mobiles (4a, 4b) arranged to be driven by the first third mobile (3a) and third and fourth fourth mobiles (4c, 4d) arranged to be driven by the second third mobile (3b), the first to fourth fourth mobiles (4a-4d) being arranged to drive the first to fourth regulating members (5a-5d) respectively.
  6. Movement according to claim 5, characterised in that the centre mobile (1) comprises a first differential gearing (23) and the first and second third mobiles (3a, 3b) comprise second and third differential gearings (37a, 37b) respectively to average the runnings of the first to fourth regulating members (5a-5d).
  7. Movement according to any of claims 1 to 5, characterised in that the linking means (1, 3a, 3b, 4a-4d) comprise at least one differential (23, 37a, 37b) to average the runnings of the regulating members (5a-5d).
  8. Movement according to any of claims 1 to 7, characterised in that each regulating member (5a-5d) further comprises a balance-spring (10a-10d) fastened by a collet (11a-11d) to a shaft on which the balance (9a-9d) is mounted, and in that the points (16a-16d) of junction of the balance-springs to the collets are angularly shifted relative to each other so that the running deviations of the balances caused by the Grossmann effect mutually compensate.
  9. Movement according to any of claims 1 to 8, characterised in that each balance (9a-9d) is inclined relative to the plane of the movement.
  10. Movement according to claim 9, characterised in that each balance (9a-9d) is inclined by about 45° relative to the plane of the movement.
  11. Movement according to claim 9 or 10, characterised in that each regulating member (5a-5d) is mounted in a frame (41) fastened against one or more inclined surfaces (47) of a bridge (7a, 7b) of the movement.
  12. Movement according to any of claims 1 to 11, characterised in that the axis (12a-12d) of each balance (9a-9d) is substantially secant with the axis (13) of the movement.
  13. Movement according to any of claims 1 to 12, characterised in that the driving means (2a, 2b) are shared by all regulating members (5a-5d).
  14. Movement according to any of claims 1 to 13, characterised in that the driving means (2a, 2b) comprise a first and a second barrel located on either side of a centre mobile (1) of the movement.
EP13703132.4A 2012-01-13 2013-01-11 Clockwork with tilted balances Active EP2802943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13703132.4A EP2802943B1 (en) 2012-01-13 2013-01-11 Clockwork with tilted balances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12000199.5A EP2615504A1 (en) 2012-01-13 2012-01-13 Clock movement with tilted balances
PCT/IB2013/000036 WO2013104982A1 (en) 2012-01-13 2013-01-11 Clock movement having angled balances
EP13703132.4A EP2802943B1 (en) 2012-01-13 2013-01-11 Clockwork with tilted balances

Publications (2)

Publication Number Publication Date
EP2802943A1 EP2802943A1 (en) 2014-11-19
EP2802943B1 true EP2802943B1 (en) 2019-05-01

Family

ID=47520157

Family Applications (3)

Application Number Title Priority Date Filing Date
EP12000199.5A Withdrawn EP2615504A1 (en) 2012-01-13 2012-01-13 Clock movement with tilted balances
EP12812338.7A Active EP2802942B1 (en) 2012-01-13 2012-11-30 Timepiece having a plurality of balances
EP13703132.4A Active EP2802943B1 (en) 2012-01-13 2013-01-11 Clockwork with tilted balances

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP12000199.5A Withdrawn EP2615504A1 (en) 2012-01-13 2012-01-13 Clock movement with tilted balances
EP12812338.7A Active EP2802942B1 (en) 2012-01-13 2012-11-30 Timepiece having a plurality of balances

Country Status (2)

Country Link
EP (3) EP2615504A1 (en)
WO (2) WO2013104945A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849996B (en) * 2014-02-14 2017-03-15 天津海鸥表业集团有限公司 Transmission mechanism with tourbillon inclined to dial face
EP3015924B1 (en) * 2014-11-03 2017-08-09 Antoine Preziuso Genève SA Differential, in particular for timepieces
CH710817B1 (en) * 2015-03-04 2019-07-15 Hublot Sa Geneve Watch movement with resonant regulator with magnetic interaction.
CH711790B1 (en) * 2015-11-17 2021-03-31 Complitime Sa Clockwork movement.
CH712100A2 (en) * 2016-02-08 2017-08-15 Hepta Swiss Sa Watch movement with two pendulums.
CH712314A1 (en) 2016-04-01 2017-10-13 Richemont Int Sa Clockwork movement.
EP3399374A1 (en) * 2017-05-05 2018-11-07 Gfpi Sa Clockwork

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH156801A (en) 1931-05-13 1932-08-31 Vuilleumier Marcel Clockwork movement.
WO2005111742A1 (en) 2004-04-15 2005-11-24 Montres Breguet Sa Watch comprising at least two tourbillons
CH695196A5 (en) 2004-12-03 2006-01-13 Christophe Claret Sa Timepiece, has wheels geared with inner teeth of upper wheel and pinions geared with sun gear connected with lower wheel, where upper and lower wheels are engaged respectively with axles of two tourbillons
EP2275880B1 (en) * 2007-02-08 2012-07-04 CompliTime SA Watch movement
CH700747B1 (en) * 2009-04-09 2014-07-31 Rudis Sylva S A mechanical oscillator for clock movement.
CH702294B1 (en) 2009-11-16 2014-05-30 Complitime Sa Movement timepiece.
CH704063B1 (en) * 2010-11-09 2013-07-31 Complitime Sa Timepiece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2615504A1 (en) 2013-07-17
EP2802943A1 (en) 2014-11-19
WO2013104945A1 (en) 2013-07-18
WO2013104982A1 (en) 2013-07-18
EP2802942B1 (en) 2015-11-04
EP2802942A1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
EP2802943B1 (en) Clockwork with tilted balances
EP2115536B1 (en) Watch movement
EP2593839B1 (en) Timepiece
EP2786214B1 (en) Timepiece part
EP2124111A1 (en) Mechanism preventing movement variations due to gravity on a sprung balance and timepiece equipped with such a mechanism
WO2012168773A1 (en) Mechanism preventing operating variations due to gravity on a regulating device having a hairspring and timepiece including said improvement
EP1706796B1 (en) Timepiece comprising two turbillons
WO2014060346A1 (en) Timepiece
CH700222A1 (en) Clock winding movement and mobile exhaust.
EP2864844B1 (en) Method for determining an unbalance feature of an oscillator
EP1615085B1 (en) Correction mechanism for the seating of a regulator device for balance-spring
WO2011058157A1 (en) Timepiece movement
EP1918790B1 (en) Tourbillon for watch movement and movement comprising the same
EP3671363B1 (en) Clockwork and timepiece comprising such a clockwork
WO2018215284A1 (en) Adjustment device for timepiece with isotropic harmonic oscillator having rotating masses and a common return force
EP4239416A1 (en) Clock movement with a mechanism for moving an oscillator
CH718986A1 (en) Watch movement comprising an oscillator suspension device.
FR3133457A1 (en) Bridge for guiding a balance of a timepiece.
CH713829B1 (en) Regulation device for a timepiece with an isotropic harmonic oscillator having rotating masses and a common restoring force.
CH714303B1 (en) Decorative system for timepiece or jewelry.
CH697878B1 (en) Mechanism avoiding walking variations due to gravity on a device regulating spring balance and timepiece provided with such a mechanism.
CH698822A2 (en) Regulator device's rate deviations avoiding mechanism for e.g. pocket watch, has gear-system provided with driveline and corrective line and comprising epicyclic gear-trains, where each gear-train contains mobiles with single straight-tooth
CH697887B1 (en) Mechanism avoiding walking variations due to gravity on a device regulating spring balance and timepiece provided with such a mechanism.
CH697881B1 (en) Mechanism avoiding walking variations due to gravity on a device regulating spring balance and timepiece provided with such a mechanism.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RICHEMONT INTERNATIONAL SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1127752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013054578

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1127752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013054578

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013054578

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230111

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240202

Year of fee payment: 12