EP2741524B1 - Elektroakustischer Wandler - Google Patents

Elektroakustischer Wandler Download PDF

Info

Publication number
EP2741524B1
EP2741524B1 EP12195518.1A EP12195518A EP2741524B1 EP 2741524 B1 EP2741524 B1 EP 2741524B1 EP 12195518 A EP12195518 A EP 12195518A EP 2741524 B1 EP2741524 B1 EP 2741524B1
Authority
EP
European Patent Office
Prior art keywords
shield
electroacoustic transducer
transducer
electronics
passive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12195518.1A
Other languages
English (en)
French (fr)
Other versions
EP2741524A1 (de
Inventor
Valentin Kunz
Rainer Mauch
Christoph Nölle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baumer Electric AG
Original Assignee
Baumer Electric AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baumer Electric AG filed Critical Baumer Electric AG
Priority to EP12195518.1A priority Critical patent/EP2741524B1/de
Publication of EP2741524A1 publication Critical patent/EP2741524A1/de
Application granted granted Critical
Publication of EP2741524B1 publication Critical patent/EP2741524B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/40Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with testing, calibrating, safety devices, built-in protection, construction details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups

Definitions

  • the invention relates to an electroacoustic transducer comprising a transducer element, a passive electrode and an active electrode.
  • the central element of such an electroacoustic transducer is a transducer element, also called a transducer, in which the pressure fluctuations of the sound are converted into an electrically evaluable received signal.
  • a front side of the transducer element is facing the sound to be detected.
  • a back side faces the front, i. the transducer element is located between the front and the back.
  • a passive electrode serves as a reference. It is usually at a ground or ground potential.
  • the received signal is measured between the passive electrode and an active electrode. Since the sound signals to be detected are usually relatively weak, the received signal to be detected is also weak and susceptible to electromagnetic interference coming from, for example, other nearby electronic devices or machines.
  • the passive electrode is located at the front of the transducer element.
  • An electromagnetic shield to the side can be achieved by an electrically conductive housing in which the electro-acoustic transducer is located.
  • the external housing must not be electrically connected to the internal part, a non-conductive layer of non-conductive material must be necessarily present between the passive electrode and the housing, thereby providing a shielding gap is given, so that electromagnetic interference can penetrate into the interior of the housing.
  • the transducer element is embedded in a damping material in order to quickly decay vibrations. This creates further gaps through which interference with sensitive electronics can penetrate. Such disturbances may continue to disturb the very weak signal on the active electrode despite the shielding measures.
  • the DE 42 15 271 A1 shows an ultrasonic transducer with a housing which is closed at the end by a membrane, on the inside of a piezoelectric transducer is firmly bonded, wherein the membrane is made of ceramic.
  • the WO 2008/127885 A1 shows an electroacoustic transducer element for ultrasound.
  • the DE 10 2008 044 351 A1 shows an ultrasonic sensor for a vehicle, which in a housing a contactable with at least one electrical lead transducer element for generating ultrasound, wherein at least the transducer element is shielded by one or more electrically conductive shield surfaces against electromagnetic radiation.
  • the active electrode can also be shielded against interference from the rear in an advantageous manner.
  • a rear shield may be located directly behind the active electrode. Parts of the rear shield could also be located obliquely behind or next to the active electrode.
  • the rear shield may be at least partially or partially parallel to the active electrode. It may be at least partially or in sections parallel to the passive electrode, at least to a located at the front of the main body of the passive electrode.
  • the active electrode, the passive electrode and the rear shield may each be flat. They can each lie directly next to each other in pairs.
  • the active electrode is sandwiched between the passive electrode and a rear shield.
  • Such a configuration is particularly compact.
  • the rear shield is also on a defined Potential.
  • a direct connection mechanism can serve in this case, for example, a solder joint or a short pin.
  • the length of the electrical connection between the passive electrode and the rear shield may be on the order of the physical distance of the two parts. Compared to longer connections, where the passive electrode and the rear shield are each individually connected to a remote intermediate element, eg electronics, such a direct and / or short connection is less susceptible to interference. Furthermore, such a direct and / or short connection has better electrical properties, in particular a smaller impedance compared to an indirect and / or longer connection.
  • connection can be dispensed with a connection between the passive electrode and the rear shield on cable. Cables represent potential sources of error that can adversely affect the electrical properties of the connections.
  • the connection may be insoluble, such as a solder joint.
  • the compound can also be detachable. It may be about a pressing or pressing connection.
  • the invention can be further improved with the following, each for themselves advantageous and any other combinable developments and refinements.
  • the passive electrode may continue along a plurality of transverse sides of the transducer element located between the front and back surfaces.
  • the passive electrode may continue along all the transverse sides of the transducer element situated between the front side and the rear side.
  • the shielding effect is further increased, since a larger space area is covered.
  • the front side, the back side and / or the transverse side can each consist of a single surface or of several surfaces.
  • the passive electrode may extend to the backside. As a result, the shielding effect is further improved.
  • the passive electrode may extend to a plane that at least partially contains the active electrode. If the passive If the electrode extends simultaneously along all transverse sides up to this plane, the passive electrode, viewed from the active electrode, covers a solid angle of two pi (2 ⁇ ), ie a half-space. By this configuration, interferences acting on the ultrasonic sensor are effectively shielded.
  • Parts of the passive electrode may be on the back. Parts of the passive electrode may be arranged or mounted, for example, on the back. The passive electrode may continue at least partially on the backside. In addition to improved shielding, such an embodiment can also have the advantage that the passive electrode can be contacted from the rear and not from the side. This allows a compact design to the sides.
  • the passive electrode forms, together with the rear shield, a shield surrounding the active electrode on all sides.
  • the active electrode is shielded in all spatial directions. Interference can thus no longer influence the active electrode from any direction.
  • the shield surrounding the active electrode on all sides may nevertheless have openings, holes or slots. These should be as small as possible.
  • the dimensions and / or orientations of such openings may be adapted to the wavelengths or orientations of undesired disturbances, so that, for example, interferences with specific wavelengths, despite the openings, can not penetrate the active electrode or can only penetrate with great attenuation. For adequate shielding and perforated plates can apply.
  • the passive electrode forms, together with the rear shield, a shield completely enclosing the active electrode. Apart from smaller openings, which are necessary for making contacts for contacting the active electrode, the active electrode is thereby completely or almost completely shielded over the entire solid angle of four Pi (4 ⁇ ).
  • the electroacoustic transducer comprises electronics.
  • the electronics can consist of different sub-electronics.
  • Various subelectronics may be mounted at various locations in the electroacoustic transducer.
  • Amplification electronics for amplifying a weak signal may, for example, be a sub-electronics of the electronics and be arranged in the vicinity of the active electrode.
  • Other sub-electronics may be located near or even further away from the amplification electronics, even outside a housing.
  • the Electronic may include part electronics such as signal processing and / or signal evaluation.
  • Electronic or electrical components of electronics or sub-electronics can be, for example, surface-mounted components, so-called SMD components (Surface Mounted Device).
  • SMD components Surface Mounted Device
  • the electronics or partial electronics can at least partially be designed as an integrated circuit. Such a configuration is particularly compact.
  • the electroacoustic transducer may comprise a substrate with electronics or sub-electronics disposed thereon.
  • the substrate may in particular be a planar substrate or a flat body.
  • an expansion in one dimension is substantially smaller than the extent in the other two dimensions. So there are essentially only two opposite sides available.
  • it may be a circuit board.
  • Such a printed circuit board can be rigid or flexible.
  • the electronics or partial electronics can be arranged only on one side of the substrate. Alternatively, the electronics or partial electronics can also be arranged or attached to two or more sides of the substrate. In the case of a planar substrate, the electronics or partial electronics can be arranged or mounted on both sides. The entire electronics can be arranged on the substrate. Alternatively it can be arranged on the substrate only a partial electronics, such as an amplification electronics. Further sub-electronics may in this case be arranged, for example, on a further substrate or on other parts of the electroacoustic transducer.
  • the active electrode is sandwiched between the passive electrode and the substrate.
  • Such a configuration is particularly compact if the substrate is flat.
  • the electroacoustic transducer may comprise a substrate having a shielding layer on at least one side.
  • a shielding layer can be made of electrically conductive material throughout. It can at least partially shield two areas from each other electromagnetically.
  • a sheet substrate such as a multi-layer printed circuit board, particularly a flexible printed circuit board, may be one Have shielding.
  • On a substrate does not necessarily have to be arranged electronics or part electronics.
  • the shielding layer together with the passive electrode forms a shield surrounding the active electrode on all sides.
  • the shielding layer can thus serve in particular as the rear shield already mentioned above.
  • a shield enclosing all sides can also have holes or free areas. Again, the size and / or orientation of such holes can be adapted to the wavelength to be shielded and / or the frequency to be measured.
  • a shield formed by the passive electrode together with the shielding layer encloses the active electrode completely or almost completely. Only feedthroughs for contacts necessary to contact the active electrode may be present.
  • the electronics or partial electronics mounted on only one side of the substrate can lie between the active electrode and the substrate. Other sides of the substrate may form a smooth outer surface, which may be advantageous in an assembly, for example, since the electronics are mechanically protected.
  • the electronics or partial electronics alone or together with the active electrode as described above for the active electrode can be shielded on all sides or completely by a rear shield and / or a shielding layer.
  • Such a shield may again be formed by the passive electrode together with a rear shield or shielding layer.
  • the substrate in particular the planar substrate, can be located between the active electrode and the electronics or partial electronics.
  • a shielding layer can shield the active electrode from disturbances caused by electronic components.
  • the active electrode may communicate with a component on another side through a hole in the substrate.
  • Such a connection can be designed in particular in a flat substrate without cables.
  • the length of the connection may be very small and / or the connection may be direct, thereby improving the electrical properties of such connection, such as impedance, as compared to a longer and / or indirect connection or connection via cable.
  • a substrate, in particular a planar substrate, with a shielding layer may be formed such that the shielding layer forms an outer shield for an electronics or part electronics located in an inner space formed by the shielding layer.
  • a shield can shield the electronics or part electronics located in the interior to several sides.
  • a flat substrate may be folded so that the electronics or partial electronics are shielded in two or more directions.
  • a flexible substrate may be bent. It may for example have a U-shape in cross section.
  • Such a U-shape shields from several sides.
  • the electronics or part electronics located in the interior can be shielded on all sides, in particular the electronics or part electronics can be completely or almost completely shielded by the shielding layer.
  • Such an external shield is connected to the passive electrode or a ground. This connection can be short and / or direct, as described above for the rear shield. Furthermore, it may be solvable or insoluble.
  • the shielding layer of a substrate may simultaneously be a rear shield for the active electrode and an outer shield for an electronics located in an inner space formed by the shielding layer.
  • a part of the shielding layer may shield the active electrode to the rear, while the entire shielding layer forms an outer shield for an electronics located in an inner space formed by the shielding layer.
  • the shielding layer thus fulfills a double function here.
  • a part of the shielding layer together with the passive electrode forms an active electrode on all sides, in particular completely enclosing shielding, wherein at the same time the shielding layer is an external shield for an electronics or part electronics located in an interior space formed by the shielding layer.
  • the active electrode and the passive electrode may be separate regions of a previously bonded single layer.
  • a transducer element may have been completely coated and subsequently a part of the layer removed so that an active electrode and a passive electrode have been formed.
  • Such a separation can be done for example by etching, scribing, grinding or by targeted evaporation by means of a laser.
  • the front side is flat or even.
  • the back can be flat or even.
  • the front side be designed so that it receives a sound signal in its entire extent with the same phase.
  • Such an embodiment could, for example, be adapted to a lobe or spherical shape of a sound signal to be detected. This would lead to minimal phase shifts.
  • the front can be parallel to the back.
  • Such a configuration is easy to manufacture, especially if the transducer element is block-shaped. Furthermore, in such an embodiment, the occurrence of phase shifts in eventual echoes may be reduced.
  • the transducer element may be block-shaped.
  • a block-shaped transducer element is e.g. a block of material, such as a crystal.
  • the passive electrode and / or the active electrode can be arranged on the block-shaped transducer element.
  • they may be attached to the block-shaped transducer element.
  • they can be firmly connected to the block-shaped transducer element.
  • the passive electrode and / or the active electrode are mounted as a layer on the transducer element.
  • a layer can be attached to the transducer element, for example, by coating methods such as physical vapor deposition, electroplating, or the like.
  • a transducer element may be cylindrical.
  • the transducer element may be circular cylindrical.
  • it may be a disk, i. around a transducer element, wherein the expansion in one direction is substantially smaller than in the other two directions.
  • Such a geometry is easy to produce and, due to the large area, allows a signal to be well detected while maintaining a compact design.
  • the sound to be detected may be ultrasound.
  • ultrasound When measuring with ultrasound, a user is not disturbed by the measurement. Conversely, such a measurement is not affected by conversations or ambient noise. Furthermore, measurements with ultrasound are usually more accurate than measurements with longer wavelengths.
  • the electroacoustic transducer may comprise at least one piezoelectric transducer element.
  • the piezoelectric transducer element converts sound into an electrical voltage.
  • An inventive electro-acoustic transducer can not only serve as a receiver, which converts sound into an electrical measurement, but at the same time also serve as a transmitter for generating sound.
  • a switching mechanism and / or a switching element may be present. This allows the electroacoustic transducer to be connected to various electronics or sub-electronics for transmission and reception, depending on the function.
  • a matching layer may be present in the electroacoustic transducer. Such a matching layer is arranged on the front side of the transducer element.
  • Sensitive parts of the electroacoustic transducer are all sides shielded by the measures mentioned, in particular completely electromagnetic.
  • the entire electronics and / or the entire electroacoustic transducer can be shielded on all sides, in particular completely electromagnetic.
  • a shield by an outer housing may no longer be necessary.
  • An outer housing may then consist of an insulating material.
  • shielding solutions described above can also be used independently of each other.
  • a rear shield could also be present in an electroacoustic transducer in which the passive electrode does not continue on a transverse side.
  • Fig. 1 an embodiment of an ultrasonic sensor known from the prior art is shown in a cross section. With this sound 2 can be converted into an electrical measurement.
  • An electroacoustic ultrasonic transducer 1 has a matching layer 4 in order to couple the sound 2 as well as possible to a transducer element 3.
  • the transducer element 3 then converts the sound 2 into a received signal.
  • the transducer element 3 is connected via cables 5a, 5b to an electronics 6.
  • This electronics 6 comprises an amplification electronics 7, in which the usually weak received signal is amplified. After amplification, the signal can be further processed, for example, it can be filtered or evaluated. Subsequently, the signal can be output via an output (not shown) located on a connection side 8.
  • the electroacoustic ultrasonic transducer 1 comprises a housing 9.
  • the housing 9 may for example consist of an electrically conductive material to shield from the side acting noise.
  • the ultrasonic sensor shown here can not only work as a receiver, but also as a transmitter.
  • the transducer element 3 emits sound at intervals and, between the transmission intervals, measures the sound 2 reflected by an object to be measured.
  • the transducer element 3 is embedded together with the matching layer 4 in a damping material 10. As a result, the cooldown is reduced, which allows, for example, a measurement even at short distances to the object to be measured.
  • the Transducer element 3, the matching layer 4 and the damping material 10 are arranged in a cup 11, which in turn is held by the housing 9.
  • the electronics 6 shown in this example is located on two sides 100, 101 of a printed circuit board 14. Electronic components 15 are mounted on both sides 100, 101. Laterally to a preferred direction of sound 2r, ie in the Fig. 1 up, down, out of the plane of the drawing and into the plane of the electronics 6 is electromagnetically shielded by the housing 9, since this consists of an electrically conductive material. To the rear, such a shield may be present on the connection side 8. To the front, the electronics 6 may be electromagnetically shielded by an inner coating 11 b of the cup 11.
  • the electroacoustic transducer 1 therefore has a shield 7a for the amplification electronics 7.
  • sensitive active electrode 13 To shield the 11 of the cup 11b of the cup 11 only partially shielded, sensitive active electrode 13 better, is the passive electrode 12, which is arranged on the front side 120 of the transducer element 3, which is opposite to the back side 130, specially designed.
  • a part of the electroacoustic transducer 1 is shown enlarged.
  • a passive electrode 12 is shown.
  • the passive electrode 12 not only extends on the front side 120 of the transducer element 3, but also continues on a transverse side 140 that lies between the front side 120 and the rear side 130.
  • the active electrode 13 is effectively protected not only from front-side noise 16a, but also from front-end noise 16b.
  • the passive electrode 12 also has lateral parts 12s which are located on transverse sides 140 of the transducer element 3.
  • the front part 12v is in particular made in one piece with the side parts 12s.
  • the side parts 12s extend laterally around the entire transducer element 3 around, which has a particularly far-reaching protection result. In other embodiments, such side parts 12s may also extend only partially around the transducer element 3.
  • the passive electrode 12 is connected via a cable 5a to an electronic system.
  • the passive electrode 12 is connected to a ground potential of the electronics in order to achieve the best possible shielding.
  • An active electrode 13 is located on a rear side 130 of the transducer element 3. It is connected to the electronics via a cable 5b.
  • the transducer element 3 may be a piezoelectric transducer element. If such a piezoelectric transducer element is exposed to the pressure fluctuations of the sound 2, a voltage difference arises between the passive electrode 12 and the active electrode 13 which can be measured.
  • This received signal can be further processed in an electronic system. It can be reinforced, for example.
  • the matching layer 4 By means of the matching layer 4, the sound 2 is coupled to the transducer element 3 in a particularly efficient manner.
  • the matching layer 4 in particular the material of the matching layer 4, can be suitably chosen.
  • the matching layer 4 can be bonded to the transducer element 3, that is to say in particular to the passive electrode 12 which is located on the transducer element 3.
  • the active electrode 13 and / or the passive electrode 12 may each be a layer on the transducer element 3. This can be applied there by coating methods such as physical vapor deposition or electroplating.
  • the active electrode 13 and the passive electrode 12 may be separated regions 25a, 25b of a previously connected layer 25.
  • the transducer element 3 can have been completely coated and the layer has been divided into different, mutually independent regions 25a, 25b. The separation can be effected for example by etching or by laser irradiation.
  • the transducer element 3 shown here is block-shaped and in particular cylindrical.
  • a front side 120 is executed parallel to a rear side 130.
  • the transducer element 3 should have a large width 3w and / or a large cross-sectional area 3f.
  • sound from other directions can also hit the electroacoustic transducer 1.
  • only the component of the sound 2 that lies along the preferred sound direction 2r is measured.
  • the along the preferred sound direction 2r measured thickness 3d of the transducer element 3 can be relatively small compared to the width 3w.
  • the transducer element 3 may thus be disk-shaped.
  • Fig. 3 a cross section of an electroacoustic transducer 1 is shown.
  • other elements may be present.
  • an electronics can still be connected.
  • the transducer element 3 is designed block-shaped. At the front side 120, a front part 12v of the passive electrode 12 is mounted. The passive electrode 12 continues on the transverse sides 140 of the transducer element 3. Side portions 12s of the passive electrode 12 are thus located on these transverse sides 140. The passive electrode 12 also continues on the rear side 130 of the transducer element 3. On this rear side 130 there is a rear part 12h of the passive electrode 12.
  • the passive electrode 12 extends to a plane 13e containing the active electrode 13, thereby shielding the entire front half space for the active electrode 13.
  • the passive electrode 12 is connected at its rear part 12h directly to a rear shield 17 in the form of a shielding layer 18.
  • the shielding layer 18 is disposed on a side 105 of a substrate 19.
  • the substrate 19 is planar and has two sides 104, 105.
  • the first shielding layer 18 is opposite to a second shielding layer 18 'on the other side 104 of the planar substrate 19.
  • the first shielding layer 18 together with the passive electrode 12 surrounds the active electrode 13 on all sides and thereby forms an all-round shielding for the active electrode 13.
  • the all-round shield has only small gaps. For example, it is interrupted to allow the contacting of the active electrode 13 by means of a contacting element 22.
  • the active electrode 13 is completely shielded by the all-round shielding. As a result, the active electrode 13 is shielded not only against disturbances 16a coming from the front and interferences 16b acting obliquely from the side, but also against disturbances 16c acting from the rear.
  • the signal measured at the active electrode 13 is relayed via the contacting element 22 and an electrical connection 5c.
  • an electrical connection 5c For example, it can be connected to a Electronics be forwarded.
  • the electrical connection 5c is shielded between the first shielding layer 18 and the second shielding layer 18 '.
  • the active electrode 13 is crossed by the passive electrode 12 over a solid angle of two pi (2 ⁇ ), i. Shielded over a half-space.
  • the rear shield 17 in the form of the first shielding layer 18, the active electrode 13 is additionally over the other half space, i. again shielded over two Pi (2 ⁇ ).
  • the all-round shielding by the rear shield 17 and the passive electrode 12 is a shield over the entire solid angle of four Pi (4 ⁇ ).
  • the passive electrode 12 is thereby conductively connected to the rear shield 17. This conductive connection is made via the connecting elements 20, which bridge only a short distance.
  • the connecting elements 20 may be, for example, solder or pin-shaped connecting elements.
  • the length of the connecting elements 20 is of the order of the physical distance between the passive electrode 12 and the rear shield 17.
  • the connection may be detachable or insoluble.
  • the transducer element 3 is accommodated together with a matching layer 4 and the planar substrate 19 in a damping material 10.
  • the in Fig. 3 shown electroacoustic transducer 1 can be similar to in Fig. 1 be installed in a housing. Alternatively, however, it can also be installed differently, in particular no additional shielding must be present if the shielding of the active electrode is sufficient for reliable functioning.
  • FIG. 4 an advantageous embodiment of an electroacoustic transducer 1 according to the invention with an embodiment of a transducer element 3 is shown in a cross section. Similar to the in Fig. 3 shown transducer 1 is also in the in Fig. 4 illustrated embodiment of an electro-acoustic transducer 1, the passive electrode 12 pulled to the back 130 of the transducer element 3 to the rear.
  • the passive electrode 12 comprises a front part 12v arranged on the front side 120, which constitutes the main part of the passive electrode 12, side parts 12s arranged on the transverse sides 140 and rear parts 12h arranged on the rear side 130.
  • the passive electrode 12 is connected at its rear parts 12 h via connecting elements 20 with a shielding layer 18.
  • the shielding layer 18 is located again on a substrate 19, which is also formed here flat. However, the substrate 19 has in this case only on one side 102 via a shielding layer 18. On the other side 103, an electronics 6 is attached.
  • the substrate 19 is folded so that the shielding layer 18 forms an outer shield 23 for the electronics 6 located in an inner space 24 formed by the shielding layer 18.
  • the outer shield 23 could also shield only a part of electronics, such as a boost electronics 7, shield.
  • Other sub-electronics could be connected via an electrical connection 26 with the located in the interior 24 sub-electronics. A shielding of further sub-electronics may be unnecessary if the signals relayed by the sub-electronics located in the interior 24 are already adequately evaluable.
  • the electronics 6 is composed of individual electronic components 15.
  • the components 15 are mounted only on one side 103 of the substrate 19.
  • the components 15 may in particular be surface-mounted components.
  • the electronics 6 or a sub-electronics can, even only partially, be designed as integrated circuits.
  • the electronics 6 are shielded by the shielding layer 18, which is mounted on the other side 102 of the substrate 19 to a plurality of sides.
  • the shielding layer 18, at least a front part of the shielding layer 18, is part of an all-round shielding for the active electrode 13. Only in the region of a contacting element 22 in which the active electrode is directly connected to the electronics 6, the all-round shield for the active electrode 13 is interrupted.
  • the contacting element 22 establishes a direct connection between the active electrode 13 and the electronics 6.
  • a contact element 22 may be, for example, a solder joint or a pin-shaped element. It passes through an opening of the substrate 19 to the electronics 6. Since the distance between the electronics 6 and the active electrode 13 is comparatively short, can hardly interfere with interference in the compound. In the example shown, the connection is only slightly longer than the distance between the active electrode 13 and the substrate 19. The connection can again be detachable or insoluble.
  • the active electrode 13 is sandwiched between the passive electrode 12 and the substrate 19.
  • the front part 12v of the passive electrode 12, the active electrode 13 and the substrate 19 are each flat and parallel to each other. They are spaced from each other by the block-shaped piezoelectric transducer element 3 and the contacting element 22.
  • the substrate 19 is a flat body, it may for example be a printed circuit board, in particular a flexible printed circuit board.
  • the transducer element 3 is embedded again in a damping material 10 together with the matching layer 4 and the substrate 19.
  • the active electrode 13 and the electronics 6 are electromagnetically shielded.
  • another shield such as a housing made of an electrically conductive material, has been omitted in this case.
  • a housing may therefore consist of an insulating material.

Description

  • Die Erfindung betrifft einen elektroakustischen Wandler, umfassend ein Wandlerelement, eine passive Elektrode und eine aktive Elektrode.
  • Mit Hilfe eines elektroakustischen Wandlers kann Schall in eine elektrische Messgröße umgewandelt werden. Das zentrale Element eines solchen elektroakustischen Wandlers ist ein Wandlerelement, auch Transducer genannt, in dem die Druckschwankungen des Schalls in ein elektrisch auswertbares Empfangssignal umgeformt werden. Eine Vorderseite des Wandlerelements ist dabei dem zu detektierenden Schall zugewandt. Eine Rückseite liegt der Vorderseite gegenüber, d.h. das Wandlerelement befindet sich zwischen der Vorderseite und der Rückseite.
  • Bei der Messung dient eine passive Elektrode als Referenz. Sie liegt meist auf einem Masse- oder Erdpotential. Das Empfangssignal wird zwischen der passiven Elektrode und einer aktiven Elektrode gemessen. Da die zu detektierenden Schallsignale meist relativ schwach sind, ist das zu detektierende Empfangssignal ebenfalls schwach und anfällig für elektromagnetische Störungen, die beispielsweise von anderen, in der Nähe liegenden elektronischen Geräten oder Maschinen kommen.
  • Um von vorne einwirkende elektromagnetische Störungen abzuschirmen, ist die passive Elektrode an der Vorderseite des Wandlerelements angeordnet. Eine elektromagnetische Abschirmung zur Seite kann durch ein elektrisch leitendes Gehäuse, in dem sich der elektroakustische Wandler befindet, erreicht werden. Da jedoch zum Schutz eines Benutzers und zum Schutz der Elektronik des Wandlers das außen liegende Gehäuse nicht elektrisch leitend mit dem innen liegenden Teil verbunden sein darf, muss zwangsweise zwischen der passiven Elektrode und dem Gehäuse eine nichtleitende Schicht aus nichtleitendem Material vorhanden sein, wodurch eine Abschirmlücke gegeben ist, sodass elektromagnetische Störungen ins Innere des Gehäuses eindringen können. Ferner ist das Wandlerelement in ein Dämpfungsmaterial eingebettet, um Schwingungen schnell abklingen zu lassen. Dadurch entstehen weitere Lücken, durch die Störungen zur sensiblen Elektronik vordringen können. Solche Störungen können das sehr schwache Signal an der aktiven Elektrode auch trotz der Abschirmmaßnahmen weiterhin stören.
  • Bei dieser bisherigen Konstruktionsweise werden Störungen zwar gedämpft, es bleibt allerdings systembedingt immer ein unvermeidlicher Rest an Störungen, die ins Innere eindringen und zu Fehlersignalen führen können.
  • Die DE 42 15 271 A1 zeigt einen Ultraschallwandler mit einem Gehäuse, das stirnseitig durch eine Membran geschlossen ist, an der innen ein piezoelektrischer Wandler stoffschlüssig befestigt ist, wobei die Membran aus Keramik besteht.
  • Die WO 2008/127885 A1 zeigt ein elektroakustisches Wandlerelement für Ultraschall.
  • Die DE 10 2008 044 351 A1 zeigt einen Ultraschallsensor für ein Fahrzeug, welcher in einem Gehäuse ein mit zumindest einer elektrischen Zuleitung kontaktierbares Wandlerelement zur Erzeugung von Ultraschall aufweist, wobei zumindest das Wandlerelement durch eine oder mehrere elektrisch leitende Schirmflächen gegen elektromagnetische Strahlung geschirmt ist.
  • Aufgabe der vorliegenden Erfindung ist es, einen elektroakustischen Wandler bereit zu stellen, bei dem elektromagnetische Störungen das Messergebnis weniger stark beeinflussen und bei dem es folglich zu weniger Fehlersignalen kommt.
  • Diese Aufgabe wird durch einen elektroakustischen Wandler gemäß Patentanspruch 1 gelöst.
  • Somit kann die aktive Elektrode auch gegen Störungen von hinten auf vorteilhafte Weise abgeschirmt werden. Eine solche hintere Abschirmung kann sich direkt hinter der aktiven Elektrode befinden. Teile der hinteren Abschirmung könnten sich auch schräg hinter oder neben der aktiven Elektrode befinden. Die hintere Abschirmung kann zumindest teilweise oder abschnittsweise parallel zur aktiven Elektrode sein. Sie kann zumindest teilweise oder abschnittsweise parallel zur passiven Elektrode, zumindest zu einem an der Vorderseite gelegenen Hauptteil der passiven Elektrode, sein. Die aktive Elektrode, die passive Elektrode und die hintere Abschirmung können jeweils flach sein. Sie können jeweils paarweise direkt nebeneinander liegen.
  • In einer vorteilhaften Ausgestaltung ist die aktive Elektrode sandwichartig zwischen der passiven Elektrode und einer hinteren Abschirmung angeordnet. Eine solche Ausgestaltung ist besonders kompakt.
  • Mit der erfindungsgemässen leitenden Verbindung der passiven Elektrode mit der hinteren Abschirmung liegt die hintere Abschirmung ebenfalls auf einem definierten Potential. Als direkter Verbindungsmechanismus kann in diesem Fall z.B. eine Lötverbindung oder ein kurzer Stift dienen. Die Länge der elektrischen Verbindung zwischen der passiven Elektrode und der hinteren Abschirmung kann etwa in der Größenordnung des physischen Abstandes der beiden Teile liegen. Im Vergleich zu längeren Verbindungen, bei denen etwa die passive Elektrode und die hintere Abschirmung jeweils einzeln mit einem entfernt liegenden Zwischenelement, z.B. einer Elektronik, verbunden sind, ist eine solche direkte und/oder kurze Verbindung weniger anfällig für Störungen. Ferner weist eine solche direkte und/oder kurze Verbindung bessere elektrische Eigenschaften, insbesondere eine kleinere Impedanz im Vergleich zu einer indirekten und/oder längeren Verbindung.
  • Insbesondere kann bei einer Verbindung zwischen der passiven Elektrode und der hinteren Abschirmung auf Kabel verzichtet werden. Kabel stellen mögliche Fehlerquellen dar, die die elektrischen Eigenschaften der Verbindungen negativ beeinflussen können. Die Verbindung kann unlösbar sein, etwa eine Lötverbindung.
  • Alternativ kann die Verbindung auch lösbar sein. Es kann sich etwa um eine Press- oder Andrückverbindung handeln.
  • Bei der erfindungsgemäßen Ausgestaltung können weniger Störsignale die aktive Elektrode erreichen. Es treten dadurch weniger Fehlersignale auf. Ein solcher elektroakustischer Wandler ist somit zuverlässiger.
  • Die Erfindung kann mit den folgenden, jeweils für sich vorteilhaften und beliebig miteinander kombinierbaren Weiterentwicklungen und Ausgestaltungen weiter verbessert werden.
  • Die passive Elektrode kann sich entlang mehrerer zwischen der Vorderseite und der Rückseite gelegenen Querseiten des Wandlerelements fortsetzen. Insbesondere kann sich die passive Elektrode entlang aller zwischen der Vorderseite und der Rückseite gelegenen Querseiten des Wandlerelements fortsetzen. Bei einer solchen Ausgestaltung ist die Abschirmwirkung weiter erhöht, da ein größerer Raumbereich abgedeckt wird.
  • Die Vorderseite, die Rückseite und/oder die Querseite können jeweils aus einer einzigen Fläche oder aus mehreren Flächen bestehen.
  • Die passive Elektrode kann sich bis zur Rückseite erstrecken. Dadurch wird die Abschirmwirkung weiter verbessert. Die passive Elektrode kann sich bis zu einer Ebene erstrecken, die die aktive Elektrode zumindest teilweise enthält. Wenn sich die passive Elektrode gleichzeitig entlang aller Querseiten bis zu dieser Ebene erstreckt, dann deckt die passive Elektrode von der aktiven Elektrode aus betrachtet einen Raumwinkel von zwei Pi (2π), d.h. einen Halbraum, ab. Durch diese Ausgestaltung werden auf den Ultraschallsensor einwirkende Störungen effektiv abgeschirmt.
  • Teile der passiven Elektrode können sich an der Rückseite befinden. Teile der passiven Elektrode können beispielsweise an der Rückseite angeordnet oder angebracht sein. Die passive Elektrode kann sich zumindest teilweise auf der Rückseite fortsetzen. Neben einer verbesserten Abschirmung kann eine solche Ausgestaltung auch den Vorteil haben, dass die passive Elektrode von hinten und nicht von der Seite kontaktiert werden kann. Dies ermöglicht eine zu den Seiten hin kompakte Bauweise.
  • Die passive Elektrode bildet zusammen mit der hinteren Abschirmung eine die aktive Elektrode allseitig umschließende Abschirmung aus. Dadurch ist die aktive Elektrode zu allen Raumrichtungen hin abgeschirmt. Störungen können dadurch von keiner Richtung mehr ungehindert auf die aktive Elektrode einwirken. Die die aktive Elektrode allseitig umschließende Abschirmung kann trotzdem Öffnungen, Löcher oder Schlitze aufweisen. Diese sollten jedoch möglichst klein ausfallen. Die Dimensionen und/oder Orientierungen solcher Öffnungen können an die Wellenlängen bzw. Orientierungen von unerwünschten Störungen angepasst sein, so dass beispielsweise Störungen mit bestimmten Wellenlängen trotz der Öffnungen nicht oder nur stark gedämpft zur aktiven Elektrode vordringen können. Für eine ausreichende Abschirmung können auch Lochbleche Anwendung finden.
  • Die passive Elektrode bildet zusammen mit der hinteren Abschirmung eine die aktive Elektrode komplett umschließende Abschirmung aus. Abgesehen von kleineren Öffnungen, die zur Durchführung von Kontakten zur Kontaktierung der aktiven Elektrode notwendig sind, wird die aktive Elektrode dadurch komplett oder fast komplett über den gesamten Raumwinkel von vier Pi (4π) abgeschirmt.
  • Der elektroakustische Wandler umfasst eine Elektronik. Die Elektronik kann aus verschiedenen Teilelektroniken bestehen. Verschiedene Teilelektroniken können an verschiedenen Stellen in dem elektroakustischen Wandler angebracht sein. Eine Verstärkungselektronik zur Verstärkung eines schwachen Signals kann beispielsweise eine Teilelektronik der Elektronik sein und in der Nähe der aktiven Elektrode angeordnet sein. Andere Teilelektroniken können in der Nähe der Verstärkungselektronik oder auch weiter entfernt davon, auch außerhalb eines Gehäuses, angeordnet sein. Die Elektronik kann etwa Teilelektroniken umfassen wie beispielsweise eine Signalverarbeitung und / oder Signalauswertung.
  • Elektronische oder elektrische Bauteile einer Elektronik bzw. Teilelektronik können beispielsweise oberflächenmontierte Bauelemente, sogenannte SMD-Bauelemente (Surface Mounted Device) sein.
  • Die Elektronik bzw. Teilelektronik kann zumindest teilweise als integrierter Schaltkreis ausgeführt sein. Eine solche Ausgestaltung ist besonders kompakt.
  • Der elektroakustische Wandler kann ein Substrat mit einer darauf angeordneten Elektronik oder Teilelektronik umfassen. Bei dem Substrat kann es sich insbesondere um ein flächiges Substrat oder einen Flachkörper handeln. Bei einem flächigen Substrat oder einem Flachkörper ist eine Ausdehnung in einer Dimension wesentlich kleiner als die Ausdehnung in den beiden anderen Dimensionen. Es sind also im Wesentlichen nur zwei sich gegenüberliegende Seiten vorhanden. Beispielsweise kann es sich um eine Leiterplatte handeln. Eine solche Leiterplatte kann starr oder flexibel sein.
  • Die Elektronik bzw. Teilelektronik kann nur auf einer Seite des Substrats angeordnet sein. Alternativ kann die Elektronik bzw. Teilelektronik auch an zwei oder mehr Seiten des Substrats angeordnet oder angebracht sein. Bei einem flächigen Substrat kann die Elektronik bzw. Teilelektronik auf beiden Seiten angeordnet oder angebracht sein. Die gesamte Elektronik kann auf dem Substrat angeordnet sein. Alternativ kann auf dem Substrat nur eine Teilelektronik, etwa eine Verstärkungselektronik angeordnet sein. Weitere Teilelektroniken können in diesem Fall beispielsweise auf einem weiteren Substrat oder an anderen Teilen des elektroakustischen Wandlers angeordnet sein.
  • Um eine möglichst kompakte Bauweise zu ermöglichen, ist in einer vorteilhaften Ausgestaltung die aktive Elektrode sandwichartig zwischen der passiven Elektrode und dem Substrat angeordnet. Besonders kompakt ist eine solche Ausgestaltung, wenn das Substrat flächig ist.
  • Der elektroakustische Wandler kann ein Substrat umfassen, das an wenigstens einer Seite eine Abschirmschicht aufweist. Eine solche Abschirmschicht kann durchgängig aus elektrisch leitendem Material sein. Sie kann zwei Bereiche zumindest teilweise elektromagnetisch voneinander abschirmen. Beispielsweise kann ein flächiges Substrat, wie etwa eine mehrlagige Leiterplatte, insbesondere eine flexible Leiterplatte, eine solche Abschirmschicht aufweisen. Auf einem Substrat muss nicht notwendigerweise eine Elektronik oder Teilelektronik angeordnet sein.
  • Zur Abschirmung der aktiven Elektrode bildet die Abschirmschicht zusammen mit der passiven Elektrode eine die aktive Elektrode allseitig umschließende Abschirmung aus. Dadurch ist die aktive Elektrode zu allen Raumrichtungen hin effektiv abgeschirmt. Die Abschirmschicht kann also insbesondere als die schon oben erwähnte hintere Abschirmung dienen. Ähnlich wie oben beschrieben, kann eine allseitig umschließende Abschirmung auch Löcher oder freie Bereiche aufweisen. Auch hier kann die Größe und/oder Orientierung solcher Löcher an die abzuschirmende Wellenlänge und/oder die zu messende Frequenz angepasst sein. Eine durch die passive Elektrode zusammen mit der Abschirmschicht ausgebildete Abschirmung umschließt die aktive Elektrode komplett oder fast komplett. Es können lediglich Durchführungen für Kontakte, die zur Kontaktierung der aktiven Elektrode notwendig sind, vorhanden sein.
  • Die auf nur einer Seite des Substrats angebrachte Elektronik bzw. Teilelektronik kann zwischen der aktiven Elektrode und dem Substrat liegen. Weitere Seiten des Substrats können eine glatte Außenseite bilden, was beispielsweise bei einem Zusammenbau vorteilhaft sein kann, da die Elektronik mechanisch geschützt ist. Insbesondere kann die Elektronik bzw. Teilelektronik alleine oder zusammen mit der aktiven Elektrode wie oben für die aktive Elektrode beschrieben durch eine hintere Abschirmung und/oder eine Abschirmschicht allseitig oder komplett abgeschirmt sein. In einer bevorzugten Ausführungsform befindet sich sowohl die aktive Elektrode als auch die Elektronik oder eine Teilelektronik, etwa ein Verstärkungsteil, in der allseitigen oder kompletten Abschirmung. Eine solche Abschirmung kann wieder durch die passive Elektrode zusammen mit einer hinteren Abschirmung oder einer Abschirmschicht gebildet sein.
  • Alternativ kann sich das Substrat, insbesondere das flächige Substrat zwischen der aktiven Elektrode und der Elektronik bzw. Teilelektronik befinden. Eine Abschirmschicht kann dabei die aktive Elektrode von Störungen, die durch elektronische Bauteile verursacht werden, abschirmen. Die aktive Elektrode kann durch ein Loch im Substrat mit einem Bauteil auf einer anderen Seite in Verbindung stehen. Eine solche Verbindung kann insbesondere bei einem flächigen Substrat ohne Kabel ausgeführt sein. Insbesondere kann die Länge der Verbindung sehr klein und/oder die Verbindung direkt sein, wodurch die elektrischen Eigenschaften einer solchen Verbindung, etwa die Impedanz, im Vergleich zu einer längeren und/oder indirekten Verbindung oder einer Verbindung über Kabel verbessert sein.
  • Ein Substrat, insbesondere ein flächiges Substrat, mit einer Abschirmschicht kann so ausgebildet sein, dass die Abschirmschicht eine außen liegende Abschirmung für eine in einem durch die Abschirmschicht gebildeten Innenraum liegende Elektronik oder Teilelektronik bildet. Eine solche Abschirmung kann die im Innenraum liegende Elektronik bzw. Teilelektronik zu mehreren Seiten hin abschirmen. Beispielsweise kann ein flächiges Substrat gefaltet sein, so dass die Elektronik bzw. Teilelektronik in zwei oder mehr Richtungen abgeschirmt ist. Ein flexibles Substrat kann gebogen sein. Es kann beispielsweise im Querschnitt eine U-Form aufweisen. Eine solche U-Form schirmt zu mehreren Seiten hin ab. Die im Innenraum liegende Elektronik bzw. Teilelektronik kann zu allen Seiten hin abgeschirmt sein, insbesondere kann durch die Abschirmschicht die Elektronik bzw. Teilelektronik komplett oder fast komplett abgeschirmt sein. Eine solche außen liegende Abschirmung ist mit der passiven Elektrode oder einer Masse verbunden. Diese Verbindung kann, wie oben schon für die hintere Abschirmung beschrieben, kurz und/oder direkt sein. Ferner kann sie lösbar oder unlösbar sein.
  • Die Abschirmschicht eines Substrats kann gleichzeitig eine hintere Abschirmung für die aktive Elektrode und eine außen liegende Abschirmung für eine in einem durch die Abschirmschicht gebildeten Innenraum liegende Elektronik bzw. Teilelektronik sein. Beispielsweise kann ein Teil der Abschirmschicht die aktive Elektrode nach hinten abschirmen, während die gesamte Abschirmschicht eine außen liegende Abschirmung für eine in einem durch die Abschirmschicht gebildeten Innenraum liegende Elektronik bzw. Teilelektronik bildet. Die Abschirmschicht erfüllt hier folglich eine Doppelfunktion. In einer besonders vorteilhaften Ausgestaltung bildet ein Teil der Abschirmschicht zusammen mit der passiven Elektrode eine die aktive Elektrode allseitig, insbesondere komplett umschließende Abschirmung, wobei gleichzeitig die Abschirmschicht eine außen liegende Abschirmung für eine in einem durch die Abschirmschicht gebildeten Innenraum liegende Elektronik bzw. Teilelektronik ist.
  • Die aktive Elektrode und die passive Elektrode können getrennte Bereiche einer vormals verbundenen, einzigen Schicht sein. Beispielsweise kann ein Wandlerelement komplett beschichtet und anschließend ein Teil der Schicht entfernt worden sein, so dass eine aktive Elektrode und eine passive Elektrode entstanden sind. Eine solche Trennung kann beispielsweise über Ätzen, Ritzen, Schleifen oder durch gezielte Verdampfung mittels eines Lasers erfolgt sein.
  • In einer einfach zu fertigenden Ausführungsform ist die Vorderseite flach oder eben. Auch die Rückseite kann flach oder eben sein. Insbesondere bei einem blockförmigen Wandlerelement kann die Fertigung vereinfacht sein. Alternativ kann beispielsweise die Vorderseite so ausgestaltet sein, dass sie ein Schallsignal in ihrer gesamten Ausdehnung mit gleicher Phase aufnimmt. Eine solche Ausgestaltung könnte beispielsweise an eine Keulen- oder Kugelform eines zu detektierenden Schallsignals angepasst sein. Dies würde zu minimalen Phasenverschiebungen führen.
  • Die Vorderseite kann parallel zur Rückseite sein. Eine solche Ausgestaltung ist einfach zu fertigen, insbesondere wenn das Wandlerelement blockförmig ist. Ferner kann bei einer solchen Ausgestaltung das Auftreten von Phasenverschiebungen in eventuellen Echos vermindert sein.
  • In einer vorteilhaften Ausgestaltung kann das Wandlerelement blockförmig sein. Ein blockförmiges Wandlerelement ist z.B. ein Materialblock, etwa aus einem Kristall. Bei einer solchen Ausgestaltung können die passive Elektrode und/oder die aktive Elektrode an dem blockförmigen Wandlerelement angeordnet sein. Sie können beispielsweise an dem blockförmigen Wandlerelement angebracht sein. Insbesondere können sie fest mit dem blockförmigen Wandlerelement verbunden sein.
  • In einer besonders vorteilhaften Ausgestaltung eines Wandlerelements sind die passive Elektrode und/oder die aktive Elektrode als Schicht auf dem Wandlerelement angebracht. Eine solche Schicht kann beispielsweise durch Beschichtungsverfahren wie physikalische Gasphasenabscheidung, galvanische Beschichtung oder ähnliches an dem Wandlerelement angebracht werden.
  • Ein Wandlerelement kann zylinderförmig sein. Insbesondere kann das Wandlerelement kreiszylinderförmig sein. Es kann sich beispielsweise um eine Platte handeln, d.h. um ein Wandlerelement, bei dem die Ausdehnung in einer Richtung wesentlich kleiner ist als in den beiden anderen Richtungen. Eine solche Geometrie ist einfach herzustellen und erlaubt aufgrund der großen Fläche ein gut zu detektierendes Signal bei einer gleichzeitig kompakten Bauweise.
  • Bei dem zu detektierenden Schall kann es sich um Ultraschall handeln. Bei einer Messung mit Ultraschall wird ein Benutzer durch die Messung nicht gestört. Umgekehrt wird eine solche Messung auch von Gesprächen oder Umgebungsgeräuschen nicht beeinflusst. Ferner sind Messungen mit Ultraschall meist präziser als Messungen mit längeren Wellenlängen.
  • Der elektroakustische Wandler kann wenigstens ein piezoelektrisches Wandlerelement umfassen. Das piezoelektrische Wandlerelement wandelt Schall in eine elektrische Spannung um.
  • Ein erfindungsgemäßer elektroakustischer Wandler kann nicht nur als Empfänger, der Schall in eine elektrische Messgröße umwandelt, sondern gleichzeitig auch als Sender zur Erzeugung von Schall dienen. Um zwischen der Funktion als Empfänger und der Funktion als Sender umschalten zu können, kann ein Schaltmechanismus und/oder ein Schaltelement vorhanden sein. Dadurch kann der elektroakustische Wandler je nach Funktion mit verschiedenen Elektroniken oder Teilelektroniken zum Senden und Empfangen verbunden sein.
  • Um möglichst gut an ein Schall übertragendes Medium ankoppeln zu können, kann eine Anpassschicht in dem elektroakustischen Wandler vorhanden sein. Eine solche Anpassschicht ist an der Vorderseite des Wandlerelementes angeordnet.
  • Empfindliche Teile des elektroakustischen Wandlers, nämlich die aktive Elektrode und Elektronik, sind durch die genannten Maßnahmen allseitig, insbesondere komplett elektromagnetisch abgeschirmt. Auch die gesamte Elektronik und/oder der gesamte elektroakustische Wandler kann allseitig, insbesondere komplett elektromagnetisch abgeschirmt sein. In einem solchen Fall kann eine Abschirmung durch ein äußeres Gehäuse nicht mehr notwendig sein. Ein äußeres Gehäuse kann dann aus einem isolierenden Material bestehen.
  • Die oben beschriebenen Lösungen zur Abschirmung können auch unabhängig voneinander benutzt werden. Beispielsweise könnte eine hintere Abschirmung auch in einem elektroakustischen Wandler vorhanden sein, bei dem sich die passive Elektrode nicht an einer Querseite fortsetzt. Gleiches gilt für die Abschirmung einer Elektronik durch eine außen liegende Abschirmschicht eines Substrats.
  • Im Folgenden wird die Erfindung anhand vorteilhafter Ausführungsformen mit Bezug auf die Zeichnungen beispielhaft näher erläutert. Die beschriebenen Ausführungsformen stellen dabei lediglich mögliche Ausgestaltungen dar, bei denen jedoch die einzelnen Merkmale, wie oben beschrieben, unabhängig voneinander genutzt und beliebig miteinander kombiniert und/oder weggelassen werden können. Gleiche Bezugszeichen stehen dabei in den verschiedenen Zeichnungen jeweils für gleiche Gegenstände.
  • Es zeigen:
  • Fig. 1
    einen schematischen Querschnitt eines aus dem Stand der Technik bekannten elektroakustischen Ultraschallsensor;
    Fig. 2
    einen schematischen Querschnitt eines Teils eines nicht beanspruchten elektroakustischen Wandlers;
    Fig. 3
    einen schematischen Querschnitt eines nicht beanspruchten elektroakustischen Wandlers;
    Fig. 4
    einen schematischen Querschnitt einer Ausführungsform eines erfindungsgemäßen elektroakustischen Wandlers.
  • In Fig. 1 ist eine aus dem Stand der Technik bekannte Ausführungsform eines Ultraschallsensors in einem Querschnitt gezeigt. Mit diesem kann Schall 2 in eine elektrische Messgröße umgewandelt werden. Ein elektroakustischer Ultraschallwandler 1 verfügt über eine Anpassschicht 4, um den Schall 2 möglichst gut an ein Wandlerelement 3 anzukoppeln. Das Wandlerelement 3 wandelt dann den Schall 2 in ein Empfangssignal um. Das Wandlerelement 3 ist über Kabel 5a, 5b mit einer Elektronik 6 verbunden. Diese Elektronik 6 umfasst eine Verstärkungselektronik 7, in der das meist schwache Empfangssignal verstärkt wird. Nach der Verstärkung kann das Signal noch weiter verarbeitet werden, beispielsweise kann es gefiltert oder ausgewertet werden. Anschließend kann das Signal über einen an einer Anschlussseite 8 gelegenen Ausgang (nicht gezeigt) ausgegeben werden.
  • Der elektroakustische Ultraschallwandler 1 umfasst ein Gehäuse 9. Das Gehäuse 9 kann beispielsweise aus einem elektrisch leitenden Material bestehen, um von der Seite einwirkende Störsignale abzuschirmen.
  • Der hier gezeigte Ultraschallsensor kann nicht nur als Empfänger, sondern auch als Sender arbeiten. Das Wandlerelement 3 emittiert dabei intervallweise Schall und misst zwischen den Sendeintervallen den von einem zu messenden Objekt zurückgeworfenen Schall 2.
  • Um die Schwingungen, die im Sendeintervall entstehen, möglichst effektiv zu dämpfen, ist das Wandlerelement 3 zusammen mit der Anpassschicht 4 in einem Dämpfungsmaterial 10 eingebettet. Dadurch wird die Abklingzeit reduziert, was beispielsweise ein Messen auch bei kurzen Entfernungen zum zu messenden Objekt ermöglicht. Das Wandlerelement 3, die Anpassschicht 4 und das Dämpfungsmaterial 10 sind in einem Becher 11 angeordnet, der wiederum vom Gehäuse 9 gehalten wird.
  • Die in diesem Beispiel gezeigte Elektronik 6 befindet sich auf zwei Seiten 100, 101 einer Leiterplatte 14. Elektronische Bauteile 15 sind an beiden Seiten 100, 101 angebracht. Seitlich zu einer vorzugsweisen Schallrichtung 2r, d.h. in der Fig. 1 nach oben, nach unten, aus der Zeichenebene heraus und in die Zeichenebene hinein ist die Elektronik 6 durch das Gehäuse 9 elektromagnetisch abgeschirmt, da dieses aus einem elektrisch leitenden Material besteht. Nach hinten kann eine solche Abschirmung an der Anschlussseite 8 vorhanden sein. Nach vorne kann die Elektronik 6 durch eine innen liegende Beschichtung 11b des Bechers 11 elektromagnetisch abgeschirmt sein. Eine solche Beschichtung muss jedoch einen bestimmten Mindestabstand zum Gehäuse 9 aufweisen um zu verhindern, dass innen liegende Teile, die mit der Beschichtung 11b verbunden sind, etwa die Elektronik 6, mit dem Gehäuse 9 leitend verbunden sind, da dies einen Benutzer gefährden könnte. Auch zum Schutz der innen liegenden Elektronik 6 vor äußeren Einflüssen darf eine solche Verbindung nicht bestehen. Um vor allem eine sensible Verstärkungselektronik 7 vor eindringenden elektromagnetischen Störungen zu schützen, verfügt der elektroakustische Wandler 1 deshalb über eine Abschirmung 7a für die Verstärkungselektronik 7. Um auch die von der Beschichtung 11b des Bechers 11 nur teilweise abgeschirmte, sensible aktive Elektrode 13 besser abzuschirmen, ist die passive Elektrode 12, die an der Vorderseite 120 des Wandlerelements 3, die der Rückseite 130 gegenüber liegt, angeordnet ist, speziell ausgestaltet.
  • In Fig. 2 ist ein Teil des elektroakustischen Wandlers 1 vergrößert dargestellt. In Fig. 2 ist eine passive Elektrode 12 gezeigt. Die passive Elektrode 12 erstreckt sich nicht nur an der Vorderseite 120 des Wandlerelements 3, sondern setzt sich auch an einer Querseite 140, die zwischen der Vorderseite 120 und der Rückseite 130 liegt, fort. Dadurch ist die aktive Elektrode 13 nicht nur vor von vorne einwirkende Störungen 16a, sondern auch vor von schräg vorne einwirkende Störungen 16b effektiv geschützt. Neben einem an einer Vorderseite 120 des Wandlerelements 3 gelegenen Teil 12v weist die passive Elektrode 12 also auch Seitenteile 12s auf, die sich an Querseiten 140 des Wandlerelements 3 befinden. Der vordere Teil 12v ist insbesondere einstückig mit den Seitenteilen 12s ausgeführt. Die Seitenteile 12s erstrecken sich seitlich um das gesamte Wandlerelement 3 herum, was einen besonders weitreichenden Schutz zur Folge hat. In anderen Ausgestaltungen können sich solche Seitenteile 12s auch nur teilweise um das Wandlerelement 3 herum erstrecken.
  • Die passive Elektrode 12 ist über ein Kabel 5a mit einer Elektronik verbunden. Die passive Elektrode 12 ist an ein Massepotential der Elektronik angeschlossen, um eine möglichst gute Abschirmung zu erzielen.
  • An einer Rückseite 130 des Wandlerelements 3 befindet sich eine aktive Elektrode 13. Sie ist über ein Kabel 5b mit der Elektronik verbunden.
  • Zwischen der aktiven Elektrode 13 und der passiven Elektrode 12 wird eine durch den Schall 2 im Wandlerelement 3 erzeugtes Empfangssignal gemessen. Beispielsweise kann das Wandlerelement 3 ein piezoelektrisches Wandlerelement sein. Wird ein solches piezoelektrisches Wandlerelement den Druckschwankungen des Schalls 2 ausgesetzt, so entsteht zwischen der passiven Elektrode 12 und der aktiven Elektrode 13 eine Spannungsdifferenz, die gemessen werden kann. Dieses Empfangssignal kann in einer Elektronik weiter behandelt werden. Es kann beispielsweise verstärkt werden.
  • Durch die Anpassschicht 4 wird der Schall 2 besonders effizient an das Wandlerelement 3 angekoppelt. Je nach Anwendungsbereich und den zu messenden Frequenzen kann die Anpassschicht 4, insbesondere das Material der Anpassschicht 4, passend gewählt sein. Die Anpassschicht 4 kann mit dem Wandlerelement 3, also insbesondere mit der passiven Elektrode 12, die sich am Wandlerelement 3 befindet, verklebt sein.
  • Die aktive Elektrode 13 und/oder die passive Elektrode 12 können jeweils eine Schicht auf dem Wandlerelement 3 sein. Diese kann durch Beschichtungsverfahren wie physikalische Gasphasenabscheidung oder galvanische Beschichtung dort aufgebracht sein. Insbesondere können die aktive Elektrode 13 und die passive Elektrode 12 abgetrennte Bereiche 25a, 25b einer vormals verbundenen Schicht 25 sein. Das Wandlerelement 3 kann beispielsweise komplett beschichtet worden sein und die Schicht in verschiedene, voneinander unabhängige Bereiche 25a, 25b aufgeteilt worden sein. Die Abtrennung kann beispielsweise durch Ätzen oder durch Laserbestrahlung erfolgt sein.
  • Das hier gezeigte Wandlerelement 3 ist blockförmig und insbesondere zylinderförmig. Eine Vorderseite 120 ist parallel zu einer Rückseite 130 ausgeführt.
  • Um ein möglichst starkes Signal zu erhalten, sollte das Wandlerelement 3 eine große Breite 3w und/oder eine große Querschnittsfläche 3f aufweisen. Natürlich kann auch Schall aus anderen Richtungen auf den elektroakustischen Wandler 1 treffen. Bei der gezeigten Ausgestaltung wird nur die Komponente des Schalls 2 gemessen, die entlang der vorzugweisen Schallrichtung 2r liegt. Die entlang der vorzugsweisen Schallrichtung 2r gemessene Dicke 3d des Wandlerelements 3 kann im Vergleich zur Breite 3w relativ klein sein. Das Wandlerelement 3 kann also scheibenförmig sein.
  • In Fig. 3 ist ein Querschnitt eines elektroakustischen Wandlers 1 gezeigt. Neben den hier gezeigten Bauelementen können noch weitere Elemente vorhanden sein. Beispielsweise kann noch eine Elektronik angeschlossen sein.
  • Das Wandlerelement 3 ist blockförmig ausgestaltet. An der Vorderseite 120 ist ein vorderer Teil 12v der passiven Elektrode 12 angebracht. Die passive Elektrode 12 setzt sich an den Querseiten 140 des Wandlerelements 3 fort. An diesen Querseiten 140 befinden sich also Seitenteile 12s der passiven Elektrode 12. Die passive Elektrode 12 setzt sich auch auf der Rückseite 130 des Wandlerelements 3 fort. An dieser Rückseite 130 befindet sich ein hinterer Teil 12h der passiven Elektrode 12.
  • Die passive Elektrode 12 erstreckt sich bis zu einer die aktive Elektrode 13 beinhaltenden Ebene 13e und schirmt damit für die aktive Elektrode 13 den gesamten vorderen Halbraum ab.
  • Über Verbindungselemente 20 ist die passive Elektrode 12 an ihrem hinteren Teil 12h direkt mit einer hinteren Abschirmung 17 in Form einer Abschirmschicht 18 verbunden. Die Abschirmschicht 18 ist auf einer Seite 105 eines Substrats 19 angeordnet. Das Substrat 19 ist flächig und hat zwei Seiten 104, 105. Der ersten Abschirmschicht 18 liegt auf der anderen Seite 104 des flächigen Substrats 19 eine zweite Abschirmschicht 18' gegenüber.
  • Die erste Abschirmschicht 18 umschließt zusammen mit der passiven Elektrode 12 die aktive Elektrode 13 allseitig und stellt dadurch eine allseitige Abschirmung für die aktive Elektrode 13 dar. Die allseitige Abschirmung weist lediglich kleine Lücken auf. Beispielsweise ist sie unterbrochen, um die Kontaktierung der aktiven Elektrode 13 mittels eines Kontaktierelementes 22 zu ermöglichen. Insbesondere wird die aktive Elektrode 13 durch die allseitige Abschirmung komplett abgeschirmt. Dadurch ist die aktive Elektrode 13 nicht nur gegen von vorne kommende Störungen 16a und von schräg seitlichen einwirkende Störungen 16b, sondern auch gegen von hinten einwirkende Störungen 16c abgeschirmt.
  • Das an der aktiven Elektrode 13 gemessene Signal wird über das Kontaktierelement 22 und eine elektrische Verbindung 5c weitergeleitet. Beispielsweise kann es an eine Elektronik weitergeleitet werden. Dabei liegt die elektrische Verbindung 5c abgeschirmt zwischen der ersten Abschirmschicht 18 und der zweiten Abschirmschicht 18'.
  • Die aktive Elektrode 13 ist durch die passive Elektrode 12 über einen Raumwinkel von zwei Pi (2π), d.h. über einen Halbraum abgeschirmt. Durch die hintere Abschirmung 17 in Form der ersten Abschirmschicht 18 ist die aktive Elektrode 13 zusätzlich über den anderen Halbraum, d.h. noch einmal über zwei Pi (2π) abgeschirmt. Insgesamt stellt die allseitige Abschirmung durch die hintere Abschirmung 17 und die passive Elektrode 12 eine Abschirmung über den gesamten Raumwinkel von vier Pi (4π) dar. Die passive Elektrode 12 ist dabei mit der hinteren Abschirmung 17 leitend verbunden. Diese leitende Verbindung wird über die Verbindungselemente 20, die nur einen kurzen Abstand überbrücken, hergestellt. Die Verbindungselemente 20 können beispielsweise Lötungen oder stiftförmige Verbindungselemente sein. Die Länge der Verbindungselemente 20 liegt in der Größenordnung des physischen Abstandes zwischen der passiven Elektrode 12 und der hinteren Abschirmung 17. Die Verbindung kann lösbar oder unlösbar sein.
  • Das Wandlerelement 3 ist zusammen mit einer Anpassschicht 4 und dem flächigen Substrat 19 in einem Dämpfungsmaterial 10 aufgenommen.
  • Der in Fig. 3 gezeigte elektroakustische Wandler 1 kann ähnlich wie in Fig. 1 in einem Gehäuse verbaut sein. Alternativ kann er aber auch anders verbaut sein, insbesondere muss keine zusätzliche Abschirmung vorhanden sein, wenn die Abschirmung der aktiven Elektrode für ein zuverlässiges Funktionieren ausreicht.
  • In Fig. 4 ist eine vorteilhafte Ausgestaltung eines erfindungsgemäßen elektroakustischen Wandlers 1 mit einer Ausführungsform eines Wandlerelementes 3 in einem Querschnitt dargestellt. Ähnlich wie bei dem in Fig. 3 dargestellten Wandler 1 ist auch bei der in Fig. 4 dargestellten Ausführungsform eines elektroakustischen Wandlers 1 die passive Elektrode 12 bis zur Rückseite 130 des Wandlerelements 3 nach hinten gezogen. Die passive Elektrode 12 umfasst einen an der Vorderseite 120 angeordneten, vorderen Teil 12v, der den Hauptteil der passiven Elektrode 12 ausmacht, an den Querseiten 140 angeordnete Seitenteile 12s und an der Rückseite 130 angeordnete hintere Teile 12h.
  • Die passive Elektrode 12 ist an ihren hinteren Teilen 12h über Verbindungselemente 20 mit einer Abschirmschicht 18 verbunden. Die Abschirmschicht 18 befindet sich wieder an einem Substrat 19, das auch hier flächig ausgebildet ist. Das Substrat 19 verfügt aber in diesem Fall nur auf einer Seite 102 über eine Abschirmschicht 18. Auf der anderen Seite 103 ist eine Elektronik 6 angebracht.
  • Das Substrat 19 ist gefaltet, so dass die Abschirmschicht 18 eine außen liegende Abschirmung 23 für die in einem durch die Abschirmschicht 18 gebildeten Innenraum 24 liegende Elektronik 6 bildet. Die außen liegende Abschirmung 23 könnte auch nur eine Teilelektronik, etwa eine Verstärkungselektronik 7, abschirmen. Andere Teilelektroniken könnten über eine elektrische Verbindung 26 mit der im Innenraum 24 gelegenen Teilelektronik verbunden sein. Eine Abschirmung weiterer Teilelektroniken kann unnötig sein, wenn die von der im Innenraum 24 gelegenen Teilelektronik weitergeleiteten Signale schon hinreichend auswertbar sind.
  • Die Elektronik 6 setzt sich aus einzelnen elektronischen Bauelementen 15 zusammen. Die Bauelemente 15 sind lediglich auf einer Seite 103 des Substrats 19 angebracht. Die Bauelemente 15 können insbesondere oberflächenmontierte Bauelemente sein. Die Elektronik 6 oder eine Teilelektronik können, auch nur teilweise, als integrierte Schaltkreise ausgestaltet sein.
  • Die Elektronik 6 wird durch die Abschirmschicht 18, die auf der anderen Seite 102 des Substrats 19 angebracht ist, zu mehreren Seiten hin abgeschirmt. Die Abschirmschicht 18 ist also Teil der außen liegenden Abschirmung 23 für die Elektronik 6. Gleichzeitig ist die Abschirmschicht 18, zumindest ein vorderer Teil der Abschirmschicht 18, Teil einer allseitigen Abschirmung für die aktive Elektrode 13. Lediglich im Bereich eines Kontaktierelementes 22, in dem die aktive Elektrode mit der Elektronik 6 direkt verbunden ist, ist die allseitige Abschirmung für die aktive Elektrode 13 unterbrochen.
  • Das Kontaktierelement 22 stellt eine direkte Verbindung zwischen der aktiven Elektrode 13 und der Elektronik 6 her. Ein solches Kontaktierelement 22 kann beispielsweise eine Lötstelle oder ein stiftförmiges Element sein. Es verläuft durch eine Öffnung des Substrats 19 hindurch zur Elektronik 6. Da der Abstand zwischen der Elektronik 6 und der aktiven Elektrode 13 vergleichsweise kurz ist, können kaum Störungen in die Verbindung einkoppeln. In dem gezeigten Beispiel ist die Verbindung nur etwas länger als der Abstand zwischen der aktiven Elektrode 13 und dem Substrat 19. Die Verbindung kann wieder lösbar oder unlösbar sein.
  • Die aktive Elektrode 13 ist sandwichartig zwischen der passiven Elektrode 12 und dem Substrat 19 angeordnet. Der vordere Teil 12v der passiven Elektrode 12, die aktive Elektrode 13 und das Substrat 19 sind jeweils eben und parallel zueinander. Sie werden durch das blockförmige piezoelektrische Wandlerelement 3 bzw. das Kontaktierelement 22 voneinander beabstandet.
  • Das Substrat 19 ist ein Flachkörper, es kann beispielsweise eine Leiterplatte, insbesondere eine flexible Leiterplatte sein.
  • Das Wandlerelement 3 ist zusammen mit der Anpassschicht 4 und dem Substrat 19 wieder in einem Dämpfungsmaterial 10 eingebettet.
  • Bei der in der Fig. 4 gezeigten Ausführungsform eines elektroakustischen Wandlers 1 sind die aktive Elektrode 13 und die Elektronik 6 elektromagnetisch abgeschirmt. Auf eine weitere Abschirmung, etwa durch ein Gehäuse aus einem elektrisch leitenden Material, ist in diesem Fall daher verzichtet worden. Ein solches Gehäuse kann also aus einem isolierenden Material bestehen.

Claims (14)

  1. Elektroakustischer Wandler (1), durch den Schall in eine elektrische Messgröße umwandelbar ist, umfassend ein Wandlerelement (3), eine als elektromagnetische Abschirmung verwendbare, an einer Vorderseite (120) des Wandlerelements (3) angeordnete passive Elektrode (12) und eine an einer Rückseite (130) des Wandlerelements (3) angeordnete aktive Elektrode (13), wobei die aktive Elektrode (13) zwischen der passiven Elektrode (12) und einer hinteren Abschirmung (17,18) angeordnet ist und die passive Elektrode (12) mit der hinteren Abschirmung (17, 18) leitend verbunden ist, wobei die passive Elektrode (12) zusammen mit der hinteren Abschirmung (17, 18) eine die aktive Elektrode (13) allseitig umschließende Abschirmung ausbildet und der elektroakustische Wandler (1) eine Elektronik (6) umfasst und sich auch die Elektronik (6) in der allseitigen Abschirmung befindet und keine weitere Abschirmung ausgebildet ist.
  2. Elektroakustischer Wandler (1) nach Anspruch 1, dadurch gekennzeichnet, dass sich die passive Elektrode (12) entlang wenigstens einer zwischen der Vorderseite (120) und der Rückseite (130) gelegenen Querseite (140) des Wandlerelements (3) fortsetzt.
  3. Elektroakustischer Wandler (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich die passive Elektrode (12) bis zur Rückseite (130) erstreckt.
  4. Elektroakustischer Wandler (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich ein Teil (12h) der passiven Elektrode (12) an der Rückseite (130) befindet.
  5. Elektroakustischer Wandler (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit dem elektroakustischen Wandler (1) als Empfänger Schall in eine elektrische Messgröße umwandelbar ist und als Sender Schall erzeugbar ist und der elektroakustische Wandler (1) mit einem Schaltmechanismus und/oder einem Schaltelement zwischen der Funktion als Empfänger und Sender umschaltbar ist.
  6. Elektroakustischer Wandler (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektroakustische Wandler (1) ein Substrat (19) mit einer darauf angeordneten Elektronik (6) umfasst und die aktive Elektrode (13) sandwichartig zwischen der passiven Elektrode (12) und dem Substrat (19) angeordnet ist.
  7. Elektroakustischer Wandler (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektroakustische Wandler (1) ein Substrat (19) umfasst, das an mindestens einer Seite (102, 104, 105) eine Abschirmschicht (18) aufweist, wobei die hintere Abschirmung (17) in Form der Abschirmschicht (18) ausgebildet ist.
  8. Elektroakustischer Wandler (1) nach Anspruch 7, dadurch gekennzeichnet, dass die passive Elektrode (12) zusammen mit der Abschirmschicht (18) die die aktive Elektrode (13) allseitig umschließende Abschirmung ausbildet.
  9. Elektroakustischer Wandler (1) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Substrat (19) nur an einer seiner Seiten (103) eine Elektronik (6) aufweist.
  10. Elektroakustischer Wandler (1) nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Abschirmschicht (18) eine außen liegende Abschirmung (23) für eine in einem durch die Abschirmschicht (18) gebildeten Innenraum (24) liegende Elektronik (6) bildet.
  11. Elektroakustischer Wandler (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die aktive Elektrode (13) und die passive Elektrode (12) zwei getrennte Bereiche (25a, 25b) einer vormals verbundenen, einzigen Schicht (25) sind.
  12. Elektroakustischer Wandler (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die passive Elektrode (12) und/oder die aktive Elektrode (13) als Schicht auf dem Wandlerelement (3) angebracht ist.
  13. Elektroakustischer Wandler (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die passive Elektrode (12) über Verbindungselemente (20) mit der hinteren Abschirmung (17) leitend verbunden ist.
  14. Elektroakustischer Wandler (1) nach Anspruch 13, dadurch gekennzeichnet, dass die Verbindungselemente (20) Lötungen oder stiftförmige Verbindungselemente sind.
EP12195518.1A 2012-12-04 2012-12-04 Elektroakustischer Wandler Active EP2741524B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12195518.1A EP2741524B1 (de) 2012-12-04 2012-12-04 Elektroakustischer Wandler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12195518.1A EP2741524B1 (de) 2012-12-04 2012-12-04 Elektroakustischer Wandler

Publications (2)

Publication Number Publication Date
EP2741524A1 EP2741524A1 (de) 2014-06-11
EP2741524B1 true EP2741524B1 (de) 2019-02-13

Family

ID=47357966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12195518.1A Active EP2741524B1 (de) 2012-12-04 2012-12-04 Elektroakustischer Wandler

Country Status (1)

Country Link
EP (1) EP2741524B1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007014579A1 (de) * 2007-03-23 2008-09-25 Sennheiser Electronic Gmbh & Co. Kg Mikrofon
DE102008044351A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Ultraschallsensor und Ultraschallsensorsystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542550B1 (fr) * 1983-03-07 1986-11-14 Thomson Csf Transducteur electroacoustique a correction acoustique integree
DE4215271A1 (de) * 1992-05-09 1993-11-11 Tridelta Ag Ultraschallwandler
US7581296B2 (en) * 2007-04-11 2009-09-01 Ge Inspection Technologies, Lp Acoustic stack for ultrasonic transducers and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007014579A1 (de) * 2007-03-23 2008-09-25 Sennheiser Electronic Gmbh & Co. Kg Mikrofon
DE102008044351A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Ultraschallsensor und Ultraschallsensorsystem

Also Published As

Publication number Publication date
EP2741524A1 (de) 2014-06-11

Similar Documents

Publication Publication Date Title
DE60214755T2 (de) Hornantenne für eine Pegelmesseinrichtung
EP2260274B1 (de) Füllstandschalter und sensorelement für einen füllstandschalter
DE102007044490B4 (de) Ultraschallsensor zur Verwendung in einem Kraftfahrzeug
DE10109371B4 (de) Funkwellenradargerät für Fahrzeuge
DE4431511B4 (de) Schallschwingungswandler
DE102013104147A1 (de) Radareinrichtung, insbesondere für ein Kraftfahrzeug
EP3492881B1 (de) Leiterplatte für ein radar-füllstandmessgerät mit hohlleitereinkopplung
DE102010010348A1 (de) Implantierbare Vorrichtung zum Erfassen einer Gefäßwanddehnung
EP1083413B1 (de) Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter
DE112010005166T5 (de) Ultraschallwellensensor und Verfahren zum Anbringen eines Ultraschallwellensensors
DE102011077553A1 (de) Ultraschallwandler mit Piezoelement und Abstandssensor
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
DE102008049081A1 (de) Ultraschallsensor
DE102012106174A1 (de) Mit einer Störwellen aussendenden Hochfrequenzbaugruppe ausgestattete Leiterplatte
DE102016104399A1 (de) Schallwandler zum senden und/oder empfangen von unterwasserschallsignalen, unterwasserantenne, sonar und wasserfahrzeug
EP0166180B1 (de) Hydrophon
DE19629277C2 (de) Anordnung zum Auskoppeln von zwei orthogonal linear polarisierten Wellen aus einem Wellenleiter für eine Antenne zum Enpfangen von Satellitenrundfunksignalen
EP2741524B1 (de) Elektroakustischer Wandler
DE102015210488A1 (de) Antennenvorrichtung zum Empfangen von elektromagnetischen Wellen und Verfahren zum Betreiben einer Antennenvorrichtung zum Empfangen von elektromagnetischen Wellen
DE102008005871B4 (de) Ultraschall-Messwertgeber
DE102017216906A1 (de) Wellenleitersystem, Hochfrequenzleitung und Radarsensor
EP2116474A1 (de) Ultraschallsensor
EP3101441B1 (de) Ultraschallwandler
EP2911312B1 (de) Antenne mit Schirmvorrichtung und Herstellungsverfahren
DE3922165C2 (de) Planare Breitbandantennenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/02 20060101ALI20180921BHEP

Ipc: B06B 1/06 20060101ALI20180921BHEP

Ipc: H04R 17/00 20060101AFI20180921BHEP

INTG Intention to grant announced

Effective date: 20181012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1096916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014255

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190513

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190514

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014255

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191204

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191204

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1096916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12