EP2772321B1 - Walzwerk mit einer Arbeitswalzenverlagerungsfunktion - Google Patents
Walzwerk mit einer Arbeitswalzenverlagerungsfunktion Download PDFInfo
- Publication number
- EP2772321B1 EP2772321B1 EP14001890.4A EP14001890A EP2772321B1 EP 2772321 B1 EP2772321 B1 EP 2772321B1 EP 14001890 A EP14001890 A EP 14001890A EP 2772321 B1 EP2772321 B1 EP 2772321B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- roll
- portions
- work rolls
- rolling mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/14—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
- B21B13/142—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls by axially shifting the rolls, e.g. rolls with tapered ends or with a curved contour for continuously-variable crown CVC
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/021—Rolls for sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/03—Sleeved rolls
- B21B27/032—Rolls for sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/30—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
- B21B1/32—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/02—Transverse dimensions
- B21B2261/06—Width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2263/00—Shape of product
- B21B2263/02—Profile, e.g. of plate, hot strip, sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/02—Roll dimensions
- B21B2267/06—Roll diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/26—Hardness of the roll surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2269/00—Roll bending or shifting
- B21B2269/12—Axial shifting the rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/16—Adjusting or positioning rolls
- B21B31/18—Adjusting or positioning rolls by moving rolls axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/04—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
Definitions
- the present invention relates to a rolling mill having a work roll shifting function in which work rolls each having one end formed in a tapering shape are shifted in the axial direction thereof to control the edge drop of a strip.
- edge drop a phenomenon referred to as so-called edge drop occurs.
- portions near two opposite end portions of a strip become thinner than a central portion thereof in the strip thickness distribution in the width direction of the strip due to plastic flow during rolling.
- desired accuracy in strip thickness is required.
- rolled products have increasingly become of higher quality and higher accuracy at the present time. Accordingly, demands for higher accuracy in strip thickness have become more rigorous even in the strip thickness distribution in the width direction.
- a work roll shifting method is generally employed in which work rolls each having one end formed in a tapering shape are shifted in the axial direction thereof. Such a work roll shifting method is generally applied to a tandem rolling mill.
- a tandem rolling mill 300 includes a first rolling stand 301, a second rolling stand 302, a third rolling stand 303, and a fourth rolling stand 304.
- Each of the rolling stands 301 to 304 rotatably supports a pair of upper and lower work rolls 310a and 310b.
- the work rolls 310a and 310b respectively include cylindrical roll body portions 311a and 312a and tapering portions 311b and 312b formed at one ends of these roll body portions 311a and 312a.
- the tapering portions 311b and 312b have roll shoulder portions 311c and 312c, which are the start positions of the tapered surfaces thereof.
- the work rolls 310a and 310b are provided such that the tapering portions 311b and 312b are located on opposite sides from each other in the axial direction of the work rolls 310a and 310b.
- the strip 1 is passed between the work rolls 310a and 310b of each of the rolling stands 301 to 304 to reduce the strip thickness thereof.
- the shift positions of the roll shoulder portions 311c and 312c in this first rolling stand 301 are deepest positions (distance ⁇ 1) located inward from widthwise opposite end portions of the strip 1.
- the shift positions in the second rolling stand 302 are positions (distance ⁇ 2) shallower than the foregoing.
- the shift positions in the third rolling stand 303 are positions (distance ⁇ 3) further shallower than the foregoing.
- the shift positions in the fourth rolling stand 304 are positions (distance ⁇ 4) yet further shallower than the foregoing.
- the shift positions of the roll shoulder portions 311c and 312c in the rolling stands 301 to 304 are set to change stepwise from the first rolling stand 301 on the first stage to the fourth rolling stand 304 on the last stage such that ( ⁇ 1> ⁇ 2> ⁇ 3> ⁇ 4) is satisfied, in accordance with the transition of the widthwise opposite end portions of the strip 1 which have been plastically deformed with a reduction in the thickness of the strip 1. Accordingly, the strip thicknesses of the widthwise opposite end portions of the strip 1 in each of the rolling stands 301 to 304 geometrically increase compared to the strip thickness of widthwise central portions thereof. As a result, the edge drop of the widthwise opposite end portions of the strip 1 after rolling is reduced.
- the above-described work roll shifting method will be applied to a reversing rolling mill including a single rolling stand.
- a reversing rolling mill 350 the strip 1 is passed between the work rolls 310a and 310b back and forth plural times to be rolled plural times to be rolled plural times.
- the shift positions of the roll shoulder portions 311c and 312c thereof need to be changed stepwise from deepest positions located inward from the widthwise opposite end portions of the strip 1 such that ( ⁇ 1> ⁇ 2> ⁇ 3) is satisfied, in accordance with the transition of the widthwise opposite end portions plastically deformed with a reduction in the thickness of the strip 1.
- abrasion flaws R have occurred in end portions of the roll body portions 311a and 312a of the work rolls 310a and 310b formed of high-speed steel (Vickers hardness: 900 HV). Such abrasion flaws R occurs significantly particularly in the rolling of hard and medium-hard materials for which rolling force is set high and soft materials which are work-hardened by repeating passing.
- abrasion flaws R in the roll body portions 311a and 312a are shifted stepwise from the widthwise opposite end portions of the strip 1 toward portions located inward therefrom with the shifting of the roll shoulder portions 311c and 312c with every repetition of passing.
- This causes abrasion flaws R corresponding to the number of times of previous passing to be transferred to surfaces of the strip 1 which is rolled by the roll body portions 311a and 312a.
- transfer flaws S occur.
- US 2004/206147 A1 discloses a rolling mill with the features of the pre-characterizing portion of Claim 1.
- Patent Literature 1 is used in cold rolling before acid cleaning, and intended to crush and remove hot-rolling scale adhering to surfaces of a strip surface with the rolling force thereof by using a cemented carbide as the material thereof.
- the work rolls described in Patent Literature 2 are provided in a tandem rolling mill, and intended to reduce the occurrence of abrasion particles of a strip during rolling and increase cleanliness on surfaces of the strip by using a cemented carbide as the material thereof.
- the above-described conventional work rolls have not been applied to work roll shifting method.
- an object of the present invention is to provide a rolling mill having a work roll shifting function which can roll a high-quality strip having no transfer flaws on the surface thereof by reducing the occurrence of abrasion flaws in work rolls caused by widthwise opposite end portions of the strip when the work rolls each having one end formed in a tapering shape are shifted in the axial direction thereof to control the edge drop of the strip.
- the rolling mill having a work roll shifting function by increasing the surface hardnesses of at least the roll body portions of the work rolls, the occurrence of abrasion flaws in the roll body portions can be reduced which is caused by widthwise opposite end portions (edge portions) of a strip when the work rolls having tapering portions are shifted in the axial direction thereof to control the edge drop of the strip. Accordingly, a high-quality strip having no transfer flaws on the surface thereof can be rolled.
- a reversing rolling mill 11 which is a six-high rolling mill, includes a single rolling stand, and has a pair of left and right (drive- and work-side) housings 21a and 21b. Inside the housings 21a and 21b, pairs of upper and lower work rolls 22a and 22b, intermediate rolls 23a and 23b, backup rolls 24a and 24b are rotatably supported.
- the work rolls 22a and 22b are respectively in contact with and supported by the intermediate rolls 23a and 23b. These intermediate rolls 23a and 23b are respectively in contact with and supported by the backup rolls 24a and 24b. Moreover, roll shifting devices (roll shifting means) 40, 50, 60, and 70 are provided at the outer sides of the work rolls 22a and 22b and the intermediate rolls 23a and 23b. This will be described in detail later. Further, in the reversing rolling mill 11, a strip 1 is passed back and forth plural times between the work rolls 22a and 22b driven and rotated (forward and reverse rotation) by an unillustrated drive unit so that the strip 1 is rolled to a predetermined strip thickness and strip width.
- the work rolls 22a and 22b respectively include cylindrical roll body portions 31a and 32a, tapering portions 31b and 32b in tapered shapes respectively formed at one ends of the roll body portions 31a and 32a, roll neck portions 31d and 32d formed at the other ends of the roll body portions 31a and 32a, and roll neck portions 31e and 32e formed at tips of the tapering portions 31b and 32b.
- the tapering portions 31b and 32b have roll shoulder portions 31c and 32c, which are the start positions (origins) of the tapered surfaces thereof. It should be noted that the work rolls 22a and 22b are disposed such that the tapering portions 31b and 32b are located on opposite sides from each other in the axial direction of the work rolls 22a and 22b.
- the surfaces of the roll body portions 31a and 32a and the tapering portions 31b and 32b are used to roll the strip 1.
- the surfaces (surface layers) of the roll body portions 31a and 32a are formed of a ceramic material or a cemented carbide (e.g., WC-Co system), which is a high hardness material.
- the surface hardnesses thereof are 1200 HV or more in terms of Vickers hardness, preferably approximately 1600 HV.
- the surfaces of the tapering portions 31b and 32b may also be formed of a ceramic material or a cemented carbide, and the surface hardnesses thereof may be 1200 HV or more in terms of Vickers hardness.
- the work rolls 22a and 22b are composite rolls whose surface layer portions are formed of a ceramic material or a cemented carbide and whose internal layer (core) portions are formed of high-speed steel or the like. It should be noted that the work rolls 22a and 22b may be thermally-sprayed-surface rolls in which a ceramic material is thermally sprayed on surfaces thereof.
- the work roll 22a is rotatably supported to be shiftable in the axial direction thereof.
- the roll shifting device 40 includes a pair of left and right bearing boxes 41a and 41b. Inside these bearing boxes 41a and 41b, the roll neck portions 31d and 31e of the work roll 22a are rotatably supported, respectively.
- the bearing box 41a on the drive side has a shifting frame 43 detachably attached thereto through a detachable hook 42. Further, shifting cylinders 44a and 44b are interposed between the shifting frame 43 and the housing 21a.
- pairs of front and rear shifting blocks 45a and 45b are provided on opposite sides of each of the bearing boxes 41a and 41b. These opposing shifting blocks 45a and 45b are connected by a stay 46, and are respectively supported between side walls of the housings 21a and 21b to be slidable in the axial direction of the work roll 22a. Further, bending cylinders 47a and 47b are housed in the shifting blocks 45a and 45b, respectively. These bending cylinders 47a and 47b can press lower surfaces of the bearing boxes 41a and 41b. Thus, bending force is applied to the work roll 22a.
- the work roll 22a can be shifted in the axial direction thereof by actuating the shifting cylinders 44a and 44b. Further, since the shifting blocks 45a and 45b are also shifted with the shifting of the bearing boxes 41a and 41b, even if the bearing boxes 41a and 41b are located at any shift positions, the bending cylinders 47a and 47b can apply bending force, and strip shape control in the width direction of the strip 1 can be performed.
- the work roll 22b is rotatably supported to be shiftable in the axial direction thereof.
- the roll shifting device 50 includes a pair of left and right bearing boxes 51a and 51b. Inside these bearing boxes 51a and 51b, the roll neck portions 32d and 32e of the work roll 22b are rotatably supported, respectively.
- the bearing boxes 51a and 51b have the same supporting structures as those of the bearing boxes 41a and 41b shown in Fig. 3 .
- pairs of front and rear shifting blocks 55a and 55b are provided on two opposite sides of each of the bearing boxes 51a and 51b.
- the shifting blocks 55a and 55b are respectively provided between side walls of the housings 21a and 21b to be slidable in the axial direction of the work roll 22b.
- bending cylinders 57a and 57b are housed in the shifting blocks 55a and 55b, respectively. These bending cylinders 57a and 57b can press lower surfaces of the bearing boxes 51a and 51b.
- the roll shifting device 50 can also perform shifting operation, bending operation, and strip shape control similar to those of the roll shifting device 40.
- the intermediate roll 23a in a tapering shape is supported which has the same shape as those of the work rolls 22a and 22b.
- the intermediate roll 23a is rotatably supported in bearing boxes 61a and 61b, and supported between side walls of the housings 21a and 21b to be slidable in the axial direction thereof.
- bending cylinders 67a and 67b respectively in shifting blocks 65a and 65b apply bending force to the intermediate roll 23a.
- the intermediate roll 23b in a tapering shape is supported which has the same shape as those of the work rolls 22a and 22b.
- the intermediate roll 23b is rotatably supported in bearing boxes 71a and 71b, and supported between side walls of the housings 21a and 21b to be slidable in the axial direction thereof.
- bending cylinders 77a and 77b respectively in shifting blocks 75a and 75b apply bending force to the intermediate roll 23b.
- the backup roll 24a is rotatably supported in bearing boxes 25a and 25b.
- These bearing boxes 25a and 25b are respectively supported by the housings 21a and 21b through a pair of left and right pass-line adjustment devices 27a and 27b including worm jacks and the like.
- the pass-line adjustment devices 27a and 27b can be adjusted in the vertical direction.
- the backup roll 24b is rotatably supported in bearing boxes 26a and 26b. These bearing boxes 26a and 26b are respectively supported by the housings 21a and 21b through a pair of left and right roll gap control oil-hydraulic cylinders 28a and 28b. In other words, by actuating the roll gap control oil-hydraulic cylinders 28a and 28b, the rolling force thereof is transmitted from the work rolls 22a and 22b through the intermediate rolls 23a and 23b or directly from the work rolls 22a and 22b to the strip 1.
- the strip 1 is passed between the work rolls 22a and 22b back and forth plural times. Further, during this multiple rolling in which the strip 1 is passed multiple times while the transport direction thereof is inverted, the work rolls 22a and 22b are gradually shifted for every pass.
- the shift positions of the roll shoulder portions 31c and 32c are controlled stepwise from deepest positions located inward from two opposite end portions of the strip 1, in accordance with the transition of the two opposite end portions plastically deformed with a reduction in the thickness of the strip 1. This can reduce the edge drop of the strip 1.
- the end portions of the roll body portions 31a and 32a opposite to the tapering portions 31b and 32b come respectively in contact with widthwise opposite end portions (edge portions) of the strip 1.
- the surface hardnesses of the roll body portions 31a and 32a are high, in spite of the fact that the roll shoulder portions 31c and 32c are shifted with every repetition of passing in accordance with the transition of the widthwise opposite end portions of the strip 1 which have been plastically deformed, the occurrence of abrasion flaws R (see Figs. 18A to 18C ) in the roll body portions 31a and 32a can be reduced.
- the high-quality strip 1 having no transfer flaws S see Figs. 18A to 18C ) on the surface thereof can be rolled.
- the depth of wear of a ceramic material or a cemented carbide having a Vickers hardness of 1600 HV, which is 1.8 times harder than high-speed steel having a Vickers hardness of 900 HV is 1/25 of that of the high-speed steel.
- the depth of wear thereof can be set to 1/4 of that of the high-speed steel.
- the surfaces of the roll body portions 31a and 32a of the work rolls 22a and 22b are formed of a ceramic material or a cemented carbide, which is a high hardness material, and the surface hardnesses thereof are 1200 HV or more in terms of Vickers hardness. Further, by specifying the surface materials and surface hardnesses of the roll body portions 31a and 32a as described above, the occurrence of abrasion flaws R can be reduced even during the rolling particularly of hard materials such as magnetic steel, stainless steel, and ultra-high tensile strength steel strip for which rolling force is set high; medium-hard materials; and soft materials such as copper alloy steel strip which are work-hardened by rolling.
- the intermediate-diameter work rolls 22a and 22b are rotatably supported.
- support rolls 81a and 81b facing the work roll 22a and support rolls 91a and 91b facing the work roll 22b are rotatably supported.
- the roll body portion 31a (see Fig. 2 ) of the work roll 22a is supported by the support rolls 81a and 81b. These support rolls 81a and 81b are rotatably supported by split bearings 82a and 82b, respectively.
- the roll body portion 32a (see Fig. 2 ) of the work roll 22b is supported by the support rolls 91a and 91b. These support rolls 91a and 91b are rotatably supported by split bearings 92a and 92b, respectively.
- the support rolls 81a, 81b, 91a, and 91b may be provided on one of the entry and delivery sides.
- the support stiffness of the work rolls 22a and 22b can be improved by providing the support rolls 81a, 81b, 91a, and 91b, the deflection thereof in a horizontal direction (transport direction of the strip 1) can be reduced.
- the work rolls 22a and 22b can be formed to have intermediate diameters in accordance with the improvement of support stiffness.
- the ratios of the roll diameters thereof to the strip width of the strip 1 are 0.08 to 0.25.
- abrasion flaws R in the roll body portions 31a and 32a caused by the widthwise opposite end portions of the strip 1 can be reduced even when the work rolls 22a and 22b formed to have intermediate diameters are shifted in the axial direction thereof to reduce the edge drop of the strip 1.
- the high-quality strip 1 having no transfer flaws S on the surface thereof can be rolled.
- a reversing rolling mill 13 is a four-high rolling mill obtained by removing the intermediate rolls 23a and 23b and the roll shifting devices 60 and 70 for shifting the same from the reversing rolling mill 11 described in the first example.
- abrasion flaws R in the roll body portions 31a and 32a caused by the widthwise opposite end portions of the strip 1 can be reduced when the work rolls 22a and 22b having the tapering portions 31b and 32b are shifted in the axial direction thereof to reduce the edge drop of the strip 1.
- the high-quality strip 1 having no transfer flaws S on the surface thereof can be rolled.
- a reversing rolling mill 14 which is a 20-high rolling mill, includes a single rolling stand, and has a pair of left and right (drive- and work-side) outer housings 111a and 111b. Inside these outer housings 111a and 111b, a pair of upper and lower work rolls 121a and 121b, two pairs of upper and lower first intermediate rolls 122a and 122b, three pairs of upper and lower second intermediate rolls 123a and 123b, and four pairs of upper and lower backing bearing spindles 124a and 124b are rotatably supported.
- the work rolls 121a and 121b are respectively in contact with and supported by the first intermediate rolls 122a and 122b. These first intermediate rolls 122a and 122b are respectively in contact with and supported by the second intermediate rolls 123a and 123b. Moreover, the second intermediate rolls 123a and 123b are in contact with and supported by backing bearings 125a and 125b by which the backing bearing spindles 124a and 124b are rotatably supported. Furthermore, the backing bearing spindles 124a and 124b are rotatably supported in four pairs of upper and lower saddles 126a and 126b, respectively. These saddles 126a and 126b are supported by a pair of upper and lower inner housings 112a and 112b, respectively. Further, in the reversing rolling mill 14, the strip 1 is passed back and forth plural times between the work rolls 121a and 121b which co-rotate with each other to roll the strip 1 to a predetermined strip thickness and strip width.
- the upper inner housing 112a is supported by the outer housings 111a and 111b through two pairs of left and right pass-line adjustment devices 113a and 113b including worm jacks and the like. In other words, by actuating the pass-line adjustment devices 113a and 113b, the pass-line of the strip 1 can be adjusted in the vertical direction.
- the lower inner housing 112b is supported by the outer housings 111a and 111b through a pair of left and right roll gap control oil-hydraulic cylinders 114a and 114b.
- the rolling force is transmitted to the strip 1 through the second intermediate rolls 123a and 123b, the first intermediate rolls 122a and 122b, and the work rolls 121a and 121b.
- the work rolls 121a and 121b respectively include cylindrical roll body portions 131a and 132a, and tapering portions 131b and 132b in tapered shapes respectively formed at one ends of the roll body portions 131a and 132a. Moreover, the tapering portions 131b and 132b have roll shoulder portions 131c and 132c, which are the start positions (origins) of the tapered surfaces thereof. It should be noted that the work rolls 121a and 121b are disposed such that the tapering portions 131b and 132b are located on opposite sides in the axial direction of the work rolls 121a and 121b.
- the surfaces of the roll body portions 131a and 132a and the tapering portions 131b and 132b are used to roll the strip 1.
- the surfaces (surface layers) of the roll body portions 131a and 132a are formed of a ceramic material or a cemented carbide (e.g., WC-Co system), which is a high hardness material.
- the surface hardnesses thereof are 1200 HV or more in terms of Vickers hardness, preferably approximately 1600 HV.
- the surfaces of the tapering portions 131b and 132b may also be formed of a ceramic material or a cemented carbide, and the surface hardnesses thereof may be 1200 HV or more in terms of Vickers hardness.
- the work rolls 121a and 121b are composite rolls whose surface layer portions are formed of a ceramic material or a cemented carbide and whose internal layer (core) portions are formed of high-speed steel or the like. It should be noted that the work rolls 121a and 121b may be thermally-sprayed-surface rolls in which a ceramic material is thermally sprayed on surfaces thereof.
- a roll shifting device (roll shifting means) 140 is provided at the outer sides of the work rolls 121a and 121b.
- This roll shifting device 140 includes double-eccentric thrust bearings 141a, 141b, 141c, and 141d, shift drive units 142a, 142b, 142c, and 142d, and brackets 143a and 143b.
- the thrust bearings 141a and 141b are respectively in contact with end faces of the roll body portion 131a and the tapering portion 131b of the work roll 121a, and supported by the brackets 143a and 143b to be rotatable about a vertical axis and shiftable in the axial direction of the work roll 121a. Further, on upper surfaces of the brackets 143a and 143b, the shift drive units 142a and 142b are provided, respectively. These shift drive units 142a and 142b are connected to the thrust bearings 141a and 141b, respectively. This will be described in detail later.
- the thrust bearings 141c and 141d are respectively in contact with end faces of the roll body portion 132a and the tapering portion 132b of the work roll 121b, and supported by the brackets 143a and 143b to be rotatable about a vertical axis and shiftable in the axial direction of the work roll 121b. Further, under lower surfaces of the brackets 143a and 143b, the shift drive units 142c and 142d are provided, respectively. These shift drive units 142c and 142d are connected to the thrust bearings 141c and 141d, respectively. This will be described in detail later.
- thrust bearings 141a to 141d and the shift drive units 142a to 142d have the same configurations, respectively, the thrust bearing 141a and the shift drive unit 142a, which are disposed in an upper portion on the drive side, will be described below as representative of the thrust bearings 141a to 141d and the shift drive units 142a to 142d with reference to Figs. 9 and 10 .
- the thrust bearing 141a includes a spindle 161 rotatably supported by a bracket 143a. Outside the spindle 161 in the diameter direction thereof, an inner eccentric ring 162, an outer eccentric ring 163, a bearing inner ring 164, a plurality of rollers 165, and a bearing outer ring 166 are disposed in that order, and all of these are rotatably supported. Furthermore, the bearing outer ring 166 is rotatably supported by the spindle 161 through the inner eccentric ring 162 and the outer eccentric ring 163, and rotatably supported by the spindle 161 through the bearing inner ring 164 and the rollers 165. It should be noted that the spindle 161, the inner eccentric ring 162, and the outer eccentric ring 163 can be disposed such that the central axes thereof are deviated from each other.
- the spindle 161 and the inner eccentric ring 162 are coupled to each other by an inner key 167.
- a small-diameter pinion 168 is provided above the inner key 167.
- This small-diameter pinion 168 is rotatably supported to be coaxial with the central axis of the spindle 161.
- a long opening 163a is formed which extends in the diameter direction of the outer eccentric ring 163.
- An outer key 169 is slidably fitted into this long opening 163a.
- a large-diameter pinion 170 is provided above the outer key 169. This large-diameter pinion 170 is rotatably supported to be coaxial with the central axis of the spindle 161.
- the shift drive unit 142a includes a pair of front and rear shifting oil-hydraulic cylinders 181 and 182.
- the shifting oil-hydraulic cylinders 181 and 182 respectively include cylinder portions 181a and 182a, rods 181b and 182b slidably supported in the cylinder portions 181a and 182a, and racks 181c and 182c provided at tips of the rods 181b and 182b. Further, the rack 181c is in mesh with the small-diameter pinion 168, and the rack 182c is in mesh with the large-diameter pinion 170.
- the inner eccentric ring 162 and the outer eccentric ring 163 can be rotated in opposite directions by the same angle of rotation.
- the bearing outer ring 166 is not decentered but can be shifted only in the axial direction of the work roll 121a.
- an unillustrated roll shifting device (roll shifting means) is provided at the outer sides of the first intermediate rolls 122a and 122b.
- the first intermediate rolls 122a and 122b are rotatably supported by the roll shifting device to be shiftable in the axial direction thereof.
- the strip 1 is passed between the work rolls 121a and 121b back and forth plural times. Further, during this multiple rolling in which the strip 1 is passed multiple times while the transport direction thereof is inverted, the work rolls 121a and 121b are gradually shifted for every pass.
- the shift positions of the roll shoulder portions 131c and 132c of the work rolls 121a and 121b are controlled stepwise from deepest positions located inward from two opposite end portions of the strip 1, in accordance with the transition of the two opposite end portions plastically deformed with a reduction in the thickness of the strip 1. This can reduce the edge drop of the strip 1.
- the end portions of the roll body portions 131a and 132a opposite to the tapering portions 131b and 132b come respectively in contact with the widthwise opposite end portions (edge portions) of the strip 1.
- the surface hardnesses of the roll body portion 131a and 132b are high, in spite of the fact that the roll shoulder portions 131c and 132c are shifted with every repetition of passing in accordance with the transition of the widthwise opposite end portions of the strip 1 which have been plastically deformed, the occurrence of abrasion flaws R (see Figs. 18A to 18C ) in the roll body portions 131a and 132a can be reduced.
- the high-quality strip 1 having no transfer flaws S see Fig. 18A to 18C ) on the surface thereof can be rolled.
- the depth of wear of a ceramic material or a cemented carbide having a Vickers hardness of 1600 HV, which is 1.8 times harder than high-speed steel having a Vickers hardness of 900 HV is 1/25 of that of the high-speed steel.
- the depth of wear thereof can be set to 1/4 of that of the high-speed steel.
- the surfaces of the roll body portions 131a and 132a of the work rolls 121a and 121b are formed of a ceramic material or a cemented carbide, which is a high hardness material, and the surface hardnesses thereof are 1200 HV or more in terms of Vickers hardness. Further, by specifying the surface materials and surface hardnesses of the roll body portions 131a and 132a as described above, the occurrence of abrasion flaws R can be reduced during the rolling particularly of hard materials such as magnetic steel and stainless steel strip for which rolling force is set high.
- the work rolls 121a and 121 can be formed to have small diameters in accordance with the improvement of the support stiffness of the work rolls 121a and 121b. Further, in spite of the fact that the work rolls 121a and 121b have small diameters and therefore roll neck portions cannot be formed, the provision of the double-eccentric thrust bearings 141a to 141d makes it possible to shift the work rolls 121a and 121b in the axial direction thereof with a simple configuration in a space-saving manner.
- the ratios of the roll diameters thereof to the strip width of the strip 1 are 0.03 to 0.10.
- the gap between the work rolls 121a and 121b can be increased. This can improve the ease of cobble removal work at the time of cutting the strip 1.
- a reversing rolling mill 15 which is a 20-high rolling mill, includes a monoblock housing 191 having a unitary structure in which upper and lower portions are integrated with each other.
- the backing bearings 125a disposed on both outer sides are supported by the monoblock housing 191 through pass-line adjustment saddles 192b, and the centrally disposed backing bearings 125a are supported by the monoblock housing 191 through roll gap control saddles 192a. Since the monoblock housing 191 has a unitary structure in which upper and lower portions are integrated with each other as described above, the reversing rolling mill 15 can be simplified and miniaturized.
- a reversing rolling mill 16 is a 12-high rolling mill obtained by removing the second intermediate rolls 123a and 123b from the reversing rolling mill 14 or 15 described in the fourth or fifth example. It should be noted that the number of pairs of upper and lower the backing bearing spindles 124a and 124b and the number of pairs of upper and lower the backing bearings 125a and 125b are three. Since the rolls 121a, 121b, 122a, and 122b and the backing bearing spindles 124a and 124b are disposed in a 12-high cluster arrangement as described above, the reversing rolling mill 16 can be simplified and miniaturized.
- a strip thickness measuring instrument 200 is disposed on the delivery side of the work rolls 22a and 22b or 121a and 121b (rolling stand) of each of the reversing rolling mills 11 to 16 of the above-described first to sixth examples.
- This strip thickness measuring instrument 200 is intended to measure strip thickness at one or more points in each of the widthwise opposite end portions (edge portions) of the strip 1.
- the work roll 22a is shifted in the axial direction thereof such that the roll shoulder portion 31c moves toward a widthwise central portion of the strip 1. In other words, the work roll 22a is shifted such that the distance ⁇ w increases.
- the thrust bearing 141a is set to the shift state shown in Fig. 10C .
- the work roll 22a is shifted in the axial direction thereof such that the roll shoulder portion 31c moves outward in the width direction of the strip 1. In other words, the work roll 22a is shifted such that the distance ⁇ w decreases.
- the thrust bearing 141a is set to the shift state shown in Fig. 10A .
- the work roll 22b is shifted in the axial direction thereof such that the roll shoulder portion 32c moves toward a widthwise central portion of the strip 1. In other words, the work roll 22b is shifted such that the distance ⁇ d increases.
- the thrust bearing 141c is set to the shift state shown in Fig. 10C .
- the work roll 22b is shifted in the axial direction thereof such that the roll shoulder portion 32c moves outward in the width direction of the strip 1.
- the work roll 22a is shifted such that the distance ⁇ d decreases.
- the thrust bearing 141c facing the work roll 22a is set to the shift state shown in Fig. 10A .
- the above-described work rolls 22a and 22b, intermediate rolls 23a and 23b, and backup rolls 24a and 24b may be applied to first to fifth rolling stands 211, 212, 213, 214, and 215 of a tandem rolling mill 210.
- the strip thickness measuring instrument 200 is provided on the delivery side of the fifth rolling stand 215 which is the last rolling stand. This makes it possible to reduce the occurrence of abrasion flaws R in the surfaces of the roll body portions 31a and 32a of the work rolls 22a and 22b during rolling. Accordingly, rolling can be performed without limitations on the strip width of the strip 1 which is to be rolled.
- abrasion flaws R occur on surfaces of roll body portion thereof, rolling needs to be performed in the order from a strip having a large strip width to a strip having a smaller strip width.
- abrasion flaws R in the roll body portion 31a and 32a caused by the widthwise opposite end portions of the strip 1 can be reduced by increasing the surface hardnesses of the roll body portions 31a and 32a of the work rolls 22a and 22b, and therefore rolling can be performed without limitations on the strip width of the strip 1.
- flexibility in rolling operation can be increased.
- the present invention can be applied to a rolling mill having a work roll shifting function for shifting work rolls in the axial direction thereof to perform strip shape control in the width direction of a strip.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Claims (4)
- Walzwerk mit einer Arbeitswalzenverlagerungsfunktion, umfassend mindestens ein Walzengerüst (11 bis 16, 210), das ein Paar oberer und unterer Arbeitswalzen (22a, 22b; 121a, 121b) und eine Walzenverlagerungseinrichtung (40, 50, 140) zum Verlagern der Arbeitswalzen in ihrer axialen Richtung enthält, wobei das Paar oberer und unterer Arbeitswalzen jeweils an einem Ende eines Walzenkörperabschnitts (31a, 32a; 131a, 132a) einen sich verjüngenden Abschnitt (31b, 32b; 131b, 132b) mit einem in Richtung einer Spitze der Arbeitswalze graduell abnehmenden Walzendurchmesser aufweisen, wobei das Paar oberer und unterer Arbeitswalzen ein Band (1) einklemmen, während ihre sich verjüngenden Abschnitte auf einander entgegengesetzten Seiten in ihren axialen Richtungen angeordnet sind,
wobei das Walzengerüst ein richtungswechselndes Walzengerüst zum Ausführen mehrfach-durchlaufenden Mehrfachwalzens ist, während eine Transportrichtung des Bandes umgekehrt wird,
gekennzeichnet dadurch, dass
bei den Arbeitswalzen zumindest Oberflächen der Walzen-körperabschnitte aus einem keramischen Material oder einem Hartmetall gebildet sind und so gebildet sind, dass sie eine Vickers-Härte von 1200 HV oder mehr aufweisen, und
die Walzenverlagerungseinrichtung so gesteuert wird, dass Walzenschulterabschnitte (31c, 32c, 131c, 132c), die Anfangsposition der sich verjüngenden Oberflächen der sich verjüngenden Abschnitte sind, jedes Mal schrittweise entlang der axialen Richtung der oberen und unteren Arbeitswalzen von Tiefenpositionen, die von einander in Breitenrichtung gegenüberliegenden Endabschnitten des Bandes nach innen angeordnet sind, in flache Positionen, die näher an den einander in Breitenrichtung gegenüberliegenden Endabschnitten des Bandes angeordnet sind, verlagert werden, wenn das Band durchläuft. - Walzwerk nach Anspruch 1,
wobei die Walzenverlagerungseinrichtung (40, 50, 140) ein doppelt-exzentrisches Lager (141a, 141b, 141c, 141d) enthält. - Walzwerk nach Anspruch 1 oder 2,
wobei jede der Arbeitswalzen (121a, 121b) eine Walze ist, die der Bedingung genügt, dass ein Verhältnis des Walzendurchmessers zu einer Bandbreite des Bandes (1) 0,03 bis 0,1 beträgt. - Walzwerk nach einem der Ansprüche 1 bis 3, ferner umfassend:eine Detektionseinrichtung (200) zum Detektieren von Banddicken von einander in Breitenrichtung gegenüberliegenden Endabschnitten des Bandes (1), wobei die Detektionseinrichtung (200) zumindest auf einer Zuführseite des Walzgerüsts an der letzten Stufe (11, 12, 13, 15, 16) vorgesehen ist,wobei Verlagerungspositionen der sich verjüngenden Abschnitte (31b, 32b, 131b, 132b) gemäß den Banddicken des Bandes (1), die von der Detektionseinrichtung (200) detektiert worden sind, gesteuert werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009176038A JP5683082B2 (ja) | 2009-07-29 | 2009-07-29 | 作業ロールシフト機能を具備した圧延機 |
EP10006802.2A EP2292341B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10006802.2A Division EP2292341B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
EP10006802.2A Division-Into EP2292341B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2772321A1 EP2772321A1 (de) | 2014-09-03 |
EP2772321B1 true EP2772321B1 (de) | 2016-04-06 |
Family
ID=43057048
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14001890.4A Not-in-force EP2772321B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
EP10006802.2A Not-in-force EP2292341B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10006802.2A Not-in-force EP2292341B1 (de) | 2009-07-29 | 2010-07-01 | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP2772321B1 (de) |
JP (1) | JP5683082B2 (de) |
CN (1) | CN101987326B (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5894849B2 (ja) * | 2012-04-25 | 2016-03-30 | Primetals Technologies Japan株式会社 | 作業ロールシフト機能を具備した多段圧延機 |
JP5861670B2 (ja) * | 2013-06-06 | 2016-02-16 | Jfeスチール株式会社 | 圧延機ロールのシフトロール化装置、圧延機ロールのシフトロール化方法及び圧延機 |
CN205659983U (zh) * | 2016-06-15 | 2016-10-26 | 日照宝华新材料有限公司 | 一种esp生产线用长公里数轧制辊 |
KR20200033893A (ko) | 2017-07-21 | 2020-03-30 | 노벨리스 인크. | 저압 압연으로 금속 기재의 평탄도를 제어하기 위한 시스템 및 방법 |
CN108941398A (zh) * | 2018-08-06 | 2018-12-07 | 安徽雅静新能源科技有限公司 | 环卫清扫车盘刷内圈自动成型装置及自动成型方法 |
US11850643B2 (en) * | 2019-11-18 | 2023-12-26 | Blue Solutions Canada Inc. | Lamination lubricant dispensing unit for lubricating a working roller of a rolling mill for laminating a sheet of alkali metal or alloy thereof into a film |
KR102214121B1 (ko) * | 2020-07-30 | 2021-02-10 | 주식회사 서연이화 | 플라스틱 글레이징의 제조방법 |
JP7256336B2 (ja) * | 2020-08-07 | 2023-04-11 | Primetals Technologies Japan株式会社 | 圧延機、圧延機の制御方法、および圧延機でのスラスト力支持方法 |
CN114871280B (zh) * | 2021-05-31 | 2024-05-07 | 河南济源钢铁(集团)有限公司 | 一种高端弹簧钢轧制尺寸的检测组件 |
CN116550752A (zh) * | 2023-05-30 | 2023-08-08 | 温州元鼎铜业有限公司 | 一种铜带轧机 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2674140A (en) * | 1947-10-23 | 1954-04-06 | Blaw Knox Co | Adjustable thrust bearing for accurately positioning one of two grooved mill rolls |
JPS62151203A (ja) * | 1985-12-25 | 1987-07-06 | Kawasaki Steel Corp | 板材の圧延方法 |
JPH08215721A (ja) * | 1995-02-09 | 1996-08-27 | Nippon Steel Corp | 圧延ロールの管理方法 |
JP3444063B2 (ja) | 1995-11-29 | 2003-09-08 | Jfeスチール株式会社 | 表面清浄性の高い冷延鋼板の製造方法 |
WO2002002251A1 (fr) * | 2000-07-05 | 2002-01-10 | Hitachi, Ltd. | Laminoir et procede de laminage |
JP3747786B2 (ja) * | 2001-02-05 | 2006-02-22 | 株式会社日立製作所 | 板材用圧延機の圧延方法及び板材用圧延設備 |
DE10208389B4 (de) * | 2001-07-11 | 2004-11-04 | Hitachi, Ltd. | Walzgerüst, Walzwerk und Walzverfahren |
DE102007028824B3 (de) * | 2007-06-20 | 2009-02-19 | Siemens Ag | Verfahren zur Herstellung eines Blechs in einer Walzstraße |
JP2009006336A (ja) * | 2007-06-26 | 2009-01-15 | Jfe Steel Kk | 超硬合金ワークロールを用いた熱間圧延方法 |
JP5074850B2 (ja) | 2007-07-31 | 2012-11-14 | 日新製鋼株式会社 | 熱延鋼帯のデスケーリング冷間圧延方法及び圧延用ワークロール |
JP5138397B2 (ja) * | 2008-01-25 | 2013-02-06 | 三菱日立製鉄機械株式会社 | 圧延機及びそれを備えたタンデム圧延機 |
JP2009214115A (ja) * | 2008-03-07 | 2009-09-24 | Jfe Steel Corp | 仕上げ圧延機におけるクラウン・エッジドロップ制御圧延機および圧延方法 |
JP5491090B2 (ja) * | 2009-07-22 | 2014-05-14 | 三菱日立製鉄機械株式会社 | 圧延機及びそれを備えたタンデム圧延機 |
JP5568261B2 (ja) * | 2009-07-22 | 2014-08-06 | 三菱日立製鉄機械株式会社 | 圧延機及びそれを備えたタンデム圧延機 |
-
2009
- 2009-07-29 JP JP2009176038A patent/JP5683082B2/ja not_active Expired - Fee Related
-
2010
- 2010-07-01 EP EP14001890.4A patent/EP2772321B1/de not_active Not-in-force
- 2010-07-01 EP EP10006802.2A patent/EP2292341B1/de not_active Not-in-force
- 2010-07-22 CN CN201010237324.9A patent/CN101987326B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP2292341A3 (de) | 2012-05-02 |
EP2292341B1 (de) | 2015-12-16 |
CN101987326A (zh) | 2011-03-23 |
JP2011025299A (ja) | 2011-02-10 |
CN101987326B (zh) | 2014-04-23 |
JP5683082B2 (ja) | 2015-03-11 |
EP2292341A2 (de) | 2011-03-09 |
EP2772321A1 (de) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772321B1 (de) | Walzwerk mit einer Arbeitswalzenverlagerungsfunktion | |
EP2241382B1 (de) | Walzwerk und tandemwalzwerk damit | |
US7665339B2 (en) | Method for increasing the range of production of a metal product rolling installation and installation therefor | |
EP2277638B1 (de) | Walzwerk und Tandemwalzwerk damit | |
EP2241383B1 (de) | Walzwerk und tandemwalzwerk damit | |
EP0019737B1 (de) | Walzwerk mit einer Walze variabler Balligkeit | |
JP5711232B2 (ja) | 作業ロール径の設定方法 | |
EP2277637B1 (de) | Walzwerk und Tandemwalzwerk damit | |
JP5613399B2 (ja) | クラスター式多段圧延機 | |
JP3166656B2 (ja) | 形鋼の圧延方法および圧延機 | |
JP2001113306A (ja) | 高合金継目無鋼管の製造方法およびそれに用いる圧延用孔型 | |
JPH0313219A (ja) | 圧延機 | |
JPH0494802A (ja) | 高圧下熱間圧延機 | |
JPS61140303A (ja) | タンデム圧延装置 | |
JPH04100621A (ja) | クラスター型圧延機における圧延材の蛇行防止方法 | |
JPH08206716A (ja) | 鋼帯の冷間圧延方法 | |
JPH05154508A (ja) | 熱間仕上圧延機 | |
JPH08243B2 (ja) | 継ぎ目無管を長手方向で圧延するための方法 | |
JP2002011507A (ja) | 継目無鋼管の圧延方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140624 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2292341 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21B 27/02 20060101ALI20150831BHEP Ipc: B21B 13/14 20060101AFI20150831BHEP Ipc: B21B 27/03 20060101ALI20150831BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151002 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PRIMETALS TECHNOLOGIES JAPAN, LTD. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NORIKURA, TAKASHI |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2292341 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 787169 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010032159 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 787169 Country of ref document: AT Kind code of ref document: T Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160806 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160808 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160707 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010032159 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20170110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160706 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200617 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200610 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010032159 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |