EP2768277A1 - Bloc chauffant thermique monolithe en béton à base de phosphates - Google Patents

Bloc chauffant thermique monolithe en béton à base de phosphates Download PDF

Info

Publication number
EP2768277A1
EP2768277A1 EP12840085.0A EP12840085A EP2768277A1 EP 2768277 A1 EP2768277 A1 EP 2768277A1 EP 12840085 A EP12840085 A EP 12840085A EP 2768277 A1 EP2768277 A1 EP 2768277A1
Authority
EP
European Patent Office
Prior art keywords
heating unit
monolithic
thermal heating
heating element
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12840085.0A
Other languages
German (de)
English (en)
Other versions
EP2768277A4 (fr
Inventor
Sergey Dmitrievich ALFERYEV
Valeriy Anatolievich POLYAKOV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zakrytoye Aktsionernoye Obschestvo "Pikkerama"
Original Assignee
Zakrytoye Aktsionernoye Obschestvo "Pikkerama"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zakrytoye Aktsionernoye Obschestvo "Pikkerama" filed Critical Zakrytoye Aktsionernoye Obschestvo "Pikkerama"
Publication of EP2768277A1 publication Critical patent/EP2768277A1/fr
Publication of EP2768277A4 publication Critical patent/EP2768277A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout

Definitions

  • the invention relates to a monolithic thermal heating unit made of refractory phosphate concrete (phosphate cement) according to the preamble of the claim.
  • the invention can be used in the field of resistance heating in industrial resistance furnaces, namely for monolithic metal-ceramic thermal heating units (heating blocks).
  • the practice of designing and operating industrial furnaces determines the requirements for the heating elements.
  • the basic requirements include high efficiency and reliability, strength and lack of conductivity.
  • contact thermal conductivity is the most effective way of transferring heat from a heated body to a cold body compared to radiant heating and other types of heat transfer [ MA Mikheev, IM Mikheeva, Fundamentals of Heat Transfer, Moscow, Energia, 1977, p. 17 ].
  • radiator a resistive element
  • IA Feldman such. B. " Calculation and structural design of radiators of electric resistance furnaces ", Energia, Moscow-Leningrad, 1966, p. 18 ].
  • the closest prior art is a heating element according to the patent RU 2311742 , Date of publication 02.01.2003, IPC H05B 3/14, which is chosen as a prototype.
  • the known prototype is formed of a ferrous material with a resistive element.
  • the resistance element is arranged in an electrical insulating layer.
  • the electrical insulating layer is covered with a heat-insulating composite layer and a protective layer.
  • heat transfer from the resistive element to the surface occurs via an insulating composite structure.
  • the insulating composite structure is formed of some ceramic and organic materials.
  • the insulating composite structure is intended to compensate for the differences in resistance element and material of the heating element in terms of thermal expansion coefficient.
  • the resistive element is covered with an electrical insulating layer to prevent oxidation.
  • the heating element is manufactured in successive pressing steps in some pressing tools and using gas burning.
  • the monolithic thermal heating unit is made of an electrically non-conductive thermally conductive refractory phosphate concrete.
  • the heating element is cast in phosphate concrete.
  • the heating element is formed of a zigzag wire radiator and band-shaped current derivatives.
  • the ratio between the area and circumference of the wire cross section and the area and circumference of the cross section of the current leads is at least 1: 4.
  • the symmetry axes of the heating element coincide with the axes of symmetry of the thermal heating unit.
  • the joints between the wire radiator and the current drains in the thermal heating unit are in the form of conical recesses.
  • the monolithic thermal heating unit ( Fig. 1 ) is formed in the form of a monolithic plate 1.
  • the linear dimensions of the heating unit are determined by the linear dimensions of the heating element 2.
  • the heating element 2 is made of a zigzag wire radiator 3 (FIG. Fig. 2 ) and band-shaped current derivatives 4 made.
  • the zigzag wire radiator 3 is chosen because it is the most effective type of radiator.
  • the heating element 2 ( Fig. 1 ) is arranged in the thermal unit (plate 1). In this case, the symmetry axes of the heating element 2 coincide with the axes of symmetry of the thermal heating unit (plate 1).
  • the heat transfer from the entire surface of the heating element 2 to the phosphate concrete material is due to the contact heat conductivity.
  • the concrete density ensures that the oxidation of the radiator metal is virtually completely avoided.
  • the wire cross section, the wire length and the zigzag pitch of the wire heater 3 in the heating element 2 (FIG. Fig. 2 ) are determined by the required electrical resistance of the heating element 2, ie by the required power of the thermal heating unit.
  • the surface and the circumference of the wire cross section and the surface and the circumference of the current discharge cross section are in a ratio of at least 1: 4 to each other.
  • the length of the current drain 4 is determined by the type of attachment of the power cable and the thickness of the lining of a particular furnace.
  • Fig. 1 is the junction between the wire radiator 3 and the current drain 4 shown.
  • the joint is formed in the form of a conical recess 5 in the thermal unit to prevent energy transfer from the material of the thermal heating unit to the current leads 4 due to the contact thermal conductivity.
  • the monolithic phosphate concrete of the heating unit is homogeneous and has the same thermal conductivity over all three ordinates. Taking into account that the axes of symmetry of the heating element and the symmetry axes of the thermal Heating unit coincident, this ensures a uniform temperature distribution over the entire circumference and over each level of the heating unit, including the temperature compensation on the working surface of the heating unit.
  • the thermal heating units can be connected as desired in a building board of any dimensions to obtain a resistance furnace with a required power.
  • the relative up to 20% high porosity of the crystalline phosphate concrete on the one hand and the up to 70 MPa high strength on the other hand ensure a dampening of the thermal expansion of the metal heating element.
  • the plasticity of the metal heating element increases with an increase in temperature without the thermal heating unit itself being destroyed.
  • the strength and hardness of the phosphate concrete thermal heating unit make it possible to use this heating unit in oven stoves of resistance furnaces. This ensures a reduction in power consumption up to 35%.
  • the practical embodiment of the proposed invention is realized in a resistance furnace with an extendable hearth and a capacity of 1.2 m 3 at an operating temperature of + 1150 ° C.
  • the furnace is heated by means of 28 monolithic thermal heating units.
  • Each heating unit has dimensions of 400 x 400 x 30 mm and an electrical resistance of 1.5 ⁇ .
  • the heating units are assembled in 5 construction panels. This makes it possible to achieve a 3-phase power supply with a power of up to 30 kW.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Furnace Details (AREA)
EP12840085.0A 2011-10-13 2012-10-10 Bloc chauffant thermique monolithe en béton à base de phosphates Withdrawn EP2768277A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011141547/07A RU2516253C2 (ru) 2011-10-13 2011-10-13 Монолитный тепловой нагревательный блок из огнеупорного фосфатного бетона
PCT/RU2012/000842 WO2013055260A1 (fr) 2011-10-13 2012-10-10 Bloc chauffant thermique monolithe en béton à base de phosphates

Publications (2)

Publication Number Publication Date
EP2768277A1 true EP2768277A1 (fr) 2014-08-20
EP2768277A4 EP2768277A4 (fr) 2015-11-11

Family

ID=48082156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12840085.0A Withdrawn EP2768277A4 (fr) 2011-10-13 2012-10-10 Bloc chauffant thermique monolithe en béton à base de phosphates

Country Status (5)

Country Link
US (1) US20140238975A1 (fr)
EP (1) EP2768277A4 (fr)
CN (1) CN103988575A (fr)
RU (1) RU2516253C2 (fr)
WO (1) WO2013055260A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210307117A1 (en) * 2020-03-25 2021-09-30 Lockheed Martin Corporation Robust Versatile Monolithic Resistive System for Tailored Heating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB625651A (en) * 1945-07-09 1949-07-01 Gen Electric Co Ltd Improvements in and relating to mounts for refractory incandescent elements
SU847526A1 (ru) * 1978-11-21 1981-07-15 Предприятие П/Я А-3844 Гибкий электронагреватель
US4247979A (en) * 1979-03-08 1981-02-03 Eck Richard H Radiant heater and method of making same
SU1320196A1 (ru) * 1986-01-16 1987-06-30 Куйбышевский инженерно-строительный институт им.А.И.Микояна Сырьева смесь дл приготовлени жаростойкого бетона
GB2192119A (en) * 1986-06-20 1987-12-31 Kanthal Ltd Heating devices
DE8715851U1 (de) * 1987-11-30 1988-02-18 Elpag Ag Chur, Chur Rohrheizkörper mit einer Überlastungssicherung
RU1798942C (ru) * 1989-12-07 1993-02-28 Механический Завод Микросборка
RU1835103C (ru) * 1990-06-07 1993-08-15 Н.С. Крынин Электрическа штепсельна розетка
DE4238825A1 (de) * 1992-11-17 1994-05-19 Bernhard Knappe Flachheizkörper und Verfahren zu dessen Herstellung
US6392208B1 (en) * 1999-08-06 2002-05-21 Watlow Polymer Technologies Electrofusing of thermoplastic heating elements and elements made thereby
RU2311742C2 (ru) 2003-01-02 2007-11-27 Владимир Павлович Лапин Нагревательный элемент и способ его изготовления
US7999211B2 (en) * 2006-09-01 2011-08-16 Hewlett-Packard Development Company, L.P. Heating element structure with isothermal and localized output
CN101790259B (zh) * 2010-02-09 2011-12-28 河北省建筑科学研究院 一种碳纤维电热板及其加工工艺
RU106479U1 (ru) * 2011-03-14 2011-07-10 Общество с ограниченной ответственностью "КОВЧЕГ" Электронагреватель

Also Published As

Publication number Publication date
EP2768277A4 (fr) 2015-11-11
RU2011141547A (ru) 2013-04-20
US20140238975A1 (en) 2014-08-28
WO2013055260A1 (fr) 2013-04-18
CN103988575A (zh) 2014-08-13
RU2516253C2 (ru) 2014-05-20

Similar Documents

Publication Publication Date Title
EP2722626A1 (fr) Four à résistance de chambre en bétons phosphatés
DE2751808A1 (de) Ofendecke fuer einen elektrolichtbogenofen
DE2941709C2 (de) Verfahren zur kontinuierlichen Herstellung von Kohleelektroden für Elektroöfen während des laufenden Betriebes
EP2768277A1 (fr) Bloc chauffant thermique monolithe en béton à base de phosphates
EP3103562A1 (fr) Gabarit
AT513992A1 (de) Heizvorrichtung
WO2016207050A1 (fr) Procédé de frittage de corps de carbone dans un dispositif de type four
DE1433806B2 (de) Wand für einen Glühofen
AT507603B1 (de) Heizung für ein gebäude
EP2501659B1 (fr) Four à chambre destiné à la fabrication de plaques de mousse de verre ou de corps moulés en mousse de verre
DE202014004068U1 (de) Hochtemperatur-Infrarotstrahler
AT507669B1 (de) Verfahren zum erwärmen von leichtmetallblöcken
EP1862752A1 (fr) Four de vitrification a tuyau chauffant electrique a carborundum multiniveau
WO2004106831A1 (fr) Recipient de traitement pourvu d'elements de refroidissement
DE1924202A1 (de) Flaechenfoermige,elektrische Heizvorrichtung
EP2225182A1 (fr) Dispositif doté d'un système de chauffage plus performant et destiné à mouler des matières fondues obtenues à partir d'oxydes inorganiques ou de matières minérales
DE1921565A1 (de) Elektrisches Heizelement fuer Nachtstromspeicheroefen
DE3434356C2 (de) Aufsatzstücke für gekühlte Tragrohre in Erwärmungsöfen
DE2155838B2 (de) Elektrische Deckenheizung an Tunnelöfen
DE202007000759U1 (de) Elektrische Herdheizplatte
DE2804913B2 (de) Feuerfeste Auskleidung für den Boden eines Schachtofens, insbesondere eines Hochofens
DE249145C (fr)
DE102004058820A1 (de) Natursteinflächenspeicherheizung
EP1461298B1 (fr) Procede de graphitisation en continu
DE102022200226A1 (de) Strahlungsheizeinrichtung für ein Kochfeld und Verfahren zur Herstellung einer Strahlungsheizeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151008

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 3/26 20060101ALI20151002BHEP

Ipc: H05B 3/64 20060101ALI20151002BHEP

Ipc: F24C 7/06 20060101AFI20151002BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180501