EP2744650A1 - Films formant barrière - Google Patents
Films formant barrièreInfo
- Publication number
- EP2744650A1 EP2744650A1 EP12759846.4A EP12759846A EP2744650A1 EP 2744650 A1 EP2744650 A1 EP 2744650A1 EP 12759846 A EP12759846 A EP 12759846A EP 2744650 A1 EP2744650 A1 EP 2744650A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- barrier film
- coc
- semi
- crystalline
- mole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 118
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims abstract description 142
- 239000004713 Cyclic olefin copolymer Substances 0.000 claims abstract description 138
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 35
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 32
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 26
- 230000009477 glass transition Effects 0.000 claims description 16
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 15
- ZFRKQXVRDFCRJG-UHFFFAOYSA-N skatole Chemical compound C1=CC=C2C(C)=CNC2=C1 ZFRKQXVRDFCRJG-UHFFFAOYSA-N 0.000 claims description 14
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 13
- 239000005977 Ethylene Substances 0.000 claims description 12
- 239000004599 antimicrobial Substances 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 230000000845 anti-microbial effect Effects 0.000 claims description 10
- 229920001971 elastomer Polymers 0.000 claims description 10
- 239000000806 elastomer Substances 0.000 claims description 10
- 229920000098 polyolefin Polymers 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- 229920006124 polyolefin elastomer Polymers 0.000 claims description 6
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 claims description 4
- 229940074386 skatole Drugs 0.000 claims description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims 2
- 235000019645 odor Nutrition 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 131
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 15
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 15
- 239000004594 Masterbatch (MB) Substances 0.000 description 13
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 11
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical class C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 8
- 229920000034 Plastomer Polymers 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229920000554 ionomer Polymers 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000012748 slip agent Substances 0.000 description 6
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- -1 propylene, butylene, hexene Chemical class 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229920003313 Bynel® Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 229920003300 Plexar® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical group CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D145/00—Coating compositions based on homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic system; Coating compositions based on derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/325—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/327—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
- B32B2307/7145—Rot proof, resistant to bacteria, mildew, mould, fungi
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7248—Odour barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2535/00—Medical equipment, e.g. bandage, prostheses or catheter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/674—Nonwoven fabric with a preformed polymeric film or sheet
- Y10T442/676—Vinyl polymer or copolymer sheet or film [e.g., polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, etc.]
Definitions
- the present subject matter relates to polymeric barrier films for reducing transmission of odors.
- the subject matter also relates to articles comprising such films.
- the subject matter additionally relates to methods for reducing transmission of odors by use of the polymeric barrier films.
- the films, articles, and methods associated therewith are useful in various fields such as medical and health care applications, and find particular application in ostomy appliances and devices.
- PVDC polyvinylidene chloride
- COCs amorphous cyclic olefin copolymers
- the subject matter provides a barrier film comprising a semi-crystalline cyclic olefin copolymer (COC) having a melting temperature (Tm) of from about 70°C to about 100°C, and a glass transition temperature (Tg) of from about -20°C to about 32°C.
- COC semi-crystalline cyclic olefin copolymer
- Tm melting temperature
- Tg glass transition temperature
- the cyclic olefin copolymer has a norbornene content of from about 5 mole % to a bout 25 mole %.
- the subject matter provides a multilayer barrier film comprising at least one layer including a semi-crystalline cyclic olefin copolymer (COC) having a melting temperature (Tm) of from about 70°C to about 100°C, and a glass transition temperature (Tg) of from about -20°C to about 32°C.
- COC semi-crystalline cyclic olefin copolymer
- Tm melting temperature
- Tg glass transition temperature
- the cyclic olefin copolymer has a norbornene content of from about 5 mole % to about 25 mole %.
- the subject matter provides a multilayer barrier film comprising a barrier layer including ethylene vinyl alcohol (EVOH), at least one flexible support layer including one or more polyolefins, an antimicrobial layer including at least one antimicrobial agent, and at least one layer including a semi-crystalline cyclic olefin copolymer (COC).
- EVOH ethylene vinyl alcohol
- COC semi-crystalline cyclic olefin copolymer
- the present subject matter provides a method for reducing transmission of odorous species.
- the method comprises providing a semi-crystalline cyclic olefin copolymer (COC), forming a film including the semi-crystalline COC, and positioning the film between a source of odorous species and a user.
- COC semi-crystalline cyclic olefin copolymer
- Figure 1 is a schematic perspective view of a preferred embodiment multilayer polymeric film according to the present subject matter.
- barrier films and/or multilayer barrier assemblies are preferably halogen-free and are particularly well suited for medical applications such as forming ostomy pouches. Since the films and multilayer assemblies are halogen-free and particularly free of chlorine, they can be recycled and/or subjected to a wide array of material reclamation operations. In addition, the unique barrier materials and combination of barrier layers and/or other functional layers as described herein are particularly well suited for use in ostomy applications. These aspects and others are all described in greater detail as follows. Polymeric Barrier Film
- the present subject matter provides a unique barrier film that can be utilized in a wide range of applications in which it is desired to block the transmission of odor-producing molecules, water, and/or oxygen across the thickness of a layer.
- Typical barrier films use water vapor transmission rate (WVT ) and oxygen transmission rate (OTR) to characterize their barrier properties. Materials known to have good barrier properties against water and oxygen permeation have a high modulus, and thereby are "noisy".
- a goal of the present subject matter is to prevent the passage of hydrogen sulfide and other malodorous molecules and/or species. The solution may not require the same approach needed for achieving low WVTR and OTR.
- a polymeric barrier film which comprises at least one layer comprising a semi-crystalline cyclic olefin copolymer (COC).
- Cyclic olefin copolymers are also known as cyclo ethylene copolymer, COC, cyclo olefin copolymer, cyclic olefin polymer, and ethylene-norbornene copolymer.
- the terms "cyclic olefin copolymer” or “COC” are used interchangeably herein and include these various terms of art.
- various norbornene-based materials may be used instead of or in addition to the COC's, as described in greater detail herein.
- an elastomeric COC is used.
- Cyclic olefin copolymers are typically produced by chain copolymerization of cyclic monomers such as 8,9,10-trinorborn-2-ene (norbornene) or 1,2,3,4,4a, 5,8,8a-octahydro-l,4:5,8-dimethanonaphthalene (tetracyclododecene) with ethene.
- Non-limiting examples of commercially available cyclic olefin copolymers include those available from TOPAS Advanced Polymers under the designation TOPAS, Mitsui Chemical's APEL, or those formed by ring-opening metathesis polymerization of various cyclic monomers followed by hydrogenation, which are available from Japan Synthetic Rubber under the designation ARTON, and Zeon Chemical's ZEONEX and ZEONOR.
- a barrier layer comprising a semi-crystalline COC is provided.
- a combination of COCs is used in one or more barrier layers.
- the combination of COCs includes a semi-crystalline COC and one or more amorphous COCs.
- the subject matter includes a combination of two or more semi-crystalline COCs and optionally further combined with one or more amorphous COCs.
- the semi-crystalline COC has a melting temperature (Tm) of from about 70°C to about lOfXC, more preferably from about 80°C to about 90°C, and most preferably from about 82°C to about 86°C.
- Tm melting temperature
- the semi-crystalline COC has a glass transition temperature (Tg) of from about - 20°C to about 32°C, more preferably from about -8°C to about 20°C, and most preferably from about 0°C to about 12°C.
- Tg glass transition temperature
- the semi-crystalline COC has a norbornene content of from about 5 mole % to about 25 mole %, more preferably from about 10 mole % to about 20 mole %, and most preferably from about 12 mole % to about 18 mole %. In certain embodiments it is preferred to utilize a semi-crystalline COC having a norbornene content of less than 20 mole %. In certain embodiments, it is preferred to utilize a semi-crystalline COC having a particular degree of crystallinity. For example, in certain applications it is preferred to use a semi-crystalline COC having a crystallinity of 5% or more by weight.
- a most preferred semi-crystalline COC is commercially available under the designation E-140 from TOPAS.
- the melting temperature of the E-140 grade is about 84°C and has a Vicat softening temperature of about 64°C.
- the glass transition temperature of the E-140 grade is about 6°C.
- the norbornene comonomer content of the E-140 grade is believed to be about 12 mole % to about 18 mole %. Details and property information regarding the E-140 grade are set forth below in Table 1.
- the preferred amorphous COCs have a Tg of from about 33 Q C to about 180 Q C, more preferably from about 45 Q C to about 130 Q C, and most preferably from about 60 Q C to about 80 Q C.
- Preferred amorphous COCs which are commercially available include grades 9506 and 8007, and particularly grade 8007F-04 from TOPAS. Details and property information for these materials are set forth below in Tables 2 and 3.
- the weight proportion of the semi-crystalline COC range from about 1% to about 99%, more preferably from about 5% to about 75%, and most preferably from about 10% to about 50%, based upon the total weight amount of COCs in the barrier layer.
- the subject matter includes barrier layers with less than 1% semi-crystalline COC, and greater than 99% semi-crystalline COC.
- a COC having elastomeric properties it may be preferred to utilize a COC having elastomeric properties.
- elastomers exhibit a property of viscoelasticity or as commonly referred, elasticity. Elastomers typically have a relatively low Young's modulus and a high yield strain as compared to most other materials. It is contemplated that an elastomeric COC could be used in the various embodiments described herein. Reported information for an elastomeric COC from TOPAS indicates that the COC elastomers have a tensile modulus of about 4,412 N/cm 2 and elongation at break greater than 450 %.
- the elastomeric COC exhibits relatively low dielectric properties comparable to certain fluoroelastomers, thereby providing excellent electrical insulation performance. Furthermore, the material is reported to maintain ductility at temperatures below 80°C. The noted elastomeric COC also reportedly exhibits a Shore A hardness of 89.
- ethylene vinyl alcohol in the polymeric barrier film.
- the EVOH may be incorporated in the layer(s) comprising COC, and/or be provided in one or more separate layers proximate the COC-containing layer(s) in the barrier film.
- Ethylene vinyl alcohol commonly abbreviated EVOH, is a formal copolymer of ethylene and vinyl alcohol. Because the latter monomer mainly exists as its tautomer acetaldehyde, the copolymer is prepared by polymerization of ethylene and vinyl acetate to produce the ethylene vinyl acetate (EVA) copolymer followed by hydrolysis.
- EVOH is typically used to provide barrier properties, primarily as an oxygen barrier for improved food packaging shelf life and as a hydrocarbon barrier for fuel tanks.
- EVOH is typically coextruded or laminated as a thin layer between cardboard, foil, or other plastics.
- EVOH copolymer is traditionally defined by the mole percent ethylene content. Lower ethylene content grades have higher barrier properties, and higher ethylene content grades have lower temperatures for extrusion. Additional information as to preferred aspects of EVOH used in the films of the subject matter are described in greater detail herein.
- the present subject matter also provides multilayer films for use in medical applications and in particular, for ostomy applications.
- an important characteristic for such films is preventing or at least significantly reducing transmission of odors through the film, and particularly reducing transmission of skatole or 3-methylindole through the film.
- Another important characteristic for such films is that the films be relatively quiet and not emit excessive noise upon deflecting or movement of the film.
- a preferred multilayer barrier construction uses one or more barrier layers that include a semi-crystalline cyclic olefin copolymer (COC) and in combination with one or more flexible support layers.
- Another preferred multilayer barrier construction includes one or more barrier layers that include ethylene vinyl alcohol in conjunction with one or more layers which include a semi- crystalline COC.
- the preferred multilayer barrier construction includes one or more of the previously noted aspects in further combination with an inner layer containing one or more antimicrobial agents.
- FIG. 1 is a schematic illustration of a preferred embodiment multilayer barrier assembly 100 in accordance with the present subject matter.
- the multilayer assembly 100 comprises an outer layer 10 defining an outer face 2, a first flexible support layer 20, a second flexible support layer 30, a first moisture and odor barrier layer 40, a secondary barrier layer 50 for reducing transmission of oxygen, a second moisture and odor barrier layer 60, a third flexible support layer 70, a fourth flexible support layer 80, and an inner antimicrobial layer 90 defining an inner face 92 for contacting a microbe containing medium.
- Table 4 set forth below describes a preferred embodiment multilayer film and properties and materials for each of the layers 10, 20, 30, 40, 50, 60, 70, 80, and 90.
- Layer 10 is the outermost layer and preferably comprises ethylene vinyl acetate (EVA) having a vinyl acetate content of preferably about 18%.
- Layer 10 also optionally contains a masterbatch of slip and anti block (AB) agents.
- the masterbatch is preferably SAB1220 NG masterbatch available from A. Schulman, added at about 20% by weight.
- the masterbatch contains 8% slip and 12% antiblock agents.
- the slip agent is preferably Erucamide and the antiblock agent is preferably Si0 2 . It will be appreciated, however, that a wide array of other slip agents and/or antiblock agents could be used.
- Non-limiting examples of other slip agents include primary and secondary amide slip agents, polydimethyl siloxane and its copolymers, polywax slip agents, and other like agents.
- Non-limiting examples of other antiblock agents include inorganic fillers such as talc, calcium carbonate, clay and the like; and polymeric agents such as low density polyethylene (LDPE), highly branched low density polyethylene, and other comparable components.
- effective amounts of ethylene butyl acrylate (EBA) can be included in layer 10.
- an effective amount of a tie component can be used in this layer. If a tie component is used in layer 10, the material is preferably anhydride (M.A.) modified.
- BYNEL E4108 available from DuPont. That material is described as anhydride-modified EVA, and is believed to be maleic anhydride grafted EVA polymer.
- PLEXAR from Equistar which may include grated M.A. HDPE, LLDPE, PS, or PP.
- Layers 20, 30, 70 and 80 are each a flexible support layer.
- the preferred embodiment multilayer film preferably includes multiple flexible support layers.
- the support layers provide bulk, strength, softness, and cohesiveness to the resulting multilayer assembly.
- the one or more flexible support layers serve to dampen noise that might otherwise be emitted upon deformation or movement of the film.
- These layers preferably comprise one or more polyolefins, plastomers, styrene elastomers, and/or combinations thereof.
- the flexible support layers such as layers 20, 30, 70, and 80 comprise one or more polymers having a relatively low density of from about 0.75 to about 1.10 g/cm 3 , more preferably from about 0.85 to about 1.01 g/cm 3 , and more preferably from about 0.865 to about 0.91 g/cm 3 .
- the polyolefins in the support layers such as layers 20, 30, 70 and 80 have a melt flow index (Ml) of from about 0.1 to about 1000 g/10 min, and more preferably from about 0.5 to about 10 g/10 min.
- the polyolefins used in the support layer(s) such as layers 20, 30, 70, and 80, include an ethylene based polymer with one or more alkyl comonomer(s) selected from the family of propylene, butylene, hexene, octene, and the like.
- the polyolefin can be a random copolymer or a block copolymer.
- a plastomer is a polyolefin elastomer.
- a preferred plastomer is a propylene based plastomer having an alkyl comonomer in the family of ethylene, butylene, hexene, octene and the like.
- the noted plastomer can be a random copolymer or a block copolymer.
- the flexible supports in the preferred multilayer constructions utilize a low density polyolefin and preferably, a polyolefin elastomer.
- a wide array of commercially available polyolefin elastomers can be used for one or more of the flexible support layers.
- Representative preferred examples of such materials include KRATONTM D1164P and G2832 available from Kraton Polymers US, LLC of Houston, TX; DOW AFFINITYTM DG8200 and EG8100; DOW VERSIFYTM 3200 and 3000; and DOW INFUSETM such as INFUSE 9000 from Dow Chemical Corp. of Midland, Ml; DYNAFLEXTM G2755 from GLS Corp.
- a particular combination of properties is desired for the film material forming the flexible support(s) in the preferred ostomy multilayer film summarized in Table 4.
- a relatively low modulus should contribute to lower noise.
- Tear strength should be relatively high. Density may also be important.
- preferred films exhibit a modulus of less than about 9.5 MPa for MD and less than about 9 MPa for TD; a tear strength of at least about 100 g for MD and at least about 108 for TD; and a density of less than 1.1 g/cm 3 .
- preferred films exhibit a modulus of less than or equal to about 9.3 MPa for MD and less than or equal to about 8.8 MPa for TD; a tear strength of at least or about 108 g for MD and at least or about 110 g for TD; and a density of less than or equal to 1.0 g/cm 3 .
- These combinations of properties for the materials forming the flexible supports, e.g. layers 20, 30, 70, and 80 in the preferred multilayer construction have been found to provide a favorable combination of properties and promote ease of processing.
- the subject matter includes the use of suitable materials exhibiting only some of these properties. It will also be understood that the subject matter includes films exhibiting different properties.
- styrenic elastomers in one or more of the support layers, such as layers 20, 30, 70, and 80.
- the one or more styrenic elastomers can be used exclusively or in combination with one or more polyolefins and/or polyolefin elastomers.
- An example of a commercially available styrenic elastomer is the previously noted SEPTONTM material.
- ABS acrylonitrile butadiene styrene
- One or more of layers 20, 30, 70 and 80 may also comprise ethylene butyl acrylate (EBA).
- EBA ethylene butyl acrylate
- a variety of different grades of EBA can be used, however, a commercially available grade under the designation LOTRYL 30 BA 02 from Arkema has been identified as providing desired characteristics.
- EVA ethylene vinyl acetate
- EVA ethylene vinyl acetate
- EVA ethylene vinyl acetate
- EBA or EVA is incorporated in one or more layers such as layer 80, it is preferred to incorporate the EVA or EBA at a weight ratio of about 99% to about 50% with from about 1% to about 50% of polyolefin elastomer(s), i.e. plastomer(s). Most preferably, if EBA or EVA is used in layer 80, it is preferred to utilize about 60% of that material based upon the total weight of components in that layer.
- one or more of layers 20, 30, 70, and 80 may also comprise a tie component.
- the tie component may be as previously described, and is preferably BYNEL CXA 410E710 from DuPont. Although the subject matter is not limited to any particular concentration of the tie component in any of the noted layers, a proportion of up to about 20% based upon the total weight of the respective layer is useful. As noted in Table 4, in certain embodiments it is particularly preferred to include about 20% of a tie component in layer 80.
- the barrier layer 50 is primarily for reducing transmission of oxygen and/or water, preferably comprises EVOH.
- the EVOH is incorporated at nearly any effective concentration, however typical concentrations range from about 40 % to about 100 %, preferably from about 50% to about 80%, and most preferably from about 60% to about 70%.
- layer 50 includes 100% of EVOH.
- Layer 50 preferably comprises ethylene vinyl alcohol (EVOH) SP292, E171, and/or G176 available from Eval Americas.
- the EVOH used in layer 50 preferably has an ethylene content of from about 25 mole % to about 50 mole %, more preferably from about 32 mole % to about 48 mole %, and most preferably from about 35 mole % to about 48 mole %.
- the EVOH used in layer 50 has an ethylene content of 44 mole %. As will be understood, these values are molar percents, i.e., the molar proportion of ethylene in the ethylene vinyl alcohol material used.
- the barrier layer 50 may comprise one or more cyclic olefin copolymers instead of or in addition to EVOH.
- an odor blocking layer that comprises one or more cyclic olefin copolymers.
- Each of layers 40 and 60 comprises one or more semi-crystalline cyclic olefin copolymer (COC). These layers primarily function as odor barrier layers and are as previously described herein.
- the preferred COC is from TOPAS under the designation E-140 and has a density of 0.94 g/cc and a comonomer content of a bout 12 mole % to a bout 18 mole % norbornene.
- the E- 140 COC is a semi-crystalline material and has a melting temperature of a bout 84 Q C, a Vicat softening point of a bout 64°C, and a glass transition temperature of a bout 6 Q C.
- two grades of amorphous COC from TOPAS, grade 9506F and/or grade 8007 may be blended with the E-140 grade.
- a non-limiting representative blend ratio of semi-crystalline COC to amorphous COC is a bout 50/50 by weight.
- the Tg of grade 8007 is 78 ⁇ C.
- the Tg of grade 9506F is 65 ⁇ C.
- the one or more COCs can be used in the moisture or odor barrier layer in nearly any concentration, such as from about 10% to a bout 100%, more prefera bly from a bout 50% to a bout 99%, more prefera bly from a bout 65% to a bout 95%, more prefera bly from a bout 70% to a bout 90%, and most preferably a bout 80%.
- the COCs used in layers 40 and 60 may be same as one another. Alternatively, the COCs used in these layers may be different from one another.
- layers 40 and 60 prefera bly also comprise a tie component.
- the tie component is a polymeric resin.
- the tie component can be used at any effective concentration, such as from a bout 1% to about 40% by weight, prefera bly from a bout 10% to a bout 30% by weight, and most prefera bly a bout 20% by weight, based upon the total weight of the respective layer, such as layer 40 or layer 60.
- the tie component is prefera bly BYN EL CXA410E710. It is believed that this is an anhydride modified olefin.
- Layer 90 is an inner layer and preferably includes one or more antimicrobial agents.
- layer 90 comprises 70% EBA 30, 20% of a slip and antiblock masterbatch, and an effective amount of a silver ion anti-microbial masterbatch.
- the amount of the antimicrobial masterbatch is from a bout 8% to a bout 15%, and more preferably from about 10% to a bout 12%.
- EVA ethylene vinyl acetate
- EBA ethylene butyl acrylate
- layer 90 preferably comprises 70% EBA having a butyl acrylate content of about 30%.
- 20% by weight of the SAB1220 NG masterbatch is preferably used.
- the SAB1220 NG masterbatch comprises slip agent(s) and antiblock agent(s) as previously described herein.
- the anti-microbial masterbatch is ABACT 422VA from A. Schulmann. However, it is also contemplated that such anti-microbial masterbatch may be substituted with BACTIBLOCK from Nanobiomatters.
- the Nanobiomatters antimicrobial is a silver ion on a modified organoclay. If the BACTIBLOCK masterbatch is used, in certain embodiments it is preferred to incorporate the masterbatch in the layer at a concentration of about 12%.
- the antimicrobial layer also preferably comprises one or more sealable polymers such as metallocene-catalyzed linear low density polyethylene (LLDPE).
- the preferred embodiment multilayer barrier film described in Table 4 and schematically depicted in Figure 1, preferably utilizes each of layers 10, 20, 30, 40, 50, 60, 70, 80, and 90 at certain thicknesses. That is, by appropriate selection of thickness for each layer, the overall thickness of the resulting multilayer barrier is still relatively thin, yet the film exhibits excellent barrier properties.
- a preferred ratio of thickness for layers 10, 20, 30, 40, 50, 60, 70, 80, and 90 is 10/14/14/8/7/8/9/20/10, respectively. Other slight variations in thickness are contemplated.
- the total thickness of the three middle layers, i.e. layers 40, 50, and 60 is preferably about 30% or less of the total thickness of the multilayer film.
- Preferred film thickness for an ostomy application is about 70 to about 100 microns, but could be thinner or thicker.
- the total layer thickness of layers 80 and 90 will be from about 25% to about 30% of the total thickness of the multilayer film.
- the layer containing EVOH, e.g. layer 50 has a thickness of from about 3% to about 10%, more preferably from about 5% to about 9%, and most preferably from about 6% to about 8% of the total thickness of the multilayer film.
- the total or combined thickness of layer(s) containing COC, e.g. layers 40 and 60 is from about 10% to about 40%, more preferably from about 12% to about 36%, and most preferably from about 14% to about 30% of the total thickness of the multilayer film.
- layers 80 and 90 impart heat sealability characteristics to the resulting multilayer barrier film.
- the materials selected for these layers render the resulting multilayer barrier film weldable and most preferably thermally weldable.
- at least a portion of the materials used in layers 80 and/or 90 are polar. This enables RF welding of the multilayer assembly.
- One or more polar materials such as EVA or EBA are provided in the outer layer to facilitate RF welding.
- polar compounds may not be necessary. Instead, agents such as octene-based PE's, ULDPE (non-polar), and the like can be used.
- one or more ionomers and preferably zinc ionomers can be incorporated in any of the layers of the multilayer barrier film.
- one or more ionomers can be incorporated in any of the support layers 20, 30, 70 and/or 80.
- one or more ionomers are included in layer 80.
- one or more ionomers could be included in the secondary barrier layer 50 containing EVOH.
- the one or more ionomers can be used at any effective concentration. However, typically such concentrations range from about 5% to about 40%, preferably from about 10% to about 30%, and most preferably from about 15% to about 20%.
- the present subject matter includes a wide array of multilayer barrier assemblies and in no way is limited to the embodiment depicted in Table 4.
- a multilayer barrier film is provided in which one or more support layer(s) are disposed between a COC- containing layer and a layer containing EVOH.
- Representative sequences of layers in accordance with preferred embodiments of the subject matter may include: (i) COC/Support/EVOH/Support/COC,
- a polymeric barrier film not emit noise when deflected, crumpled or otherwise moved.
- ostomy or incontinence applications it is desirable that the ostomy or incontinence bag not emit noise.
- such articles are typically worn under a user's clothing so as to hide the article from view.
- Films or polymeric layers that are not quiet tend to emit undesirable noise when the user undergoes motion such as when walking or sitting.
- multilayer barrier films the films are significantly quieter than comparable ostomy films.
- the present subject matter also provides various methods.
- the subject matter provides a method for forming a polymeric barrier film with excellent barrier properties.
- the method generally includes providing a polymeric barrier composition. Examples of such compositions include those previously described herein.
- the method also includes forming a film from the polymeric barrier composition. Extrusion techniques are preferred, however other known methods can be used for forming films.
- the at least one polymeric barrier composition includes a semi-crystalline cyclic olefin copolymer.
- the at least one polymeric barrier composition includes ethylene vinyl alcohol (EVOH).
- EVOH ethylene vinyl alcohol
- it is preferred that the polymeric barrier composition is free of halogens.
- the various layers and films can be extruded, coated, or otherwise formed by techniques known in the art. Co-extrusion techniques can also be utilized. For certain applications in which increased toughness and/or durability are desired, films can be blown.
- the subject matter further provides methods of using the various compositions, films, and multilayer assemblies described herein.
- a method for reducing transmission of odorous species is provided.
- odorous species refers to molecules or chemical species which are generally perceived by a user as unpleasant.
- a non-limiting example of odorous species is skatole or 3-methylindole.
- Another non-limiting example of an odorous species is hydrogen sulfide.
- Still another example of odorous species is 1-propanethiol. Combinations of these odorous species and potentially with other species are contemplated.
- the method comprises providing a semi-crystalline cyclic olefin copolymer, preferably as described herein.
- the method also comprises forming a film which includes the semi-crystalline cyclic olefin copolymer. And, the method also comprises positioning or placing the film between a source of the odorous species and a user. This latter operation typically involves forming the film into a container or pouch, or incorporating the film into such, and then using the container or pouch to hold, store, or collect material containing the odorous species.
- the preferred embodiment barrier film constructions are believed to exhibit several advantages over currently known ostomy films.
- the preferred films are halogen-free and avoid the use of polyvinylidene chloride (PVDC).
- PVDC polyvinylidene chloride
- the preferred films are relatively quiet and exhibit significantly less "rustle”. And, the preferred films exhibit superior odor blocking characteristics. Furthermore, the preferred films exhibit a combination of some and preferably all of these features.
- the film construction may be transparent or contain coloring agents.
- the present subject matter also provides a wide array of articles using the barrier film(s) described herein.
- a non-limiting example of an article using the barriers described herein is an ostomy pouch.
- the barrier film(s) and preferably the multilayer barrier film(s) described herein can be joined with one or more other components.
- a flexible wall container or pouch is formed from the multilayer film of Table 4. Sealed regions are formed by thermal welding contacting face regions of the film so as to form a pouch with an enclosed interior.
- One or more outer external protective layers may be applied along the outer face such as face 2 of the assembly depicted in Figure 1.
- the external layer(s) can be fabric, nonwoven, or other materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
L'invention concerne diverses compositions polymères à fonction de barrière qui, lorsqu'elles sont mises sous forme de films, sont utiles pour réduire la transmission des odeurs. Les films peuvent être intégrés à une grande variété de produits tels que des films multicouches formant barrière employés dans des applications médicales et en particulier dans des dispositifs de stomie. Dans certaines versions, les films comprennent des copolymères cyclo-oléfines semi-cristallins.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161525439P | 2011-08-19 | 2011-08-19 | |
PCT/US2012/050720 WO2013028398A1 (fr) | 2011-08-19 | 2012-08-14 | Films formant barrière |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2744650A1 true EP2744650A1 (fr) | 2014-06-25 |
Family
ID=46457076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12759846.4A Withdrawn EP2744650A1 (fr) | 2011-08-19 | 2012-08-14 | Films formant barrière |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2744650A1 (fr) |
WO (1) | WO2013028398A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016061434A1 (fr) | 2014-10-16 | 2016-04-21 | Avery Dennison Corporation | Brides de stomie à base de stratifié élastomère à mousse thermoplastique pour une soudure facile à une poche de stomie |
KR20240000633A (ko) | 2015-12-29 | 2024-01-02 | 다나팍 플렉시블스 에이/에스 | 내화학성 필름을 제공하기 위한 방법 |
ES2923891T3 (es) | 2018-08-08 | 2022-10-03 | Danapak Flexibles As | Películas y láminas mejoradas para usarse en el envase de compuestos reactivos |
CN112646258B (zh) * | 2019-10-12 | 2023-01-03 | 中国石油化工股份有限公司 | 一种高阻隔性聚乙烯组合物及其制备方法和聚乙烯薄膜与应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3213049B2 (ja) * | 1991-04-05 | 2001-09-25 | 出光興産株式会社 | α−オレフィン系共重合体からなるシートまたはフィルム |
JP3131251B2 (ja) * | 1991-08-21 | 2001-01-31 | 出光興産株式会社 | ラップフィルム |
JP4132217B2 (ja) * | 1998-04-28 | 2008-08-13 | グンゼ株式会社 | 低温ヒートシール性を有する多層シート |
JP2001072717A (ja) * | 1999-06-29 | 2001-03-21 | Sumitomo Chem Co Ltd | シュリンクフィルム |
EP1314759B1 (fr) * | 2001-11-23 | 2006-07-05 | Arkema | Tube en élastomère vulcanisé comprenant des couches barrière en EVOH et en polyamide |
US20070110853A1 (en) * | 2005-11-17 | 2007-05-17 | Solomon Bekele | Dimensionally stable sterilizable coextruded film for aseptic packaging |
JP2008195890A (ja) * | 2007-02-15 | 2008-08-28 | Nippon Zeon Co Ltd | 樹脂組成物及びフィルム |
JP2009051922A (ja) * | 2007-08-27 | 2009-03-12 | Daicel Chem Ind Ltd | 環状オレフィン系樹脂フィルム |
JP2011111573A (ja) * | 2009-11-30 | 2011-06-09 | Nippon Zeon Co Ltd | 非晶質環状オレフィン重合体及び結晶性ノルボルネン系重合体からなる樹脂組成物。 |
-
2012
- 2012-08-14 WO PCT/US2012/050720 patent/WO2013028398A1/fr active Application Filing
- 2012-08-14 EP EP12759846.4A patent/EP2744650A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2013028398A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2013028398A1 (fr) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10335308B2 (en) | Flexible barrier films containing cyclic olefins | |
US11220616B2 (en) | Barrier films | |
US11806446B2 (en) | Odor barrier film | |
EP3912601B1 (fr) | Film multicouche et produit de stomie fabriqué à partir dudit film | |
US9283735B2 (en) | Low noise flexible barrier films | |
US9040132B2 (en) | Medical multilayer film and use thereof | |
US20150282978A1 (en) | Low-Modulus, Halogen-Free, Odor Containment Barrier | |
US20130025764A1 (en) | Methods for Increasing Effectiveness of Antimicrobial Agents in Polymeric Films | |
KR20080039962A (ko) | 폴리프로필렌 수지 조성물, 필름 또는 시트, 이 필름 또는시트로부터 얻어지는 연신 필름, 적층체 및 이적층체로부터 얻어지는 연신 필름 | |
EP2411223A1 (fr) | Pellicules non pvc comprenant une couche noyau dure | |
DE602004006608D1 (de) | Mehrschichtiger chlorfreier Film mit Barriereschicht aus einem Polyamidblend und daraus hergestellte Ostomiebeutel | |
AU2009343200A1 (en) | Non-PVC films having peel seal layer | |
WO2013028398A1 (fr) | Films formant barrière | |
WO2010110792A1 (fr) | Pellicules non pvc comprenant une couche barriere | |
WO2012088213A1 (fr) | Procédés de réduction du bruit associé à des films contenant des composants barrières contre les odeurs | |
US10016961B2 (en) | Polymeric film comprising quiet layer with improved noise dampening properties | |
EP2976051B1 (fr) | Film polymère comprenant une couche ayant des propriétés d'atténuation du bruit | |
KR20240049357A (ko) | 레토르트 식품 포장 용기용 실런트 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180301 |