EP2800953A1 - Füllstandsgeber - Google Patents

Füllstandsgeber

Info

Publication number
EP2800953A1
EP2800953A1 EP12812251.2A EP12812251A EP2800953A1 EP 2800953 A1 EP2800953 A1 EP 2800953A1 EP 12812251 A EP12812251 A EP 12812251A EP 2800953 A1 EP2800953 A1 EP 2800953A1
Authority
EP
European Patent Office
Prior art keywords
reflector
level sensor
ultrasound
guide tube
sound guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12812251.2A
Other languages
English (en)
French (fr)
Inventor
Wighard JÄGER
Karl-Friedrich Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2800953A1 publication Critical patent/EP2800953A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level

Definitions

  • Level sensor The invention relates to a level sensor with a
  • Sound guide tube and a level sensor with an ultrasonic transceiver and a sensor electronics.
  • Such level sensors with an ultrasonic transceiver which generates and emits ultrasonic waves and receives reflected ultrasonic waves are used, for example, to measure levels in fuel tanks of motor vehicles and are therefore known.
  • the problem with the level determination by means of ultrasound on the one hand, the variable measurement signal alone due to changing measurement conditions such as temperature or the measuring medium.
  • the Refe rence ⁇ measuring section is thus arranged separately Toggle with the reference reflector in the vicinity of the actual measuring range for the filling level and whereby additional space is required.
  • an ultrasonic transceiver has a principle dead zone, which lies directly in front of the transceiver, in which no reliable measurement is possible.
  • This Totux arises because of the emitted sonic pulse generates a conscience ses Reverberation in the transceiver, which must be learnge ⁇ starting subsided before an echo signal can be clean detek- advantage.
  • the invention is therefore an object of the invention to provide a filling state encoder, which is changing both in itself Operating conditions reliably works, compensating for principle-based shortcomings and is simple and platzspa ⁇ rend constructed.
  • the object is achieved in that the sound guide tube has two spaced-apart reflectors, wherein the first reflector for deflecting the ultrasound in the direction of the second reflector and the second reflector for deflecting the ultrasound in the direction of the liquid surface is formed, and that in the second reflector, a third reflector is arranged, which reflects the ultrasound in the direction of the first reflector.
  • the reference ⁇ measuring section is integrated into the actual measuring section for the level, whereby space is saved.
  • the reference measuring distance can be adjusted by the choice of the distance between the first and second reflector as needed. This is advantageous in that, for longer reference distances, the relative error in the reference determination due to manufacturing tolerances and the finite time resolution of the transceiver is smaller than with shorter reference distances, which is important insofar as the determined level always at least the same relative error has the reference measuring section.
  • the second reflector is arranged relatively close to the bottom of the fuel tank can be, so that even very low levels are measurable. At the same time an influence of the minimum measurable level is excluded by the principle-based dead-end ⁇ sen, as a result of the double deflection of the second reflector is arranged only after this dead zone.
  • the first and the second reflector are arranged such that they deflect the ultrasound by 90 ° in each case. Particularly low levels can be measured if the measuring distance between these two reflectors is approximately parallel to the bottom of the fuel tank. But there are also deviating beam paths conceivable, in particular in adaptation to the container shape or vessel installations.
  • the reflectors are particularly easy to manufacture and assemble when the first and the second reflector are each formed by a wall of the beam guide tube. If the sound guide tube extends only to the second reflector, you get a particularly space-saving level sensor.
  • the third reflector has an area which is less than 40%, preferably 20% to 5%, of the area of the second reflector.
  • the third reflector is connected as a separate component with the second reflector. This training allows the separate production of the measuring reflector.
  • the third reflector is avoided if this is formed integrally with the second reflector.
  • a separate arrangement of the beam guide tube in the fuel ⁇ container is avoided when the beam guide tube forms a structural unit with the level sensor.
  • the advantage be ⁇ is that the unit can be pre-assembled and tested before it is installed in the fuel tank.
  • the reliable filling of the beam guiding tube with fuel is ensured if the beam guiding tube has at least one opening in its lateral walls, preferably in the lower region.
  • the invention is tert erläu ⁇ tert. 1 shows a filling level sensor according to the invention in section and
  • Fig. 2 is a perspective view of the beam guide ⁇ tube.
  • a level sensor 3 is arranged in the fuel tank 1 in Fig. 1 at the bottom 2, a level sensor 3 is arranged.
  • the level sensor 3 consists of a level sensor 4 with a housing 5.
  • the housing 5 be ⁇ is made of a metal lid 6 which is soldered to a used as a printed circuit board ceramic substrate 7, so that the ceramic substrate 7 forms the bottom of the housing 1.
  • an ultrasonic transceiver 8 and a sensor electronics 9 for evaluating the signals and providing an electrical signal corresponding to the level for forwarding to a display device for the level are arranged.
  • the sound guide tube 10 On the ceramic substrate 7, a sound guide tube 10 is attached.
  • the sound guide tube 10 has a side wall 11, which forms a first reflector 12.
  • the first reflector Tor 12 deflects the emitted by the transceiver 8 ultrasound by 90 °, so that it now propagates parallel to the bottom 2 of the fuel tank 1.
  • the ultrasonic waves are represented by individual lines a, b, c.
  • Another side wall 13 of the sound guide tube 10 constitutes a second Re ⁇ Flektor 14 which deflects the ultrasound by 90 ° in the direction to the liquid surface.
  • the side wall In the middle in the second reflector 14, the side wall has an expression 15, which forms a third reflector 16 acting as a measuring reflector ⁇ tor.
  • the area of the third reflector 16 is only 5% of the area of the second reflector 14.
  • the third reflector is designed such that it reflects incident ultrasonic waves (line c) in the opposite direction to the first reflector 12 so that they reflect again be routed to the transceiver 8.
  • the distance from the transceiver 8 to the third reflector 16 thus forms the reference measuring path.
  • Fig. 2 shows the sound guide tube 10 of the level sensor 3.
  • the sound guide tube 10 is formed by four side walls, with two side walls 11, 13 are the reflectors.
  • Egg ⁇ ne opening 17 allows at the top in the area of the second reflector 14 has an unhindered passage of the ultrasonic waves in the direction ⁇ liquid surface.
  • a similar opening is also arranged on the first reflector 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Gegenstand der Erfindung ist ein Füllstandsgeber 3 mit einem Schallführungsrohr 10 und einem Füllstandssensor 4 mit einem Ultraschall-Sendeempfänger 8 und einer Sensorelektronik 9. Das Schallführungsrohr 10 besitzt zwei voneinander beabstandet angeordnete Reflektoren 12, 14, wobei der erste Reflektor 12 zum Umlenken des Ultraschalls in Richtung des zweiten Reflektors 14 und der zweite Reflektor 14 zum Umlenken des Ultraschalls in Richtung der Flüssigkeitsoberfläche ausgebildet ist, und dass in dem zweiten Reflektor 14 ein dritter Reflektor 16 derart angeordnet ist, dass auf ihn auftreffender Ultraschall in Richtung des ersten Reflektors 12 reflektiert wird.

Description

Beschreibung
Füllstandsgeber Gegenstand der Erfindung ist ein Füllstandsgeber mit einem
Schallführungsrohr und einem Füllstandssensor mit einem Ultraschall-Sendeempfänger und einer Sensorelektronik.
Derartige Füllstandsgeber mit einem Ultraschall-Sendeempfänger, welcher Ultraschallwellen erzeugt und abgibt und reflektierte Ultraschallwellen empfängt, werden zum Beispiels zur Messung von Füllständen in Kraftstoffbehältern von Kraftfahrzeugen eingesetzt und sind daher bekannt. Problematisch bei der Füllstandsbestimmung mittels Ultraschall ist zum einen das veränderliche Messsignal allein aufgrund sich ändernder Messbedingungen wie beispielsweise der Temperatur oder dem Messmedium. Hierzu ist es bekannt, eine Referenzmes¬ sung an einem Referenzreflektor vorzusehen, um den Einfluss veränderter Messbedingungen zu eliminieren. Aufgrund von Montagetoleranzen muss vor Inbetriebnahme des Füllstandsgebers eine Kalibrierung durchgeführt werden. Hinzu kommt, dass die Refe¬ renzmessstrecke mit dem Referenzreflektor in der Nähe der eigentlichen Messstrecke für den Füllstand und somit separat an- geordnet ist, wodurch zusätzlicher Bauraum benötigt wird. Zum
Anderen hat ein Ultraschall-Sendeempfänger eine prinzipbedingte Totstrecke, die unmittelbar vor dem Sendeempfänger liegt, in der keine zuverlässige Messung möglich ist. Diese Totstrecke entsteht dadurch, dass der ausgesendete Schallimpuls ein gewis- ses Nachklingen im Sendeempfänger erzeugt, welches weitestge¬ hend abgeklungen sein muss, bevor ein Echosignal sauber detek- tiert werden kann.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Füll- Standsgeber zu schaffen, der sowohl bei sich verändernden Einsatzbedingungen zuverlässig arbeitet, messprinzipbedingte Unzulänglichkeiten ausgleicht und dabei einfach und platzspa¬ rend aufgebaut ist. Gelöst wird die Aufgabe dadurch, dass das Schallführungsrohr zwei voneinander beabstandet angeordnete Reflektoren besitzt, wobei der erste Reflektor zum Umlenken des Ultraschalls in Richtung des zweiten Reflektors und der zweite Reflektor zum Umlenken des Ultraschalls in Richtung der Flüssigkeitsoberflä- che ausgebildet ist, und dass in dem zweiten Reflektor ein dritter Reflektor angeordnet ist, der den Ultraschall in Richtung des ersten Reflektors reflektiert.
Mit der Anordnung des dritten Reflektors als Messreflektor für die Referenzmessstrecke im zweiten Reflektor wird die Referenz¬ messstrecke in die eigentliche Messstrecke für den Füllstand integriert, wodurch Bauraum eingespart wird.
Eine Beeinflussung der eigentlichen Füllstandsmessung ist durch diese Anordnung definitiv ausgeschlossen, da das Referenzecho auf jeden Fall vor dem eigentlichen Levelecho vom Senderempfänger detektiert wird.
Zudem kann die Referenzmessstrecke durch die Wahl des Abstands zwischen dem ersten und zweiten Reflektor nach Bedarf eingestellt werden. Das ist insofern von Vorteil, da bei längeren Referenzstrecken der relative Fehler bei der Referenzbestimmung aufgrund von Fertigungstoleranzen und der endlichen Zeitauflösung des Sendeempfängers kleiner ist als bei kürzeren Referenz- strecken, was insofern wichtig ist, da der ermittelte Füllstand immer mindestens den gleichen relativen Fehler wie die Referenzmessstrecke besitzt.
Hinzu kommt, dass durch die Doppelumlenkung der zweite Reflek- tor relativ nahe am Boden des Kraftstoffbehälters angeordnet werden kann, so dass auch sehr geringe Füllstände messbar sind. Gleichzeitig wird eine Beeinflussung des minimal messbaren Füllstandes durch die prinzipbedingte Totstrecke ausgeschlos¬ sen, indem infolge der Doppelumlenkung der zweite Reflektor erst nach dieser Totstrecke angeordnet ist.
In einer ersten vorteilhaften Ausgestaltung sind der erste und der zweite Reflektor derart angeordnet, dass sie den Ultra¬ schall um jeweils 90° umlenken. Besonders geringe Füllstände sind messbar, wenn die Messstrecke zwischen diesen beiden Reflektoren annähernd parallel zum Boden des Kraftstoffbehälters verläuft. Es sind aber auch davon abweichende Strahlverläufe denkbar, insbesondere in Anpassung an die Behälterform oder Behältereinbauten .
Die Reflektoren lassen sich besonders einfach herstellen und montieren, wenn der erste und der zweite Reflektor von jeweils einer Wand des Strahlführungsrohres gebildet sind. Sofern sich das Schallführungsrohr nur bis zum zweiten Reflektor erstreckt, erhält man einen besonders platzsparenden Füllstandsgeber.
Um trotz der platzsparenden Anordnung ein ausreichend gutes Messsignal für den Füllstand zu gewährleisten, besitzt der dritte Reflektor eine Fläche, die weniger als 40 %, vorzugswei- se 20 % bis 5 % der Fläche des zweiten Reflektors beträgt.
In einer vorteilhaften Ausgestaltung ist der dritte Reflektor als separates Bauteil mit dem zweiten Reflektor verbunden. Diese Ausbildung erlaubt die separate Herstellung des Messreflek- tors.
Eine Montage des dritten Reflektors wird vermieden, wenn dieser einteilig mit dem zweiten Reflektor ausgebildet ist. So ist es denkbar, den dritten Reflektor durch Umformen, wie Prägen oder Stanzen im zweiten Reflektor auszubilden. Eine separate Anordnung des Strahlführungsrohrs im Kraftstoff¬ behälter wird vermieden, wenn das Strahlführungsrohr mit dem Füllstandssensor eine bauliche Einheit bildet. Der Vorteil be¬ steht darin, dass die Einheit bereits vormontiert und getestet werden kann, bevor sie im Kraftstoffbehälter eingebaut wird.
Das zuverlässige Füllen des Strahlführungsrohrs mit Kraftstoff ist gewährleistet, wenn das Strahlführungsrohr in seinen seitlichen Wänden zumindest eine Öffnung, vorzugsweise im unteren Bereich, besitzt.
An einem Ausführungsbeispiel wird die Erfindung näher erläu¬ tert. Es zeigen in: Fig. 1 einen erfindungsgemäßen Füllstandsgeber im Schnitt und
Fig. 2 eine perspektivische Darstellung des Strahlführungs¬ rohres .
In dem Kraftstoffbehälter 1 in Fig. 1 ist am Boden 2 ein Füllstandsgeber 3 angeordnet. Der Füllstandsgeber 3 besteht aus einem Füllstandssensor 4 mit einem Gehäuse 5. Das Gehäuse 5 be¬ steht aus einem Metalldeckel 6, der auf ein als Leiterplatte benutztes keramisches Substrat 7 aufgelötet ist, so dass das keramische Substrat 7 den Boden des Gehäuses 1 bildet. Auf dem keramischen Substrat 7 sind ein Ultraschall-Sendeempfänger 8 und eine Sensorelektronik 9 zur Auswertung der Signale und Bereitstellung eines dem Füllstand entsprechenden elektrischen Signals zur Weiterleitung an eine Anzeigevorrichtung für den Füllstand angeordnet.
Auf dem keramischen Substrat 7 ist ein Schallführungsrohr 10 befestigt. Das Schallführungsrohr 10 besitzt eine Seitenwand 11, welche einen ersten Reflektor 12 bildet. Der erste Reflek- tor 12 lenkt den vom Sendeempfänger 8 ausgesandten Ultraschall um 90° um, so dass sich dieser nunmehr parallel zum Boden 2 des Kraftstoff ehälters 1 ausbreitet. Die Ultraschallwellen sind durch einzelne Linien a, b, c dargestellt. Eine weitere Seiten- wand 13 des Schallführungsrohres 10 bildet einen zweiten Re¬ flektor 14, der den Ultraschall um 90° in Richtung zur Flüssigkeitsoberfläche umlenkt. Mittig im zweiten Reflektor 14 besitzt die Seitenwand eine Ausprägung 15, welche einen als Messreflek¬ tor wirkenden dritten Reflektor 16 bildet. Die Fläche des drit- ten Reflektors 16 beträgt dabei nur 5 % der Fläche des zweiten Reflektors 14. Der dritte Reflektor ist so ausgebildet, dass er einfallende Ultraschallwellen (Linie c) in die entgegengesetzte Richtung auf den ersten Reflektor 12 reflektiert, so dass diese wieder zum Sendempfänger 8 geleitet werden. Die Strecke vom Sendeempfänger 8 bis zum dritten Reflektor 16 bildet somit die Referenzmessstrecke .
Fig. 2 zeigt das Schallführungsrohr 10 des Füllstandsgebers 3. Das Schallführungsrohr 10 wird durch von vier Seitenwänden ge- bildet, wobei zwei Seitenwände 11, 13 die Reflektoren sind. Ei¬ ne Öffnung 17 an der Oberseite im Bereich des zweiten Reflektors 14 erlaubt einen ungehinderten Durchtritt der Ultraschall¬ wellen in Richtung Flüssigkeitsoberfläche. Analog dazu ist auch am ersten Reflektor 12 eine ebensolche Öffnung angeordnet.
Seitliche Öffnungen 18 im Schallführungsrohr 10 ermöglichen das Eindringen von Kraftstoff in das Schallführungsrohr 10.

Claims

Patentansprüche
1. Füllstandsgeber mit einem Schallführungsrohr und einem
Füllstandssensor mit einem Ultraschall-Sendeempfänger und einer Sensorelektronik, d a d u r c h g e k e n n z e i c h n e t , dass das Schallführungsrohr (10) zwei voneinander beabstandet angeordnete Reflektoren (12, 14) besitzt, wobei der erste Reflektor (12) zum Umlenken des Ultraschalls in Richtung des zweiten Reflektors (14) und der zweite Reflektor (14) zum Umlenken des Ultraschalls in Richtung der Flüssigkeitsoberfläche ausgebildet ist, und dass in dem zweiten Reflektor (14) ein dritter Reflektor (16) derart angeordnet ist, dass auf ihn auftreffender Ultraschall in Richtung des ersten Reflektors (12) reflektiert wird.
2. Füllstandsgeber nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der erste und der zweite Re¬ flektor (12, 14) den Ultraschall um jeweils 90° umlenken.
3. Füllstandsgeber nach Anspruch 1 oder 2, d a d u r c h
g e k e n n z e i c h n e t , dass der erste und der zweite Reflektor (12, 14) von jeweils einer Wand des Schallführungsrohres (10) gebildet sind.
4. Füllstandsgeber nach zumindest einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass der dritte Reflektor (16) eine Fläche besitzt, die weniger als 40%, vorzugsweise 20% bis 5% der Fläche des zweiten Re¬ flektors (14) beträgt.
5. Füllstandsgeber nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass der dritte Reflektor (16) als separates Bauteil mit dem zweiten Reflektor (14) verbunden ist . Füllstandsgeber nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass der dritte Reflektor (16) einteilig mit dem zweiten Reflektor (14) ausgebildet ist.
Füllstandsgeber nach zumindest einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass das Schallführungsrohr (10) mit dem Füllstandssensor (4) eine bauliche Einheit bildet.
Füllstandsgeber nach zumindest einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass das Schallführungsrohr (10) in seinen seitlichen Wänden zumin dest eine Öffnung (18), vorzugsweise im unteren Bereich, besitzt .
EP12812251.2A 2012-01-05 2012-12-20 Füllstandsgeber Withdrawn EP2800953A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012200122 2012-01-05
DE102012205640.8A DE102012205640B4 (de) 2012-01-05 2012-04-05 Füllstandsgeber
PCT/EP2012/076513 WO2013102580A1 (de) 2012-01-05 2012-12-20 Füllstandsgeber

Publications (1)

Publication Number Publication Date
EP2800953A1 true EP2800953A1 (de) 2014-11-12

Family

ID=48652682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12812251.2A Withdrawn EP2800953A1 (de) 2012-01-05 2012-12-20 Füllstandsgeber

Country Status (6)

Country Link
US (1) US9719833B2 (de)
EP (1) EP2800953A1 (de)
KR (1) KR20140111660A (de)
CN (1) CN104040304B (de)
DE (1) DE102012205640B4 (de)
WO (1) WO2013102580A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200757B4 (de) * 2012-01-05 2022-01-05 Vitesco Technologies GmbH Füllstandsgeber
DE102013108158A1 (de) * 2013-07-30 2015-02-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Herstellung eines Tanks mit einem kalibrierten Sensor
DE102013219643A1 (de) * 2013-09-27 2015-04-02 Continental Automotive Gmbh Ultraschallsensor
DE102013219635B4 (de) * 2013-09-27 2022-04-14 Vitesco Technologies GmbH Einrichtung zur Einführung einer gefrierfähigen Flüssigkeit in das Abgassystem eines Kraftfahrzeuges
DE102014210080A1 (de) 2014-05-27 2015-12-03 Continental Automotive Gmbh Vorrichtung zum Bestimmen einer Höhe einer Fluidoberfläche in einem Fluidbehälter
DE102014210077A1 (de) * 2014-05-27 2015-12-03 Continental Automotive Gmbh Vorrichtung und Verfahren zum Bestimmen einer Höhe einer Fluidoberfläche in einem Fluidbehälter
DE102015008992A1 (de) * 2015-07-15 2017-01-19 Hella Kgaa Hueck & Co. Mediensensor mit mindestens einem Ultraschallwandler
DE102018218947A1 (de) * 2018-11-07 2020-05-07 Robert Bosch Gmbh Vorrichtung zur Qualitätsbestimmung einer Flüssigkeit, Tankvorrichtung
CN111504419B (zh) * 2020-06-04 2021-05-11 浙江大学 一种测定植保无人机药液量的装置和方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB997481A (en) 1961-03-07 1965-07-07 Burnett And Rolfe Ltd Improvements relating to arrangements for use in measuring the liquid content of a container
DE3706453A1 (de) 1987-02-27 1988-09-08 Bayerische Motoren Werke Ag Fuellstandsgeber fuer kraftfahrzeuge
US4862748A (en) 1988-07-20 1989-09-05 The Boeing Company Multiple ultrasonic transducer with remote selector
SU1721444A1 (ru) * 1989-08-07 1992-03-23 А.К.Бровцын, М.С.Гаджиев, А.Г.Акимов и И.А.Филатов Ультразвуковое устройство дл измерени уровн жидкостей
EP0489051B1 (de) * 1989-08-22 1995-11-22 Siemens Aktiengesellschaft Messeinrichtung und verfahren zur bestimmung des füllstandes in flüssigkeitsbehältern, vorzugsweise für tankanlagen.
US5437194A (en) 1991-03-18 1995-08-01 Panametrics, Inc. Ultrasonic transducer system with temporal crosstalk isolation
DE4336370C1 (de) * 1993-10-25 1995-02-02 Siemens Ag Vorrichtung zur Durchflußmessung
US5471872A (en) 1994-01-07 1995-12-05 Semitool, Inc. Acoustic liquid level measuring apparatus
JPH11153471A (ja) 1997-11-18 1999-06-08 Nippon Soken Inc 音波による液体情報測定装置
WO1999032858A1 (en) * 1997-12-23 1999-07-01 Simmonds Precision Products, Inc. Ultrasonic liquid gauging system
US6993967B2 (en) * 2002-07-12 2006-02-07 Ti Group Automotive Systems, L.L.C. Fluid level sensor
JP2004294073A (ja) 2003-03-25 2004-10-21 Denso Corp 車両用液面検出装置
JP3849671B2 (ja) 2003-05-20 2006-11-22 株式会社デンソー 車両用液面検出装置
US7117738B2 (en) * 2003-10-02 2006-10-10 Denso Corporation Liquid level detecting apparatus
EP2010872B1 (de) * 2006-04-12 2015-07-29 Seuffer GmbH & Co. KG Ultraschallvorrichtung zur messung des füllstandes einer flüssigkeit in einem behälter
KR100722687B1 (ko) * 2006-05-09 2007-05-30 주식회사 비에스이 부가적인 백 챔버를 갖는 지향성 실리콘 콘덴서 마이크로폰
WO2008101339A1 (en) * 2007-02-21 2008-08-28 Sensotech Inc. Fluid level measuring method and system therefor
JP2009034992A (ja) * 2007-07-10 2009-02-19 Seiko Epson Corp 液体検出装置及び液体収容容器
DE102007059853B4 (de) 2007-12-12 2018-01-25 Robert Bosch Gmbh Vorrichtung zur Messung eines Füllstandes einer Flüssigkeit in einem Behälter
WO2014059321A1 (en) * 2012-10-12 2014-04-17 Muffin Incorporated Mechanical scanning ultrasound transducer with micromotor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013102580A1 *

Also Published As

Publication number Publication date
US9719833B2 (en) 2017-08-01
DE102012205640A1 (de) 2013-07-11
US20140345377A1 (en) 2014-11-27
KR20140111660A (ko) 2014-09-19
DE102012205640B4 (de) 2018-05-30
CN104040304A (zh) 2014-09-10
WO2013102580A1 (de) 2013-07-11
CN104040304B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
DE102012205640B4 (de) Füllstandsgeber
EP2059773B1 (de) Kraftstofffördereinheit mit einem auf ultraschallwellen basierten füllstandsgeber
EP2154495B1 (de) TDR-Sensor und -Messverfahren
EP3049772B1 (de) Flüssigkeitstank mit einem ultraschallsensor
WO2007028775A1 (de) Vorrichtung zur ermittlung und überwachung des füllstandes eines mediums in einem behälter
DE102013019524B3 (de) Verfahren zur Bestimmung eines Füllstands eines Mediums und Vorrichtung zur Bestimmung eines Füllstands eines Mediums
WO2007014721A1 (de) Ultraschall-füllstandsmessvorrichtung mit grenzstandserkennung
EP2652465B1 (de) Bestimmung von medieneigenschaften bei der füllstandmessung
DE102005049278B4 (de) Vorrichtung zur Messung von Füllständen mittels geführter Wellen in einem Kraftstoffbehälter
EP2883021B1 (de) Vortex-durchflussmessgerät
WO2016004977A1 (de) Radarfüllstandmessgerät mit einer sicherheitseinrichtung
DE10312100A1 (de) Vorrichtung zur Messung eines Füllstandes einer Flüssigkeit in einem Behälter
EP2647971A1 (de) Füllstandmessgerät und Adapter mit Reflektor
DE102005015548B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes eines Mediums
DE102016006244A1 (de) Ultraschallfluidzähler sowie Verfahren zur Durchfluss- und/oder Volumenbestimmung eines strömenden Mediums
EP3343185B1 (de) Ultraschalldurchflussmessgerät und verfahren zur messung des durchflusses
DE19944411A1 (de) Ultraschall-Durchflußmesser
WO2011054595A1 (de) Ultraschallströmungssensor zum einsatz in einem fluiden medium
DE102005001895B4 (de) Vorrichtung zur Durchflussmessung
DE202017100663U1 (de) Sensorvorrichtung zur Erfassung von Eigenschaften fluider Medien
DE102016213324B3 (de) Füllstandsmessgerät nach dem Zeitbereichsreflektometrie-Prinzip sowie Verfahren zum Betreiben eines solchen Füllstandsmessgeräts
DE10027150A1 (de) Einrichtung und Verfahren zur Erfassung eines Füllstandes
DE102019128582A1 (de) Radarmessgerät und Anordnung eines Radarmessgeräts an einem Behälter
DE102015113955A1 (de) Füllstandmessgerät zur Messung eines Füllstands
DE202004013735U1 (de) Vorrichtung zur Überwachung von Hydraulikzylindern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20191016

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200227