EP2768277A1 - Bloc chauffant thermique monolithe en béton à base de phosphates - Google Patents
Bloc chauffant thermique monolithe en béton à base de phosphates Download PDFInfo
- Publication number
- EP2768277A1 EP2768277A1 EP12840085.0A EP12840085A EP2768277A1 EP 2768277 A1 EP2768277 A1 EP 2768277A1 EP 12840085 A EP12840085 A EP 12840085A EP 2768277 A1 EP2768277 A1 EP 2768277A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating unit
- monolithic
- thermal heating
- heating element
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/62—Heating elements specially adapted for furnaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/265—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/62—Heating elements specially adapted for furnaces
- H05B3/64—Heating elements specially adapted for furnaces using ribbon, rod, or wire heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
Definitions
- the invention relates to a monolithic thermal heating unit made of refractory phosphate concrete (phosphate cement) according to the preamble of the claim.
- the invention can be used in the field of resistance heating in industrial resistance furnaces, namely for monolithic metal-ceramic thermal heating units (heating blocks).
- the practice of designing and operating industrial furnaces determines the requirements for the heating elements.
- the basic requirements include high efficiency and reliability, strength and lack of conductivity.
- contact thermal conductivity is the most effective way of transferring heat from a heated body to a cold body compared to radiant heating and other types of heat transfer [ MA Mikheev, IM Mikheeva, Fundamentals of Heat Transfer, Moscow, Energia, 1977, p. 17 ].
- radiator a resistive element
- IA Feldman such. B. " Calculation and structural design of radiators of electric resistance furnaces ", Energia, Moscow-Leningrad, 1966, p. 18 ].
- the closest prior art is a heating element according to the patent RU 2311742 , Date of publication 02.01.2003, IPC H05B 3/14, which is chosen as a prototype.
- the known prototype is formed of a ferrous material with a resistive element.
- the resistance element is arranged in an electrical insulating layer.
- the electrical insulating layer is covered with a heat-insulating composite layer and a protective layer.
- heat transfer from the resistive element to the surface occurs via an insulating composite structure.
- the insulating composite structure is formed of some ceramic and organic materials.
- the insulating composite structure is intended to compensate for the differences in resistance element and material of the heating element in terms of thermal expansion coefficient.
- the resistive element is covered with an electrical insulating layer to prevent oxidation.
- the heating element is manufactured in successive pressing steps in some pressing tools and using gas burning.
- the monolithic thermal heating unit is made of an electrically non-conductive thermally conductive refractory phosphate concrete.
- the heating element is cast in phosphate concrete.
- the heating element is formed of a zigzag wire radiator and band-shaped current derivatives.
- the ratio between the area and circumference of the wire cross section and the area and circumference of the cross section of the current leads is at least 1: 4.
- the symmetry axes of the heating element coincide with the axes of symmetry of the thermal heating unit.
- the joints between the wire radiator and the current drains in the thermal heating unit are in the form of conical recesses.
- the monolithic thermal heating unit ( Fig. 1 ) is formed in the form of a monolithic plate 1.
- the linear dimensions of the heating unit are determined by the linear dimensions of the heating element 2.
- the heating element 2 is made of a zigzag wire radiator 3 (FIG. Fig. 2 ) and band-shaped current derivatives 4 made.
- the zigzag wire radiator 3 is chosen because it is the most effective type of radiator.
- the heating element 2 ( Fig. 1 ) is arranged in the thermal unit (plate 1). In this case, the symmetry axes of the heating element 2 coincide with the axes of symmetry of the thermal heating unit (plate 1).
- the heat transfer from the entire surface of the heating element 2 to the phosphate concrete material is due to the contact heat conductivity.
- the concrete density ensures that the oxidation of the radiator metal is virtually completely avoided.
- the wire cross section, the wire length and the zigzag pitch of the wire heater 3 in the heating element 2 (FIG. Fig. 2 ) are determined by the required electrical resistance of the heating element 2, ie by the required power of the thermal heating unit.
- the surface and the circumference of the wire cross section and the surface and the circumference of the current discharge cross section are in a ratio of at least 1: 4 to each other.
- the length of the current drain 4 is determined by the type of attachment of the power cable and the thickness of the lining of a particular furnace.
- Fig. 1 is the junction between the wire radiator 3 and the current drain 4 shown.
- the joint is formed in the form of a conical recess 5 in the thermal unit to prevent energy transfer from the material of the thermal heating unit to the current leads 4 due to the contact thermal conductivity.
- the monolithic phosphate concrete of the heating unit is homogeneous and has the same thermal conductivity over all three ordinates. Taking into account that the axes of symmetry of the heating element and the symmetry axes of the thermal Heating unit coincident, this ensures a uniform temperature distribution over the entire circumference and over each level of the heating unit, including the temperature compensation on the working surface of the heating unit.
- the thermal heating units can be connected as desired in a building board of any dimensions to obtain a resistance furnace with a required power.
- the relative up to 20% high porosity of the crystalline phosphate concrete on the one hand and the up to 70 MPa high strength on the other hand ensure a dampening of the thermal expansion of the metal heating element.
- the plasticity of the metal heating element increases with an increase in temperature without the thermal heating unit itself being destroyed.
- the strength and hardness of the phosphate concrete thermal heating unit make it possible to use this heating unit in oven stoves of resistance furnaces. This ensures a reduction in power consumption up to 35%.
- the practical embodiment of the proposed invention is realized in a resistance furnace with an extendable hearth and a capacity of 1.2 m 3 at an operating temperature of + 1150 ° C.
- the furnace is heated by means of 28 monolithic thermal heating units.
- Each heating unit has dimensions of 400 x 400 x 30 mm and an electrical resistance of 1.5 ⁇ .
- the heating units are assembled in 5 construction panels. This makes it possible to achieve a 3-phase power supply with a power of up to 30 kW.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
- Furnace Details (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011141547/07A RU2516253C2 (ru) | 2011-10-13 | 2011-10-13 | Монолитный тепловой нагревательный блок из огнеупорного фосфатного бетона |
PCT/RU2012/000842 WO2013055260A1 (fr) | 2011-10-13 | 2012-10-10 | Bloc chauffant thermique monolithe en béton à base de phosphates |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2768277A1 true EP2768277A1 (fr) | 2014-08-20 |
EP2768277A4 EP2768277A4 (fr) | 2015-11-11 |
Family
ID=48082156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12840085.0A Withdrawn EP2768277A4 (fr) | 2011-10-13 | 2012-10-10 | Bloc chauffant thermique monolithe en béton à base de phosphates |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140238975A1 (fr) |
EP (1) | EP2768277A4 (fr) |
CN (1) | CN103988575A (fr) |
RU (1) | RU2516253C2 (fr) |
WO (1) | WO2013055260A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210307117A1 (en) * | 2020-03-25 | 2021-09-30 | Lockheed Martin Corporation | Robust Versatile Monolithic Resistive System for Tailored Heating |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB625651A (en) * | 1945-07-09 | 1949-07-01 | Gen Electric Co Ltd | Improvements in and relating to mounts for refractory incandescent elements |
SU847526A1 (ru) * | 1978-11-21 | 1981-07-15 | Предприятие П/Я А-3844 | Гибкий электронагреватель |
US4247979A (en) * | 1979-03-08 | 1981-02-03 | Eck Richard H | Radiant heater and method of making same |
SU1320196A1 (ru) * | 1986-01-16 | 1987-06-30 | Куйбышевский инженерно-строительный институт им.А.И.Микояна | Сырьева смесь дл приготовлени жаростойкого бетона |
GB2192119A (en) * | 1986-06-20 | 1987-12-31 | Kanthal Ltd | Heating devices |
DE8715851U1 (de) * | 1987-11-30 | 1988-02-18 | Elpag Ag Chur, Chur | Rohrheizkörper mit einer Überlastungssicherung |
RU1798942C (ru) * | 1989-12-07 | 1993-02-28 | Механический Завод | Микросборка |
RU1835103C (ru) * | 1990-06-07 | 1993-08-15 | Н.С. Крынин | Электрическа штепсельна розетка |
DE4238825A1 (de) * | 1992-11-17 | 1994-05-19 | Bernhard Knappe | Flachheizkörper und Verfahren zu dessen Herstellung |
US6392208B1 (en) * | 1999-08-06 | 2002-05-21 | Watlow Polymer Technologies | Electrofusing of thermoplastic heating elements and elements made thereby |
RU2311742C2 (ru) | 2003-01-02 | 2007-11-27 | Владимир Павлович Лапин | Нагревательный элемент и способ его изготовления |
US7999211B2 (en) * | 2006-09-01 | 2011-08-16 | Hewlett-Packard Development Company, L.P. | Heating element structure with isothermal and localized output |
CN101790259B (zh) * | 2010-02-09 | 2011-12-28 | 河北省建筑科学研究院 | 一种碳纤维电热板及其加工工艺 |
RU106479U1 (ru) * | 2011-03-14 | 2011-07-10 | Общество с ограниченной ответственностью "КОВЧЕГ" | Электронагреватель |
-
2011
- 2011-10-13 RU RU2011141547/07A patent/RU2516253C2/ru not_active IP Right Cessation
-
2012
- 2012-10-10 EP EP12840085.0A patent/EP2768277A4/fr not_active Withdrawn
- 2012-10-10 WO PCT/RU2012/000842 patent/WO2013055260A1/fr active Application Filing
- 2012-10-10 CN CN201280050260.9A patent/CN103988575A/zh active Pending
- 2012-10-10 US US14/351,571 patent/US20140238975A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP2768277A4 (fr) | 2015-11-11 |
RU2011141547A (ru) | 2013-04-20 |
US20140238975A1 (en) | 2014-08-28 |
WO2013055260A1 (fr) | 2013-04-18 |
CN103988575A (zh) | 2014-08-13 |
RU2516253C2 (ru) | 2014-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2722626A1 (fr) | Four à résistance de chambre en bétons phosphatés | |
DE2751808A1 (de) | Ofendecke fuer einen elektrolichtbogenofen | |
DE2941709C2 (de) | Verfahren zur kontinuierlichen Herstellung von Kohleelektroden für Elektroöfen während des laufenden Betriebes | |
EP2768277A1 (fr) | Bloc chauffant thermique monolithe en béton à base de phosphates | |
EP3103562A1 (fr) | Gabarit | |
AT513992A1 (de) | Heizvorrichtung | |
WO2016207050A1 (fr) | Procédé de frittage de corps de carbone dans un dispositif de type four | |
DE1433806B2 (de) | Wand für einen Glühofen | |
AT507603B1 (de) | Heizung für ein gebäude | |
EP2501659B1 (fr) | Four à chambre destiné à la fabrication de plaques de mousse de verre ou de corps moulés en mousse de verre | |
DE202014004068U1 (de) | Hochtemperatur-Infrarotstrahler | |
AT507669B1 (de) | Verfahren zum erwärmen von leichtmetallblöcken | |
EP1862752A1 (fr) | Four de vitrification a tuyau chauffant electrique a carborundum multiniveau | |
WO2004106831A1 (fr) | Recipient de traitement pourvu d'elements de refroidissement | |
DE1924202A1 (de) | Flaechenfoermige,elektrische Heizvorrichtung | |
EP2225182A1 (fr) | Dispositif doté d'un système de chauffage plus performant et destiné à mouler des matières fondues obtenues à partir d'oxydes inorganiques ou de matières minérales | |
DE1921565A1 (de) | Elektrisches Heizelement fuer Nachtstromspeicheroefen | |
DE3434356C2 (de) | Aufsatzstücke für gekühlte Tragrohre in Erwärmungsöfen | |
DE2155838B2 (de) | Elektrische Deckenheizung an Tunnelöfen | |
DE202007000759U1 (de) | Elektrische Herdheizplatte | |
DE2804913B2 (de) | Feuerfeste Auskleidung für den Boden eines Schachtofens, insbesondere eines Hochofens | |
DE249145C (fr) | ||
DE102004058820A1 (de) | Natursteinflächenspeicherheizung | |
EP1461298B1 (fr) | Procede de graphitisation en continu | |
DE102022200226A1 (de) | Strahlungsheizeinrichtung für ein Kochfeld und Verfahren zur Herstellung einer Strahlungsheizeinrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140513 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20151008 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05B 3/26 20060101ALI20151002BHEP Ipc: H05B 3/64 20060101ALI20151002BHEP Ipc: F24C 7/06 20060101AFI20151002BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180501 |