EP2739568A2 - Procédé électrolytique pour produire de l'hydroxyde d'aluminium - Google Patents

Procédé électrolytique pour produire de l'hydroxyde d'aluminium

Info

Publication number
EP2739568A2
EP2739568A2 EP12819850.4A EP12819850A EP2739568A2 EP 2739568 A2 EP2739568 A2 EP 2739568A2 EP 12819850 A EP12819850 A EP 12819850A EP 2739568 A2 EP2739568 A2 EP 2739568A2
Authority
EP
European Patent Office
Prior art keywords
aluminum hydroxide
alkali
anolyte
producing
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12819850.4A
Other languages
German (de)
English (en)
Inventor
Shekar Balagopal
Kean Duffey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramatec Inc
Original Assignee
Ceramatec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/223,045 external-priority patent/US20130048509A1/en
Application filed by Ceramatec Inc filed Critical Ceramatec Inc
Publication of EP2739568A2 publication Critical patent/EP2739568A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention provides methods of producing and recovering aluminum hydroxide and alkali hydroxide from alkali aluminate based aqueous streams.
  • Alkali aluminate may exist in different forms. For instance, an anhydrous form is represented as MA10 2 or M 2 A1 2 0 4 , wherein M is an alkali metal, such as lithium, sodium, or potassium.
  • Alkali aluminate may exist in a hydrated form as MAl(OH) 4 .
  • a hydrated aluminate ion may be represented as [Al(OH) 4 ] ⁇ .
  • the present invention further provides a method of converting alkali aluminate into alkali hydroxide and aluminum hydroxide.
  • the disclosed methods are enabled by the use of an alkali ion conductive membrane in an electrolytic cell.
  • the alkali ion conductive membrane may include a chemically stable ionic-selective ceramic membrane.
  • a layered composite of a chemically stable ionic-selective polymer and a cation-conductive ceramic membrane may also be used to take advantage of the chemical stability of the ionic-selective polymer and the high alkali- ion selectivity of cation-conductive ceramic materials.
  • an electric current is applied to the electrolytic cell to produce hydrogen ions at the anode in the anolyte compartment according to the following reaction:
  • the free alkali ions (M + ) are transported from the anolyte compartment to the catholyte compartment through the alkali ion conductive membrane.
  • the removal of alkali ions from the anolyte compartment further facilitates formation of aluminum hydroxide.
  • Aluminum hydroxide and unreacted alkali aluminate are removed from the anolyte compartment. Cooling from processing operating conditions due to alkali metal separation causes aluminum hydroxide to precipitate. It is recovered by conventional solid / liquid separation techniques, including, but not limited to, filtering, centrifuging, etc. The recovered aluminum hydroxide can be further processed, if desired, or used in other industrial processes. In one non-limiting example, aluminum hydroxide is heated to form alumina (Al 2 0 3 ) as follows:
  • the supernate following removal of precipitated aluminum hydroxide may be recycled and added to the anolyte feed for further processing with the electrolytic process to separate sodium and aluminum products.
  • the alkali hydroxide solution produced in the catholyte compartment may be removed for use in other industrial processes.
  • Figure 1 provides a schematic view of a two compartment electrolytic cell with an apparatus and process for separating alkali metal ions from alkali metal salts of alkali aluminate; and a method for separation of aluminum hydroxide and feeding of the supernate back with anolyte feed of the electrolytic process.
  • Figure 2 is a graph of current versus voltage to drive sodium across a sodium conductive membrane in a two compartment electrolytic cell to separate sodium from a solution containing sodium aluminate.
  • the alkali ion conductive membranes conduct lithium ions, sodium ions, or potassium ions. It may be advantageous to employ membranes with low or even negligible electronic conductivity, in order to minimize any galvanic reactions that may occur when an applied potential or current is removed from the cell containing the membrane. In some embodiments of the present invention it may be advantageous to employ membranes that are substantially impermeable to at least the solvent components of both the catholyte and anolyte solutions.
  • the process flow diagram in Fig. 8 outlines the one-step sodium removal from sodium aluminate process stream and simultaneous production of sodium hydroxide. The major steps in the process are described below.
  • the Sodium Aluminate Process Stream is fed to the Ceramatec Electrochemical Cell from the Anolyte Feed Tank through a Heat Exchanger at a required temperature as the anolyte solution.
  • sodium ions are transferred across the ion exchange membrane from the process stream and passed into the aqueous sodium hydroxide solution which exits the catholyte compartment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention porte sur des procédés et un appareil pour séparer une solution aqueuse d'un aluminate alcalin en hydroxyde alcalin et hydroxyde d'aluminate. Ces procédés sont permis par l'utilisation de membranes conductrices d'ions alcalins dans des cellules électrolytiques qui sont chimiquement stables et sélectives vis-à-vis des ions alcalins. La membrane conductrice d'ions alcalins comprend une membrane cationique sélective pour les ions, chimiquement stable.
EP12819850.4A 2011-08-01 2012-07-31 Procédé électrolytique pour produire de l'hydroxyde d'aluminium Withdrawn EP2739568A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161513825P 2011-08-01 2011-08-01
US13/223,045 US20130048509A1 (en) 2011-08-31 2011-08-31 Electrochemical process to recycle aqueous alkali chemicals using ceramic ion conducting solid membranes
PCT/US2012/048926 WO2013019768A2 (fr) 2011-08-01 2012-07-31 Procédé électrolytique pour produire de l'hydroxyde d'aluminium

Publications (1)

Publication Number Publication Date
EP2739568A2 true EP2739568A2 (fr) 2014-06-11

Family

ID=47629884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12819850.4A Withdrawn EP2739568A2 (fr) 2011-08-01 2012-07-31 Procédé électrolytique pour produire de l'hydroxyde d'aluminium

Country Status (3)

Country Link
EP (1) EP2739568A2 (fr)
AU (1) AU2012290233A1 (fr)
WO (1) WO2013019768A2 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603495B2 (ja) * 2006-02-21 2010-12-22 株式会社野坂電機 アルカリエッチング液のアルカリ回収方法
US20080245671A1 (en) * 2007-04-03 2008-10-09 Shekar Balagopal Electrochemical Process to Recycle Aqueous Alkali Chemicals Using Ceramic Ion Conducting Solid Membranes
US20100044241A1 (en) * 2008-08-25 2010-02-25 Justin Pendleton Methods for Producing Sodium Hypochlorite with a Three-Compartment Apparatus Containing a Basic Anolyte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013019768A3 *

Also Published As

Publication number Publication date
AU2012290233A1 (en) 2014-02-20
WO2013019768A2 (fr) 2013-02-07
WO2013019768A3 (fr) 2013-04-25

Similar Documents

Publication Publication Date Title
US20120292200A1 (en) Electrolytic process to produce aluminum hydroxide
JP7030049B2 (ja) リチウム含有材料を処理するための方法
US8268159B2 (en) Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes
EP2870277B1 (fr) Appareil et procédé de production de métal dans une cellule électrolytique de nasicon
US7918986B2 (en) Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US20060141346A1 (en) Solid electrolyte thermoelectrochemical system
US20080245671A1 (en) Electrochemical Process to Recycle Aqueous Alkali Chemicals Using Ceramic Ion Conducting Solid Membranes
CA2758871C (fr) Retrait des metaux de l'eau
JP7420799B2 (ja) 銅不純物を除去するための浸出液の電気分解による電池リサイクル
CN110453225B (zh) 酸性蚀刻废液的处理方法
US20130048509A1 (en) Electrochemical process to recycle aqueous alkali chemicals using ceramic ion conducting solid membranes
WO2012103529A2 (fr) Conversion électrochimique de sulfate d'alcali en produits chimiques utiles
CN104955987A (zh) 选择性还原电积设备和方法
WO2015116285A1 (fr) Fabrication de métal léger
JP2023051697A (ja) 廃リチウムイオン電池からリチウムを回収する方法
EP2739568A2 (fr) Procédé électrolytique pour produire de l'hydroxyde d'aluminium
CN111807413B (zh) 一种动力电池循环再造硫酸锰的方法
JP5522455B2 (ja) ナトリウムの製造方法およびナトリウム製造装置
WO2024078386A1 (fr) Procédé et dispositif de préparation d'hydroxyde de lithium de haute pureté sur la base d'un électrolyte solide lithium-ion
US20230203678A1 (en) Salt-splitting electrolysis system comprising flow electrodes and methods of operating such systems
CN117699865A (zh) 一种利用电化学处理废旧锂电池获得正极前驱体的方法
WO2023230474A1 (fr) Extraction de calcium et d'autres éléments de valeur par l'intermédiaire de stimulation sonique et d'électrolyse séquentielle
WO2024056401A1 (fr) Production d'hydrogène et d'hydroxyde de lithium solide
WO2024056402A1 (fr) Production d'hydrogène et d'hydroxyde de lithium dans un environnement basique
JP2001122622A (ja) 酸化亜鉛超微粒子の製造法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUFFEY, KEAN

Inventor name: BALAGOPAL, SHEKAR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140627