EP2736915A1 - Neue kristalline formen von tulathromycin - Google Patents

Neue kristalline formen von tulathromycin

Info

Publication number
EP2736915A1
EP2736915A1 EP12740899.5A EP12740899A EP2736915A1 EP 2736915 A1 EP2736915 A1 EP 2736915A1 EP 12740899 A EP12740899 A EP 12740899A EP 2736915 A1 EP2736915 A1 EP 2736915A1
Authority
EP
European Patent Office
Prior art keywords
tulathromycin
crystalline form
powder diffraction
ray powder
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12740899.5A
Other languages
English (en)
French (fr)
Inventor
Alen Kljajic
Sabina Trost
Rok Zupet
Anica Pecavar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Farma GRS doo
Original Assignee
Farma GRS doo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farma GRS doo filed Critical Farma GRS doo
Publication of EP2736915A1 publication Critical patent/EP2736915A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals

Definitions

  • the present invention relates to new crystalline forms of tulathromycin, to new tulathromycin salts and processes for their preparation.
  • Tulathromycin is a macrolide antibiotic used to treat bovine respiratory disease (BRD) in cattle and swine respiratory disease in pigs. It is marketed by Pfizer Inc. under the tradename DraxxinTM. According to EPAR-Scientific discussion document for DraxxinTM tulathromycin consists of two isomers, tulathromycin A (CP-472,295) and tulathromycin B (CP-547 , 272) . Tulathromycin drug substance typically contains less than 1% tulathromycin B, whereas tulathromycin drug product contains 8 to 13% tulathromycin B. In solution, the two isomers form a stable equilibrated mixture which is considered as the active substance .
  • Tulathromycin A Tulathromycin A is described in EP988310, whereas tulathromycin B is described in EP1131331. Crystalline anhydrous, monohydrate and sesquihydrate form of tulathromycin are described in EP1189912. Polymorphs of tulathromycin diphosphate salt are described in EP1189913.
  • Figure 1 is an X-ray powder diffraction pattern of crystalline form I of tulathromycin prepared according to Example 4.
  • Figure 2 is an X-ray powder diffraction pattern of crystalline form II of tulathromycin prepared according to Example 5.
  • Figure 3 is an X-ray powder diffraction pattern of crystalline form III of tulathromycin prepared according to Example 1.
  • Figure 4 is a FT-IR spectrum of amorphous tulathromycin besylate prepared according to Example 6.
  • Figure 5 is a FT-IR spectrum of amorphous tulathromycin mesylate prepared according to Example 7.
  • Figure 6 is a FT-IR spectrum of amorphous tulathromycin esylate prepared according to Example 8.
  • Figure 7 is a FT-IR spectrum of amorphous tulathromycin (-)-
  • Figure 8 is a FT-IR spectrum of tulathromycin bis (phosphate ) prepared according to Example 10.
  • Figure 9 is a FT-IR spectrum of
  • Figure 10 is a FT-IR spectrum of tulathromycin bis (phosphate ) prepared according to Example 13.
  • the X-ray powder diffraction patterns were obtained by Philips P 3040/60 X' Pert powder diffTactometer, X'celerator detector at CuKa radiation, 1.54178 A, 3° ⁇ 2 ⁇ 33°.
  • FT-IR spectra of KBr discs were recorded over the wave number range of 4000-400 cm “1 on Perkin Elmer FT-IR spectrometer Spectrum GX at a resolution of 4 cm “1 .
  • the present invention relates to new crystalline forms of tulathromycin designated herein as form I, II and III. All three forms are anhydrous and non-hygroscopic and are suitable for the preparation of pharmaceutical compositions comprising solid tulathromycin.
  • Tulathromycin crystalline form I is characterized by an X-ray powder diffraction pattern having peaks at about 5.9, 6.7, 8.2, 13.4 and 16.4 ⁇ 0.2 degrees two-theta. Tulathromycin crystalline form I can be further characterized by X-ray powder diffraction peaks at about 14.5, 14.7 and 19.3 ⁇ 0.2 degrees two-theta. The X-ray powder diffraction pattern of tulathromycin crystalline form I is shown in Figure 1.
  • Tulathromycin crystalline form I can be prepared by a process comprising the steps of:
  • Tulathromycin crystalline form II is characterized by an X-ray powder diffraction pattern having peaks at about 6.4, 8.0, 13.0, 16.0 and 18.9 ⁇ 0.2 degrees two-theta.
  • Tulathromycin crystalline form I can be further characterized by X-ray powder diffraction peaks at about 9.2 and 14.9 ⁇ 0.2 degrees two-theta.
  • the X-ray powder diffraction pattern of tulathromycin crystalline form II is shown in Figure 2.
  • Tulathromycin crystalline form II can be prepared by a process which comprises heating tulathromycin crystalline form III to at least 60°C (and preferably less than 150°C) for at least 50 minutes .
  • Tulathromycin crystalline form III is characterized by an X- ray powder diffraction pattern having peaks at about 5.9, 6.4, 6.7, 8.0, 8.2 and 13.0 ⁇ 0.2 degrees two-theta.
  • Tulathromycin crystalline form III can be further characterized by X-ray powder diffraction peaks at about 13.4, 16.0, 16.4 and 18.9 ⁇ 0.2 degrees two-theta.
  • the X-ray powder diffraction pattern of tulathromycin crystalline form III is shown in Figure 3.
  • Tulathromycin crystalline form III can be prepared by a process comprising the steps of:
  • step b) cooling the mixture of step b) to form a precipitate; and d) recovering the obtained precipitate.
  • a solvent can be selected from the group consisting of ketones, halogenated hydrocarbons, alcohols, esters and/or mixtures thereof.
  • Ketones can be selected from C1-C4 ketones such as methyl ethyl ketone (MEK) , methyl isobutyl ketone ( IBK) , acetone and/or mixtures thereof.
  • Halogenated hydrocarbons can be selected from C1-C5 chlorinated hydrocarbons such as dichloromethane , chloroform, dichloroethane and/or mixtures thereof.
  • Alcohols can be selected from C1-C6 alcohols such as methanol, ethanol, isopropanol, n-butanol, 1-pentanol, 2-pentanol, 1-hexanol and/or mixtures thereof.
  • Esters can be selected from ethyl acetate, isopropyl acetate and/or mixtures thereof.
  • the solvent is selected from the group consisting of methyl ethyl ketone, methyl isobutyl ketone, acetone, ethyl acetate and/or mixtures thereof. Most preferably, the solvent is methyl ethyl ketone.
  • An antisolvent can be selected from the group consisting of hydrocarbons, ethers and/or mixtures thereof.
  • Hydrocarbons can be selected from C5-C10 alkanes or cycloalkanes such as hexane, heptane, octane, cyclohexane, cycloheptane and/or mixtures thereof.
  • Ethers can be selected from dimethyl ether, diethyl ether, methyl tert-butyl ether, diisopropyl ether and/or mixtures thereof.
  • the antisolvent is selected from the group consisting of n-hexane, n-heptane, cyclohexane, cycloheptane and/or mixtures thereof. Most preferably, the antisolvent is n-heptane.
  • a further aspect of the present invention concerns tulathromycin crystalline forms I, II and III obtained by the processes of the invention disclosed herein.
  • a further aspect of the present invention concerns tulathromycin crystalline forms I, II and III for use in a medicament .
  • Tulathromycin crystalline form I characterized by the X-ray powder diffraction pattern as shown in Figure 1
  • tulathromycin crystalline form II characterized by the X-ray powder diffraction pattern as shown in Figure 2
  • tulathromycin crystalline form III characterized by the X-ray powder diffraction pattern as shown in Figure 3.
  • Tulathromycin crystalline forms I, II and III can be used for the preparation of pharmaceutical compositions such as e.g. tablets, capsules and injectable solutions. Injectable solutions can be prepared, for example, according to methods described in EP1250343.
  • the average particle size of tulathromycin crystalline forms I, II and III can range from about 0.1 to 600 ⁇ , more preferably 1 to 250 ⁇ and most preferably 10 to 50 ⁇ . If smaller particles are needed, the obtained crystalline form of tulathromycin can be sieved, milled or micronized optionally together with other excipients. In the case of agglomerates ultrasonication can be used.
  • Tulathromycin crystalline forms I, II and III can be used for the preparation of other crystalline or amorphous forms of tulathromycin or its salts, such as crystalline forms disclosed in EP1189912 and EP1189913, which can be further used for the preparation of pharmaceutical compositions.
  • the present invention also relates to new tulathromycin salts, namely tulathromycin besylate, tulathromycin mesylate, tulathromycin esylate and tulathromycin (-)-lO- camphorsulfonate .
  • These salts can be prepared from tulathromycin and corresponding acid.
  • Tulathromycin used for preparation of these salts can be in an amorphous or crystalline form such as crystalline form I, II and III according to present invention.
  • Tulathromycin base (12.0 g) and methyl ethyl ketone (18 ml) are charged into a glass reactor, equipped with condenser and mechanical stirrer. The mixture is heated to 80 °C and maintained until a clear solution is formed. Then 30 ml of n- heptane with temperature 35 °C is added to the solution. The solution is then thermostated at 50 °C. After this temperature is reached, the crystallization mixture is further cooled with average cooling ramp 1 °C/min to final crystallization temperature, 20 °C. After the crystallization mixture is cooled to 20 °C, it is further maintained at this temperature for the next 15 hours. Obtained product is isolated with suction filtration using Btichner funnel and nitrogen atmosphere. The isolated product is dried in a vacuum dryer under reduced pressure ( ⁇ 100 mbar) and temperature 40 °C for 12 hours.
  • Tulathromycin base (12.0 g) and methyl ethyl ketone (18 ml) are charged into a glass reactor, equipped with condenser and mechanical stirrer. The mixture is heated to 80 °C and maintained until a clear solution is formed. Then 30 ml of n- heptane with temperature 35 °C is added to the solution. The solution is then thermostated at 50 °C. After this temperature is reached, the crystallization mixture is further cooled with average cooling ramp 1 °C/min to final crystallization temperature, -10 °C. After the crystallization mixture is cooled to -10 °C, it is further maintained at this temperature for the next 15 hours. Obtained product is isolated with suction filtration using Buchner funnel and nitrogen atmosphere. The isolated product is dried in a vacuum dryer under reduced pressure ( ⁇ 100 mbar) and temperature 40 °C for 12 hours.
  • Tulathromycin A 98.0 area %
  • HPLC high pressure liquid chromatography
  • Tulathromycin base (16.0 g) and methyl ethyl ketone (20 ml) are charged into a glass reactor, equipped with condenser and mechanical stirrer. The mixture is heated to 80 °C and maintained until a clear solution is formed. Then 60 ml of n- heptane with temperature 35 °C is added to the solution. The solution is then thermostated at 50 °C. At this temperature of solution the reactor jacket temperature is set to 50 °C and vacuum is applied to distill approx. 50 vol. % of solvents. During the vacuum distillation the temperature of the reactor content is not lower than 30 °C. The suspension is formed during distillation phase.
  • Average particle size 70-80 ⁇
  • Tulathromycin A 97.3 area %
  • Tulathromycin B ⁇ 0.6 area %
  • Particle size of tulathromycin was determined by SEM Zeiss Ultra Plus microscope at 500x magnification and with Smart SEM software .
  • the sample of tulathromycin crystalline form III is exposed to 40 °C and 75 % RH for 14 days. After the stress stability this sample is placed into sample pan for DSC analysis (cca 3 mg) and heated up to 80 °C. After the sample is cooled to room temperature, X-ray powder diffraction pattern is recorded and the result is tulathromycin crystalline form I.
  • the sample of tulathromycin crystalline form III is placed into sample holder for X-Ray analysis (cca 200 mg) and heated up to 70°C for 1 hour. After 1 hour X-ray powder diffraction pattern is recorded at 70°C and the result is tulathromycin crystalline form II.
  • tulathromycin salt in an amorphous form. Examples are summarized in Table 1.
  • the temperature of the reactor content is not lower than 30 °C, mainly between 35 - 40 °C.
  • the suspension is formed during distillation phase. Furthermore after distillation phase is completed, 50 ml of n-heptane with temperature 35 °C is added and further stirred for the next 30 minutes (reactor jacket temperature is set to 40 °C) .
  • the obtained suspension is cooled with average cooling rate of 0.10 °C/min to final crystallization temperature, 0 °C. After the crystallization mixture is cooled to 0 °C, it is further maintained at this temperature for the next 12 hours.
  • Obtained product is isolated with suction filtration using Buchner funnel and nitrogen atmosphere. The isolated product is dried in a vacuum dryer under reduced pressure ( ⁇ 100 mbar) and temperature 40 °C for 24 hours,
  • the reaction mixture was stirred at 56 °C for approximately 31 h. The solvents were removed in vacuum.
  • the crude product was dissolved in a mixture consisting of EtOH (abs.; 57 mL) and H20 (4,5 mL) . While stirring this solution, a solution of orthophosphoric acid (1.339 g) in EtOH (abs.; 26 mL) was added, dropwise. The resulting suspension was left stirring overnight. The next day the suspension was filtered, washed with 35 mL of fresh EtOH (abs.). This material was dried at 35°C for 7 h. After which time it is left open in air to equilibrate with air moisture after its mass stabilizes it weighed 5.906 g tulathromycin A bis (phosphate) .
EP12740899.5A 2011-07-27 2012-07-27 Neue kristalline formen von tulathromycin Withdrawn EP2736915A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SI201100276 2011-07-27
PCT/EP2012/003215 WO2013013834A1 (en) 2011-07-27 2012-07-27 New crystalline forms of tulathromycin

Publications (1)

Publication Number Publication Date
EP2736915A1 true EP2736915A1 (de) 2014-06-04

Family

ID=46598458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12740899.5A Withdrawn EP2736915A1 (de) 2011-07-27 2012-07-27 Neue kristalline formen von tulathromycin

Country Status (2)

Country Link
EP (1) EP2736915A1 (de)
WO (1) WO2013013834A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104095815B (zh) * 2014-07-30 2017-06-06 王玉万 泰拉霉素可乳化注射剂的制备方法
CN104725446B (zh) * 2015-03-26 2017-10-27 宁夏泰瑞制药股份有限公司 一种从泰拉霉素粗品中分离泰拉霉素a和泰拉霉素b的方法
CN106008622A (zh) * 2016-08-02 2016-10-12 海门慧聚药业有限公司 泰拉霉素新晶型及其制备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HN1998000086A (es) 1997-06-11 1999-03-08 Pfizer Prod Inc Derivados de 9 - desofo - 9 aza - 9a - homoeritromicina a - c - 4 sustituidos.
UA70972C2 (uk) 1998-11-20 2004-11-15 Пфайзер Продактс Інк. 13-членні азаліди і їх застосування як антибіотиків
EA003417B1 (ru) 1999-05-18 2003-04-24 Пфайзер Продактс Инк. Новые кристаллические формы макролидного антибиотика
US6465437B1 (en) 1999-06-30 2002-10-15 Pfizer Inc. Diphosphate salt of a 4″-substituted-9-deoxo-9A-AZA-9A- homoerythromycin derivative and its pharmaceutical composition
ATE243703T1 (de) 2000-01-27 2003-07-15 Pfizer Prod Inc Antibiotische azalid-zusammensetzungen
JP4104463B2 (ja) * 2001-04-27 2008-06-18 ファイザー・プロダクツ・インク 4’’−置換された−9−デオキソ−9a−アザ−9a−ホモエリスロマイシン誘導体を製造するための方法
EP2402355A1 (de) * 2010-07-01 2012-01-04 Novartis AG Kristalline wasserfreie Formen II und III von Tulathromycin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013013834A1 *

Also Published As

Publication number Publication date
WO2013013834A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
EP3170833B1 (de) Polymorphe von 20,23-piperidinyl-5-o-mycaminosyl-tylonolide
WO2011095059A1 (zh) 达沙替尼多晶型物及其制备方法和药物组合物
KR20210063453A (ko) 트레프로스티닐의 염
JP2014530805A (ja) アジルサルタンの結晶形並びにその製造及び使用
WO2017046815A1 (en) Polymorphs of ixazomib citrate and processes for the preparation thereof
TWI321132B (en) Process for preparing forms of atorvastatin calcium substantially free of impurities
WO2021044437A1 (en) Olaparib co-crystals and process of preparation thereof
KR102522895B1 (ko) Jak 키나아제 억제제 바이설페이트의 결정형 및 이의 제조방법
TW201350467A (zh) N-乙基-4-羥基-1-甲基-5-(甲基(2,3,4,5,6-五羥基己基)胺基)-2-側氧-n-苯基-1,2-二氫喹啉-3-甲醯胺
EP2855499A1 (de) Feste formen von fidaxomycin und herstellungsverfahren dafür
EP2736915A1 (de) Neue kristalline formen von tulathromycin
US20110269838A1 (en) Novel processes and pure polymorphs
JP6761564B2 (ja) ナトリウム・グルコース共輸送体2阻害薬のl−プロリン化合物、およびl−プロリン化合物の一水和物および結晶
AU2017329753A1 (en) Crystalline polymorphic form of 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl-2-oxo-2lambda5-(1,2)oxaphosphinane
EP3604284B1 (de) Kristalline form d des eltrombopag-monoethanolamin-salzes
WO2019099761A1 (en) Solid state forms of elafibranor
WO2019130354A1 (en) Polymorphic forms of (9-[(r)-2-[[(s)-[[(s)-1- (isopropoxycarbonyl)ethyl]amino]phenoxy phosphinyl]methoxy]propyl] adenine and pharmaceutically acceptable salts thereof
US20220169603A1 (en) Novel salts, crystalline forms and premix of hypolipidemic agent
WO2011085130A1 (en) Solid state forms of fosamprenavir calcium salt and process for preparation thereof
CN107935978B (zh) 一种化合物的晶型及制备
US8993786B2 (en) Crystalline fosamprenavir calcium and process for the preparation thereof
WO2023141082A1 (en) Solid state forms of tipifarnib and process for preparation thereof
WO2023249989A1 (en) Solid forms of deuterated colony stimulating factor-1 receptor (csf-1r) inhibitors
WO2023183443A1 (en) Solid state forms of lx9211 and salts thereof
CN112533894A (zh) 4,5-二羟基-2-(4-甲基苄基)异邻苯二甲腈溶剂化物及其结晶形式

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20160905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170316