EP2767476B1 - Schrumpfvorrichtung - Google Patents

Schrumpfvorrichtung Download PDF

Info

Publication number
EP2767476B1
EP2767476B1 EP14153602.9A EP14153602A EP2767476B1 EP 2767476 B1 EP2767476 B1 EP 2767476B1 EP 14153602 A EP14153602 A EP 14153602A EP 2767476 B1 EP2767476 B1 EP 2767476B1
Authority
EP
European Patent Office
Prior art keywords
shrinking
shaft
transport direction
recited
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14153602.9A
Other languages
English (en)
French (fr)
Other versions
EP2767476A1 (de
Inventor
Christian Napravnik
Herbert Spindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Publication of EP2767476A1 publication Critical patent/EP2767476A1/de
Application granted granted Critical
Publication of EP2767476B1 publication Critical patent/EP2767476B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • B65B53/06Shrinking wrappers, containers, or container covers during or after packaging by heat supplied by gases, e.g. hot-air jets
    • B65B53/063Tunnels

Definitions

  • the present invention relates to a shrinking device according to the features of the preamble of claim 1.
  • the articles When packaging articles, in particular beverage containers, bottles, etc., into containers, the articles are assembled in the desired manner and covered with a shrink film.
  • the shrink wrap is shrunk around the articles by supplying shrinkage, such as hot air, in a shrink tunnel.
  • shrinkage such as hot air
  • shrink tunnels with at least one so-called middle shaft wall are used for the multi-lane processing.
  • the shaft walls are lateral spraying devices in the form of hollow bodies.
  • This inner shaft wall has shrinkage agent outlet openings on both side wall surfaces arranged parallel to the transport direction, so that hot air flows inward into both sides of the shrinking tunnel and thus provides for the lateral loading of the articles with hot shrinkage agent.
  • the known shaft walls are walls with an internal cavity into which the hot air is blown.
  • the shaft walls each have at least one, preferably in the upper region arranged air inlet opening, through which the hot air is blown from above into the shaft wall and then flows through the shrink agent outlet openings in the interior of the shrink tunnel.
  • the shaft walls are usually designed as welded or riveted constructions in which the exit surfaces are equipped with different hole patterns.
  • the shaft walls are always made of one part and thus defined defined.
  • the system can only be reconfigured with considerable effort to different product groups. Even with structural changes, Retrofitting or complaints-related changes, the time and construction-related effort is high.
  • a particular problem is that the energy input into the shrink film decreases along the transport path through the shrink tunnel, since the distance between the discharge surface of the shaft wall and shrink film increases during the shrinking process in the transport direction.
  • the jet speed of the shrinking means decreases with increasing depth of penetration into the space, and the shrinkage medium loses its temperature until it reaches the shrinkage film when the distance to be traveled remains to reach the shrinking film (cf. FIG. 1 ).
  • Sliding shaft walls are known from the prior art, with which the width of the shrinkage gap and thus the distance between the discharge surfaces and the shrinkage can be adjusted.
  • DE 36 15 213 A1 a device for heat shrinking film with an adjustable shrink frame.
  • the warm air is generated by means of circumferentially arranged gas burners, wherein the hot gases are directed by means of air nozzles or shrinkage means outlet openings.
  • Individual shrink frame sides are mounted so movable and adjustable that the distance between the object to be packaged and heating gas is adjustable.
  • each fitted with burners Schrumpfrahmenseite is provided in the end with progressively switched on and off chambers for the heating gases.
  • WO 2002/036436 describes the multi-lane processing of containers in a shrink tunnel.
  • movable shaft walls are used whose position is adjusted depending on the containers to be processed by lateral displacement in the horizontal direction.
  • US 3808702 a shrink tunnel, in which the shaft walls can be adjusted at an angle to the transport direction.
  • the shaft walls can be arranged so that they are aligned parallel to the transport direction.
  • the shaft walls are arranged so that the distance between the shaft walls increases or decreases downstream. The more the shaft walls are approximated, the closer the outflow surfaces are to the transported goods and the hotter the shrinkage medium impinging on the transported goods.
  • the object of the invention is to improve the spraying of packaged goods when passing through a shrinking device in the transport direction, in particular by optimizing the respective distance between the outflow surfaces and the packaged goods.
  • the invention relates to a shrinking device for shrinking packaging means around an article or a collection of articles.
  • a shrinking device is used to produce so-called containers.
  • shrink film is shrunk by a collection of a plurality of bottles to summarize this as a packaging or sales unit.
  • the shrinking device comprises at least one transport path for the articles or article assemblies.
  • the wrapped with packaging means article or article compositions are transported on the transport route in a transport direction by the shrinking device.
  • shaft walls are arranged, each having at least one the interior of the shrinking device facing outflow surface for shrinking agent.
  • Hot air in particular serves as a shrinking means, in particular room air heated by means of a blower or another fluid suitable as shrinking means.
  • the outflow surfaces each comprise a plurality of shrinkage agent outlet openings. The shrinking agent is introduced into the interior of the shrinking device via the shrinkage means outlet openings of the outflow surfaces, so that the shrinkage agent is applied to the articles covered with the packaging material.
  • the shaft walls in a first region of the transport path have a first width and a first cross-sectional area perpendicular to the transport direction. Furthermore, the shaft walls in a second, subsequent region of the transport path have a second width and a second cross-sectional area perpendicular to the transport direction, the first width and the first cross-sectional area being smaller than the second width and the second cross-sectional area.
  • the shrinkage means outlet openings of the outflow surfaces of the shaft walls are arranged at an acute angle to each other, wherein the apex of the acute angle is preferably before the beginning of the transport path.
  • the width of the shaft walls thus increases continuously in the transport direction over the length of the shaft walls.
  • the width of the transport path on which the articles etc. are transported decreases continuously in the transport direction over the length of the shaft walls.
  • the shrinkage means outlet openings of the outflow surfaces of the shaft walls are arranged in each case in regions parallel to one another, wherein in the first region the distance between the two outflow surfaces is greater than in the second region following in the transport direction. This in turn results in that the width of the transport path perpendicular to the transport direction in the first region is greater than in the second region. This also results in that the distance between the outflow surfaces and the articles of the packaging unit in the first region is greater than in the second region.
  • the shaft walls between the first region with the first cross-sectional area and the second region with the second cross-sectional area each comprise at least one separating element.
  • the shaft walls are divided by the at least one separating element in at least two, successively arranged in the transport direction well chambers.
  • the well chambers are separated airtight from each other by the separator, i. the shrinking means introduced into the first shaft chamber enters the interior of the shrinking device via the outflow surfaces of the first shaft chamber.
  • the introduced into the first shaft chamber shrinking means can not pass into the second shaft chamber. That the two manhole chambers are fluidically separated from each other.
  • the shrinking device comprises at least one unit for producing shrinking means, via which the shrinking means can be introduced from above into at least one of the shaft walls.
  • the at least two manhole chambers of a manhole wall are connected to one another via a distribution channel and in this case are acted upon by shrinkage means by the same unit for producing shrinking means.
  • the shrinking device comprises at least two units for generating Shrinkage, wherein the at least two well chambers of a shaft wall each have their own distribution channel and a separate unit for generating shrinkage means is assigned, via which the well chambers are each subjected to shrinking agent.
  • the shaft wall according to the invention whose cross-section changes in the transport direction, in particular increases, allows an energetic and fluidically optimized loading of the article or article compositions with shrinkage.
  • the shaft walls are modular.
  • the shaft walls comprise a support structure and at least two so-called shaft chamber modules mounted thereon.
  • the support structure is designed in particular as a comb-shaped frame construction.
  • the length of the support structure at least substantially corresponds to the length of the shaft wall, i.
  • the support structure extends in the transport direction at least substantially along the entire shaft wall.
  • the support structure is designed in particular as a comb-like frame construction.
  • a first lower frame element forms the so-called comb back.
  • the length of the lower frame member corresponds to the length of the support structure and thus approximately the length of the shaft wall.
  • fastening elements are arranged at regular intervals, which point in the direction of the transport plane of the article. Between or at these fasteners the Schachtsch- modules are arranged.
  • the shaft chamber modules are of cuboid design and have an opening on the upper side, via which the shrinkage medium passes from the distribution channel into the shaft chamber modules.
  • the support structure includes at least one upper frame member and a plurality of substantially orthogonal to the upper frame member and substantially orthogonal to the transport path arranged fasteners that serve to attach the Schachtsch- modules.
  • the upper frame element is arranged on a distribution device for shrinkage means and at least partially permeable to the shrinkage means.
  • the upper frame member is constructed so that the shrinkage medium can flow through the upper frame member largely unhindered in the interior of the shaft wall.
  • This upper frame element can For example, consist of at least two longitudinal struts, which are interconnected and stabilized by connecting cross struts
  • the support structure comprises three fastening elements, wherein the first fastening element is arranged on the first front end of the lower or upper frame element, the second fastening element in the central region of the lower or upper frame element and the third fastening element on the second rear end of the lower or upper frame element.
  • two Schachtsch- modules are arranged.
  • the first chute chamber module has a first width and a first cross-sectional area transverse to the transport direction and a downstream chute chamber module has a second width and a second cross-sectional area transverse to the transport direction, wherein the first width of the first chute chamber module is less than the second width of the downstream manhole module.
  • the side surfaces of the shaft chamber modules facing the transport path are configured differently, in particular individually with respect to the outflow surfaces, so that the spraying of the articles with shrinking means in different regions of the shrinking device can be further optimized.
  • the side surfaces of individual Schachtsch- modules can be formed only partially as outflow.
  • the shrink wrap is generally wrapped around the articles such that the shrink film projects laterally over the articles and forms a so-called film eye upon shrinking.
  • the packaging unit is transported through the shrinking device such that the regions of the film eyes are arranged substantially parallel to the outflow surfaces of the shaft walls.
  • shrinking device it may be provided in an initial region of the shrinking device to jet only the upper and lower regions of the packaging unit and, if possible, not to introduce any direct supply of shrinkage agent into the middle region of the film eye.
  • shaft chamber modules are used which, viewed over their height, have shrink-agent outlet openings only in an upper and a lower area.
  • shrinkage means in particular in the region of the film eye, is supplied to the shrink wrap. In this case, one uses a transport path concluding manhole chamber module with an increased density of shrinkage agent outlet openings in the central region.
  • the individual configuration of the outflow surfaces relates, for example, to the arrangement of the shrinkage agent outlet openings within the outflow surface, the density of the shrinkage agent outlet openings, the shape of the shrinkage agent outlet openings, etc.
  • the shrinkage agent outlet openings of the outflow surfaces can also have regions of air guiding devices which direct the outflow direction of the shrinking means in certain directions.
  • At least the middle fastening elements are designed as separating elements.
  • the at least two shaft chamber modules which are successively fastened in the transport direction, are separated airtight from one another.
  • the shrinkage means from the first Schachthunt- module can not get into the second Schachthunt- module and vice versa.
  • At least two manhole chamber modules of a shaft wall are fed by a common unit for producing shrinkage means.
  • a separate unit for generating shrinking means can be provided for each shaft chamber module.
  • one or more units for producing shrinkage means can thus be used.
  • each riveted outflow in particular the flow properties of the shrinking agent can be influenced in a targeted manner.
  • the use of spacer elements is provided to thereby adjust the width of the Schachthunt- modules and thus the size of the cross-sectional area of the Schachthunt- modules.
  • the shaft wall geometry can be easily adapted on the one hand due to the modular structure.
  • the shaft chamber modules can also be prefabricated as rivets.
  • the Schachtsch- modules allow due to their widening in the transport direction cross-section in a simple way, bring the shrinking means closer to the product, such as a packaging unit or the like., Bring.
  • the support structure such that the lower and / or upper frame element and the fastening elements widen in the transport direction.
  • the side surfaces of individual Schachthunt- modules may also be formed as convex or concave Ausström lake, thus further optimizing the spraying of the products.
  • the side surfaces of the manhole chamber modules can be mounted butt-to-joint.
  • the horizontal upper or lower frame members of the support structure guide outbreaks for adjustment etc. included.
  • the modular design forms a flexible system and allows a simple assembly of the shaft wall, which can be easily and quickly adapted to particular parameters of different product groups.
  • the spraying can be easily adapted to different heights of the articles or article compositions, different widths of the packaging units, etc.
  • FIG. 1 shows a schematic view of a shrinking device 1 according to the known prior art.
  • Articles, in particular beverage containers, bottles 12, cans or the like are put together in article groups and wrapped in shrink film 14. These arrangements are also referred to as article assemblies or containers 10.
  • the containers 10 are fed in the transport direction TR on a conveyor belt 4 to the shrinking tunnel of the shrinking device 1.
  • Heating means (not shown) arranged, which act on the container 10 with shrink, for example, with hot air, whereby the shrink film 14 shrinks around the bottles 12.
  • FIGS. 2A to 2E illustrate the shrinkage of the shrink film 14 around the bottles 12 in various areas along the transport path within the shrink tunnel of the shrinking device 1 (see also FIG FIG. 1 ).
  • FIG. 2A shows the situation in the initial region of the shrink tunnel 1.
  • the shrink film 14 was beaten around the bottles 12, for example by means of a film wrapping device (not shown).
  • a film wrapping device (not shown).
  • hot air 7 or another suitable shrinking agent is sprayed laterally onto the containers 10 via the outflow surfaces 3.
  • the so-called film eyes 16 form on the side surfaces with the film overlaps 15 which initially overlap freely at the sides.
  • the initially small distance A 1 (cf. FIG. 2A ) between the outflow surfaces 3 and the shrink film 14 is also referred to as so-called minimum distance amine.
  • the distance between the outflow surfaces 3 and the shrink film 14 is already in the central region of the shrink tunnel by the shrinkage of the shrink film 14 to a mean distance A 2 (see. Figure 2C ).
  • the shrink film 14 Before the container 10 leaves the shrink tunnel 1 (see. FIG. 1 ), the shrink film 14 is largely completely close to the lateral surfaces of the bottle 12 at.
  • the distance A 3 corresponds to the maximum distance A max between the outflow surfaces 3 and the bottles 12 of the container 10. Since the jet velocity of the shrinking means 7 with increasing penetration into the interior 5 of the shrinking device 1 is always lower and the shrinking means 7 at longer distances to be covered until reaching the Shrink film 14 loses temperature, the energy input into the shrink film 14 is thus significantly worse in the end of the shrink tunnel.
  • FIG. 3A represents the state of the art.
  • the shaft wall 2 has over its length L a constant height H and a constant width B of the cross-sectional area Q. This is represented in particular by the fact that the shaft wall 2 along the section lines AA and BB has been shown in cross section Q, which does not change over the length L of the shaft wall 2 in the transport direction TR.
  • FIG. 2 Problem illustrated that the distance A between the packaged, in particular the shrink film 14, and the outflow surfaces 3 of the shaft walls 2 increases when passing through the shrinking device 1 in the transport direction TR.
  • FIG. 3B shows a shaft wall 2-1, in which the outflow surfaces 3 are arranged at an angle to each other.
  • the outflow surfaces 3 are arranged at an acute angle to each other in such a way, wherein the vertex is located in front of the shrinking device.
  • the shaft wall 2-1 has a first width B A in a first area AA, which has first passed through in the transport direction TR, and a second width B B in a second area BB which has subsequently passed through.
  • the first width B A is smaller than the second width B B.
  • the first cross-sectional area Q1 in the first area AA of the shaft wall 2-1 is smaller than the second cross-sectional area Q2 in the second area BB.
  • FIG. 3C shows shaft wall 2-2, in which the width B of the shaft wall 2-2 increases gradually in the transport direction TR.
  • the shaft wall 2-2 between the outflow surfaces 3 has a first width B A and thus a first cross-sectional area Q1 which is smaller than a second width B B and thus a second cross-sectional area Q2 in a second, subsequently traversed region BB.
  • Figure 3D shows shaft wall 2-3, in which the width B of the shaft wall 2-3 is increased in two steps.
  • the shaft wall 2-3 In a first traversed region AA, the shaft wall 2-3 has a first width B A between the outflow surfaces 3 and thus a first cross-sectional area Q 1.
  • the shaft wall 2-3 In a second traversed region BB, the shaft wall 2-3 has a second width B B between the outflow surfaces 3 and thus one second cross-sectional area Q2, where B B > B A and thus also Q2> Q1.
  • the shaft wall 2-3 between the outflow surfaces 3 has a third width B C and thus a third cross-sectional area Q3, where B C > B B and thus also Q3> Q2.
  • FIG. 4 shows a plan view of a shrinking device 1 * with tiered shaft walls 2-2 according to FIG. 3C ,
  • a shrinking device 1 * In a first region AA of the shrinking device 1, there is a first distance A 1 between the shrinking film 14 of the packaging unit 10 and the outflow surfaces 3 of the shaft walls 2-2.
  • a shrinkage film 14 of the packaging unit 10 and the outflow surfaces 3 of the shaft walls 2-2 each have a second distance A 2 * which corresponds approximately to the first distance A 1 .
  • the energy input into the shrink film 14 of the packaging unit 10 in the rear region BB is increased.
  • the shrinking means 7 strikes the shrink film 14 at a greater speed and temperature. Accordingly, the required power of a shrinkage generator, such as the blower power, can be reduced.
  • the shaft walls are 2-4 (see also shaft wall 2-1 in FIG. 3B ) and 2-5 (see also shaft wall 2-2 in FIG. 3C ) between their respective first area AA with the respective first cross-sectional area Q1 and their respective second area BB with the respective second cross-sectional area Q2 are each divided by at least one separating element 30 into so-called manhole chambers 32-1 and 32-2.
  • the separating element 30 separates the two well chambers 32-1 and 32-2 airtight from each other.
  • FIGS. 6 show side views of two embodiments of shaft walls 2-5a and 2-5b with separator 30 according to FIG. 5B .
  • a distribution channel 8 via which the shrinkage means 7 produced by means of a shrinkage generator 6 or the like is introduced into the shaft chambers 32-1, 32-2 of the shaft walls 2-5a, 2-5b.
  • the shrinking means 7 is then injected via the outflow surfaces 3 of the shaft chambers 32-1, 32-2 of the shaft walls 2-5a, 2-5b in the interior of the shrinking device.
  • the shaft chambers 32-1, 32-2 of the shaft wall 2-5b are each assigned a shrinkage agent generator 6-1 and 6-2, and in each case a distribution channel 8-1 and 8-2, via which the shrinking means 7 from above into the two shaft chambers 32-1, 32-2 of the shaft wall 2-5b is introduced.
  • the embodiment 2-5b is by the individual feed a much more precise control of the amount of injected shrinking means 7 in the region of the respective shrinking chamber 32-1, 32-2 possible.
  • FIGS. 7 show various representations of a modular construction of a shaft wall.
  • FIG. 7A shows a side view of the modular structure of a shaft wall 2-6.
  • the shrinking means 7 is generated by a shrinkage generator 6 and introduced via a distribution channel 8 in the shaft wall 2-6.
  • the shaft wall 2-6 consists of five manhole chambers 32-1 to 32-5.
  • FIG. 7B shows a plan view of the five well chambers 32-1 to 32-5 a shaft wall 2-6.
  • the manhole chambers 32-1 to 32-5 are arranged successively on a support structure 25 in the transport direction TR.
  • the support structure 25 is comb-shaped and comprises a parallel to the transport direction TR arranged lower frame member 26.
  • the length L 25 of the support structure 25 corresponds to the length L 26 of the lower frame member 26 and at least substantially the length L of the shaft wall 2-6, ie the support structure 25th extends in the transport direction TR along the entire shaft wall 2-6.
  • the Schachtsch- modules 32-1 to 32-5 are each cuboid and have on their upper side in each case a connection to a above the shaft wall 2-6 arranged distribution channel 8, via which the shrinking means 7 from the distribution channel 8 in the individual Schachthunt- Module 32-1 to 32-5 arrives.
  • the support structure 25 comprises six transverse elements 27, between which five Schachtsch- modules 32-1 to 32-5 are arranged.
  • FIG. 7B shows a plan view of the five Schachthunt- modules 32-1 to 32-5 and in FIG. 7C The five Schachthunt- modules 32-1 to 32-5 are each shown individually.
  • the first in the transport direction TR arranged Schachthunt- module 32-1 has transverse to the transport direction TR a first width B 1 and a first cross-sectional area Q1.
  • the downstream second shaft chamber module 32-2 has transversely to the transport direction TR a second width B 2 and a second cross-sectional area Q 2 corresponding to the first width B 1 and the first cross-sectional area Q 1 of the first shaft chamber module 32-1.
  • the subsequent in the transporting direction TR thereto Schachthunt- module 32-3 now has a third width W 3, and a third cross-sectional surface Q3, which in each case greater than the first and second width B 1, B 2, and the first and second cross-sectional area Q1, Q2 of first two well chamber modules 32-1, 32-2.
  • the adjoining shaft chamber modules 32-4, 32-5 have a further increased width B 4 , B 5 and increased cross-sectional areas Q4, Q5.
  • Figure 7D illustrates again the gradual "tracking" of the shaft wall exit surface or the outflow 3 of a shrinking device 1 * with shaft walls 2-6 according to FIGS. 7A and 7B ,
  • FIG. 4 For the description is largely to the description FIG. 4 directed.
  • a first region AA of the shrinking device 1 * in particular in the region of the first two SchachtschModule 32-1, 32-2, there is a first distance A 1 between the shrink film 14 of the packaging unit 10 and the outflow surfaces 3 of the shaft walls 2-6.
  • a subsequent second region BB of the shrinking device 1 * in particular in the region of the third Schachtsch- module 32-3, between the shrink film 14 of the packaging unit 10 and the outflow surfaces 3 of the shaft walls 2-6 each have a second distance A 2 * in about corresponds to the first distance A 1 .
  • a subsequent third region CC of the shrinking device 1 * in particular in the last two Schachtsch- modules 32-4, 32-5, between the shrink film 14 of the packaging unit 10 and the outflow surfaces 3 of the shaft walls 2-6 each have a third distance A 3 * which corresponds approximately to the first distance A 1 and the second distance A 2 * .
  • the distance A 3 * corresponds to the smallest distance between the outflow surface 3 and bottles 12 of the packaging unit 10 in the third region CC.
  • the outflow surfaces 3 of the shaft chamber modules 32-1 to 32-5 are designed differently, so that the spraying of the bottles 12 with shrinking means 7 in different areas of the shrinking device 1 * can be further optimized.
  • the shrink wrap 14 is generally wrapped around the bottles 12 so as to initially have a lateral overhang 15 (see also Figs FIG. 2A ) and when shrinking a so-called film eye 16 forms (see also Figure 2E ).
  • the packaging unit 10 is transported through the shrinking device 1 * such that the regions of the film eyes 16 are arranged largely parallel to the outflow surfaces 3 of the shaft walls 2-6.
  • the Schachthunt- module 32-1 has seen over its height H only in a lower region an outflow surface 3 with shrink agent outlet openings 3 *, while the side surface of the subsequent Schachthunt- module 32-2 is formed over its entire surface as a discharge surface 3.
  • the third and fourth Schachthunt- module 32-4, 32-4 are also formed over the entire surface as outflow 3.
  • shrinking means 7 is to be supplied in particular in the region of the film eye 16 of the packaging unit 10.
  • the transport chamber final compartment chamber module 32-5 accordingly comprises an upper and a lower area without shrinkage means outlet openings 3 *. Only a central region is formed as outflow surface 3 with shrinkage agent outlet openings 3 *.
  • the shaft chamber modules 32-1 to 32-5 of rivetable flat sheets with different number of holes, ie different density of shrinkage agent outlet openings; different hole diameters, slots, gills, or other exit shapes such as shrinkage means outlet openings with baffles, etc. composed.
  • the shaft chamber modules 32-1 to 32-5 can be easily tailored to the processed packaging unit 10.
  • the Schachtsch- modules 32-1 to 32-5 thus represent rivets boxes, which make it possible to bring the shrinking means 7 closer to the product, in particular closer to the respective packaging unit 10, bring.
  • the FIGS. 8 show further representations of the components of a modular shaft wall 2-7 (see. Figure 8A ) and 2-8 (cf. FIG. 8C ) with a distribution channel 8 and support structure 25 arranged thereon.
  • Figure 8A generally shows the components of a shaft wall 2-7 with support structure 25, which consists in particular of a lower cross member 26 and orthogonal fastening elements 27.
  • the shaft wall 2-7 does not belong to the present invention, since this does not increase the size of the cross-sectional area in the transport direction TR.
  • the outflow surfaces 3 each consist of sheet metal tiles or module sheets 33 or the like. with shrink-agent outlet openings 3 * which are fastened to the support structure 25, for example, to the lower transverse element 26, the fastening elements 27 and the distribution channel 8 are riveted.
  • the centrally arranged orthogonal fastening elements 27 form separating elements which form the shaft chamber modules 32-1 to 32-4 (cf. FIG. 6A ) airtight from each other.
  • FIG. 8B shows a so-called module element 34-1
  • FIG. 8C shows the arrangement of two module elements 34-1 within a modular shaft wall 2-8.
  • the module element 34-1 is made of sheet metal or a comparable material, for example, and is constructed in particular like a box open at the top and standing on a side surface.
  • the underside of the box is designed as an outflow surface 3 with shrinkage agent outlet openings 3 *.
  • the side surfaces 35 of the box-shaped module element 34-1 which are largely orthogonal to the side edges of the outflow surface 3, have a height H 1 .
  • the side surfaces 35 are welded together at the edges to the outflow surface 3 and in particular airtight to each other.
  • attachment areas 37 via which the module element 34-1 is attached to the support structure 25.
  • the attachment regions 37 can be formed by a bent, protruding region of the side surfaces 35.
  • the module element 34-1 is in particular airtightly fastened to the lower transverse element 26, in each case two orthogonal fastening elements 27 and the distribution channel 8, via the attachment regions 37, in particular by riveting over the attachment regions 37.
  • the height H 1 of the module element 34-1 thus represents a partial width B P1 of the shaft chamber module (not shown) formed by the support structure 25 and two module elements 34-1 arranged opposite one another.
  • Figures 9 show further illustrations of a modular construction of a shaft wall 2-9 with support structure 25 according to the present invention.
  • Figure 9A shows a so-called module element 34-2 and
  • FIG. 9B shows the arrangement of a module element 34-2 and a module element 34-1 (see. FIG. 8B ) within a modular shaft wall 2-9.
  • the module element 34-2 is constructed in the form of a box open at the top and standing on a side surface.
  • the height H of the side surface 35 * which forms the standing surface or upper side of the module element 34-2, increases in the transporting direction TR. That is, the first arranged in the transporting direction TR short side 40-1 has a first length and first height H 1 and thus a first partial width B P1.
  • the downstream in the transport direction TR short side 40-2 has a second length or second height H 2 and thus a second partial width B P1 .
  • FIG. 10 shows an embodiment of a modular shaft wall 2-10 with an alternative embodiment of the support structure 25 *.
  • the width of the lower transverse element 26 * continuously increases in the transport direction TR.
  • the width B 27-n of the orthogonal fastening elements 27-n in the transporting direction TR also increases.
  • module sheets 33 are attached with shrinkage means outlet openings 3 * as outflow surfaces 3 to the support structure 25.
  • a shaft wall 2-10 is formed whose cross-sectional area increases continuously in the transport direction (cf. FIG. 3B ), so that the shaft wall 2-10 consists of four shaft chamber modules which are airtight separated from each other by the fastening elements 27-n in the transport direction TR.
  • Figures 11 show different examples of modular elements 34-1 to 34-12 for attachment to a support structure 25 (not shown, see. Figure 8, 8C ).
  • Figure 11A shows a simple module sheet 33rd
  • FIG. 11B shows a cuboid module element 34-1 according to FIG. 8B
  • FIG. 11C shows a so-called oblique module element 34-2 according to Figure 9A
  • modular elements 34-3 to 34-6 with curved outflow surfaces 3 * are possible, for example with outflow surfaces 3a protruding convexly into the interior of the shrinking device (FIG. Figures 3D, 3E ) or with concave outflow surfaces 3b (Figures 3F, 3G).
  • the outflow surface 3 in the transport direction TR can be subdivided into a front outflow partial surface 3e and a rear outflow partial surface 3f, and the outflow surfaces 3e, 3f each have an oblique design.
  • FIG. 11 M an embodiment of a module element 34-12 shown, in which the outflow surface 3 is divided into a plurality of outflow surfaces 3 *.
  • Other embodiments not shown here are derivable for the skilled person.
  • Figures 12 show a further embodiment of a modularly constructed shaft wall 2-11.
  • the support structure 25 are substantially only the orthogonal fasteners 27 partially visible.
  • module laminations 33 are arranged on both sides, so that the first two well chambers 32-1, 32-2 have approximately the width of the orthogonal fastening elements 27.
  • the third shaft chamber 32-3 is formed by two diagonal module elements 34-2 fastened to the support structure 25 and has a first overall width B G1 and a second overall width B G2 (see also FIG FIGS. 9A, 9B ) on.
  • the fourth shaft chamber 32-3 is formed by two widened module elements 34-1 and has an overall width B G3 (cf. Figures 8B, 8C ) on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Schrumpfvorrichtung gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Bei der Verpackung von Artikeln, insbesondere von Getränkebehältern, Flaschen etc. zu Gebinden, werden die Artikel in gewünschter Weise zusammengestellt und mit einer Schrumpffolie umhüllt. Die Schrumpffolie wird durch Zufuhr von Schrumpfmittel, beispielsweise von Heißluft, in einem Schrumpftunnel um die Artikel herum aufgeschrumpft. Aus dem Stand der Technik sind Luftbeaufschlagungen mittels Düsenrohren, Düsenkanälen und Schachtwänden bekannt.
  • Häufig werden die Gebinde, abhängig von ihrer jeweiligen Größe, im Schrumpftunnel in mehreren parallel geführten Bahnen verarbeitet. Um alle Gebinde von allen Seiten mit warmer Luft beaufschlagen zu können, müssen auch Mittel zum Einbringen der warmen Luft vorgesehen sein, welche das Schrumpfmittel zwischen den parallel geführten Artikeln eindüsen. Beispielsweise werden für die mehrbahnige Verarbeitung Schrumpftunnel mit mindestens einer so genannten mittleren Schachtwand verwendet. Bei den Schachtwänden handelt es sich um seitliche Bedüsungsvorrichtungen in Form von belochten Hohlkörpern. Diese innere Schachtwand weist Schrumpfmittelaustrittsöffnungen an beiden parallel zur Transportrichtung angeordneten Seitenwandflächen auf, so dass Heißluft nach beiden Seiten in das Innere des Schrumpftunnels einströmt und somit für die seitliche Beaufschlagung der Artikel mit heißem Schrumpfmittel sorgt. Die bekannten Schachtwände sind Wände mit einem inneren Hohlraum, in den die Heißluft eingeblasen wird. Hierzu weisen die Schachtwände jeweils mindestens eine, vorzugsweise im oberen Bereich angeordnete Lufteintrittsöffnung auf, durch die die Heißluft von oben her in die Schachtwand eingeblasen wird und dann durch die Schrumpfmittelaustrittsöffnungen in das Innere des Schrumpftunnels strömt.
  • Die Schachtwände werden in der Regel als Schweiß- oder Nietkonstruktionen ausgeführt, bei denen die Austrittsflächen mit verschiedenen Lochmustern ausgestattet sind. Im Allgemeinen sind die Schachtwände immer aus einem Teil gefertigt und somit definiert festgelegt. Das System kann nur mit erheblichem Aufwand auf verschiedene Produktgruppen umkonfiguriert werden. Auch bei konstruktiven Änderungen, Nachrüstungen oder reklamationsbedingten Änderungen ist der zeitliche und konstruktionsbedingte Aufwand hoch.
  • Problematisch ist insbesondere, dass der Energieeintrag in die Schrumpffolie entlang der Transportstrecke durch den Schrumpftunnel abnimmt, da der Abstand zwischen der Ausströmfläche der Schachtwand und Schrumpffolie beim Schrumpfprozess in Transportrichtung zunimmt. Dazu kommt, dass die Strahlgeschwindigkeit des Schrumpfmittels mit zunehmender Eindringtiefe in den Raum geringer wird und dass das Schrumpfmittel bis zum Erreichen der Schrumpffolie bei länger zurückzulegenden Wegstrecken bis zum Erreichen der Schrumpffolie an Temperatur verliert (vgl. auch Figur 1).
  • Aus dem Stand der Technik sind verschiebbare Schachtwände bekannt, mit denen die Breite der Schrumpfgasse und somit der Abstand zwischen den Ausströmflächen und dem Schrumpfgut eingestellt werden kann. Beispielsweise beschreibt DE 36 15 213 A1 eine Vorrichtung zum Heißschrumpfen von Folie mit einem verstellbaren Schrumpfrahmen. Die warme Luft wird mittels umlaufend angeordneten Gasbrennern generiert, wobei die Heizgase mittels Luftdüsen bzw. Schrumpfmittelaustrittsöffnungen gelenkt werden. Einzelne Schrumpfrahmenseiten sind derart beweglich und einstellbar gelagert, dass der Abstand zwischen zu verpackendem Gegenstand und Heizgas einstellbar ist. Weiterhin ist jede mit Brennern bestückte Schrumpfrahmenseite in den Endbereichen mit fortschreitend zu- und abschaltbaren Kammern für die Heizgase versehen.
  • WO 2002/036436 beschreibt die mehrbahnige Verarbeitung von Gebinden in einem Schrumpftunnel. Hierbei werden verfahrbare Schachtwände verwendet, deren Position in Abhängigkeit von den zu verarbeitenden Gebinden durch seitliches Verschieben in horizontaler Richtung angepasst wird.
  • Bei der einbahnigen Verarbeitung von Gebinden in einem Schrumpftunnel wäre es somit denkbar, die Schachtwände durch seitliches Verschieben nachzuführen. Insbesondere bei der mehrbahnigen Verarbeitung mit inneren Schachtwänden, die jeweils zwei Transportstrecken mit Schrumpfmittel versorgen, wie beispielsweise in der oben genannten WO 2002/036436 , wäre ein solches Nachführen jedoch technisch sehr aufwändig.
  • Weiterhin beschreibt US 3808702 einen Schrumpftunnel, bei dem die Schachtwände winklig zur Transportrichtung eingestellt werden können. Beispielsweise können die Schachtwände so angeordnet werden, dass sie parallel zur Transportrichtung ausgerichtet sind. Gemäß einer weiteren Ausführungsform werden die Schachtwände so angeordnet, dass sich der Abstand zwischen den Schachtwänden stromabwärts vergrößert oder verkleinert. Je mehr die Schachtwände einander angenähert sind, desto näher befinden sich die Ausströmflächen am Transportgut und desto heißer ist das auf das Transportgut auftreffende Schrumpfmedium.
  • Aufgabe der Erfindung ist es, die Bedüsung von Verpackungsgut beim Durchlaufen einer Schrumpfvorrichtung in Transportrichtung, insbesondere durch Optimierung des jeweiligen Abstands zwischen den Ausströmflächen und dem Verpackungsgut, zu verbessern.
  • Die obige Aufgabe wird durch eine Vorrichtung gelöst, die die Merkmale in dem Patentanspruch 1 umfasst. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.
  • Die Erfindung betrifft eine Schrumpfvorrichtung zum Schrumpfen von Verpackungsmitteln um einen Artikel oder um eine Zusammenstellung von Artikeln. Insbesondere wird eine solche Schrumpfvorrichtung verwendet, um so genannte Gebinde herzustellen. Dabei wird Schrumpffolie um eine Zusammenstellung einer Mehrzahl von Flaschen geschrumpft, um diese als eine Verpackungs- bzw. Verkaufseinheit zusammenzufassen. Die Schrumpfvorrichtung umfasst mindestens eine Transportstrecke für die Artikel oder Artikelzusammenstellungen. Die mit Verpackungsmittel umhüllten Artikel oder Artikelzusammenstellungen werden auf der Transportstrecke in einer Transportrichtung durch die Schrumpfvorrichtung transportiert.
  • Beidseitig entlang der Transportstrecke sind so genannte Schachtwände angeordnet, die jeweils mindestens eine dem Innenraum der Schrumpfvorrichtung zugewandte Ausströmfläche für Schrumpfmittel aufweisen. Als Schrumpfmittel dient insbesondere heiße Luft, insbesondere mittels eines Gebläses erhitzte Raumluft oder ein anderes als Schrumpfmittel geeignetes Fluid. Die Ausströmflächen umfassen jeweils eine Mehrzahl von Schrumpfmittelaustrittsöffnungen. Über die Schrumpfmittelaustrittsöffnungen der Ausströmflächen wird das Schrumpfmittel in den Innenraum der Schrumpfvorrichtung eingebracht, so dass die mit dem Verpackungsmittel umhüllten Artikel mit dem Schrumpfmittel beaufschlagt werden.
  • Erfindungsgemäß weisen die Schachtwände in einem ersten Bereich der Transportstrecke eine erste Breite und eine erste Querschnittsfläche senkrecht zur Transportrichtung auf. Weiterhin weisen die Schachtwände in einem zweiten, nachfolgenden Bereich der Transportstrecke eine zweite Breite und eine zweite Querschnittsfläche senkrecht zur Transportrichtung auf, wobei die erste Breite und die erste Querschnittsfläche geringer ist als die zweite Breite und die zweite Querschnittsfläche.
  • Gemäß einer ersten Ausführungsform sind die Schrumpfmittelaustrittsöffnungen der Ausströmflächen der Schachtwände in einem spitzen Winkel zueinander angeordnet, wobei der Scheitelpunkt des spitzen Winkel vorzugsweise vor dem Beginn der Transportstrecke liegt. Die Breite der Schachtwände nimmt somit in Transportrichtung über die Länge der Schachtwände kontinuierlich zu. Die Breite der Transportstrecke, auf der die Artikel etc. transportiert werden, nimmt dagegen in Transportrichtung über die Länge der Schachtwände kontinuierlich ab.
  • Gemäß einer weiteren Ausführungsform sind die Schrumpfmittelaustrittsöffnungen der Ausströmflächen der Schachtwände bereichsweise jeweils parallel zueinander angeordnet, wobei in dem ersten Bereich der Abstand zwischen den beiden Ausströmflächen größer ist als in dem in Transportrichtung nachfolgenden zweiten Bereich. Daraus ergibt sich wiederum, dass die Breite der Transportstrecke senkrecht zur Transportrichtung im ersten Bereich größer ist als im zweiten Bereich. Dadurch ergibt sich zudem, dass der Abstand zwischen den Ausströmflächen und den Artikeln der Verpackungseinheit im ersten Bereich größer ist als im zweiten Bereich.
  • Weiterhin kann vorgesehen sein, dass die Schachtwände zwischen dem ersten Bereich mit der ersten Querschnittsfläche und dem zweiten Bereich mit der zweiten Querschnittsfläche jeweils mindestens ein Trennelement umfassen. Die Schachtwände werden durch das mindestens eine Trennelement in mindestens zwei, in Transportrichtung nacheinander angeordnete Schachtkammern unterteilt. Vorzugsweise werden die Schachtkammern durch das Trennelement luftdicht voneinander abgetrennt, d.h. das in die erste Schachtkammer eingeleitete Schrumpfmittel tritt über die Ausströmflächen der ersten Schachtkammer in den Innenraum der Schrumpfvorrichtung ein. Das in die erste Schachtkammer eingeleitete Schrumpfmittel kann nicht in die zweite Schachtkammer übertreten. D.h. die beiden Schachtkammern sind strömungstechnisch voneinander getrennt.
  • Gemäß einer Ausführungsform der Erfindung umfasst die Schrumpfvorrichtung mindestens eine Einheit zur Erzeugung von Schrumpfmittel, über die das Schrumpfmittel von oben in mindestens eine der Schachtwände einbringbar ist. Die mindestens zwei Schachtkammern einer Schachtwand sind über einen Verteilkanal miteinander verbunden und werden hierbei durch dieselbe Einheit zur Erzeugung von Schrumpfmittel mit Schrumpfmittel beaufschlagt. Gemäß einer alternativen Ausführungsform der Erfindung umfasst die Schrumpfvorrichtung mindestens zwei Einheiten zur Erzeugung von Schrumpfmittel, wobei den mindestens zwei Schachtkammern einer Schachtwand jeweils einen eigenen Verteilkanal und eine eigene Einheit zur Erzeugung von Schrumpfmittel zugeordnet ist, über die die Schachtkammern jeweils mit Schrumpfmittel beaufschlagt werden.
  • Die erfindungsgemäße Schachtwand, deren Querschnitt sich in Transportrichtung verändert, insbesondere vergrößert, erlaubt eine energetisch und strömungstechnisch optimierte Beaufschlagung der Artikel oder Artikelzusammenstellungen mit Schrumpfmittel.
  • Gemäß einem weiteren Aspekt der Erfindung sind die Schachtwände modular aufgebaut. Insbesondere umfassen die Schachtwände eine Trägerkonstruktion und mindestens zwei daran montierte so genannte Schachtkammer- Module. Die Trägerkonstruktion ist insbesondere als kammförmige Rahmenkonstruktion ausgebildet. Die Länge der Trägerkonstruktion entspricht zumindest weitgehend der Länge der Schachtwand, d.h. die Trägerkonstruktion erstreckt sich in Transportrichtung zumindest weitgehend entlang der gesamten Schachtwand. Die Trägerkonstruktion ist insbesondere als kammartige Rahmenkonstruktion ausgebildet.
  • Ein erstes unteres Rahmenelement bildet den so genannten Kammrücken. Die Länge des unteren Rahmenelements entspricht der Länge der Trägerkonstruktion und somit in etwa der Länge der Schachtwand. An dem unteren Rahmenelement sind in regelmäßigen Abständen Befestigungselemente angeordnet, die in Richtung der Transportebene der Artikel weisen. Zwischen bzw. an diesen Befestigungselementen werden die Schachtkammer- Module angeordnet. Insbesondere sind die SchachtkammerModule quaderförmig ausgebildet und weisen auf der Oberseite eine Öffnung auf, über die das Schrumpfmittel aus dem Verteilkanal in die Schachtkammer- Module gelangt.
  • Alternativ umfasst die Trägerkonstruktion mindestens ein oberes Rahmenelement und eine Mehrzahl von weitgehend orthogonal zum oberen Rahmenelement und weitgehend orthogonal zur Transportstrecke angeordneten Befestigungselemente, die der Befestigung der Schachtkammer- Module dienen. Das obere Rahmenelement ist an einer Verteilvorrichtung für Schrumpfmittel angeordnet und für das Schrumpfmittel zumindest teilweise durchlässig. Das obere Rahmenelement ist so konstruiert, dass das Schrumpfmittel durch das obere Rahmenelement weitgehend ungehindert in den Innenraum der Schachtwand einströmen kann. Dieses obere Rahmenelement kann beispielsweise aus mindestens zwei Längsstreben bestehen, die durch verbindende Querstreben miteinander verbunden und stabilisiert sind
  • Gemäß einer Ausführungsform umfasst die Trägerkonstruktion drei Befestigungselemente, wobei das erste Befestigungselement am ersten vorderen Ende des unteren oder oberen Rahmenelements, das zweite Befestigungselement im mittleren Bereich des unteren oder oberen Rahmenelements und das dritte Befestigungselement am zweiten hinteren Ende des unteren oder oberen Rahmenelements angeordnet ist. An dieser Trägerkonstruktion werden zwei Schachtkammer- Module angeordnet. Insbesondere weist das erste Schachtkammer- Modul eine erste Breite und eine erste Querschnittsfläche quer zur Transportrichtung auf und ein nachgeordnetes Schachtkammer- Modul eine zweite Breite und eine zweite Querschnittsfläche quer zur Transportrichtung, wobei die erste Breite des ersten Schachtkammer- Moduls geringer ist als die zweite Breite des nachgeordneten Schachtkammer- Moduls.
  • Weiterhin kann vorgesehen sein, dass die der Transportstrecke zugewandten Seitenflächen der Schachtkammermodule unterschiedlich, insbesondere in Bezug auf die Ausströmflächen individuell, ausgestaltet sind, so dass die Bedüsung der Artikel mit Schrumpfmittel in unterschiedlichen Bereichen der Schrumpfvorrichtung weiter optimiert werden kann. Vorzugsweise können die Seitenflächen einzelner Schachtkammer- Module nur bereichsweise als Ausströmfläche ausgebildet sein. Die Schrumpffolie wird im Allgemeinen so um die Artikel herum geschlagen, dass die Schrumpffolie seitlich über die Artikel übersteht und beim Schrumpfen ein so genanntes Folienauge bildet. Die Verpackungseinheit wird so durch die Schrumpfvorrichtung transportiert, dass die Bereiche der Folienaugen weitgehend parallel zu den Ausströmflächen der Schachtwände angeordnet sind. Beispielsweise kann in einem Anfangsbereich der Schrumpfvorrichtung vorgesehen sein, nur den oberen und unteren Bereich der Verpackungseinheit zu bedüsen und möglichst keine direkte Schrumpfmittelzufuhr in den mittleren Bereich des Folienauges einzutragen. In diesem Fall werden Schachtkammer- Module verwendet, die über ihre Höhe gesehen nur in einem oberen und einem unteren Bereich Schrumpfmittelaustrittsöffnungen aufweisen. Weiterhin kann es vorteilhaft sein, wenn in einem Endbereich der Schrumpfvorrichtung Schrumpfmittel insbesondere im Bereich des Folienauges der Schrumpfverpackung zugeführt wird. In diesem Fall verwendet man ein die Transportstrecke abschließendes Schachtkammer- Modul mit einer erhöhten Dichte an Schrumpfmittelaustrittsöffnungen im mittleren Bereich. Oder man verwendet ein Schachtkammer- Modul, das nur in einem mittleren Bereich, nicht aber im oberen und im unteren Bereich, Schrumpfmittelaustrittsöffnungen aufweist. Die individuelle Gestaltung der Ausströmflächen bezieht sich beispielsweise auf die Anordnung der Schrumpfmittelaustrittsöffnungen innerhalb der Ausströmfläche, der Dichte der Schrumpfmittelaustrittsöffnungen, der Form der Schrumpfmittelaustrittsöffnungen etc. Die Schrumpfmittelaustrittsöffnungen der Ausströmflächen können auch bereichsweise Luftleitvorrichtungen aufweisen, die die Ausströmrichtung des Schrumpfmittels gezielt in bestimmte Richtungen lenken.
  • Gemäß einer weiteren Ausführungsform der Erfindung sind zumindest die mittleren Befestigungselemente als Trennelemente ausgebildet. Durch die Trennelemente werden die mindestens zwei, in Transportrichtung aufeinanderfolgend befestigten Schachtkammer- Module, luftdicht voneinander abgetrennt. Insbesondere kann das Schrumpfmittel aus dem ersten Schachtkammer- Modul nicht in das zweite Schachtkammer- Modul gelangen und vice versa.
  • Wie bereits beschrieben wurde, kann vorgesehen sein, dass mindestens zwei Schachtkammer- Module einer Schachtwand durch eine gemeinsame Einheit zur Erzeugung von Schrumpfmittel gespeist werden. Alternativ kann für jedes Schachtkammer- Modul eine eigene Einheit zur Erzeugung von Schrumpfmittel vorgesehen sein. Bei Anordnung von mehr als zwei Schachtkammer- Modulen an einer Trägerkonstruktion können somit ein oder mehrere Einheiten zur Erzeugung von Schrumpfmittel zum Einsatz kommen.
  • Aufgrund einer Konstruktion der Schachtwand als kammförmige Trägerkonstruktion mit einer Auswahl an unterschiedlichen, jeweils aufnietbaren Ausströmflächen, können insbesondere die Strömungseigenschaften des Schrumpfmittels gezielt beeinflusst werden. Insbesondere ist beim Aufnieten der Ausströmflächen die Verwendung von Abstandselementen vorgesehen, um dadurch die Breite der Schachtkammer- Module und somit die Größe der Querschnittsfläche der Schachtkammer- Module einzustellen. Aufgrund des modularen Aufbaus kann zum einen die Schachtwandgeometrie einfach angepasst werden, Andererseits kann auch einfach das Bedüsungsmuster gezielt eingestellt werden.
  • Die Schachtkammer- Module können auch als nietbare Kästen vorgefertigt werden. Die Schachtkammer- Module ermöglichen aufgrund ihres sich in Transportrichtung erweiternden Querschnitts auf einfache Weise, das Schrumpfmittel näher an das Produkt, beispielsweise eine Verpackungseinheit o.ä., heranzubringen.
  • Alternativ kann vorgesehen, die Trägerkonstruktion so auszufähren, dass sich das untere und / oder obere Rahmenelement und die Befestigungselemente in Transportrichtung verbreitern. Durch Aufnieten von Ausströmflächen erhält man somit eine Schachtwand aus mehreren Modulen, deren Breite und somit auch Querschnittsfläche in Transportrichtung zunimmt. Gemäß einer weiteren Ausführungsform können die Seitenflächen einzelner Schachtkammer- Module auch als konvexe oder konkave Ausströmflächen ausgebildet sein, um somit die Bedüsung der Produkte weiter zu optimieren.
  • Die Seitenflächen der Schachtkammer- Module können Stoß an Stoß montiert werden. Alternativ kann vorgesehen sein, dass die horizontalen oberen oder unteren Rahmenelemente der Trägerkonstruktion Führungsausbrüche für Verstellelemente etc. enthalten.
  • Der modulare Aufbau bildet ein flexibles System und ermöglicht ein einfaches Konfektionieren der Schachtwand, welche dadurch einfach und schnell an besondere Parameter verschiedener Produktgruppen angepasst werden kann. Insbesondere kann die Bedüsung einfach an unterschiedliche Höhen der Artikel oder Artikelzusammenstellungen, unterschiedliche Breiten der Verpackungseinheiten etc. angepasst werden.
  • Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.
    • Figur 1 zeigt eine schematische Ansicht einer Schrumpfvorrichtung gemäß dem bekannten Stand der Technik.
    • Figuren 2 zeigen das Schrumpfverhalten einer Schrumpffolie um eine Artikelzusammenstellung in einem Schrumpftunnel gemäß dem bekannten Stand der Technik.
    • Figuren 3 zeigen Draufsichten auf verschiedene Ausführungsformen von Schachtwänden gemäß dem Stand der Technik bzw. mit in Transportrichtung zunehmendem Querschnitt.
    • Figur 4 zeigt eine Draufsicht auf eine Schrumpfvorrichtung mit stufig ausgebildeten Schachtwänden gemäß Figur 3C.
    • Figuren 5 zeigen Draufsichten auf erfindungsgemäße Schachtwände mit zusätzlichem Trennelement.
    • Figuren 6 zeigen seitliche Ansichten zweier Ausführungsformen von Schachtwänden mit Trennelement gemäß Figur 5.
    • Figuren 7 zeigen verschiedene Darstellungen eines modularen Aufbaus einer Schachtwand.
    • Figuren 8 zeigen weitere Darstellungen eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
    • Figuren 9 zeigen weitere Darstellungen eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
    • Figur 10 zeigt eine Ausführungsform einer modular aufgebauten Schachtwand mit einer alternativen Ausführungsform der Trägerkonstruktion.
    • Figuren 11 zeigen unterschiedliche Beispiele für Modulelemente.
    • Figuren 12 zeigen eine weitere Ausführungsform einer modular aufgebauten Schachtwand.
  • Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung oder das erfindungsgemäße Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.
  • Figur 1 zeigt eine schematische Ansicht einer Schrumpfvorrichtung 1 gemäß dem bekannten Stand der Technik. Artikel, insbesondere Getränkebehälter, Flaschen 12, Dosen o.ä. werden in Artikelgruppen zusammengestellt und mit Schrumpffolie 14 umhüllt. Diese Anordnungen bezeichnet man auch als Artikelzusammenstellungen oder Gebinde 10. Die Gebinde 10 werden in Transportrichtung TR auf einem Förderband 4 dem Schrumpftunnel der Schrumpfvorrichtung 1 zugeführt. In dem Schrumpftunnel sind Heizmittel (nicht dargestellt) angeordnet, die die Gebinde 10 mit Schrumpfmittel, beispielsweise mit heißer Luft, beaufschlagen, wodurch die Schrumpffolie 14 um die Flaschen 12 schrumpft. Nachdem die Gebinde 10 den Schrumpftunnel der Schrumpfvorrichtung 1 durchlaufen haben, werden sie durch oberhalb des Förderbands 4 angeordnete Gebläse 20 mit kalter Luft 22 abgekühlt.
  • Figuren 2 zeigen das Schrumpfverhalten einer Schrumpffolie 14 um die Flaschen 12 eines Gebindes 10 in einem Schrumpftunnel der Schrumpfvorrichtung 1 gemäß dem bekannten Stand der Technik. Beim dargestellten Schrumpftunnel handelt es sich um einen einbahnigen Schrumpftunnel mit zwei seitlichen Schachtwänden 2, wobei jeweils die dem Innenraum 5 des Schrumpftunnels zugewandte Seitenflächen der Schachtwände 2 als Ausströmflächen 3 ausgebildet sind. Das Gebinde 10 wird über eine Transportvorrichtung 4, beispielsweise ein Endlosförderband, durch den Schrumpftunnel hindurch befördert. Die Figuren 2A bis 2E stellen das Schrumpfen der Schrumpffolie 14 um die Flaschen 12 in verschiedenen Bereichen entlang der Transportstrecke innerhalb des Schrumpftunnels der Schrumpfvorrichtung 1 dar (vgl. auch Figur 1). Figur 2A zeigt die Situation im Anfangsbereich des Schrumpftunnels 1. Die Schrumpffolie 14 wurde beispielsweise mittels einer Folieneinschlagvorrichtung (nicht dargestellt) um die Flaschen 12 geschlagen. Im Schrumpftunnel wird über die Ausströmflächen 3 Heißluft 7 oder ein anderes geeignetes Schrumpfmittel seitlich auf die Gebinde 10 aufgedüst. Je weiter das Gebinde 10 in Transportrichtung TR durch den Schrumpftunnel transportiert wird, desto mehr schrumpft die Schrumpffolie 14 entsprechend ihren Eigenschaften um die Flaschen 12 herum. An den Seitenflächen mit den anfangs seitlich frei überlappenden Folienüberstanden 15 bilden sich die so genannten Folienaugen 16. Der anfänglich geringe Abstand A1 (vgl. Figur 2A) zwischen den Ausströmflächen 3 und der Schrumpffolie 14 wird auch als sogenannter Minimalabstand Amin bezeichnet. Der Abstand zwischen den Ausströmflächen 3 und der Schrumpffolie 14 ist bereits im mittleren Bereich des Schrumpftunnels durch das Schrumpfen der Schrumpffolie 14 auf einen mittleren Abstand A2 (vgl. Figur 2C) vergrößert. Bevor das Gebinde 10 den Schrumpftunnel 1 verlässt (vgl. Figur 1), liegt die Schrumpffolie 14 weitgehend vollständig eng an den Mantelflächen der Flaschen 12 an. Somit entspricht der Abstand A3 dem maximalen Abstand Amax zwischen den Ausströmflächen 3 und den Flaschen 12 des Gebindes 10. Da die Strahlgeschwindigkeit des Schrumpfmittels 7 mit zunehmender Eindringtiefe in den Innenraum 5 der Schrumpfvorrichtung 1 immer geringer wird und das Schrumpfmittel 7 bei länger zurückzulegenden Wegstrecken bis zum Erreichen der Schrumpffolie 14 an Temperatur verliert, ist der Energieeintrag in die Schrumpffolie 14 somit im Endbereich des Schrumpftunnels deutlich schlechter.
  • Figuren 3 zeigen Draufsichten auf verschiedene Ausführungsformen von Schachtwänden 2-1 bis 2-3 mit in Transportrichtung TR zunehmender Querschnittsfläche Q1, Q2, Q3. Figur 3A stellt den Stand der Technik dar. Die Schachtwand 2 weist über ihre Länge L eine konstante Höhe H und eine konstante Breite B der Querschnittsfläche Q auf. Dies ist insbesondere dadurch dargestellt, dass die Schachtwand 2 entlang der Schnittlinien A-A und B-B jeweils im Querschnitt Q dargestellt wurde, der sich über die Länge L der Schachtwand 2 in Transportrichtung TR nicht ändert. Bei einer solchen Schachtwand 2 besteht somit die in Figur 2 dargestellte Problematik, dass sich der Abstand A zwischen dem Verpackungsgut, insbesondere der Schrumpffolie 14, und den Ausströmflächen 3 der Schachtwände 2 beim Durchlaufen der Schrumpfvorrichtung 1 in Transportrichtung TR vergrößert.
  • Figur 3B zeigt eine Schachtwand 2-1, bei der die Ausströmflächen 3 winklig zueinander angeordnet sind. Insbesondere sind die Ausströmflächen 3 in einem spitzen Winkel zueinander dergestalt angeordnet, wobei der Scheitelpunkt vor der Schrumpfvorrichtung liegt. Die Schachtwand 2-1 weist in einem ersten, in Transportrichtung TR zuerst durchlaufenen Bereich A-A eine erste Breite BA und in einem zweiten, anschließend durchlaufenen Bereich B-B eine zweite Breite BB. Die erste Breite BA ist kleiner als die zweite Breite BB. Dementsprechend ist die erste Querschnittsfläche Q1 im ersten Bereich A-A der Schachtwand 2-1 kleiner als die zweite Querschnittsfläche Q2 im zweiten Bereich B-B.
  • Figur 3C zeigt Schachtwand 2-2, bei der die Breite B der Schachtwand 2-2 schrittweise in Transportrichtung TR zunimmt. In einem zuerst durchlaufenen Bereich A-A weist die Schachtwand 2-2 zwischen den Ausströmflächen 3 eine erste Breite BA und somit eine erste Querschnittsfläche Q1, die geringer ist als eine zweite Breite BB und somit eine zweite Querschnittsfläche Q2 in einem zweiten, anschließend durchlaufenen Bereich B-B.
  • Figur 3D zeigt Schachtwand 2-3, bei der die Breite B der Schachtwand 2-3 in zwei Schritten erhöht wird. In einem zuerst durchlaufenen Bereich A-A weist die Schachtwand 2-3 zwischen den Ausströmflächen 3 eine erste Breite BA und somit eine erste Querschnittsfläche Q1 auf. In einem zweiten durchlaufenen Bereich B-B weist die Schachtwand 2-3 zwischen den Ausströmflächen 3 eine zweite Breite BB und somit eine zweite Querschnittsfläche Q2 auf, wobei BB > BA und somit auch Q2 > Q1. In einem dritten anschließend durchlaufenen Bereich C-C weist die Schachtwand 2-3 zwischen den Ausströmflächen 3 eine dritte Breite BC und somit eine dritte Querschnittsfläche Q3 auf, wobei BC > BB und somit auch Q3 > Q2.
  • Figur 4 zeigt eine Draufsicht auf eine Schrumpfvorrichtung 1 * mit stufig ausgebildeten Schachtwänden 2-2 gemäß Figur 3C. In einem ersten Bereich A-A der Schrumpfvorrichtung 1 besteht zwischen der Schrumpffolie 14 der Verpackungseinheit 10 und den Ausströmflächen 3 der Schachtwänden 2-2 jeweils ein erster Abstand A1. In einem nachfolgenden zweiten Bereich B-B der Schrumpfvorrichtung 1 * besteht zwischen der Schrumpffolie 14 der Verpackungseinheit 10 und den Ausströmflächen 3 der Schachtwänden 2-2 jeweils ein zweiter Abstand A2* der in etwa dem ersten Abstand A1 entspricht. Durch das kontinuierliche oder schrittweise "Nachführen" der Schachtwandaustrittsfläche bzw. Ausströmflächen 3 wird der Energieeintrag in die Schrumpffolie 14 der Verpackungseinheit 10 im hinteren Bereich B-B erhöht. Durch den geringeren Abstand der Ausströmflächen 3 zur Schrumpffolie 14 auch im hinteren Bereich B-B trifft das Schrumpfmittel 7 mit größerer Geschwindigkeit und Temperatur auf die Schrumpffolie 14 auf. Dementsprechend kann die benötigte Leistung eines Schrumpfmittelerzeugers, beispielsweise die Gebläseleistung, reduziert werden.
  • Gemäß einer weiteren in den Figuren 5 dargestellten Ausführungsformen, sind die Schachtwände 2-4 (siehe auch Schachtwand 2-1 in Figur 3B) und 2-5 (siehe auch Schachtwand 2-2 in Figur 3C) zwischen ihrem jeweilig ersten Bereich A-A mit der jeweils ersten Querschnittsfläche Q1 und ihrem jeweilig zweiten Bereich B-B mit der jeweils zweiten Querschnittsfläche Q2 jeweils durch mindestens ein Trennelement 30 in so genannte Schachtkammern 32-1 und 32-2 unterteilt. Vorzugsweise trennt das Trennelement 30 die beiden Schachtkammern 32-1 und 32-2 luftdicht voneinander ab.
  • Figuren 6 zeigen seitliche Ansichten zweier Ausführungsformen von Schachtwänden 2-5a und 2-5b mit Trennelement 30 gemäß Figur 5B. Oberhalb der Schachtwände 2-5a, 2-5b befindet sich ein Verteilkanal 8, über den das mittels eines Schrumpfmittelerzeugers 6 oder ähnlichem erzeugte Schrumpfmittel 7 in die Schachtkammern 32-1, 32-2 der Schachtwände 2-5a, 2-5b eingeleitet wird. Das Schrumpfmittel 7 wird anschließend über die Ausströmflächen 3 der Schachtkammern 32-1, 32-2 der Schachtwände 2-5a, 2-5b in den Innenraum der Schrumpfvorrichtung eingedüst.
  • Gemäß der in Figur 6A dargestellten Ausführungsform ist den Schachtkammern 32-1, 32-2 der Schachtwand 2-5a ein Schrumpfmittelerzeuger 6 und ein Verteilkanal 8 zugeordnet, über die das Schrumpfmittel 7 von oben in die beiden Schachtkammern 32-1, 32-2 der Schachtwand 2-5a eingebracht wird.
  • Gemäß der in Figur 6B dargestellten Ausführungsform ist dagegen den Schachtkammern 32-1, 32-2 der Schachtwand 2-5b jeweils ein Schrumpfmittelerzeuger 6-1 und 6-2 sowie jeweils ein Verteilkanal 8-1 und 8-2 zugeordnet, über die das Schrumpfmittel 7 von oben in die beiden Schachtkammern 32-1, 32-2 der Schachtwand 2-5b eingebracht wird. Bei der Ausführungsform 2-5b ist durch die individuelle Einspeisung eine wesentlich genauere Steuerung der Menge an eingedüsten Schrumpfmittel 7 im Bereich der jeweiligen Schrumpfkammer 32-1, 32-2 möglich.
  • Die Figuren 7 zeigen verschiedene Darstellungen eines modularen Aufbaus einer Schachtwand. Figur 7A zeigt eine seitliche Darstellung des modularen Aufbaus einer Schachtwand 2-6. Das Schrumpfmittel 7 wird durch einen Schrumpfmittelerzeuger 6 erzeugt und über eine Verteilkanal 8 in die Schachtwand 2-6 eingeleitet.
  • Die Schachtwand 2-6 besteht aus fünf Schachtkammern 32-1 bis 32-5. Figur 7B zeigt eine Draufsicht auf die fünf Schachtkammern 32-1 bis 32-5 einer Schachtwand 2-6. Die Schachtkammern 32-1 bis 32-5 sind in Transportrichtung TR aufeinanderfolgend an einer Trägerkonstruktion 25 angeordnet. Die Trägerkonstruktion 25 ist kammförmig ausgebildet und umfasst ein parallel zur Transportrichtung TR angeordnetes unteres Rahmenelement 26. Die Länge L25 der Trägerkonstruktion 25 entspricht der Länge L26 des unteren Rahmenelements 26 und zumindest weitgehend der Länge L der Schachtwand 2-6, d.h. die Trägerkonstruktion 25 erstreckt sich in Transportrichtung TR entlang der gesamten Schachtwand 2-6.
  • Orthogonal zu dem unteren Rahmenelement 26 und orthogonal zur Transportrichtung TR sind in regelmäßigen Abständen Querelemente 27 am unteren Rahmenelement 26 angeordnet. Zwischen bzw. an diesen Querelementen 27 werden die unterschiedlichen Schachtkammer- Module 32-1 bis 32-5 angeordnet. Die Schachtkammer- Module 32-1 bis 32-5 sind jeweils quaderförmig ausgebildet und weisen auf ihrer Oberseite jeweils eine Verbindung zu einem oberhalb der Schachtwand 2-6 angeordneten Verteilkanal 8 auf, über die das Schrumpfmittel 7 aus dem Verteilkanal 8 in die einzelnen Schachtkammer- Module 32-1 bis 32-5 gelangt.
  • Gemäß der in Figur 7A dargestellten Ausführungsform der Schachtwand 2-6 umfasst die Trägerkonstruktion 25 sechs Querelemente 27, zwischen denen fünf Schachtkammer- Module 32-1 bis 32-5 angeordnet werden. Figur 7B zeigt eine Draufsicht auf die fünf Schachtkammer- Module 32-1 bis 32-5 und in Figur 7C werden die fünf Schachtkammer- Module 32-1 bis 32-5 jeweils einzeln dargestellt.
  • Das in Transportrichtung TR als erstes angeordnete Schachtkammer- Modul 32-1 weist quer zur Transportrichtung TR eine erste Breite B1 und eine erste Querschnittsfläche Q1 auf. Das nachgeordnete zweite Schachtkammer- Modul 32-2 weist quer zur Transportrichtung TR eine zweite Breite B2 und eine zweite Querschnittsfläche Q2 auf, die der ersten Breite B1 und der ersten Querschnittsfläche Q1 des ersten Schachtkammer- Moduls 32-1 entsprechen. Das in Transportrichtung TR daran anschließende Schachtkammer- Modul 32-3 weist nunmehr eine dritte Breite B3 und eine dritte Querschnittsfläche Q3 auf, die jeweils größer als die erste und zweite Breite B1, B2 und die erste und zweite Querschnittsfläche Q1, Q2 der ersten beiden SchachtkammerModule 32-1, 32-2 ist. Die daran anschließenden Schachtkammer- Module 32-4, 32-5 weisen eine nochmals erhöhte Breite B4, B5 und erhöhte Querschnittsflächen Q4, Q5 auf.
  • Figur 7D verdeutlich noch einmal das schrittweise "Nachführen" der Schachtwandaustrittsfläche bzw. der Ausströmfläche 3 einer Schrumpfvorrichtung 1 * mit Schachtwänden 2-6 gemäß Figuren 7A und 7B. Für die Beschreibung wird weitestgehend auf die Beschreibung zu Figur 4 verwiesen. In einem ersten Bereich A-A der Schrumpfvorrichtung 1*, insbesondere im Bereich der ersten beiden SchachtkammerModule 32-1, 32-2, besteht zwischen der Schrumpffolie 14 der Verpackungseinheit 10 und den Ausströmflächen 3 der Schachtwänden 2-6 jeweils ein erster Abstand A1. In einem nachfolgenden zweiten Bereich B-B der Schrumpfvorrichtung 1*, insbesondere im Bereich des dritten Schachtkammer- Moduls 32-3, besteht zwischen der Schrumpffolie 14 der Verpackungseinheit 10 und den Ausströmflächen 3 der Schachtwänden 2-6 jeweils ein zweiter Abstand A2* der in etwa dem ersten Abstand A1 entspricht. In einem daran anschließenden dritten Bereich C-C der Schrumpfvorrichtung 1*, insbesondere im Bereich der letzten beiden Schachtkammer- Module 32-4, 32-5, besteht zwischen der Schrumpffolie 14 der Verpackungseinheit 10 und den Ausströmflächen 3 der Schachtwänden 2-6 jeweils ein dritter Abstand A3* der in etwa dem ersten Abstand A1 und dem zweiten Abstand A2* entspricht. Insbesondere entspricht der Abstand A3* dem geringsten Abstand zwischen der Ausströmfläche 3 und Flaschen 12 der Verpackungseinheit 10 im dritten Bereich C-C.
  • Weiterhin kann vorgesehen sein, dass die Ausströmflächen 3 der Schachtkammermodule 32-1 bis 32-5 unterschiedlich ausgestaltet sind, so dass die Bedüsung der Flaschen 12 mit Schrumpfmittel 7 in unterschiedlichen Bereichen der Schrumpfvorrichtung 1* weiter optimiert werden kann. Die Schrumpffolie 14 wird im Allgemeinen so um die Flaschen 12 herum geschlagen, dass sie anfangs einen seitlichen Überhang 15 aufweist (vgl. auch Figur 2A) und beim Schrumpfen ein so genanntes Folienauge 16 bildet (vgl. auch Figur 2E). Die Verpackungseinheit 10 wird so durch die Schrumpfvorrichtung 1* transportiert, dass die Bereiche der Folienaugen 16 weitgehend parallel zu den Ausströmflächen 3 der Schachtwände 2-6 angeordnet sind. Beispielsweise kann im Bereich des ersten Schachtkammer- Moduls 32-1 der Schrumpfvorrichtung 1 * vorgesehen sein, nur den unteren Bereich der Flaschen 12 zu bedüsen und möglichst keine direkte Schrumpfmittelzufuhr im mittleren und oberen Bereich, insbesondere im Bereich des Folienauges 16, einzutragen. Das Schachtkammer- Modul 32-1 weist über seine Höhe H gesehen nur in einem unteren Bereich eine Ausströmfläche 3 mit Schrumpfmittelaustrittsöffnungen 3* auf, während die Seitenfläche des nachfolgende Schachtkammer- Modul 32-2 vollflächig als Ausströmfläche 3 ausgebildet ist. Das dritte und vierte Schachtkammer- Modul 32-4, 32-4 sind ebenfalls vollflächig als Ausströmfläche 3 ausgebildet. Im Endbereich der Schrumpfvorrichtung 1*, insbesondere im Bereich des letzten Schachtkammer- Moduls 32-5 soll Schrumpfmittel 7 insbesondere im Bereich des Folienauges 16 der Verpackungseinheit 10 zugeführt werden. Das die Transportstrecke abschließende Schachtkammer- Modul 32-5 umfasst dementsprechend einen oberen und einen unteren Bereich ohne Schrumpfmittelaustrittsöffnungen 3*. Nur ein mittlerer Bereich ist als Ausströmfläche 3 mit Schrumpfmittelaustrittsöffnungen 3* ausgebildet.
  • Vorzugsweise werden die Schachtkammer- Module 32-1 bis 32-5 aus nietbaren flachen Blechen mit verschiedener Lochanzahl, d.h. unterschiedlicher Dichte an Schrumpfmittelaustrittsöffnungen; verschiedenen Lochdurchmessern, Schlitzen, Kiemen, oder anderen Austrittsformen wie Schrumpfmittelaustrittsöffnungen mit Leitblechen etc. zusammengesetzt. Somit können die Schachtkammer- Module 32-1 bis 32-5 einfach speziell auf die verarbeiteten Verpackungseinheit 10 abgestimmt werden. Die Schachtkammer- Module 32-1 bis 32-5 stellen also nietbare Kästen dar, die es ermöglichen, das Schrumpfmittel 7 näher an das Produkt, insbesondere näher an die jeweilige Verpackungseinheit 10, heranzubringen. Die Figuren 8 zeigen weitere Darstellungen der Bestandteile einer modularen Schachtwand 2-7 (vgl. Figur 8A) und 2-8 (vgl. Figur 8C) mit einem Verteilkanal 8 und daran angeordneter Trägerkonstruktion 25. Figur 8A zeigt allgemein die Bestandteile einer Schachtwand 2-7 mit Trägerkonstruktion 25, die insbesondere aus einem unteren Querelement 26 und orthogonalen Befestigungselementen 27 besteht. Die Schachtwand 2-7 gehört nicht zu vorliegender Erfindung, da sich bei dieser nicht die Größe der Querschnittsfläche in Transportrichtung TR erhöht. Die Ausströmflächen 3 bestehen jeweils aus Blechkacheln bzw. Modulblechen 33 o.ä. mit Schrumpfmittelaustrittsöffnungen 3*, die an der Trägerkonstruktion 25 befestigt, beispielsweise an das untere Querelement 26, die Befestigungselemente 27 und am Verteilkanal 8 aufgenietet werden. Die mittig angeordneten orthogonalen Befestigungselementen 27 bilden Trennelemente, die die dadurch gebildeten Schachtkammermodule 32-1 bis 32-4 (vgl. Figur 6A) luftdicht voneinander abgrenzen.
  • Figur 8B zeigt ein so genanntes Modulelement 34-1 und Figur 8C zeigt die Anordnung zweier Modulelemente 34-1 innerhalb einer modularen Schachtwand 2-8. Das Modulelement 34-1 besteht beispielsweise aus Blech oder einem vergleichbaren Material und ist insbesondere wie eine oben offene und auf einer Seitenfläche stehende Schachtel aufgebaut. Die Unterseite der Schachtel ist als Ausströmfläche 3 mit Schrumpfmittelaustrittsöffnungen 3* ausgebildet. Die weitgehend orthogonal zu den Seitenkanten der Ausströmfläche 3 angeordneten Seitenflächen 35 des schachtelförmigen Modulelementes 34-1 weisen eine Höhe H1 auf. Die Seitenflächen 35 sind an den Kanten zur Ausströmfläche 3 und zueinander insbesondere luftdicht miteinander verschweißt. An den so genannten Oberkanten 36 der Seitenflächen 35 befinden sich Befestigungsbereiche 37, über die das Modulelement 34-1 an der Trägerkonstruktion 25 befestigt wird. Insbesondere können die Befestigungsbereiche 37 durch einen umgebogenen, überstehenden Bereich der Seitenflächen 35 gebildet werden. Über die Befestigungsbereiche 37 wird das Modulelement 34-1 insbesondere luftdicht an dem unteren Querelement 26, jeweils zwei orthogonalen Befestigungselementen 27 und am Verteilkanal 8 befestigt, insbesondere erfolgt dies durch Aufnieten über die Befestigungsbereiche 37.
  • Die Höhe H1 des Modulelements 34-1 stellt somit eine partielle Breite BP1 des durch die Trägerkonstruktion 25 und zwei daran einander gegenüberliegend angeordneten Modulelementen 34-1 gebildeten Schachtkammermoduls (nicht dargestellt) dar. Die Breite BG eines solchen Schachtkammermoduls berechnet sich folgendermaßen: B G = 2 B P 1 + B 25 ,
    Figure imgb0001
    wobei B25 gleich der Breite der Rahmenelemente der Trägerkonstruktion 25, d.h. der Breite des unteren Querelements 26 bzw. der Breite der orthogonalen Befestigungselemente 27 entspricht.
  • Figuren 9 zeigen weitere Darstellungen eines modularen Aufbaus einer Schachtwand 2-9 mit Trägerkonstruktion 25 gemäß vorliegender Erfindung. Figur 9A zeigt ein so genanntes Modulelement 34-2 und Figur 9B zeigt die Anordnung eines Modulelements 34-2 und eines Modulelements 34-1 (vgl. Figur 8B) innerhalb einer modularen Schachtwand 2-9. Auch das Modulelement 34-2 ist in Form einer oben offenen und auf einer Seitenfläche stehenden Schachtel aufgebaut. Allerdings nimmt die Höhe H der Seitenfläche 35*, die die Standfläche bzw. Oberseite des Modulelements 34-2 bildet, in Transportrichtung TR zu. D.h. die in Transportrichtung TR zuerst angeordnete Kurzseite 40-1 weist eine erste Länge bzw. erste Höhe H1 und somit eine erste partielle Breite BP1 auf. Die in Transportrichtung TR nachgeordnete Kurzseite 40-2 weist eine zweite Länge bzw. zweite Höhe H2 und somit eine zweite partielle Breite BP1 auf. Somit wird durch gegenüberliegende Anordnung zweier Modulelemente 34-2 an der Trägerkonstruktion 25 ein Schachtkammermodul gebildet (nicht dargestellt), dessen Querschnitt sich von einer ersten Gesamtbreite BG1 = 2 · BP1 + B25 kontinuierlich auf eine zweite Gesamtbreite BG2 = 2 · BP2 + B25 erhöht.
  • Figur 10 zeigt eine Ausführungsform einer modular aufgebauten Schachtwand 2-10 mit einer alternativen Ausführungsform der Trägerkonstruktion 25*. Hierbei nimmt die Breite des unteren Querelementes 26* in Transportrichtung TR kontinuierlich zu. Analog dazu nimmt die Breite B27-n der orthogonalen Befestigungselemente 27-n in Transportrichtung TR ebenfalls zu. Gemäß der in Figur 8A dargestellten Ausführungsform werden Modulblechen 33 mit Schrumpfmittelaustrittsöffnungen 3* als Ausströmflächen 3 an der Trägerkonstruktion 25 befestigt. Dadurch wird eine Schachtwand 2-10 gebildet, deren Querschnittsfläche in Transportrichtung kontinuierlich zunimmt (vgl. auch Figur 3B), so dass die Schachtwand 2-10 aus vier Schachtkammermodulen besteht, die durch die Befestigungselemente 27-n in Transportrichtung TR luftdicht voneinander getrennt sind.
  • Figuren 11 zeigen unterschiedliche Beispiele für Modulelemente 34-1 bis 34-12 zur Befestigung an einer Trägerkonstruktion 25 (nicht dargestellt, vgl. Figur 8, 8C). Figur 11A zeigt ein einfaches Modulblech 33. Figur 11B zeigt eine quaderförmiges Modulelement 34-1 gemäß Figur 8B und Figur 11C zeigt ein so genanntes schiefes Modulelement 34-2 gemäß Figur 9A. Weiterhin sind Modulelemente 34-3 bis 34-6 mit gebogenen Ausströmflächen 3* möglich, beispielsweise mit konvex in den Innenraum der Schrumpfvorrichtung ragenden Ausströmflächen 3a (Figuren 3D, 3E) oder mit konkav ausgebildeten Ausströmflächen 3b (Figuren 3F, 3G).
  • Figuren 11 H bis 11 L zeigen Modulelemente 34-7 bis 34-11 mit zweigeteilter Ausströmfläche 3. Insbesondere kann die Ausströmfläche 3 in eine obere Ausström-Teilfläche 3c und eine untere Ausström- Teilfläche 3d, wobei bei dem Modulelement 34-7 die untere Ausström- Teilfläche 3d weiter in den Innenraum der Schrumpfvorrichtung hineinragt als die obere Ausström- Teilfläche 3c. Bei dem Modulelement 34-8 weist die obere Ausström- Teilfläche 3c eine schräg nach oben und in Richtung des Innenraums der Schrumpfvorrichtung gerichtete Ausgestaltung auf, während die untere Ausström-Teilfläche 3d eine schräg nach unten und in Richtung des Innenraums der Schrumpfvorrichtung gerichtete Ausgestaltung aufweist. Bei dem Modulelement 34-9 weisen beide Ausström- Teilflächen 3c, 3d jeweils eine konkave Formgebung auf. Weiterhin kann die die Ausströmfläche 3 in Transportrichtung TR in eine vordere Ausström- Teilfläche 3e und eine hintere Ausström- Teilfläche 3f unterteilt sein und die Ausströmflächen 3e, 3f jeweils eine schräge Ausbildung zeigen. Weiterhin ist in Figur 11 M eine Ausführungsform eines Modulelementes 34-12 dargestellt, bei dem die Ausströmfläche 3 in eine Vielzahl von Ausströmflächen 3* unterteilt ist. Weitere hier nicht dargestellte Ausführungsformen sind für den Fachmann ableitbar.
  • Figuren 12 zeigen eine weitere Ausführungsform einer modular aufgebauten Schachtwand 2-11. Von der Trägerkonstruktion 25 sind im Wesentlichen nur die orthogonalen Befestigungselementen 27 teilweise sichtbar. An den in Transportrichtung ersten drei nacheinander angeordneten Befestigungselementen 27 sind beidseitig Modulbleche 33 angeordnet, so dass die erste zwei Schachtkammern 32-1, 32-2 in etwa die Breite der orthogonalen Befestigungselemente 27 aufweisen. Die dritte Schachtkammer 32-3 wird durch zwei an der Trägerkonstruktion 25 befestigten diagonalen Modulelementen 34-2 gebildet und weist eine erste Gesamtbreite BG1 und eine zweite Gesamtbreite BG2 (vgl. auch Figuren 9A, 9B) auf. Die vierte Schachtkammer 32-3 wird durch zwei verbreiterte Modulelemente 34-1 gebildet und weist eine Gesamtbreite BG3 (vgl. auch Figuren 8B, 8C) auf.
  • Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
  • Bezugszeichenliste
  • 1, 1*
    Schrumpfvorrichtung
    2, 2-n
    Schachtwand
    3, 3*, 3-n
    Ausströmfläche, Schrumpfmittelaustrittsöffnungen
    4
    Transportvorrichtung
    5
    Innenraum
    6, 6-n
    Schrumpfmittelerzeuger
    7
    Schrumpfmittel
    8, 8-n
    Verteilkanal
    10
    Artikelzusammenstellung, Gebinde, Verpackungseinheit
    12
    Flasche
    14
    Schrumpffolie
    15
    Folienüberhang
    16
    Folienauge
    20
    Gebläse
    22
    Kaltluft
    25, 25*
    Trägerkonstruktion
    26, 26*
    unteres Querelement / Horizontalelement
    27, 27-n
    orthogonales Befestigungselement
    30
    Trennelement
    32-n
    Schachtkammer- Modul
    33
    Modulblech
    34-n
    Modulelement
    35
    Seitenfläche
    36
    Oberkante
    37
    Befestigungsbereiche
    40-n
    Kurzseite
    An
    Abstand zwischen Verpackungseinheit und Ausströmfläche
    Bn
    Breite der Schachtkammer
    BPn
    partielle Breite der Schachtkammer
    B27-n
    Breite des orthogonalen Befestigungselements
    L, Ln
    Länge
    Qn
    Querschnittsfläche
    TR
    Transportrichtung

Claims (15)

  1. Schrumpfvorrichtung (1) zum Schrumpfen von Verpackungsmitteln (14) um einen Artikel (12) oder eine Zusammenstellung von Artikeln (12), wobei die Schrumpfvorrichtung (1) mindestens eine Transportstrecke (4) für die Artikel (12) oder Artikelzusammenstellungen umfasst, auf der mit Verpackungsmittel (14) umhüllte Artikel (12) in einer Transportrichtung (TR) transportiert werden, und wobei die Schrumpfvorrichtung (1) mindestens zwei beidseitig entlang der Transportstrecke (4) angeordnete Schachtwände (2) umfasst, mit jeweils mindestens einer dem Innenraum (5) der Schrumpfvorrichtung (1) zugewandten Ausströmfläche (3), wobei die Ausströmfläche (3) eine Mehrzahl von Schrumpfmittelaustrittsöffnungen aufweist (3*), über die die mit dem Verpackungsmittel (14) umhüllten Artikel (12) mit einem Schrumpfmittel (7) beaufschlagbar sind, dadurch gekennzeichnet, dass die Schachtwände (2-n) in einem ersten Bereich (A-A) der Transportstrecke (4) eine erste Breite (B1) und eine erste Querschnittsfläche (Q1) senkrecht zur Transportrichtung (TR) aufweisen und dass die Schachtwände (2-n) in einem zweiten, nachfolgenden Bereich (B-B) der Transportstrecke (4) eine zweite Breite (B2) und eine zweite Querschnittsfläche (Q2) senkrecht zur Transportrichtung (TR) aufweisen, wobei die erste Querschnittsfläche (Q1) geringer ist als die zweite Querschnittsfläche (Q2), wobei der Abstand zwischen den beiden Ausströmflächen (3) im ersten Bereich (A-A) der Transportstrecke (4) größer ist als im zweiten, nachfolgenden Bereich (B-B).
  2. Schrumpfvorrichtung (1) nach Anspruch 1, wobei die Breite (Bn) der Schachtwände (2-n) in Transportrichtung (TR) kontinuierlich ansteigt oder wobei die Breite (Bn) der Schachtwände (2-n) in Transportrichtung (TR) stufenweise ansteigt.
  3. Schrumpfvorrichtung (1) nach Anspruch 1 oder 2, wobei die Schachtwände (2) zwischen dem ersten Bereich (A-A) mit der ersten Querschnittsfläche (Q1) und dem zweiten Bereich (B-B) mit der zweiten Querschnittsfläche (Q2) jeweils mindestens ein Trennelement (30) umfassen, das die Schachtwände (2) in mindestens zwei, in Transportrichtung (TR) nacheinander angeordnete Schachtkammern (32-n) unterteilt.
  4. Schrumpfvorrichtung (1) nach Anspruch 3, wobei das Trennelement (30) die Schachtkammern (32-n) luftdicht voneinander abtrennt.
  5. Schrumpfvorrichtung (1) nach Anspruch 4, wobei die Schrumpfvorrichtung (1) mindestens eine Einheit (6) zur Erzeugung von Schrumpfmittel (7) umfasst, über die das Schrumpfmittel (7) von oben in mindestens eine der Schachtwände (2) einbringbar ist und wobei die mindestens zwei Schachtkammern (32-n) einer Schachtwand (2) durch dieselbe Einheit (6) zur Erzeugung von Schrumpfmittel (7) mit Schrumpfmittel (7) beaufschlagbar sind.
  6. Schrumpfvorrichtung (1) nach Anspruch 4, wobei die Schrumpfvorrichtung (1) mindestens zwei Einheiten (6-n) zur Erzeugung von Schrumpfmittel (7) umfasst, und wobei den mindestens zwei Schachtkammern (32-1 n) einer Schachtwand (2) jeweils eine eigene Einheit (6-n) zur Erzeugung von Schrumpfmittel (7) zugeordnet ist, über die diese mit Schrumpfmittel (7) beaufschlagbar sind.
  7. Schrumpfvorrichtung (1) nach Anspruch 1, wobei die Schachtwände (2-6) jeweils mindestens eine Trägerkonstruktion (25) umfassen, wobei die Länge (L25) der Trägerkonstruktion (25) weitgehend der Länge (L) der jeweiligen Schachtwand (2-6) entspricht, und wobei an der Trägerkonstruktion (25) mindestens zwei, in Transportrichtung (TR) aufeinanderfolgende Schachtkammer- Module (32-n) für Schrumpfmittel (7) montierbar sind.
  8. Schrumpfvorrichtung (1) nach Anspruch 7, wobei die Trägerkonstruktion (25) mindestens ein oberes, für Schrumpfmittel (7) zumindest teildurchdurchlässiges Rahmenelement und eine Mehrzahl von weitgehend orthogonal zum oberen Rahmenelement und weitgehend orthogonal zur Transportrichtung (TR) angeordnete Befestigungselemente (27) umfasst und / oder wobei die Trägerkonstruktion (25) mindestens ein unteres Rahmenelement (26) und eine Mehrzahl von weitgehend orthogonal zum unteren Rahmenelement (26) und weitgehend orthogonal zur Transportrichtung (TR) angeordnete Befestigungselemente (27) umfasst.
  9. Schrumpfvorrichtung (1) nach Anspruch 7, wobei eine erste Querschnittsfläche (Q1) quer zur Transportrichtung (TR) eines in Transportrichtung (TR) zuerst innerhalb der Schrumpfvorrichtung (1) montierten Schachtkammer- Moduls (32-1) kleiner ist eine zweite Querschnittsfläche (Q2) quer zur Transportrichtung (TR) eines in Transportrichtung (TR) nachgeordnet montierten Schachtkammer- Moduls (32-3, 32-4) ist.
  10. Schrumpfvorrichtung (1) nach Anspruch 7, wobei die Trägerkonstruktion (25) mindestens ein Trennelement (30) umfasst, wobei die mindestens zwei, in Transportrichtung aufeinanderfolgende Schachtkammer- Module (32-n) für Schrumpfmittel (7) so an der Trägerkonstruktion (25) befestigbar sind, dass die Schachtkammer- Module (32-n) durch das Trennelement (30) luftdicht voneinander getrennt sind.
  11. Schrumpfvorrichtung (1) nach Anspruch 8, wobei mindestens eines der Befestigungselemente (27) als Trennelement (30) ausgebildet ist.
  12. Schrumpfvorrichtung (1) nach Anspruch 10, wobei die Schrumpfvorrichtung (1) mindestens eine Einheit (6) zur Erzeugung von Schrumpfmittel (7) umfasst, über die das Schrumpfmittel (7) von oben in mindestens eine der Schachtwände (2) einbringbar ist und wobei die mindestens zwei Schachtkammer- Module (32-n) einer Schachtwand (2) durch dieselbe Einheit (6) zur Erzeugung von Schrumpfmittel (7) mit Schrumpfmittel (7) beaufschlagbar sind.
  13. Schrumpfvorrichtung (1) nach Anspruch 10, wobei die Schrumpfvorrichtung (1) mindestens zwei Einheiten (6-n) zur Erzeugung von Schrumpfmittel (7) umfasst, und wobei den mindestens zwei Schachtkammer- Module (32-n) einer Schachtwand (2) jeweils eine eigene Einheit (6-n) zur Erzeugung von Schrumpfmittel (7) zugeordnet ist, über die diese mit Schrumpfmittel (7) beaufschlagbar sind.
  14. Schrumpfvorrichtung (1) nach Anspruch 7, wobei die der Transportstrecke (4) zugewandten Seitenflächen der Schachtkammer- Module (32-n) individuell gestaltete Ausströmflächen (3) umfassen, insbesondere wobei die der Transportstrecke (4) zugewandten Seitenflächen der Schachtkammer- Module (32-4) nur bereichsweise als Ausströmfläche (3) ausgebildet sind.
  15. Schrumpfvorrichtung (1) nach Anspruch 7, wobei die der Transportstrecke (4) zugewandten Seitenflächen der Schachtkammer- Module (32-n) konvex oder konkav geformt sind.
EP14153602.9A 2013-02-14 2014-02-03 Schrumpfvorrichtung Active EP2767476B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013101477.1A DE102013101477A1 (de) 2013-02-14 2013-02-14 Schrumpfvorrichtung

Publications (2)

Publication Number Publication Date
EP2767476A1 EP2767476A1 (de) 2014-08-20
EP2767476B1 true EP2767476B1 (de) 2016-01-20

Family

ID=50030141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153602.9A Active EP2767476B1 (de) 2013-02-14 2014-02-03 Schrumpfvorrichtung

Country Status (3)

Country Link
EP (1) EP2767476B1 (de)
CN (1) CN103991630B (de)
DE (1) DE102013101477A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106742366B (zh) * 2016-12-24 2019-08-27 广州市万世德智能装备科技有限公司 一种高速膜包机烤箱
DE102020208108A1 (de) * 2020-06-30 2021-12-30 Krones Aktiengesellschaft Schrumpftunnel und Verfahren zum Aufschrumpfen von thermoplastischem Verpackungsmaterial

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727324A (en) * 1970-09-18 1973-04-17 Despatch Ind Inc Shrink tunnel for palletized loads
US3717939A (en) * 1971-02-23 1973-02-27 Oven Syst Inc Shrink film oven
US3808702A (en) * 1973-03-15 1974-05-07 Gilbreth Co Heat shrink tunnel for ensuring uniform shrinkage of heat shrinkable bands on articles of various sizes
FR2320517A1 (fr) * 1975-08-06 1977-03-04 Erel Four de retraction de gaines thermoplastiques autour de recipients divers
DE3615213A1 (de) 1986-05-06 1987-11-12 Moellers Maschf Gmbh Vorrichtung zum heissschrumpfen einer folie mit einem verstellbaren schrumpfrahmen
CA2436202A1 (en) 2000-11-01 2002-05-10 Kysters Kayat, Inc. Adaptable packaging machine heat shrink tunnel
US7155876B2 (en) * 2003-05-23 2007-01-02 Douglas Machine, Inc. Heat tunnel for film shrinking
DE102006036590A1 (de) * 2006-08-04 2008-02-07 Khs Ag Verfahren zum Aufschrumpfen einer Schrumpffolie auf Verpackungen sowie Vorrichtung zum Durchführen des Verfahrens
WO2008021243A2 (en) * 2006-08-15 2008-02-21 Lincoln Foodservice Products Llc Multiple air dam device
DE102009044465A1 (de) * 2009-11-09 2011-05-12 Krones Ag Schrumpftunnel
CN202063287U (zh) * 2011-04-15 2011-12-07 台湾力冠机电设备有限公司 热烘机
DE102011052353A1 (de) * 2011-08-02 2013-02-07 Krones Aktiengesellschaft Schrumpftunnel

Also Published As

Publication number Publication date
EP2767476A1 (de) 2014-08-20
CN103991630A (zh) 2014-08-20
DE102013101477A1 (de) 2014-08-14
CN103991630B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
EP2554483B1 (de) Schrumpftunnel
EP2653394B1 (de) Schrumpfvorrichtung mit Blendenleiste
EP2319769A1 (de) Schrumpftunnel
DE102017119145A1 (de) Schrumpfvorrichtung und Verfahren zum Ansaugen von Luft aus einem Innenraum einer Schrumpfvorrichtung
DE102012103402A1 (de) Blendenleiste für Schrumpfvorrichtung
EP2767478B2 (de) Schrumpfvorrichtung mit aus mehreren Modulen aufgebauten Wänden
DE102012103398A1 (de) Schrumpfvorrichtung mit Blendenleiste
DE102010032455B4 (de) Schrumpfvorrichtung und Verfahren zum Aufschrumpfen von Folie auf Behälter
EP2767476B1 (de) Schrumpfvorrichtung
EP2551207B1 (de) Schrumpfvorrichtung mit Gebindekühlung
EP3070009A1 (de) Vorrichtung und verfahren zur herstellung von folienschrumpfgebinden
EP2767477B1 (de) Schrumpfvorrichtung mit aus mehreren Modulen aufgebauten Wänden
EP2586717B1 (de) Schrumpftunnel
EP4043354A1 (de) Schrumpfvorrichtung, verfahren zum optimieren des aufschrumpfens eines verpackungsmaterials auf eine zusammenstellung umfassend mindestens einen artikel und schrumpfmittelmodul
EP3812288B1 (de) Verfahren und schrumpfvorrichtung zum aufschrumpfen eines thermoplastischen verpackungsmaterials auf artikel
EP3730417A1 (de) Schrumpfvorrichtung und verfahren zum anpassen einer schrumpfvorrichtung
DE102014105057A1 (de) SCHRUMPFVORRICHTUNG MIT GEBINDEKÜHLUNG UND VERFAHREN ZUM ERZEUGEN EINES GLEICHMÄßIGEN, HOMOGENEN KÜHLMITTELSTROMS
EP3546382B1 (de) Dampfbalken und schrumpftunnel
DE102019123835A1 (de) Verpackungsvorrichtung und Verfahren zur Herstellung von Verpackungseinheiten
EP3129735B1 (de) Schrumpfvorrichtung mit gebindekühlung und verfahren zum erzeugen eines gleichmässigen, homogenen kühlmittelstroms
WO2024110087A1 (de) Schrumpfvorrichtung
EP3184443B1 (de) Vorrichtung und verfahren zum temperieren einer durch luft und/oder gas gebildeten fluidströmung über zusammenführen der durch luft und/oder gas gebildeten fluidströmung mit einem heissgasvolumenstrom
DE102020208108A1 (de) Schrumpftunnel und Verfahren zum Aufschrumpfen von thermoplastischem Verpackungsmaterial
DE19732585C2 (de) Verfahren und Vorrichtung zum Kühlen von Warenstücken in einem Kühlkanal
DE102019128873A1 (de) Verfahren und Schrumpfvorrichtung zum Aufschrumpfen eines thermoplastischen Verpackungsmaterials auf Artikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F27B 9/30 20060101ALI20150616BHEP

Ipc: B65B 53/06 20060101AFI20150616BHEP

INTG Intention to grant announced

Effective date: 20150708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20151117

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000303

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20161021

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 771603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190203

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240111

Year of fee payment: 11