EP2776783B1 - Stabilisierungseinrichtung - Google Patents

Stabilisierungseinrichtung Download PDF

Info

Publication number
EP2776783B1
EP2776783B1 EP12786931.1A EP12786931A EP2776783B1 EP 2776783 B1 EP2776783 B1 EP 2776783B1 EP 12786931 A EP12786931 A EP 12786931A EP 2776783 B1 EP2776783 B1 EP 2776783B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
propellant
explosion
ejection mass
discrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12786931.1A
Other languages
English (en)
French (fr)
Other versions
EP2776783B9 (de
EP2776783A1 (de
Inventor
Helmut Meyer
Peter Lell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drehtainer Spezial Container- und Fahrzeugbau GmbH
Drehtainer GmbH Spezial Container und Fahrzeugbau
Original Assignee
Drehtainer Spezial Container- und Fahrzeugbau GmbH
Drehtainer GmbH Spezial Container und Fahrzeugbau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drehtainer Spezial Container- und Fahrzeugbau GmbH, Drehtainer GmbH Spezial Container und Fahrzeugbau filed Critical Drehtainer Spezial Container- und Fahrzeugbau GmbH
Publication of EP2776783A1 publication Critical patent/EP2776783A1/de
Publication of EP2776783B1 publication Critical patent/EP2776783B1/de
Application granted granted Critical
Publication of EP2776783B9 publication Critical patent/EP2776783B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H7/00Armoured or armed vehicles
    • F41H7/02Land vehicles with enclosing armour, e.g. tanks
    • F41H7/04Armour construction
    • F41H7/044Hull or cab construction other than floors or base plates for increased land mine protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/13Systems specially adapted for detection of landmines
    • F41H11/136Magnetic, electromagnetic, acoustic or radiation systems, e.g. ground penetrating radars or metal-detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/007Reactive armour; Dynamic armour

Definitions

  • the present invention relates to a stabilization device for a vehicle and / or a vehicle payload, wherein the stabilization device comprises a detection device for detecting an explosion, at least one engine for stabilizing the vehicle and / or the vehicle payload, and a control device for activating the at least one engine in the case of includes detected by the detection device explosion.
  • the invention further relates to a method for stabilizing a vehicle and / or a vehicle payload upon exposure to an explosion, comprising the steps of: detecting an explosion and activating at least one engine in the event of a detected explosion by means of a control device.
  • Such vehicles or methods for stabilizing a vehicle and / or a vehicle payload are used in particular for the protection of armored vehicles, the explosions or detonations, e.g. when used in mined areas.
  • An explosion triggered in the vehicle environment usually leads to the vehicle lifting off from the ground under the effect of an explosion.
  • Both in the lifting phase and in the subsequent Aufsetzphase the crew of the vehicle is exposed to high accelerations, which may lead to serious injury to the crew of the vehicle due to the resulting force effects u.U. lethal effects.
  • a device and a method for reducing such forces on the vehicle crew is, for example, from the document WO 2010/067093 A1 discloses a vehicle stabilization system in which by means of a pressure sensor, the pressure wave of an explosion is detected. If an explosion has been detected by means of the pressure sensor, solid-state rocket motors are used ignited to exert a force directed towards the ground on the vehicle and to stabilize the vehicle in this way.
  • Another vehicle stabilization device is from the non-prepublished document WO 2011/148118 out.
  • the vehicle described therein includes vehicle stabilization means for discharging a non-gaseous mass to exert a stabilizing force on the vehicle in the event of an explosion detected in the vehicle environment. It is therefore an object of the present invention to propose a stabilization device for a vehicle and / or a vehicle payload which influences the forces acting on persons within the vehicle or within the vehicle payload in the event of an explosion in the vicinity of the vehicle or the vehicle payload Minimum reduced. Furthermore, the object is to propose a corresponding method.
  • a stabilization device having the features of claim 1.
  • the discrete ejection mass is accelerated by the pressure effect of the exhaust gases, which develops the propellant in the activation of the engine by the controller, and the resulting force.
  • the resulting counterforce acts on the engine and also on the vehicle and / or the vehicle payload.
  • the time course of the stabilizing force applied in this way corresponds to a pulse-like increase virtually simultaneously with the activation of the engine which stops during the acceleration process of the discrete discharge mass.
  • the time course of the stabilizing force therefore corresponds to the time profile of the force caused by the explosion force on the vehicle or on the vehicle payload, so that the stabilizing force compensates for the explosion-induced force and counteracts a lifting or tipping of the vehicle and / or the vehicle payload.
  • the engine is configured and configured such that the amount of the stabilizing force exceeds that of the force acting on the vehicle or on the vehicle payload by the explosion, and so the vehicle and / or the vehicle payload in each case is securely held on the ground.
  • the separating element serves for the spatial separation of the discrete discharge mass from the propellant.
  • the separator also serves to uniformly transfer the forces released by the propellant upon activation of the engine to the discrete ejection mass.
  • the separating element is cup-shaped. This is on the one hand particularly useful in the use of a bulk material as a discrete ejection mass, for example, when using metal granules, sands or the like, and on the other hand when using liquid discrete ejecting materials, such as fluids, or fluids in gel form.
  • the receiving member including the discrete ejection mass disposed therein is accelerated.
  • the receiving element comprises the discrete ejection mass laterally and towards the propellant, so that on the one hand a uniform force transmission and thus homogeneous acceleration of all masses of the discrete ejection mass is ensured and on the other hand, the friction coefficient between the receiving element and the housing element only by the materials of the receiving element and the inner wall of the housing member is defined, that is independent of the type of material used, the discrete ejection mass.
  • An expedient embodiment of the invention is characterized in that the engine comprises a housing element with an outlet opening for the discrete ejection mass.
  • the discrete ejection mass is guided laterally when activating the engine and thus exactly predetermined the direction of movement of the discrete ejection mass. Furthermore, the propellant and the ejection mass are so protected from external influences in the housing element.
  • a further expedient embodiment of the invention is characterized in that the discrete ejection mass comprises a decomposition charge with a delay unit which is set up for the time-delayed dismantling of the discrete ejection mass.
  • the discrete discharge mass is dislocated with a time delay after activation of the engine. This ensures that the discrete ejection mass does not fall to the ground as a compact mass following engine activation, but rather in the form of a multiplicity of smaller particles, thereby minimizing potential hazards from the falling discrete ejection mass or portions thereof.
  • the receiving space of the receiving element in the direction of the outlet opening is widening and configured.
  • the receiving space is formed widened towards the outlet opening, for example in the form of a truncated cone.
  • a further expedient embodiment of the invention is characterized in that at least one guide element for guiding the receiving element is arranged in the housing element on the inside of the housing element and / or on the outside of the receiving element.
  • the receiving element is guided without play and free from jamming, thus avoiding otherwise possible tilting of the receiving element in the housing element in each case.
  • a limiting means for limiting the travel of the receiving element is arranged in the region of the outlet opening of the housing element.
  • the receiving member including the discrete ejection mass contained in the receptacle is first accelerated but stopped upon reaching an end position by means of the restricting means while the discrete ejection mass disposed in the receptacle exits the receptacle and is repelled into the environment.
  • An expedient embodiment of the invention is characterized in that the discrete ejection mass is a bulk solid, a solid or a fluid.
  • a bulk-like body such as sand, metal granules or other granular substances or mixtures of high specific weight, as well as a fluid disintegrates after leaving the receiving element or the housing element and during the movement process in the vehicle environment due to the counteracting air resistance in a plurality of individual particles which are spread over a larger area so as to minimize potential hazards of the ejection mass around the vehicle and beyond.
  • a preferred embodiment of the invention is characterized in that the detection device comprises at least one acceleration sensor which is designed and set up for detecting explosion-induced deformations of the vehicle and / or the vehicle payload.
  • the detection device requires a high reliability of the explosion detection.
  • the detection device detects an explosion in the vicinity of the vehicle and / or the vehicle payload only when it acts with such a large force on the vehicle or on the vehicle payload that the structure is deformed or irreversibly deformed. In this way, an explosion fault detection is reliably avoided.
  • a plurality of the engines is arranged on the vehicle and / or the vehicle payload, wherein the control device is designed and set up for the time-delayed activation of the engines.
  • a further expedient embodiment of the invention is characterized in that the at least one engine is arranged on the vehicle and / or the vehicle payload such that the discrete discharge mass is accelerated at least substantially in the vertical direction when activating the engine.
  • the stabilizing force is at least substantially vertical, that is, either vertically or inclined at an angle of up to ⁇ 90 ° relative to the vertical, aligned.
  • the engine is arranged on the vehicle and / or the vehicle payload such that the stabilizing force acts perpendicular to the ground on the vehicle or on the vehicle payload and this in addition to the weight of the vehicle and / or the vehicle payload on the Underground presses.
  • the engine or engines may also be arranged inclined so that the stabilizing force or at least one of the stabilizing forces comprises or comprise a force component in the horizontal direction.
  • the vehicle and / or the vehicle payload not only prevented from lifting off the ground, but also a tilting of the vehicle or the vehicle payload, for example, in force effects by laterally adjacent to the vehicle or the vehicle payload explosions are reliably prevented.
  • the object is achieved by a corresponding method having the features mentioned in the introduction in that a discrete ejection mass is accelerated by means of a propellant in order to apply a stabilizing force to the vehicle and / or the vehicle payload.
  • a discrete ejection mass is accelerated by means of a propellant in order to apply a stabilizing force to the vehicle and / or the vehicle payload.
  • FIGS. 1 to 4 each show a side view of the engine 10 of the stabilizer in different phases, namely in the non-activated state of the engine 10, immediately after activation, immediately before the rejection of a discrete ejection mass 11 or during repulsion of the discrete ejection mass 11.
  • the stabilizer according to the invention is preferably used in armored vehicles and / or vehicle payloads whose structure is protected against external explosion effects.
  • the vehicle and / or the vehicle payload comprises a stabilization device, wherein the stabilization device for detecting an explosion in the surroundings of the vehicle or the vehicle payload comprises one or more detection devices configured to detect explosions.
  • the stabilization device according to the invention is therefore suitable both for the stabilization of vehicles and / or vehicle payloads, ie it can be used to stabilize different types of vehicles with and without vehicle payload.
  • the present invention is not limited solely to the stabilization of vehicles. Rather, in addition to the stabilization of vehicle payloads, such as vehicle trailers, containers, mobile structures and the like, the stabilization device is fundamentally suitable for stabilizing any non-vehicle-bound devices, for example for stabilizing containers.
  • the stabilization device further comprises the at least one engine 10.
  • the engine 10 is designed and set up to stabilize the vehicle and / or the vehicle payload. Furthermore, the engine 10 is assigned a control device which is set up and configured to activate the at least one engine 10 in the event of an explosion detected by the detection device.
  • the control device and the detection device are preferably designed as electronic controls.
  • control device and the detection device are designed and set up as pyrotechnic devices.
  • the control and detection device are in this case designed as a shock and / or pressure-sensitive ignition mixture. These are set up so that upon the arrival of blast caused by explosions or detonation ignition takes place and so the engine 10 is activated by the ignition mixture.
  • the igniter mixture comprises seismic beads which allow pyrotechnic ignition due to acceleration.
  • the abovementioned ignition mixtures are preferably each arranged directly on the respective engine 10, so that the igniter mixture is in each case in contact with the propellant 23.
  • the detection device is designed as a shock tube, ie as a charge responsive to pressure surges, which is connected by means of the pyrotechnic transmission line control device to the respective engine 10 or the propellant 23.
  • the detection device it is possible, for example, to arrange the detection device at the floor of the vehicle and / or the vehicle payload and to activate the engine or engines 10 via the pyrotechnic delay line, if an explosion or detonation has been detected by means of the detection device.
  • a particular advantage of the aforementioned pyrotechnic embodiments of the detection and control devices is that they are insensitive to electromagnetic influences and disturbances.
  • propellant 23 are preferably used propellant powder or bulk powder, for example, einbasigem, dibasic or polybasic material or a composite material.
  • the propellant 23 is particularly preferably a nitrocellulose powder which, unlike clock fuels, generates propellant gases with a relatively low combustion temperature in the range of up to 1000 ° K during ignition.
  • the propellant 23 is preferably in a geometry that provides a large burnup surface, for example, as powder grains having a diameter in the range between 2 mm and 6 mm.
  • the propellant 23 in the combustion chamber 24 comprises further admixtures, for example liquids, in particular water, or liquids in gel form, in order to influence the combustion chamber pressure in the combustion chamber 24 or the combustion behavior of the propellant 23.
  • the combustion chamber 24 is thermally insulated and configured. This has a particularly positive effect on the use of relatively small amounts of propellant 23, since a radiation of heat energy is largely avoided and so a rapid increase in pressure in the combustion chamber 24 is favored.
  • the engine 10 further comprises a propellant 23 and a separate from the propellant 23 discrete ejection mass 11.
  • the propellant 23 and the discrete ejection mass 11 are arranged and designed such that upon activation of the engine 10 by the control device, the discrete ejection mass 11 means the propellant 23 is accelerated under the action of the vehicle and / or the vehicle payload with a stabilizing force.
  • the propellant 23 is preferably in the form of a pyrotechnic composition, more preferably an expulsion kit, whereby the discrete ejection mass is accelerated due to the pressure increase of the combustion gases produced during the burning of the pyrotechnic composition.
  • the propellant 23 is arranged as an electromagnetic drive means, for example in the form of an electric linear motor or the like.
  • the propellant 23 serves the purpose of generating, by accelerating the discrete ejection mass 11, a force opposing the inertia of the discrete ejection mass 11 acting as the stabilizing force on the vehicle and / or the vehicle payload to cause an explosion on the vehicle or vehicles to compensate for the external forces acting on the vehicle payload and in any event to prevent the vehicle and / or the vehicle payload from being lifted or tilted.
  • the counterforce caused for the stabilization of the vehicle and / or the vehicle payload during the acceleration process of the discrete ejection mass is produced exclusively by the acceleration process of the discrete ejection mass 11.
  • the propellant 11 itself exclusively serves to accelerate and repel the discrete ejection mass 11, while the propellant 11 itself - in the Unlike a rocket engine - no recoil generated by an output of the propellant 11.
  • the energy carrier namely the propellant 23 to release the acceleration of the discrete ejection mass 11th required amount of energy and the ejected medium, ie, the discrete ejection mass 11, formed separately.
  • the engine 10 preferably comprises a housing element 12 with an outlet opening 13.
  • the outlet opening 13 allows the passage of the discrete ejection mass 11 in the event of activation of the engine 10 by the control device.
  • the housing element 12 is designed, for example, as a tubular element with a closed bottom region 14, the propellant 23 being arranged between the bottom region 14 and the discrete ejection compound 11.
  • a movable separating element 15 is arranged between the propellant 23 and the discrete ejecting mass 11.
  • the separating element 15 is arranged to be movable relative to the housing element 12.
  • the separating element 15 is therefore preferably designed as a propellant charge level.
  • the separating element 15 is preferably formedslidernd.
  • the separating element 15 is particularly preferably made of a ductile material, so that the separating element 15 deforms when activating the engine 10 so far that this is pressed against the inside of the housing member 12 and forms a sealing metallic connection.
  • the separating element 15 is therefore designed as a sealing element that prevents the escape of combustion gases of the propellant 23. This promotes a rapid increase in pressure in the combustion chamber 24 formed by the housing element 12 and the separating element 15, so that the operating pressure of approximately 300 to 1000 bar which is conducive to rapid combustion can be achieved.
  • the separating element 15 is connected to the bottom region 14 by means of a tear-off device, for example a tear-off screw.
  • the tear-off device causes the separating element 15 to be firmly connected to the bottom region 14 until the pressure of the combustion gases released by the blowing agent 23 exceeds a predetermined operating pressure.
  • the ejection compound 11 is clamped or clamped in the housing element 12 so that the ejection compound 11 is released only after reaching the predetermined operating pressure.
  • the separating element 15 in the edge region ie in the region which is in contact with the inside of the housing element 12, provided with a sliding coating, for example, made of graphite, Teflon or the like. It is also possible for the region of the ejection compound 11 which is in contact with the inside of the housing element 12 to have a sliding coating.
  • the separating element 15 is designed and set up as a receiving element 16 with a receiving space 17.
  • the receiving space 17 serves to receive the discrete discharge mass 11.
  • the receiving element 16 is arranged in the housing element 12 such that the receiving element 16 is arranged to be movable relative to the housing element 12.
  • the receiving element 17 essentially corresponds to the separating element 15, but the receiving element 17 comprises side walls 18, which delimit the receiving space 17.
  • the aforementioned design of the receiving element 16 is particularly suitable for bulk material-shaped discrete ejecting masses 11, such as sand, metal granules or the like, as well as for liquid or gel-like media.
  • the receiving space 17 of 16 in the direction of the outlet opening 13 is widening and configured.
  • the receiving space 17 is frusto-conical in that the receiving element 16 forms with its side walls 18 and the bottom area 14 the corresponding lateral surfaces of the truncated cone.
  • 16 are arranged in the housing member 12 on the inner side 19 of the housing member 12 or on the outer side 20 of the 16 guide members 21 for clamping-free guidance. comparisons For this purpose, the top view FIG. 5 with a view towards the outlet opening 13 including in the FIG. 5 shown enlarged section.
  • the engine 10 includes at least one of the guide elements 21, wherein preferably on the inside 19 of the housing member 12 more of the guide elements 21 are arranged. More preferably, the guide elements 21 are distributed at a uniform distance over the circumference and arranged symmetrically to the longitudinal axis of the housing member 12. Alternatively, the guide element (s) 21 may be arranged on the outer side 20 of the receiving element 16.
  • the guide elements 21 are arranged on the outer side of the receiving element 16 and the further guide elements 21 on the inner side 19 of the housing element 12.
  • the guide element 21 are preferably web-shaped.
  • the guide element 21 are dimensioned such that they each extend over circle segments with a center angle of at least 30 °. More preferably, the surfaces of the guide elements 21 and the surfaces in contact with these are provided with a sliding coating.
  • the lubricious coating is preferably formed as a graphite or Teflon coating.
  • a limiting means 22 is arranged in the region of the outlet opening 13 of the housing member 12.
  • the function of the limiting means 22 is to limit the path of the receiving element 16 and the separating element 15 at the end of the outlet opening 13, so that this is arranged to be movable within the housing member 12, but only to the extent that the receiving element 16 and the separator 15 can not completely leave the housing element when activating the engine 10.
  • the limiting means 22 is formed as a ring element, which is arranged on the edge of the housing member 12 and thus defines the outlet opening 13.
  • the outer diameter of the receiving element 16 is smaller in the region of the side walls 18 than the inner diameter of the ring element, that is selected to be smaller than the diameter of the outlet opening 13. Accordingly, the diameter of the bottom portion 14 of 16 is set larger than the inner diameter of the ring member, so that the bottom portion 14 of 16 is secured by positive engagement by means of the ring member against slipping out of the housing member 12.
  • the discrete discharge mass 11 is a body in the form of a body, for example in the form of sand, granular substances, such as metal granules or the like.
  • the discrete discharge mass 11 is a solid body, i. integrally formed.
  • the discrete ejection mass 11 is not limited to solids but may alternatively include additional liquid media.
  • the discrete ejection mass 11 is formed exclusively as a fluid or as a gel medium.
  • the ejection mass 11 comprises a decomposition charge with a delay unit, which is set up and designed for the time-delayed dismantling of the ejection mass 11.
  • the delay unit is designed and set up either as an electronic delay circuit or as a pyrotechnic delay line.
  • the delay time which defines the period between the activation of the engine 10 and the activation of the decomposition charge, is selected such that the decomposition charge is activated at the time at which the discharge mass 11 has reached its maximum rise height.
  • the discrete discharge mass 11 is formed as a cartridge, for example as a plastic or cardboard cartridge.
  • the cartridge is laterally slotted, so that the cartridge are disassembled into pieces when activating the decomposition charge and the ejection mass 11 can disintegrate unhindered into smaller units.
  • the ejection mass 11 it is possible for the ejection mass 11 to have an envelope which is designed and arranged in such a way that it dissolves due to the passing ambient air after the ejection and the ejection mass 11 is released laterally.
  • the detection device comprises at least one acceleration sensor arranged on the structure of the vehicle or the vehicle payload.
  • the acceleration sensor is designed and set up to detect explosion-induced deformations of the respective structure. In this way it is ensured that only in the event of an actual explosion-induced incipient deformation of the vehicle by means of the control device in response to that of the acceleration sensor emitted signal the engine 10 are activated so that a mal-activation of the engine 10 is practically impossible.
  • the detection device comprises other sensor types for detecting the deformation of the vehicle, for example strain gauges.
  • a plurality of the engines 10 are arranged on the vehicle and / or the vehicle payload. At least one of the engines 10 is preferably arranged at the corner area, so that the number of engines 10 is preferably at least 4 or a multiple thereof.
  • the control device is designed and set up for time-delayed activation of the engines 10. For example, a vehicle with a mass of about 5 tons is equipped with four of the engines 10, each of which can produce an engine thrust of up to 4 x 150 kN.
  • this thrust magnitude is typically provided in less than 0.5 ms so that the thrust generated by the engines 10 acts as a pulse-like stabilizing force immediately after the explosion detection or detonation on the vehicle or vehicle payload is exercised.
  • the engines 10 formed control device By means of the time-delayed activation of the engines 10 formed control device, it is possible to counteract even explosion effect over a longer period of time away.
  • several of the engines 10 are sequentially or temporally overlapping activated by means of the control device and thus applied in multiple series pulse-like stabilization forces on the vehicle.
  • the engines 10 may be designed graduated in terms of their engine performance, so that the thrust of the first to be activated engine 10 is greater than that thrust of the time later to be activated engines 10 is selected.
  • the one or the plurality of engines 10 are arranged on the vehicle and / or on the vehicle payload such that the discrete discharge mass 11 is accelerated at least substantially in the vertical direction when the engine 10 is activated.
  • the engine 10 is arranged with its longitudinal axis parallel or at an angle in the range between 0 ° and ⁇ 90 ° relative to the vertical, so that the outlet opening 13 points in a direction facing away from the ground.
  • the discrete ejection mass 11 is accelerated when activating the engine 10 in the vertical direction, so that the resulting recoil force as a stabilizing force the vehicle or the vehicle payload in addition to its weight perpendicular to the ground and pushes them so on Lifting off the ground hinders.
  • the plurality of engines 10 are arranged with their longitudinal axis inclined at an angle in the range between 0 ° and ⁇ 90 ° relative to the vertical. In this way, not only the lifting of the vehicle or the vehicle payload from the ground but in addition also a tilting or rotating, for example by the action of an explosion or detonation in a side of the vehicle or from the vehicle payload located area, can be effectively counteracted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Elimination Of Static Electricity (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Stabilisierungseinrichtung für ein Fahrzeug und/oder eine Fahrzeugnutzlast, wobei die Stabilisierungseinrichtung eine Detektionseinrichtung zur Erfassung einer Explosion, mindestens ein Triebwerk zur Stabilisierung des Fahrzeugs und/oder der Fahrzeugnutzlast, sowie eine Steuereinrichtung zur Aktivierung des mindestens einen Triebwerks im Fall einer mittels der Detektionseinrichtung erfassten Explosion umfasst. Des Weiteren betrifft die Erfindung ein Verfahren zur Stabilisierung eines Fahrzeugs und/oder einer Fahrzeugnutzlast beim Einwirken einer Explosion, umfassend die Schritte: Detektieren einer Explosion und Aktivieren mindestens eines Triebwerks im Fall einer detektierten Explosion mittels einer Steuereinrichtung.
  • Derartige Fahrzeuge bzw. Verfahren zur Stabilisierung eines Fahrzeugs und/oder einer Fahrzeugnutzlast kommen insbesondere zum Schutz von gepanzerten Fahrzeugen zum Einsatz, die Explosionen bzw. Detonationen, z.B. beim Einsatz in verminten Gebieten, ausgesetzt sind. Eine in der Fahrzeugumgebung ausgelöste Explosion, beispielsweise beim Überfahren einer Landmine, führt in der Regel dazu, dass das Fahrzeug unter der Explosionseinwirkung vom Untergrund abhebt. Sowohl in der Abhebephase als auch in der sich anschließenden Aufsetzphase ist die Besatzung des Fahrzeugs hohen Beschleunigungen ausgesetzt, die aufgrund der daraus resultierenden Krafteinwirkungen zu schweren Verletzungen der Besatzung des Fahrzeugs führen können mit u.U. letalen Auswirkungen.
  • Eine Vorrichtung und ein Verfahren zu Reduktion derartiger Krafteinwirkungen auf die Fahrzeugbesatzung ist beispielsweise aus dem Dokument WO 2010 / 067093 A1 bekannt, das ein Fahrzeugstabilisierungssystem offenbart, bei dem mittels eines Drucksensors die Druckwelle einer Explosion detektiert wird. Sofern mittels des Drucksensors eine Explosion detektiert worden ist, werden Feststoffraketenmotoren gezündet, um eine in Richtung des Untergrunds gerichtete Kraft auf das Fahrzeug auszuüben und das Fahrzeug auf diese Weise zu stabilisieren.
  • Aufgrund der Schubcharakteristik der Feststoffraktenmotoren kann ein Abheben des Fahrzeugs vom Untergrund jedoch nicht zuverlässig verhindert werden. Während die durch die Explosion hervorgerufene Krafteinwirkung auf das Fahrzeug impulsartig, d.h. innerhalb weniger Millisekunden und mit hoher Anfangsamplitude, einwirkt, setzt die Schubentwicklung der Feststoffraketenmotoren bis zum Aufbau des endgültigen Brennstoffkammerdrucks zeitverzögert ein. Des Weiteren wird das Fahrzeug während der sich anschließenden Abwärtsbewegung in Richtung Untergrund durch den von den Feststoffraktenmotoren erzeugten Schub noch zusätzlich beschleunigt und die Aufschlaggeschwindigkeit in der Konsequenz sogar noch mehr erhöht.
  • Eine weitere Fahrzeugstabilisierungseinrichtung geht aus dem nicht vorveröffentlichten Dokument WO 2011 / 148118 hervor. Das dort beschriebene Fahrzeug umfasst Fahrzeugstabilisierungsmittel zum Ausstoßen einer nicht-gasförmigen Masse, um eine Stabilisierungskraft auf das Fahrzeug im Falle einer in der Fahrzeugumgebung detektierten Explosion auszuüben. Es ist daher Aufgabe der vorliegenden Erfindung, eine Stabilisierungseinrichtung für ein Fahrzeug und/oder eine Fahrzeugnutzlast vorzuschlagen, das die auf Personen innerhalb des Fahrzeugs bzw. innerhalb der Fahrzeugnutzlast einwirkenden Kräfte im Falle einer in der Umgebung des Fahrzeugs bzw. der Fahrzeugnutzlast ausgelösten Explosion auf ein Minimum reduziert. Des Weiteren besteht die Aufgabe darin, ein entsprechendes Verfahren vorzuschlagen.
  • Die Aufgabe wird durch eine Stabilisierungseinrichtung mit den Merkmalen des Anspruchs 1 gelöst. Mit anderen Worten wird die diskrete Ausstoßmasse durch die Druckwirkung der Abgase, die das Treibmittel bei der Aktivierung des Triebwerks durch die Steuereinrichtung entwickelt, und der daraus resultierenden Kraft beschleunigt. Die dabei entstehende Gegenkraft wirkt auf das Triebwerk und darüber auch auf das Fahrzeug und/oder die Fahrzeugnutzlast. Dies bietet den Vorteil, dass unmittelbar mit der Aktivierung des Triebwerks die diskrete Ausstoßmasse mittels des Treibmittels beschleunigt und so im Wesentlichen unverzüglich eine entsprechende Gegenkraft als Stabilisierungskraft auf das Fahrzeug bzw. auf die Fahrzeugnutzlast ausgeübt wird. Der auf diese Weise ausgeübte zeitliche Verlauf der Stabilisierungskraft entspricht einem impulsartigen Anstieg quasi zeitgleich mit der Aktivierung des Triebwerks, der während des Beschleunigungsvorgangs der diskreten Ausstoßmasse anhält. Der zeitliche Verlauf der Stabilisierungskraft korrespondiert daher mit dem zeitlichen Verlauf der durch die Explosion hervorgerufenen Krafteinwirkung auf das Fahrzeug bzw. auf die Fahrzeugnutzlast, so dass die Stabilisierungskraft die explosionsbedingte Krafteinwirkung kompensiert und einem Abheben bzw. Umkippen des Fahrzeugs und/oder der Fahrzeugnutzlast entgegenwirkt. Vorzugsweise ist das Triebwerk derart eingerichtet und ausgebildet, dass der Betrag der Stabilisierungskraft denjenigen der auf das Fahrzeug bzw. der auf die Fahrzeugnutzlast durch die Explosion einwirkenden Kraft übersteigt und so das Fahrzeug und/oder die Fahrzeugnutzlast in jedem Fall sicher auf dem Untergrund gehalten wird. Erfindungsgemäß dient das Trennelement der räumlichen Trennung der diskreten Ausstoßmasse von dem Treibmittel. Wird beispielsweise als diskrete Ausstoßmasse ein schüttgutförmiges Medium verwendet, so dient das Trennelement ferner einer gleichmäßigen Übertragung der mittels des Treibmittels beim Aktivieren des Triebwerks freigesetzten Kräfte auf die diskrete Ausstoßmasse.
  • Vorzugsweise ist das Trennelement becherförmig ausgebildet. Dies ist einerseits besonders zweckmäßig bei der Verwendung eines schüttgutförmigen Mediums als diskrete Ausstoßmasse, beispielsweise beim Einsatz von Metallgranulaten, Sanden oder dergleichen sowie andererseits bei der Verwendung flüssiger diskreter Ausstoßmassen, beispielsweise Fluiden, oder Fluiden in Gelform. Beim Aktivieren des Triebwerks bzw. des Treibmittels wird das Aufnahmeelement einschließlich der darin angeordneten diskreten Ausstoßmasse beschleunigt. Das Aufnahmeelement umfasst die diskrete Ausstoßmasse dabei seitlich und zu dem Treibmittel hin, so dass einerseits eine gleichmäßige Kraftübertragung und damit eine in sich homogene Beschleunigung aller Teilmassen der diskreten Ausstoßmasse gewährleistet wird und andererseits der Reibungskoeffizient zwischen dem Aufnahmeelement und dem Gehäuseelement nur durch die Materialien des Aufnahmeelements und der Innenwand des Gehäuseelements definiert ist, also unabhängig von der Art des verwendeten Materialtyps der diskreten Ausstoßmasse ist.
  • Eine zweckmäßige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass das Triebwerk ein Gehäuseelement mit einer Austrittsöffnung für die diskrete Ausstoßmasse umfasst. Mittels des Gehäuseelements wird die diskrete Ausstoßmasse beim Aktivieren des Triebwerks seitlich geführt und damit die Bewegungsrichtung der diskreten Ausstoßmasse exakt vorgegeben. Weiterhin sind das Treibmittel und die Ausstoßmasse so geschützt vor äußeren Einflüssen in dem Gehäuseelement angeordnet.
  • Eine weitere zweckmäßige Ausbildung der Erfindung ist dadurch gekennzeichnet, dass die diskrete Ausstoßmasse eine zum zeitverzögerten Zerlegen der diskreten Ausstoßmasse eingerichtete Zerlegungsladung mit einer Verzögerungseinheit umfasst. Mittels der Zerlegungsladung und der Verzögerungseinheit wird die diskrete Ausstoßmasse zeitverzögert nach dem Aktivieren des Triebwerks auseinandergetrieben. So wird sichergestellt, dass die diskrete Ausstoßmasse nicht als kompakte Masse im Anschluss an die Triebswerksaktivierung zu Boden fällt, sondern in Form einer Vielzahl kleinerer Partikel, wodurch eine mögliche Gefährdung durch die herabfallende diskrete Ausstoßmasse bzw. durch Teile davon minimiert wird.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist der Aufnahmeraum des Aufnahmeelements in Richtung der Austrittsöffnung sich verbreiternd eingerichtet und ausgebildet. Mit anderen Worten ist der Aufnahmeraum zu der Austrittsöffnung hin geweitet ausgebildet, beispielsweise in Form eines Kegelstumpfes. Dies bietet den Vorteil, dass die die Ausstoßmasse ungehindert und verklemmungsfrei aus- bzw. abgestoßen werden kann.
  • Eine weitere zweckmäßige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass an der Innenseite des Gehäuseelements und/oder an der Außenseite des Aufnahmeelements mindestens ein Führungselement zur Führung des Aufnahmeelements in dem Gehäuseelement angeordnet ist. So wird das Aufnahmeelement spiel- und verklemmungsfrei geführt und so ein andernfalls mögliches Verkanten des Aufnahmeelements in dem Gehäuseelement in jedem Fall vermieden.
  • Gemäß einer weiteren bevorzugten Ausbildung der Erfindung ist im Bereich der Austrittsöffnung des Gehäuseelements ein Begrenzungsmittel zur Wegbegrenzung des Aufnahmeelements angeordnet. Dies bietet den Vorteil, dass das Aufnahmeelement zwar relativ zu dem Gehäuseelement bewegbar angeordnet ist, jedoch an einem Herausgleiten aus dem Gehäuseelement nach dem Aktivieren des Triebswerks bzw. des Treibmittels gehindert wird. Anders ausgedrückt ist das Begrenzungsmittel derart eingerichtet, dass das Aufnahmeelement mit seinem Bodenbereich unter formschlüssigem Eingriff an einem Lösen aus dem Gehäuseelement gehindert wird. Beim Aktivieren des Triebwerks bzw. des Treibmittels wird also zunächst das Aufnahmeelement einschließlich der im Aufnahmerahm befindlichen diskreten Ausstoßmasse beschleunigt, jedoch beim Erreichen einer Endposition mittels des Begrenzungsmittels angehalten, während die in dem Aufnahmeelement angeordnete diskrete Ausstoßmasse das Aufnahmeelement verlässt und in die Umgebung abgestoßen wird.
  • Eine zweckmäßige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die diskrete Ausstoßmasse ein schüttgutförmiger Festkörper, ein Vollkörper oder ein Fluid ist. Ein schüttgutförmiger Körper, wie beispielsweise Sand, Metallgranulate oder weitere granulare Stoffe oder Stoffgemische mit hohem spezifischem Eigengewicht, zerfällt ebenso wie ein Fluid nach dem Verlassen des Aufnahmeelements bzw. des Gehäuseelements und während des Bewegungsvorgangs in der Fahrzeugumgebung aufgrund des entgegenwirkenden Luftwiderstands in eine Vielzahl einzelner Partikel, die über ein größeres Gebiet verstreut werden, so dass mögliche Gefährdungen durch die Ausstoßmasse in der Umgebung des Fahrzeugs und darüber hinaus auf ein Minimum reduziert werden.
  • Eine bevorzugte Weiterbildung der Erfindung zeichnet sich dadurch aus, dass die Detektionseinrichtung mindestens einen Beschleunigungssensor umfasst, der zur Erfassung von explosionsbedingten Verformungen des Fahrzeugs und/oder der Fahrzeugnutzlast ausgebildet und eingerichtet ist. Die Detektionseinrichtung bedingt eine hohe Zuverlässigkeit der Explosionserkennung. So detektiert die Detektionseinrichtung nur dann eine Explosion in der Umgebung des Fahrzeugs und/oder der Fahrzeugnutzlast, wenn diese mit einer solch großen Kraft auf das Fahrzeug bzw. auf die Fahrzeugnutzlast einwirkt, dass die Struktur re- oder irreversibel verformt wird. Auf diese Weise wird eine Explosionsfehlerkennung zuverlässig vermieden.
  • Gemäß einer weiteren bevorzugten Ausbildung der Erfindung ist eine Mehrzahl der Triebwerke an dem Fahrzeug und/oder der Fahrzeugnutzlast angeordnet, wobei die Steuereinrichtung zum zeitversetzten Aktivieren der Triebwerke ausgebildet und eingerichtet ist. Mittels mehrerer an dem Fahrzeug angeordneter Triebwerke ist es einerseits möglich, das Fahrzeug und/oder die Fahrzeugnutzlast optimal zu stabilisieren und andererseits die Stabilisierungskräfte beispielsweise auf die Fahrzeug- bzw. Fahrzeugnutzlasteckbereiche zu verteilen. Ein weiterer Vorteil besteht darin, dass die Steuereinrichtung zum zeitversetzten Aktivieren der Triebwerke ausgebildet und eingerichtet ist. So kann der Zeitraum der Einwirkung der Stabilisierungskraft auf das Fahrzeug bzw. auf die Fahrzeugnutzlast variiert werden.
  • Eine weitere zweckmäßige Ausbildung der Erfindung ist dadurch gekennzeichnet, dass das mindestens eine Triebwerk derart an dem Fahrzeug und/oder der Fahrzeugnutzlast angeordnet ist, dass die diskrete Ausstoßmasse zumindest im Wesentlichen in vertikaler Richtung beim Aktivieren des Triebswerks beschleunigt wird. Vorteilhafter Weise ist daher die Stabilisierungskraft zumindest im Wesentlichen vertikal, d.h. entweder vertikal bzw. um einen Winkel von bis zu ± 90° gegenüber der Vertikalen geneigt, ausgerichtet. Mit anderen Worten ist das Triebwerk derart an dem Fahrzeug und/oder der Fahrzeugnutzlast angeordnet, dass die Stabilisierungskraft senkrecht zum Untergrund auf das Fahrzeug bzw. auf die Fahrzeugnutzlast einwirkt und dieses zusätzlich zu der Gewichtskraft des Fahrzeugs und/oder der Fahrzeugnutzlast auf den Untergrund drückt. Das bzw. die Triebwerke können jedoch auch geneigt angeordnet sein, so dass die Stabilisierungskraft bzw. mindestens eine der Stabilisierungskräfte eine Kraftkomponente in horizontaler Richtung umfasst bzw. umfassen. So kann das Fahrzeug und/oder die Fahrzeugnutzlast nicht nur am Abheben vom Untergrund gehindert, sondern zusätzlich ein Kippen des Fahrzeugs bzw. der Fahrzeugnutzlast, beispielsweise bei Krafteinwirkungen durch seitlich neben dem Fahrzeug bzw. der Fahrzeugnutzlast erfolgenden Explosionen, zuverlässig unterbunden werden.
  • Des Weiteren wird die Aufgabe durch ein entsprechendes Verfahren mit den eingangs genannten Merkmalen dadurch gelöst, dass eine diskrete Ausstoßmasse mittels eines Treibmittels beschleunigt wird, um das Fahrzeug und/oder die Fahrzeugnutzlast mit einer Stabilisierungskraft zu beaufschlagen. Die Vorteile des Verfahrens sind bereits zuvor im Zusammenhang mit der erfindungsgemäßen Stabilisierungseinrichtung detailliert erläutert worden. Zur Vermeidung von Wiederholungen wird auf die entsprechenden Textstellen verwiesen.
  • Weitere bevorzugte und/oder zweckmäßige Merkmale und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung. Besonders bevorzugte Ausführungsformen werden anhand der beigefügten Zeichnung näher erläutert. Die Zeichnung zeigt:
  • Fig. 1
    eine Seitenansicht des Triebwerks im nicht aktivierten Zustand,
    Fig. 2
    eine Seitenansicht des Triebwerks unmittelbar nach dem Aktivieren,
    Fig. 3
    eine Seitenansicht des Triebwerks unmittelbar vor dem Abstoßen der diskreten Ausstoßmasse
    Fig. 4
    eine Seitenansicht des Triebwerks während des Abstoßvorgangs der diskreten Ausstoßmasse und
    Fig. 5
    eine Draufsicht mit Blickrichtung auf die Austrittsöffnung.
  • Die Figuren 1 bis 4 zeigen jeweils eine Seitenansicht des Triebwerks 10 der Stabilisierungseinrichtung in unterschiedlichen Phasen, nämlich im nicht aktivierten Zustand des Triebswerks 10, unmittelbar nach dem Aktivieren, unmittelbar vor dem Abstoßen einer diskreten Ausstoßmasse 11 bzw. während des Abstoßens der diskreten Ausstoßmasse 11. Die erfindungsgemäße Stabilisierungseinrichtung kommt vorzugsweise bei gepanzerten Fahrzeugen und/oder Fahrzeugnutzlasten zum Einsatz, deren Struktur gegenüber Explosionseinwirkungen von außen geschützt ist. Das Fahrzeug und/oder die Fahrzeugnutzlast umfasst bzw. umfassen eine Stabilisierungseinrichtung, wobei die Stabilisierungseinrichtung zum Erfassen einer Explosion in der Umgebung des Fahrzeugs bzw. der Fahrzeugnutzlast eine oder mehrere zur Erfassung von Explosionen eingerichtete Detektionseinrichtung(en) umfasst. Die erfindungsgemäße Stabilisierungseinrichtung ist daher sowohl für die Stabilisierung von Fahrzeugen und/oder von Fahrzeugnutzlasten geeignet, d.h. es können damit verschiedene Fahrzeugtypen mit und ohne Fahrzeugnutzlast stabilisiert werden. Die vorliegende Erfindung ist jedoch nicht ausschließlich auf die Stabilisierung von Fahrzeugen beschränkt. Vielmehr ist die Stabilisierungseinrichtung neben der Stabilisierung von Fahrzeugnutzlasten, wie Fahrzeuganhängern, Containern, mobilen Bauwerken und dergleichen, grundsätzlich zur Stabilisierung beliebiger nicht Fahrzeug gebundener Einrichtungen, beispielsweise zur Stabilisierung von Containern, grundsätzlich geeignet.
  • Die Stabilisierungseinrichtung umfasst weiter das mindestens eine Triebwerk 10. Das Triebwerk 10 ist zur Stabilisierung des Fahrzeugs und/oder der Fahrzeugnutzlast ausgebildet und eingerichtet. Ferner ist dem Triebwerk 10 eine Steuereinrichtung zugeordnet, die zur Aktivierung des mindestens einen Triebwerks 10 im Fall einer mittels der Detektionseinrichtung erfassten Explosion eingerichtet und ausgebildet ist. Die Steuereinrichtung sowie die Detektionseinrichtung sind vorzugsweise als elektronische Steuerungen ausgebildet.
  • Gemäß einer bevorzugten alternativen Ausführung der Erfindung sind die Steuereinrichtung und die Detektionseinrichtung als pyrotechnische Einrichtungen ausgebildet und eingerichtet. Die Steuer- und Detektionseinrichtung sind hierbei als stoß- und/oder druckempfindliche Anzündmischung ausgebildet. Diese sind derart eingerichtet, dass beim Eintreffen von durch Explosionen bzw. Detonationen ausgelösten Druckwellen eine Zündung erfolgt und so das Triebwerk 10 mittels der Anzündmischung aktiviert wird. Weiter bevorzugt umfasst die Anzündmischung seismische Kügelchen, die ein pyrotechnisches Zünden aufgrund von Beschleunigen ermöglichen. Die vorgenannten Anzündmischungen sind vorzugsweise jeweils unmittelbar an dem jeweiligen Triebwerk 10 angeordnet, so dass die Anzündmischung jeweils mit dem Treibmittel 23 in Kontakt stehend ausgebildet ist. Alternativ ist die Detektionseinrichtung als eine Schocktube, d.h. als eine auf Druckstöße reagierende Ladung ausgebildet, die mittel der als pyrotechnische Übertragungsleitung ausgebildeten Steuerungseinrichtung mit dem jeweiligen Triebwerk 10 bzw. dem Treibmittel 23 verbunden ist. So ist es beispielsweise möglich, die Detektionseinrichtung am Boden des Fahrzeugs und/oder der Fahrzeugnutzlast anzuordnen und das bzw. die Triebwerk(e) 10 über die pyrotechnische Verzögerungsleitung zu aktivieren, sofern mittels der Detektionseinrichtung eine Explosion oder Detonation detektiert worden ist. Ein besonderer Vorteil der vorgenannten pyrotechnischen Ausbildungen der Detektions-und Steuereinrichtungen besteht darin, dass diese unempfindlich gegenüber elektromagnetischen Einwirkungen und Störungen sind. Es ist daher möglich, die erfindungsgemäße Stabilisierungseinrichtung beispielsweise in der unmittelbaren Umgebung von Hochleistungsradareinrichtungen einzusetzen, ohne dass die Gefahr einer Fehlaktivierung der Triebwerke 10 durch das Vorhandensein elektromagnetischer Felder hoher Feldstärke zu befürchten ist. Als Treibmittel 23 finden vorzugsweise Treibladungspulver bzw. Schüttpulver Verwendung, beispielsweise aus einbasigem, zweibasigem oder mehrbasigem Material bzw. einem Composite-Material. Besonders bevorzugt ist das Treibmittel 23 ein Nitrocellulose-Pulver, das im Gegensatz zu Raktentreibstoffen Treibgase mit einer relativ niedrigen Verbrennungstemperatur im Bereich bis zu 1000 °K beim Zünden erzeugt. Das Treibmittel 23 liegt vorzugsweise in einer Geometrie vor, die eine große Abbrandoberfläche bereitstellt, beispielsweise als Pulverkörner mit einem Durchmesser im Bereich zwischen 2 mm und 6 mm. Optional umfasst das Treibmittel 23 in der Brennkammer 24 weitere Beimengungen, beispielsweise Flüssigkeiten, insbesondere Wasser, oder Flüssigkeiten in Gelform, um den Brennkammerdruck in der Brennkammer 24 bzw. das Abbrandverhalten des Treibmittels 23 zu beeinflussen.
  • Vorteilhafter Weise ist die Brennkammer 24 thermisch isoliert ausgebildet und eingerichtet. Dies wirkt sich besonders positiv beim Einsatz verhältnismäßig geringer Mengen des Treibmittels 23 aus, da eine Abstrahlung von Wärmeenergie weitestgehend vermieden wird und so ein rascher Druckanstieg in der Brennkammer 24 begünstigt wird.
  • Das Triebwerk 10 umfasst ferner ein Treibmittel 23 sowie eine von dem Treibmittel 23 getrennt angeordnete diskrete Ausstoßmasse 11. Das Treibmittel 23 sowie die diskrete Ausstoßmasse 11 sind dabei derart eingerichtet und ausgebildet, dass bei der Aktivierung des Triebwerks 10 durch die Steuereinrichtung die diskrete Ausstoßmasse 11 mittels des Treibmittels 23 unter Beaufschlagung des Fahrzeugs und/oder der Fahrzeugnutzlast mit einer Stabilisierungskraft beschleunigt wird. Das Treibmittel 23 ist vorzugsweise als pyrotechnischer Satz, besonders bevorzugt als Ausstoßsatz, ausgebildet, wobei die diskrete Ausstoßmasse aufgrund des Druckanstiegs der beim Abbrennen des pyrotechnischen Satzes entstehenden Verbrennungsgase beschleunigt wird. Alternativ ist das Treibmittel 23 als elektromagnetisches Antriebsmittel, beispielsweise in Form eines elektrischen Linearmotors oder dergleichen, eingerichtet.
  • Das Treibmittel 23 dient dem Zweck, durch das Beschleunigen der diskreten Ausstoßmasse 11 eine der Massenträgheit der diskreten Ausstoßmasse 11 entgegen gesetzte Kraft zu erzeugen, die als die Stabilisierungskraft auf das Fahrzeug und/oder die Fahrzeugnutzlast wirkt, um die durch eine Explosion auf das Fahrzeug bzw. die Fahrzeugnutzlast einwirkenden äußeren Kräfte zu kompensieren und ein Abheben bzw. Kippen des Fahrzeugs und/oder der Fahrzeugnutzlast in jedem Fall zu verhindern. Die zur Stabilisierung des Fahrzeugs und/oder der Fahrzeugnutzlast beim Beschleunigungsvorgang der diskreten Ausstoßmasse hervorgerufene Gegenkraft entsteht ausschließlich durch den Beschleunigungsvorgang der diskreten Ausstoßmasse 11. Dabei dient das Treibmittel 11 selbst ausschließlich zum Beschleunigung und Abstoßen der diskreten Ausstoßmasse 11, während das Treibmittel 11 selbst - im Gegensatz zu einem Raketentriebwerk - keinen Rückstoß durch einen Ausstoß des Treibmittels 11 erzeugt. Anders ausgedrückt sind der Energieträger, nämlich das Treibmittel 23, zur Freisetzung der zur Beschleunigung der diskreten Ausstoßmasse 11 erforderlichen Energiemenge und das ausgestoßene Medium, d.h. die diskrete Ausstoßmasse 11, getrennt ausgebildet.
  • Vorzugweise umfasst das Triebwerk 10 ein Gehäuseelement 12 mit einer Austrittsöffnung 13. Die Austrittsöffnung 13 ermöglicht den Durchtritt der diskreten Ausstoßmasse 11 im Falle einer Aktivierung des Triebwerks 10 durch die Steuerungseinrichtung. Das Gehäuseelement 12 ist beispielsweise als Rohrelement mit einem geschlossenen Bodenbereich 14 ausgebildet, wobei das Treibmittel 23 zwischen dem Bodenbereich 14 und der diskreten Ausstoßmasse 11 angeordnet ist. Erfindungsgemäß ist zwischen dem Treibmittel 23 und der diskreten Ausstoßmasse 11 ein bewegbar ausgebildetes Trennelement 15 angeordnet. Mit anderen Worten ist das Trennelement 15 relativ zu dem Gehäuseelement 12 bewegbar angeordnet. Beim Aktivieren des Triebwerks 10 wird das Trennelement 15 mittels des Treibmittels 23 in Richtung der Austrittsöffnung 13 bewegt und zusammen mit der diskreten Ausstoßmasse 11 beschleunigt. Das Trennelement 15 ist daher vorzugsweise als Treibladungsspiegel ausgebildet. Das Trennelement 15 ist vorzugweise selbstlidernd ausgebildet. Dazu ist das Trennelement 15 besonders bevorzugt aus einem duktilen Material gefertigt, so dass sich das Trennelement 15 beim Aktivieren des Triebwerks 10 soweit verformt, dass dieses an die Innenseite des Gehäuseelements 12 gepresst wird und einen dichtende metallische Verbindung bildet. Das Trennelement 15 ist daher als Dichtungselement eingerichtet, dass ein Austreten von Verbrennungsgasen des Treibmittels 23 verhindert. Dies begünstigt einen raschen Druckanstieg in der von dem Gehäuseelement 12 und dem Trennelement 15 gebildeten Brennkammer 24, so dass der für eine zügige Verbrennung förderliche Betriebsdruck von ca. 300 bis 1000 bar erreicht werden kann. Vorteilhafter Weise ist das Trennelement 15 mittels einer Abreißeinrichtung, beispielsweise einer Abreißschraube, mit dem Bodenbereich 14 verbunden. Die Abreißeinrichtung bewirkt, dass das Trennelement 15 solange fest mit dem Bodenbereich 14 verbunden ist, bis der Druck der von dem Treibmittel 23 freigesetzten Verbrennungsgase einen vorgegebenen Betriebsdruck überschreitet. Gemäß einer alternativen Ausführung der Erfindung ist anstelle der Abreißeinrichtung die Ausstoßmasse 11 in dem Gehäuseelement 12 verspannt oder verklemmt angeordnet, so dass die Ausstoßmasse 11 erst nach Erreichen des vorgegebenen Betriebsdrucks freigegeben wird. Von einer Verdämmung des Treibmittels 23 mit den vorgenanten Mitteln kann verzichtet werden, sofern die Ausstoßmasse 11 so groß gewählt ist, dass die diese aufgrund ihrer Massenträgheit den Anstieg des Drucks in der Brennkammer 24 auf den vorgegebenen Betriebsdruck zulässt, bevor die Ausstoßmasse 11 das Gehäuseelement 12 verlässt und somit die Brennkammer 24 zur Atmosphäre hin freigibt.
  • Bevorzugt ist das Trennelement 15 im Randbereich, also in dem Bereich, der mit der Innenseite des Gehäuseelements 12 in Kontakt steht, mit einer Gleitbeschichtung versehen, beispielsweise aus Graphit, Teflon oder dergleichen versehen. Auch ist es möglich, dass die mit der Innenseite des Gehäuseelements 12 in Kontakt stehenden Bereich der Ausstoßmasse 11 eine Gleitbeschichtung aufweisen. Erfindungsgemäß ist das Trennelement 15 als ein Aufnahmeelement 16 mit einem Aufnahmeraum 17 ausgebildet und eingerichtet. Der Aufnahmeraum 17 dient der Aufnahme der diskreten Ausstoßmasse 11. Das Aufnahmeelement 16 ist in dem Gehäuseelement 12 derart angeordnet, dass das Aufnahmeelement 16 relativ zu dem Gehäuseelement 12 bewegbar angeordnet ist. Mit anderen Worten entspricht das Aufnahmeelement 17 im Wesentlichen dem Trennelement 15, wobei jedoch das Aufnahmeelement 17 Seitenwände 18 umfasst, die den Aufnahmeraum 17 begrenzen. Die vorgenannte Ausbildung des Aufnahmeelements 16 eignet sich insbesondere für schüttgutförmige diskrete Ausstoßmassen n 11, wie Sand, Metallgranulate oder dergleichen sowie für flüssige oder gelartige Medien.
  • Gemäß einer weiteren vorteilhaften Ausbildung der Erfindung ist der Aufnahmeraum 17 des 16 in Richtung der Austrittsöffnung 13 sich verbreiternd eingerichtet und ausgebildet. Beispielsweise ist der Aufnahmeraum 17 kegelstumpfförmig ausgebildet, indem das Aufnahmeelement 16 mit seinen Seitenwänden 18 und dem Bodenbereich 14 die entsprechenden Mantelflächen des Kegelstumpfs bildet.
  • Vorzugsweise sind zur klemmfreien Führung des 16 in dem Gehäuseelement 12 an der Innenseite 19 des Gehäuseelements 12 oder an der Außenseite 20 des 16 Führungselemente 21 angeordnet. Vergleiche hierzu die Draufsicht gemäß Figur 5 mit Blickrichtung auf die Austrittsöffnung 13 einschließlich des in der Figur 5 gezeigten vergrößerten Ausschnitts. Das Triebwerk 10 umfasst mindestens eines der Führungselemente 21, wobei vorzugsweise an der Innenseite 19 des Gehäuseelements 12 mehrere der Führungselemente 21 angeordnet sind. Weiter bevorzugt sind die Führungselemente 21 in gleichmäßigem Abstand über den Umfang verteilt und symmetrisch zur Längsachse des Gehäuseelements 12 angeordnet. Alternativ können das oder die Führungselement(e) 21 an der Außenseite 20 des Aufnahmeelements 16 angeordnet sein. Es ist auch möglich, dass einige der Führungselemente 21 an der Außenseite des Aufnahmeelements 16 und die weitere Führungselemente 21 an der Innenseite 19 des Gehäuseelements 12 angeordnet sind. Die Führungselement 21 sind vorzugsweise stegförmig ausgebildet. Vorzugweise sind die Führungselement 21 derart dimensioniert, dass diese sich jeweils über Kreissegmente mit einem Mittelpunktswinkel von mindestens 30° erstrecken. Weiter bevorzugt sind die Oberflächen der Führungselemente 21 sowie die mit diesen in Kontakt stehenden Flächen mit einer Gleitbeschichtung versehen. Die Gleitbeschichtung ist vorzugsweise als Graphit- oder Teflonbeschichtung ausgebildet.
  • Weiter bevorzugt ist im Bereich der Austrittsöffnung 13 des Gehäuseelements 12 ein Begrenzungsmittel 22 angeordnet. Die Funktion des Begrenzungsmittels 22 besteht darin, den Weg des Aufnahmeelement 16 bzw. des Trennelements 15 am Ende der Austrittsöffnung 13 zu begrenzen, so dass dieses zwar innerhalb des Gehäuseelements 12 bewegbar angeordnet ist, jedoch nur insoweit, dass das Aufnahmeelement 16 bzw. das Trennelement 15 das Gehäuseelement beim Aktivieren des Triebwerks 10 nicht vollständig verlassen kann. Vorzugsweise ist das Begrenzungsmittel 22 als Ringelement ausgebildet, dass am Rand des Gehäuseelements 12 angeordnet ist und so die Austrittsöffnung 13 definiert. Der Außendurchmesser des Aufnahmeelements 16 ist im Bereich der Seitenwände 18 kleiner als der Innendurchmesser des Ringelements, d.h. kleiner als der Durchmesser der Austrittsöffnung 13 gewählt. Entsprechend ist der Durchmesser des Bodenbereichs 14 des 16 größer als der Innendurchmesser des Ringelements eingerichtet, so dass das der Bodenbereich 14 des 16 unter Formschluss mittels des Ringelements gegen ein Herausgleiten aus dem Gehäuseelement 12 gesichert ist.
  • Besonders bevorzugt ist die diskrete Ausstoßmasse 11 ein schüttgutförmiger Körper, beispielsweise in Form von Sand, granulatförmigen Stoffen, wie Metallgranulaten oder dergleichen. Alternativ ist die diskrete Ausstoßmasse 11 ein Vollkörper, d.h. einstückig ausgebildet. Die diskrete Ausstoßmasse 11 ist jedoch nicht nur auf Feststoffe beschränkt sondern kann alternativ zusätzlich flüssige Medien umfassen. Alternativ ist die diskrete Ausstoßmasse 11 ausschließlich als Fluid oder als gelförmiges Medium ausgebildet.
  • Weiter bevorzugt umfasst die Ausstoßmasse 11 eine Zerlegungsladung mit einer Verzögerungseinheit, die zum zeitverzögerten Zerlegen der Ausstoßmasse 11 eingerichtet und ausgebildet ist. Die Verzögerungseinheit ist entweder als elektronische Verzögerungsschaltung oder als pyrotechnische Verzögerungsleitung ausgebildet und eingerichtet. Besonders vorteilhaft wird die Verzögerungszeit, die den Zeitraum zwischen dem Aktivieren des Triebwerks 10 und dem Aktivieren der Zerlegungsladung definiert, so gewählt, dass die Zerlegungsladung zu dem Zeitpunkt aktiviert wird, an dem die Ausstoßmasse 11 seine maximale Steighöhe erreicht hat.
  • Weiter bevorzugt ist die diskrete Ausstoßmasse 11 als Kartusche ausgebildet, beispielsweise als Kunststoff- oder Pappkartusche. Vorzugsweise ist die Kartusche seitlich geschlitzt ausgebildet, so dass die Kartusche beim Aktivieren der Zerlegungsladung in Einzelteile zerlegt werden und die Ausstoßmasse 11 ungehindert in kleinere Einheiten zerfallen kann. Alternativ ist es möglich, dass die Ausstoßmasse 11 eine Umhüllung aufweist, die derart ausgebildet und eingerichtet ist, dass diese sich aufgrund der vorbeiströmenden Umgebungsluft nach dem Ausstoßen ablöst und die Ausstoßmasse 11 seitlich freigegeben wird.
  • Zur Erfassung von Explosionen bzw. Detonationen in der Umgebung des Fahrzeugs bzw. der Fahrzeugnutzlast umfasst die Detektionseinrichtung mindestens einen an der an der Struktur des Fahrzeugs oder des Fahrzeugnutzlast angeordneten Beschleunigungssensor. Der Beschleunigungssensor ist dabei zur Erfassung von explosionbedingten Verformungen der jeweiligen Struktur ausgebildet und eingerichtet. Auf diese Weise wird sichergestellt, dass nur im Falle einer tatsächlich durch eine Explosion hervorgerufenen beginnenden Verformung des Fahrzeugs mittels der Steuerungseinrichtung als Reaktion auf das vom Beschleunigungssensor abgegebene Signal das Triebwerk 10 aktiviert werden, so dass eine Fehlaktivierung des Triebwerks 10 praktisch ausgeschlossen ist. Alternativ umfasst die Detektionseinrichtung andere Sensortypen zur Erkennung der Verformung des Fahrzeugs, beispielsweise Dehnungsmessstreifen.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist eine Mehrzahl der Triebwerke 10 an dem Fahrzeug und/oder der Fahrzeugnutzlast angeordnet. Vorzugsweise ist an Eckbereich mindestens eines der Triebwerke 10 angeordnet, so dass die Anzahl der Triebwerke 10 vorzugsweise mindestens 4 bzw. ein Vielfaches davon beträgt. Besonders bevorzugt ist die Steuereinrichtung zum zeitversetzten aktivieren der Triebwerke 10 ausgebildet und eingerichtet. Beispielsweise wird ein Fahrzeug mit einer Masse von ca. 5 t mit vier der Triebwerke 10 ausgestattet, die jeweils einen Triebwerksschub von bis zu 4 x 150 kN erzeugen können. Aufgrund der zuvor beschriebenen Ausgestaltung der Triebwerke 10 wird diese Schubgröße typisch in weniger als 0,5 ms bereitgestellt, so dass der mittels der Triebwerke 10 erzeugte Schub als impulsartige Stabilisierungskraft unmittelbar nach der Detektion der Explosion bzw. eine Detonation auf das Fahrzeug bzw. die Fahrzeugnutzlast ausgeübt wird. Mittels der zur zeitversetzten Aktivierung der Triebwerke 10 ausgebildeten Steuerungseinrichtung ist es möglich, auch Explosionseinwirkung über einen längeren Zeitraum hinweg entgegen zu wirken. In diesem Fall werden mehrere der Triebwerke 10 sequentiell oder zeitlich überlappend mittels der Steuerungseinrichtung aktiviert und so in mehrfacher Folge impulsartige Stabilisierungskräfte auf das Fahrzeug ausgeübt. Die Triebwerke 10 können dabei hinsichtlich ihrer Triebwerksleistung abgestuft ausgebildet sein, so dass das der Schub des zuerst zu aktivierenden Triebwerks 10 größer als derjenige Schub der zeitlich später zu aktivierenden Triebwerke 10 gewählt wird.
  • Vorteilhafterweise ist das eine bzw. die Mehrzahl der Triebwerke 10 derart an dem Fahrzeug und/oder an der Fahrzeugnutzlast angeordnet, dass die diskrete Ausstoßmasse 11 zumindest im Wesentlichen in vertikaler Richtung beim Aktivieren des Triebwerks 10 beschleunigt wird. Beispielsweise ist das Triebwerk 10 mit seiner Längsachse parallel oder um einen Winkel im Bereich zwischen 0° und ±90° gegenüber der Vertikalen angeordnet, so dass die Austrittsöffnung 13 in eine vom Untergrund abgewandte Richtung zeigt. Ist das Triebwerk 10 bzw. die Mehrzahl der Triebwerke 10 mit der Längsachse parallel zur Vertikalen angeordnet, wird die diskrete Ausstoßmasse 11 beim Aktivieren des Triebwerks 10 in vertikaler Richtung beschleunigt, so dass die dabei entstehenden Rückstoßkraft als Stabilisierungskraft das Fahrzeug bzw. die Fahrzeugnutzlast zusätzlich zu dessen Gewichtskraft senkrecht auf den Untergrund drückt und diese so am Abheben vom Untergrund hindert.
  • Alternativ sind die Mehrzahl der Triebwerke 10 mit ihrer Längsachse um einen Winkel im Bereich zwischen 0° und ±90° gegenüber der Vertikalen geneigt angeordnet. Auf diese Weise kann nicht nur das Abheben des Fahrzeugs bzw. der Fahrzeugnutzlast vom Untergrund sondern zusätzlich auch ein Kippen bzw. Rotieren, beispielsweise durch die Einwirkung einer Explosion oder Detonation in einem seitlich vom Fahrzeug bzw. von der Fahrzeugnutzlast gelegenen Bereich, wirksam entgegengewirkt werden.
  • Das erfindungsgemäße Verfahren ist im Zusammenhang mit dem erfindungsgemäßen Fahrzeug bereits eingehend erläutert worden, so dass zur Vermeidung von Wiederholungen auf die entsprechenden Textpassagen verwiesen wird.

Claims (14)

  1. Stabilisierungseinrichtung für ein Fahrzeug und/oder eine Fahrzeugnutzlast, wobei die Stabilisierungseinrichtung
    eine Detektionseinrichtung zur Erfassung einer Explosion,
    mindestens ein Triebwerk (10) zur Stabilisierung des Fahrzeugs und/oder der Fahrzeugnutzlast, sowie
    eine Steuereinrichtung zur Aktivierung des mindestens einen Triebwerks (10) im Fall einer mittels der Detektionseinrichtung erfassten Explosion umfasst, wobei
    das Triebwerk (10) ein Treibmittel (23) und eine von dem Treibmittel (23) getrennt angeordnete diskrete Ausstoßmasse (11) umfasst, wobei das Treibmittel (23) und die diskrete Ausstoßmasse (11) derart eingerichtet und ausgebildet sind, dass bei der Aktivierung des Triebwerks (10) durch die Steuereinrichtung die diskrete Ausstoßmasse (11) mittels des Treibmittels (23) unter Beaufschlagung des Fahrzeugs und/oder der Fahrzeugnutzlast mit einer Stabilisierungskraft beschleunigt wird,
    wobei zwischen dem Treibmittel (23) und der diskreten Ausstoßmasse (11) ein bewegbar ausgebildetes Trennelement (15) angeordnet ist, wobei das Trennelement (15) als ein Aufnahmeelement (16) mit einem Aufnahmeraum (17) zur Aufnahme der diskreten Ausstoßmasse (11) ausgebildet und eingerichtet ist, wobei das Aufnahmeelement (16) in dem Gehäuseelement (12) und relativ zu diesem bewegbar angeordnet ist.
  2. Stabilisierungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Triebwerk (10) ein Gehäuseelement (12) mit einer Austrittsöffnung (13) für die diskrete Ausstoßmasse (11) umfasst.
  3. Stabilisierungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die diskrete Ausstoßmasse (11) eine zum zeitverzögerten Zerlegen der diskreten Ausstoßmasse (11) eingerichtete Zerlegungsladung mit einer Verzögerungseinheit umfasst.
  4. Stabilisierungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Aufnahmeraum (17) des Aufnahmeelements (16) in Richtung der Austrittsöffnung (13) sich verbreiternd eingerichtet und ausgebildet ist.
  5. Stabilisierungseinrichtung nach einem der Ansprüche 1 oder 4, dadurch gekennzeichnet, dass an der Innenseite (19) des Gehäuseelements (12) und/oder an der Außenseite (20) des (16) mindestens ein Führungselement (21) zur Führung des Aufnahmeelements (16) in dem Gehäuseelement (12) angeordnet ist.
  6. Stabilisierungseinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im Bereich der Austrittsöffnung (13) des Gehäuseelements (12) ein Begrenzungsmittel (22) zur Wegbegrenzung des (16) angeordnet ist.
  7. Stabilisierungseinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die diskrete Ausstoßmasse (11) ein schüttgutförmiger Festkörper, ein Vollkörper oder ein Fluid ist.
  8. Stabilisierungseinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Detektionseinrichtung mindestens einen Beschleunigungssensor umfasst, der zur Erfassung von explosionsbedingten Verformungen des Fahrzeugs und/oder der Fahrzeugnutzlast ausgebildet und eingerichtet ist.
  9. Stabilisierungseinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Mehrzahl der Triebwerke (10) an dem Fahrzeug und/oder der Fahrzeugnutzlast angeordnet ist, wobei die Steuereinrichtung zum zeitversetzten aktivieren der Triebwerke (10) ausgebildet und eingerichtet ist.
  10. Stabilisierungseinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das mindestens eine Triebwerk (10) derart an dem Fahrzeug und/oder an der Fahrzeugnutzlast angeordnet ist, dass die diskrete Ausstoßmasse (11) zumindest im Wesentlichen in vertikaler Richtung beim Aktivieren des Triebswerks (10) beschleunigt wird.
  11. Verfahren zur Stabilisierung eines Fahrzeugs und/oder einer Fahrzeugnutzlast beim Einwirken einer Explosion, umfassend die Schritte:
    Detektieren einer Explosion,
    Aktivieren mindestens eines Triebwerks (10) im Fall einer detektierten Explosion mittels einer Steuereinrichtung,
    Beschleunigen einer diskreten Ausstoßmasse (11) mittels eines Treibmittels (23), um das Fahrzeug und/oder die Fahrzeugnutzlast mit einer Stabilisierungskraft zu beaufschlagen, und
    Bewegen des Trennelements (15) mittels des Treibmittels (23) beim Aktivieren des Triebwerks (10) in Richtung einer Austrittsöffnung (13), wobei das Trennelement (15) als ein Aufnahmeelement (16) mit einem Aufnahmeraum (17) die diskrete Ausstoßmasse (11) aufnimmt und das Aufnahmeelement (16) in dem Gehäuseelement (12) und relativ zu diesem bewegbar angeordnet ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Detektieren der Explosion durch Erfassen von explosionsbedingten Verformungen des Fahrzeugs und/oder der Fahrzeugnutzlast mittels eines Beschleunigungssensors erfolgt.
  13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass mehrere der Triebwerke (10) zeitversetzt aktiviert werden.
  14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die diskrete Ausstoßmasse (11) mittels einer Zerlegungsladung zeitverzögert nach dem Aktivieren des Triebwerks (10) zerlegt wird.
EP12786931.1A 2011-11-07 2012-11-07 Stabilisierungseinrichtung Active EP2776783B9 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110055096 DE102011055096B4 (de) 2011-11-07 2011-11-07 Stabilisierungseinrichtung
PCT/EP2012/071995 WO2013068380A1 (de) 2011-11-07 2012-11-07 Stabilisierungseinrichtung

Publications (3)

Publication Number Publication Date
EP2776783A1 EP2776783A1 (de) 2014-09-17
EP2776783B1 true EP2776783B1 (de) 2018-05-09
EP2776783B9 EP2776783B9 (de) 2018-09-26

Family

ID=47178655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12786931.1A Active EP2776783B9 (de) 2011-11-07 2012-11-07 Stabilisierungseinrichtung

Country Status (3)

Country Link
EP (1) EP2776783B9 (de)
DE (1) DE102011055096B4 (de)
WO (1) WO2013068380A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514369B (en) 2013-05-21 2016-01-06 Armourworks Internat Ltd A Blast Attenuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148118A1 (en) * 2010-05-27 2011-12-01 Roger Mark Sloman Vehicle stabilization in the event of large detonation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2121089C3 (de) * 1971-04-29 1978-10-19 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Gerät zum Räumen von Landminen
FR2640229B1 (fr) * 1988-12-14 1994-09-23 Aerospatiale Systeme d'arme comportant un vehicule aerien a bord duquel est embarque au moins un dispositif pour le lancement d'un projectile
GB2291958B (en) * 1992-04-15 1996-06-26 Royal Ordnance Plc Disrupter weapon
DE4304231A1 (de) * 1993-02-05 1994-08-11 Schreiber Hans Verfahren und Bausatz zur rückstoßarmen Betätigung von Feuerwaffen
DE19631715C2 (de) * 1996-08-06 2000-01-20 Bundesrep Deutschland Schutzsystem für Fahrzeuge gegen Minen
DE19649709A1 (de) * 1996-11-29 1998-06-04 Diehl Gmbh & Co Vorrichtung zum Schutz eines gepanzerten Fahrzeuges
DE10259918B4 (de) * 2002-12-20 2005-06-23 Rheinmetall Landsysteme Gmbh Minenschutzeinrichtung, insbesondere für Radfahrzeuge
GB0822444D0 (en) 2008-12-10 2009-01-14 Sloman Roger M Vehicle stabilization
DE102010008828B4 (de) * 2010-02-22 2012-03-01 Rheinmetall Landsysteme Gmbh Schutzsystem für ein Fahrzeug oder dergleichen
GB201015229D0 (en) * 2010-09-13 2010-10-27 Sloman Roger M Vehicle stabilization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148118A1 (en) * 2010-05-27 2011-12-01 Roger Mark Sloman Vehicle stabilization in the event of large detonation

Also Published As

Publication number Publication date
DE102011055096B4 (de) 2015-05-07
DE102011055096A9 (de) 2013-08-14
WO2013068380A1 (de) 2013-05-16
EP2776783B9 (de) 2018-09-26
DE102011055096A1 (de) 2013-05-08
EP2776783A1 (de) 2014-09-17

Similar Documents

Publication Publication Date Title
EP0049005B1 (de) Einrichtung an einem Flugzeug zum Abwerfen von Gegenständen
DE2936554T1 (de) An arrangement for launching interference material
DE2701935A1 (de) Druckgasbetaetigtes schaltelement
EP0525305B1 (de) Selbstschutz-Werfereinrichtung
DE2330635A1 (de) Neue, durch schiesstoff getriebene einstellvorrichtung, insbesondere zum spannen von sicherheitsgurten
DE2907308C2 (de) Geschoß mit mindestens einem ausstoßbaren Tochtergeschoß
DE2616209A1 (de) Kurzbahngeschoss fuer uebungsmunition
DE3802002A1 (de) Zuender- und sprengstoffloses geschoss fuer rohrwaffen
DE2227104A1 (de) Geschoss oder rakete mit aufklappbarem leitwerk
EP2776783B1 (de) Stabilisierungseinrichtung
EP0435083B1 (de) Einstellbarer Abstandshalter auf einem Hohlladungsgefechtskopf, umschaltbar für Tiefen- oder Seitenwirkung
EP3767223B1 (de) System, insbesondere handgranate
DE2829002A1 (de) Multi-gefechtskopf
DE102019007104B3 (de) Splittergefechtskopf für einen Flugkörper
DE4135392C2 (de) Gefechtskopf
DE3543939A1 (de) Anordnung zum verhindern einer vorzeitigen zuendung eines geschosses
DE102014220172A1 (de) Hilfsbremsvorrichtung für ein Kraftfahrzeug
DE102019135591A1 (de) Stromleitungs-Trennvorrichtung
DE4126793C1 (de) Tandemgefechtskopf
EP0805071A2 (de) Vorrichtung zum Aufblasen eines Airbags (III)
EP2405230A2 (de) Trägervorrichtung für einen modularen Nebelwurfkörper
DE2453267C3 (de) Zündvorrichtung für ein Explosivgeschoß
DE102013100825B3 (de) Pyro-mechanischer Aktuator und Verbindungsvorrichtung mit einem solchen Aktuator
DE2427680A1 (de) Bewegliche abschusseinrichtung fuer panzerbrechende wirkkoerper
DE3534197C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171031

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20180403

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 997975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012676

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012676

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 997975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121107

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221102

Year of fee payment: 11

Ref country code: FR

Payment date: 20221118

Year of fee payment: 11

Ref country code: DE

Payment date: 20221125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221124

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508