EP2739918B1 - System und verfahren zur optimierung des betriebs eines wärmepumpensystems - Google Patents

System und verfahren zur optimierung des betriebs eines wärmepumpensystems Download PDF

Info

Publication number
EP2739918B1
EP2739918B1 EP12759659.1A EP12759659A EP2739918B1 EP 2739918 B1 EP2739918 B1 EP 2739918B1 EP 12759659 A EP12759659 A EP 12759659A EP 2739918 B1 EP2739918 B1 EP 2739918B1
Authority
EP
European Patent Office
Prior art keywords
cycle fluid
evaporator
exchanger
exchanger system
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12759659.1A
Other languages
English (en)
French (fr)
Other versions
EP2739918A1 (de
Inventor
Fernando RAMOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PrestiClim
Original Assignee
PrestiClim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PrestiClim filed Critical PrestiClim
Publication of EP2739918A1 publication Critical patent/EP2739918A1/de
Application granted granted Critical
Publication of EP2739918B1 publication Critical patent/EP2739918B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to the field of heat pumps.
  • the invention more particularly relates to a method for optimizing the operation of a heat pump installation, in which the cycle fluid undercooled by the defrosting of a heat exchanger makes it possible to improve the efficiency of the installation.
  • the invention also relates to an improved performance heat pump installation operating continuously.
  • a heat pump captures thermal energy from an external environment or more generally from a source of heat called a cold source to restore it in a heating circuit, water circulating in this circuit , usually inside a building.
  • a heat pump conventionally comprises a compressor, a condenser for supplying heat, an expander preparing the vaporization reaction by lowering the liquid pressure (to provide a low pressure liquid to the evaporator) and an evaporator.
  • the evaporator generally consists of a heat exchanger in which the liquid refrigerant is vaporized by the heat extracted from the cold source.
  • the coefficient of performance COP of a heat pump is defined as the ratio between the heat output delivered at the condenser and the work supplied. This work corresponds to the electric power consumed by the engine to move the compression system, also called "power absorbed".
  • the coefficient of performance is often much lower than 3 for heat pumps operating in environments where the outside temperature is for example below 0 ° C. For a long time, there has been a need to increase the coefficient of performance of heat pumps.
  • the present invention therefore aims to overcome one or more of the disadvantages of the prior art by proposing a heat pump installation recovering a maximum of energy so as to increase its coefficient of performance, and providing heat continuously all defrosting part of the installation when necessary.
  • the operating mode of the installation depends on the outside temperature, measured by thermometric measurement means controlled by a processor and software, actuating the control means according to the mode required for the corresponding outside temperature.
  • the installation is designed to operate in different modes depending on the outside temperature, to ensure in all cases a continuous return of heat in the heating circuit.
  • each exchanger in operation can receive a lateral air flow which will instantly cool in the area corresponding to the inlet and outlet sides of the air flow, on which there is the pipe of the evaporator in which circulates the cycle fluid.
  • the zone in the center of the exchanger system heats and defrosts the zone by taking calories from the circulating fluid in the channel of the exchange zone.
  • the second heat exchange zone surrounding the first heat exchange zone of each exchanger system, is of the finned tube type.
  • each exchanger system comprises a radiator including the two exchange zones.
  • each of said exchange zones extends over the entire height of a volume occupied by each exchange system.
  • a further object of the invention is to provide a method of optimizing the operation of a heat pump installation, with improved efficiency and continuous heat exchange.
  • the method comprises a step of simultaneous operation, the means of derivation of the cycle fluid flow being open and the control means being closed, allowing the heating of the cycle fluid in the two evaporators simultaneously.
  • the method comprises a step of switching from one mode of operation to another when the external temperature, measured using at least one thermometric sensor, crosses a threshold value.
  • the method comprises a step of subcooling the cycle fluid and defrosting the exchanger systems only performed with the heat pump system heat exchanger systems, without interrupting the upstream stage of cooling the fluid. cycle in the condenser.
  • the cycle fluid is brought to a supercritical state in a part of the circuit.
  • the latter is located under conditions of pressure and temperature such that there is coexistence of the liquid and gaseous phases.
  • the warming of the cycle fluid in the evaporator will cause a gain of enthalpy at constant pressure and induce a gradual transition to the gaseous state of the cycle fluid.
  • the method comprises a step of air circulation at the level of the exchanger systems reaching a speed of at least 2 m / s.
  • the process comprises an evaporation step in the exchange zone which fulfills the evaporator function carried out at a maximum temperature of between -10 ° C. and -20 ° C.
  • the heat pump installation operates from a cold source (A).
  • the installation conventionally comprising a circuit provided with at least one compressor (1), a condenser (2), at least two expander (3, 3 ') of at least two evaporators (4, 4') and at least two fans (5, 5 ').
  • the cycle fluid circulating in the circuit may for example be a refrigerant known per se (refrigerant R134a, R22 or other similar fluid), may or may not be brought to a supercritical state.
  • the condenser (2) is cooled by a fluid to be heated.
  • the installation comprises at least two systems (12, 12 ') exchangers with the cycle fluid, each having a first zone (Z1, Z1') for heat exchange for cooling the cycle fluid and a second zone (Z2, Z2 ') for heat exchange surrounding the first (Z1, Z1') and for heating the cycle fluid.
  • the second zone (Z2, Z2 ' ) corresponds to the evaporator (4, 4 ') of the circuit.
  • bladed fans (5, 5 ') placed next to the exchanger systems (12, 12') generate a flow, for example circular or helical, passing right through the second exchange zone (Z2, Z2 ') before exit the box enclosing the fan-system exchanger assembly (5, 5 ', 12, 12').
  • the figure 4 shows a positioning of the fans (5, 5 ') at the side portions of a box (50) enclosing the components (1, 2, 12, 12', 3, 3 ', 4, 4') of the pump heat.
  • Said casing ( fig 4 , 50) is provided with downward openings (51, 51 ') and below (52, 52') of the evaporators (4, 4 ') so that the air flow generated by the operation of the fans ( 5, 5 ') and passing right through the second exchange zone (S2, Z2') of the exchanger systems (12, 12 '), enters and out of the bottom of the box (50).
  • the semi-enclosed space (53, 53 ') formed by the box and existing between each fan (5, 5 ') adjacent to an evaporator (4, 4') and the inner wall of the box (50) facing each fan (5, 5 '), allows when a fan (5, 5') ) is stopped to maintain the warm air heated by the cycle fluid in the top of the box (50), the density of the hot air is lower than that of the cold air, thus promotes the defrosting of the evaporator (4, 4 ') adjacent to the fan (5, 5') when stopped.
  • the exchanger systems (12, 12 ') consist of two disjoint zones (Z1 and Z1', Z2 and Z2 ') of exchange, in which the cycle fluid circulates. While the first zone (Z1, Z1 ') of exchange, upstream of the expander (3, 3') in the direction of circulation, is traversed by the cycle fluid so as to heat the system (12, 12 ') exchanger, the second zone (Z2, Z2 ') is crossed downstream of the expander (3, 3') so that the evaporator (4, 4 ') heats the cycle fluid by extracting heat from the source cold (A).
  • the supply of the evaporator (4, 4') after the outlet of the expander (3, 3 ') can be carried out with a distributor (E2, E2 ').
  • a distributor E2, E2 '
  • several circuits of the second exchange zone (Z2, Z2 ') are fed in parallel.
  • the first zone (Z1, Z1 ') constitutes a liquid / air exchanger.
  • the system (12, 12 ') exchanger may comprise parallel fins aligned along an axis. These fins may be spaced apart by 3.2 mm or any other conventional gap.
  • This system (12, 12 ') is distributed between a first side, common to a plurality of fins, of said second zone (Z2, Z2') which receives the flow of air entering the system (12, 12 ') exchanger in a component direction perpendicular to the axis of alignment of the fins or parallel to the fins, and a second common side to the same plurality of fins which is opposite the first side to bring out said air flow of the system ( 12, 12 ') exchanger.
  • the pipe (21, 22) for receiving heat from the outgoing air flow forms all or part of the evaporator (4, 4 ') of the circuit and is positioned on either side of the sides of the system ( 12, 12 ') exchanger.
  • the relative humidity percentage of the air flow used can be 90%.
  • the air circulation is carried out with a speed of between 1 and 2.5 m / s, for an inlet face in the exchanger system (12, 12 ') having an area of the order of 0.1 of 5 m 2 and even more.
  • the flow can also reach 15m 3 / s and even more for applications to industrial buildings.
  • the exchanger system (12, 12 ') may also be free of fins and essentially comprise a smooth tube of stainless material, which makes it suitable for use in corrosive or charged atmospheres.
  • the temperature of the cycle fluid (liquid) is 65 ° at the inlet (E1, E1 ') of a heat exchanger system (12, 12'), the condensation temperature being 67 ° C.
  • the cycle fluid leaving the first zone (Z1, Z1 ') is cooled to a temperature of 8 ° C and is led via the outlet (S1, S1') to the expander (3, 3 ').
  • each exchanger system (12, 12 ') may have a substantially constant height (h).
  • the air flow passes through a complete surface of this generally parallelepipedal volume, entering through the second zone (Z2, Z2 ') of exchange, that is to say by the first side.
  • the height (h) is preferably greater than the depth (d) of the exchanger system (12, 12 '). This depth can be constant and of the order of 0.1 to 0.2 m while the surface of the inlet face of the air flow can correspond to 1 m 2 and more.
  • the exchanger systems (12, 12 ') can advantageously be positioned vertically, as illustrated in FIG. 1.
  • each of the exchange zones (Z1 and Z1', Z2 and Z2 ') extends over the entire height (h) of the volume occupied by the exchanger system (12, 12 ').
  • the thickness of the second exchange zone (Z2, Z2 ') where the evaporator (4, 4') is located may be comparable to or at least three times the thickness of the first zone (Z1, Z1 ') exchange. With reference to the figure 3 There are four rows for the exchange made in the evaporator (4, 4 ') and a single row for the exchange of subcooling. The thickness of said second zone (Z2, Z2 ') is therefore much greater in this case than the thickness of the first exchange zone (Z1, Z1').
  • the size of the exchanger system (12, 12 ') including the two zones (Z1 and Z1', Z2 and Z2 ') is variable as a function of the powers envisaged.
  • the total thickness of the exchange surface can be 180 mm for 5 rows: 4 rows for the evaporator (4, 4 ') and 1 row for the zone (Z1, Z1') forming the subcooler and the defroster.
  • the pumping of calories to the cycle fluid in the second exchange zone (Z2, Z2 ') requires a surplus of thickness with respect to the calorie release operation performed in the zone (Z1, Z1') of -cooling.
  • the size of the system (12, 12 ') exchanger of the figure 1 is 1000 x 1000 x 150. It should be noted here that this type of dimensioning with joining according to the largest section (1 m 2 in this case) of the subcooler of the exchanger (12, 12 ') against the evaporator (4, 4 ') optimizes defrosting.
  • the circuit splits into at least two pipes (21, 22) at the outlet of the condenser (2), each of the pipes (21, 22) being connected to the inlet (E1, E1 ') of the first zone (Z1, Z1 ') of an exchanger system (12, 12').
  • a control system (6, 6') of the circulation of the cycle fluid for example a solenoid valve, driven for example by software on the basis of temporal data and data collected by example using temperature sensors.
  • the regulators (3, 3 ') and the control systems (6, 6') are external to the exchanger systems (12, 12 ').
  • the pipes (21, 22) divide upstream of the inlet into the first exchange zone (Z1, Z1 ') and merge downstream of the control means (6, 6'), creating a bypass to prevent the circulation of the cycle fluid in the first zone (Z1, Z1 ') of exchange.
  • the circulation of the cycle fluid in these branch circuits is controlled by bypass means (7, 7 '), which may be of the same type as the control means (6, 6').
  • the inlet (E2, E2 ') and / or the outlet (S2, S2') of the evaporators can be placed at the same height level as the input (E1, E1 ') or the output (S1, S1') of the circuit part upstream of the regulators (3, 3 ') placed in the first zone (Z1, Z1 ') exchange.
  • the cooling of the cycle fluid upstream of the expander (3, 3 ') results in subcooling with respect to a normal cycle (C1).
  • the cycle (C2) obtained thus makes it possible to start the expansion with a fluid of less enthalpy.
  • the effect of this subcooling is to obtain at the end of expansion (isenthalpic) an increase in the liquid level for the cycle fluid arriving in the evaporator (4, 4 '). Therefore, the capacity of the evaporator (4, 4 ') can be improved.
  • the exchanger system (12, 12 ') may comprise a radiator including the two exchange zones (Z1 and Z1', Z2 and Z2 ').
  • one of the control systems for example the second (6 ') is closed, thus preventing the circulation of the cycle fluid in the first zone (Z1') of the second system (12 ') exchanger, while the first system of control (6) is open.
  • the cycle fluid is thus directed by the inlet (E1) in the first exchange zone (Z1) of the first exchanger system (12).
  • the subcooled cycle fluid then exits the first zone (Z1) of the first exchanger system (12), goes from the outlet (S1) to the expander (3 ') and then enters the second zone (Z2'). exchange of the second system (12 ') exchanger, thus allowing the cycle fluid to extract the heat from the cold source (A) (the fan (5') operates and allows the circulation of air) and to heat up at the level of the evaporator (4 ').
  • the cycle fluid then flows from the outlet (S2 ') of the second zone (Z2') of the second system (12 ') exchanger to the compressor (1), then from the compressor (1) to the condenser (2) where it is cooled.
  • the state of the control systems (6, 6 ') is reversed, ie the first control system (6) is closed and prevents circulation of the cycle fluid while the second (6') is open and allows circulation of the cycle fluid.
  • the cycle fluid is thus directed to the inlet (E1 ') of the first zone (Z1') of the second exchanger system (12 '), where it will be sub-cooled while de-icing the second exchanger system (12').
  • the fan (5 ') is stopped, stopping the circulation of air at the system (12') exchanger, the hot air heated by the remaining cycle fluid more trapped in the box (50) near the exchanger (12 ') and the fan (5') at a standstill, favoring the defrosting of the evaporator (4 ') adjacent to the fan (5') at standstill.
  • the sub-cooled cycle fluid then flows from the outlet (S1 ') of the first zone (Z1') of the second system (12 ') exchanger to the expander (3), before entering the second zone (Z2) for exchanging the first exchanger system, where it is cooled at the level of the evaporator (4), the fan (5) operating and allowing the circulation of air and the heat exchange between the cycle fluid and the cold source (AT).
  • the cycle fluid is then directs the output (S2) of the second zone (Z2) of the first system (12) exchanger to the compressor (1), then the compressor (1) to the condenser (2) where it is cooled.
  • T ' the state of the control systems (6, 6') is reversed again to de-ice again the first system (12) exchanger.
  • This alternation of the state of the control means (6, 6 ') which is carried out for example by means of a timer, continues as long as the temperature of the outside air is below a threshold value, for example 7 ° C, this temperature being measured for example by means of a thermometric sensor.
  • the bypass means (7, 7 ') are closed.
  • the control means (6, 6 ') are closed and the bypass means (7, 7') are open.
  • the cycle fluid thus circulates at the outlet of the condenser (2) in the two branch circuits leading to the two zones (Z2, Z2 ') of the systems (12, 12') exchangers, the cycle fluid not circulating in the two zones (Z1, Z1 ') exchange systems (12, 12') exchangers.

Claims (14)

  1. Wärmepumpenanlage, die auf der Basis einer Kältequelle (A) arbeitet, umfassend einen Kreislauf, ausgestattet mit wenigstens einem Kompressor (1), einem Kondensator (2), Entspannungsmitteln (3, 3'), wenigstens einem Verdampfer (4, 4'), einem in dem Kreislauf zirkulierenden Umlauffluid, wobei der Kondensator (2) von einem zu erhitzenden Fluid gekühlt wird, wobei die Anlage Folgendes umfasst:
    - wenigstens zwei Austauschersysteme (12, 12'), jeweils zusammengesetzt aus zwei fluidisch getrennten und thermisch verbundenen Wärmeaustauschzonen (Z1 und Z1', Z2 und Z2'), wobei die erste Austauschzone (Z1, Z1') die Funktion des Unterkühlens des Umlauffluids und des Entfrostens der zweiten Austauschzone (Z2, Z2') erfüllt, wobei Letztere die Verdampfungsfunktion (4, 4') erfüllt, wobei die beiden Austauschersysteme (12, 12') parallel mit Bezug auf den Satz aus Kompressor (1) und Kondensator (2) auf beiden Seiten von wenigstens zwei Entspannungsmitteln (3, 3') montiert sind;
    - Mittel zum Zirkulieren des Umlauffluids zwischen dem Satz aus Kompressor (1) und Kondensator (2) und den Austauschersystemen (12, 12') sowie Mittel zum Steuern (6, 6') und Mittel zum Ableiten (7, 7') des Umlauffluidflusses in dem Kreislauf, so dass die Anlage in einem wechselweisen Umlauffluidzirkulationsmodus im Entfroster eines ersten Austauschersystems (12, 12') und dann im Verdampfer (4, 4') des zweiten Austauschersystems (12, 12') arbeiten kann,
    wobei die Wärmepumpenanlage ferner dadurch gekennzeichnet ist, dass die Mittel zum Steuern (6, 6') und die Mittel zum Ableiten (7, 7') des Umlauffluidflusses in dem Kreislauf den Betrieb der Anlage gemäß einem gleichzeitigen parallelen Zirkulationsmodus zulassen,
    wobei Umlauffluid im Verdampfer (4, 4') der beiden Austauschersysteme (12, 12') fließt,
    wobei die Anlage ferner einen Kasten (50) umfasst, der die Komponenten (1, 2, 12, 12', 3, 3') der Wärmepumpe umschließt, wobei der Kasten (50) halbgeschlossene Räume (53, 53') zwischen jedem Ventilator (5, 5') und einer Innenwand des Kastens (50) gegenüber jedem Ventilator (5, 5') bildet, wobei jeder Ventilator (5, 5') an jedem Austauschersystem (12, 12') entlang seiner Höhe h platziert ist, wobei der von jedem Ventilator (5, 5') erzeugte Luftstrom durch eine untere Öffnung (51, 51') des Kastens (50) eintritt und in Richtung eines Austauschersystems (12, 12') aufsteigt, wobei er die zweite Austauschzone (Z2, Z2') des genannten Austauschersystems (12, 12') durchquert und dann wieder absteigt und den Kasten (50) durch eine Öffnung (52, 52') verlässt, die sich unter jedem Verdampfer (4, 4') im unteren Teil des Kastens (50) befindet, wobei es diese halbgeschlossenen Räume (53, 53') zulässt, das Entfrosten der Verdampfer (4, 4') durch die Anwesenheit von Heißluft im oberen Teil des Kastens (50) zu begünstigen.
  2. Anlage nach Anspruch 1, bei der der Betriebsmodus von der Außentemperatur abhängt, gemessen mit thermometrischen Messmitteln, gesteuert durch einen Prozessor und einer Software, die die Steuermittel (6, 6') in Abhängigkeit von dem für die entsprechende Außentemperatur benötigten Betriebsmodus betätigen.
  3. Anlage nach Anspruch 1, in der jedes Austauschersystem (12, 12') Folgendes umfasst:
    - parallele Rippen, die in einer Ebene (P) ausgerichtet sind;
    - eine Austauschzone (Z2, Z2'), gebildet von zwei fluidisch verbundenen Subzonen (Z2a und Z2a', Z2b und Z2b'), wobei die erste Subzone (Z2a, Z2a') auf einer ersten Seite positioniert ist und einen Luftstrom gemäß einer Komponente parallel zur Ebene P in dem Austauschersystem (12, 12') empfängt, wobei die zweite Subzone (Z2b, Z2b') auf einer zweiten Seite gegenüber der ersten Seite positioniert ist, um ein Austreten des genannten Luftstroms aus dem Austauschersystem (12, 12') zuzulassen;
    - eine Austauschzone (Z1, Z1'), die sich zwischen den beiden Austauschsubzonen (Z2a und Z2a', Z2b und Z2b') befindet und thermisch mit den genannten Austauschsubzonen (Z2a und Z2a', Z2b und Z2b') verbunden ist.
  4. Anlage nach einem der Ansprüche 1 bis 3, bei der die zweite Wärmeaustauschzone (Z2, Z2'), die die erste Wärmeaustauschzone (Z1, Z1') jedes Austauschersystems (12, 12') umgibt, vom Rippenrohrtyp ist.
  5. Anlage nach einem der Ansprüche 1 bis 4, bei der jedes Austauschersystem (12, 12') einen Radiator umfasst, der die beiden Austauschzonen (Z1 und Z1', Z2 und Z2') umfasst.
  6. Anlage nach einem der Ansprüche 1 bis 5, in der jede der genannten Austauschzonen (Z1 und Z1', Z2 und Z2') über die gesamte Höhe (h) eines von jedem Austauschersystem (12, 12') eingenommenen Volumens verläuft.
  7. Anlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Ventilator (5, 5') neben einem Verdampfer (4, 4') im Laufe des Entfrostens im Stillstand ist, um das Entfrosten des Verdampfers (4, 4') zu begünstigen.
  8. Verfahren zum Optimieren des Betriebs einer Wärmepumpenanlage, die auf der Basis einer Kältequelle (A) arbeitet, umfassend einen Kreislauf, ausgestattet mit wenigstens einem Kompressor (1), einem Kondensator (2), Entspannungsmitteln (3, 3'), einem in dem Kreislauf zirkulierenden Umlauffluid, wenigstens zwei Austauschersystemen (12, 12'), die eine Verdampferfunktion 4, 4') erfüllen können, Steuer- (6, 6') und Ableitungsmitteln (7, 7') und einem die Komponenten (1, 2, 12, 12', 3, 3') der Wärmepumpe umschließenden Kasten (50),
    dadurch gekennzeichnet, dass es Folgendes beinhaltet:
    - einen Schritt des Übertragens von Wärme des Umlauffluids zu einer Zone eines Wärmeaustauschers (12, 12'), die sich von der unterscheidet, die die Verdampferfunktion (4, 4') erfüllt, und mit der Wirkung des Unterkühlens des Umlauffluids und des Entfrostens des genannten Austauschersystems (12, 12');
    - einen Schritt des Zirkulierens der Luft in halbgeschlossenen Räumen (53, 53') des Kastens (50), wobei die Luft durch eine untere Öffnung (51, 51') des Kastens (50) eintritt, in Richtung eines Austauschersystems (12, 12') aufsteigt, die zweite Austauschzone (Z2, Z2') des genannten Austauschersystems (12, 12') durchquert, dann wieder absteigt und den Kasten (50) durch eine Öffnung (52, 52') verlässt, die sich in jedem Verdampfer (4, 4') im unteren Teil des Kastens (50) befindet;
    - einen Schritt des Zirkulierens des unterkühlten Umlauffluids in Richtung der Entspannungsmittel (3, 3'), dann in der zweiten Austauschzone (Z2, Z2') eines Austauschersystems (12, 12'), so dass das Umlauffluid am Verdampfer (4, 4') wieder erhitzt werden kann;
    - einen Schritt des gleichzeitigen Arbeitens, wobei die Mittel (7, 7') zum Ableiten des Umlauffluidflusses offen sind und die Steuermittel (6, 6') geschlossen sind, so dass Umlauffluid in den beiden Verdampfern (4, 4') gleichzeitig wieder erhitzt werden kann.
  9. Verfahren nach Anspruch 8, das einen alternativen Betriebsschritt beinhaltet, wobei das Umlauffluid nicht in wenigstens einem der Verdampfer (4, 4') durch die Assoziation der Zeitschaltmittel und des Schließens von wenigstens einem der Steuermittel (6, 6') und den Ableitmitteln (7, 7') umläuft, wobei die Kühlung des Umlauffluids im Kondensator (2) und der Betrieb des Kompressors (1) kontinuierlich sind.
  10. Verfahren nach einem der Ansprüche 8 bis 9, das einen Schritt des Umschaltens von einem Betriebsmodus in den anderen beinhaltet, wenn die Außentemperatur, gemessen mit einem thermometrischen Sensor, einen Schwellenwert übersteigt.
  11. Verfahren nach einem der Ansprüche 8 bis 10, in dem der Schritt des Unterkühlens des Umlauffluids und des Entfrostens der Austauschersysteme (12, 12') nur mit den Austauschersystemen (12, 12') der Wärmepumpenanlage erfolgt, ohne den stromaufwärtigen Schritt des Kühlens des Umlauffluids im Kondensator (2) zu unterbrechen.
  12. Verfahren nach einem der Ansprüche 8 bis 11, bei dem das Umlauffluid in einem Teil des Kreislaufs in einen hyperkritischen Zustand gebracht wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12, in dem der Luftzirkulationsschritt an den Austauschersystemen (12, 12') eine Geschwindigkeit von wenigstens 2 m/s erreicht.
  14. Verfahren nach einem der Ansprüche 8 bis 13, das einen Schritt des Verdampfens in der Austauschzone (Z2, Z2') beinhaltet, der die Verdampferfunktion (4, 4') erfüllt, realisiert bei einer maximalen Temperatur zwischen -10°C und -20°C.
EP12759659.1A 2011-08-04 2012-07-30 System und verfahren zur optimierung des betriebs eines wärmepumpensystems Not-in-force EP2739918B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157148A FR2978816B1 (fr) 2011-08-04 2011-08-04 Installation et procede d'optimisation de fonctionnement d'une installation de pompe a chaleur
PCT/EP2012/064902 WO2013017572A1 (fr) 2011-08-04 2012-07-30 Installation et procédé d'optimisation de fonctionnement d'une installation de pompe à chaleur

Publications (2)

Publication Number Publication Date
EP2739918A1 EP2739918A1 (de) 2014-06-11
EP2739918B1 true EP2739918B1 (de) 2018-03-07

Family

ID=46875743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12759659.1A Not-in-force EP2739918B1 (de) 2011-08-04 2012-07-30 System und verfahren zur optimierung des betriebs eines wärmepumpensystems

Country Status (3)

Country Link
EP (1) EP2739918B1 (de)
FR (1) FR2978816B1 (de)
WO (1) WO2013017572A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807268B (zh) * 2015-04-22 2017-07-25 广东芬尼克兹节能设备有限公司 一种热泵的水泵启动控制方法及系统
SE541960C2 (en) 2016-07-12 2020-01-14 Es Energy Save Holding Ab Heat pump apparatus module
CN108548349B (zh) * 2018-03-26 2020-10-30 广州西奥多科技有限公司 一种智能型热泵的除霜控制系统
FR3127554B1 (fr) * 2021-09-30 2023-10-20 Lemasson Procédé de régulation du fonctionnement d'une pompe à chaleur équipée de deux échangeurs évaporateurs et d'un échangeur condenseur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173091A1 (en) * 2005-12-20 2009-07-09 Lung-Tan Hu Multi-range composite-evaporator type cross-defrosting system
JP2009250464A (ja) * 2008-04-02 2009-10-29 Panasonic Corp 換気空調装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1395194A (en) 1971-09-06 1975-05-21 Matsushita Electric Ind Co Ltd Heat pump type air conditioning systems
FR2338465A1 (fr) * 1976-01-15 1977-08-12 Multifluid En Procede et dispositif de chauffage et de refrigeration
IL55047A0 (en) * 1977-07-22 1978-08-31 Carrier Corp Heat exchange system
DE2921257A1 (de) * 1979-05-25 1980-12-04 Sueddeutsche Kuehler Behr Verfahren zum betreiben einer waermepumpen-heizungsanlage und vorrichtung zur durchfuehrung des verfahrens
DE3128352A1 (de) * 1981-07-17 1983-01-27 Zamos GmbH, 8152 Feldkirchen Waermepumpe
DE3323338A1 (de) * 1983-06-29 1985-02-14 Jogindar Mohan Prof. Dr.-Ing. 7505 Ettlingen Chawla Monovalente waermepumpen mit luft als energiequelle
US7171817B2 (en) 2004-12-30 2007-02-06 Birgen Daniel J Heat exchanger liquid refrigerant defrost system
DE102005018125A1 (de) * 2005-04-20 2006-10-26 Bernhard Wenzel Kältemittelkreislauf für eine Wärmepumpe
CA2561123A1 (en) 2005-09-28 2007-03-28 H-Tech, Inc. Heat pump system having a defrost mechanism for low ambient air temperature operation
FR2901015A1 (fr) * 2006-05-12 2007-11-16 Goff Michel Paul Marcel Le Batterie a air surchauffe dans le cadre d'un groupe frigorifique, pompe a chaleur.
FR2909440B1 (fr) * 2006-11-30 2010-03-26 Mvm Installation de pompe a chaleur a rendement ameliore, utilisant une serie d'echanges avec un fluide exterieur introduit en amont du detenteur

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173091A1 (en) * 2005-12-20 2009-07-09 Lung-Tan Hu Multi-range composite-evaporator type cross-defrosting system
JP2009250464A (ja) * 2008-04-02 2009-10-29 Panasonic Corp 換気空調装置

Also Published As

Publication number Publication date
FR2978816A1 (fr) 2013-02-08
FR2978816B1 (fr) 2018-06-22
EP2739918A1 (de) 2014-06-11
WO2013017572A1 (fr) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2643643B2 (de) Vorrichtung zur wärmeregelung eines insassenraums eines fahrzeuges
EP2739918B1 (de) System und verfahren zur optimierung des betriebs eines wärmepumpensystems
FR2589560A1 (fr) Circuit de refrigeration et circuit de pompe a chaleur, et procede de degivrage
FR2834778A1 (fr) Dispositif de gestion thermique, notamment pour vehicule automobile equipe d'une pile a combustible
FR2694076A1 (fr) Système de réfrigération et son procédé de fonctionnement.
FR2898544A1 (fr) Installation de climatisation
EP1963758A1 (de) Kälteerzeugungssolareinheit für eine klimaanlage, wärmeerzeugungssolareinheit, vorrichtungen und steuerverfahren dafür
WO2010137120A1 (ja) ヒートポンプ式給湯装置
EP3172499B1 (de) Kälteerzeugungsvorrichtung mit mittel zur gleichzeitigen kondensation durch luft und verfahren zur implementierung dieser einrichtung
FR2865070A1 (fr) Dispositif perfectionne de regulation thermique d'un module de batteries pour vehicule automobile
WO2021053227A1 (fr) Unité de conditionnement d'air pour aéronef
EP2863130B1 (de) Verfahren zur Regulierung einer thermischen Anlage für ein Gebäude
FR2778970A1 (fr) Procede et dispositif de degivrage par condensation et/ou sous-refroidissement de fluide frigorigene
FR2909440A1 (fr) Installation de pompe a chaleur a rendement ameliore, utilisant une serie d'echanges avec un fluide exterieur introduit en amont du detenteur
EP2288841B1 (de) System und verfahren zum verdampfen eines co2 enthaltenden kryogenen fluids, insbesondere flüssigerdgas
FR2986860A1 (fr) Installation thermique et procede assurant un conditionnement thermique d'un local et une production d'eau chaude sanitaire
EP3027978B1 (de) Kühlkreislauf, anlage mit solch einem kreislauf und entsprechendes verfahren
WO2010043829A2 (fr) Pompe a chaleur
FR3074889A1 (fr) Systeme et procede de refroidissement d'un flux gazeux au moyen d'un evaporateur
EP3194874B1 (de) Wärmerohr und verfahren zur herstellung eines wärmerohrs
EP4310420A1 (de) Enteisungssystem für mindestens einen kälteerzeuger einer kälteanlage
FR3072767A1 (fr) Machine thermodynamique pourvue d'un echangeur de degivrage
FR3137147A3 (fr) Vanne a quatre voies
EP2977696B1 (de) System und verfahren zur steuerung der flüssigkondensate eines wärmetauschers
FR2825143A1 (fr) Systeme monobloc et installation de production alternative ou simultanee d'eau chaude ou d'eau glacee par transfert thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 977002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012043727

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 977002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20180731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180824

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180726

Year of fee payment: 7

Ref country code: CH

Payment date: 20180827

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012043727

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

26N No opposition filed

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012043727

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190730

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180707