EP2729688A1 - Procédé pour faire fonctionner un moteur à combustion interne - Google Patents

Procédé pour faire fonctionner un moteur à combustion interne

Info

Publication number
EP2729688A1
EP2729688A1 EP12730919.3A EP12730919A EP2729688A1 EP 2729688 A1 EP2729688 A1 EP 2729688A1 EP 12730919 A EP12730919 A EP 12730919A EP 2729688 A1 EP2729688 A1 EP 2729688A1
Authority
EP
European Patent Office
Prior art keywords
variable
determined
control variable
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12730919.3A
Other languages
German (de)
English (en)
Inventor
Joachim Paul
Wolfgang Fischer
Silke Seuling
Sebastian-Paul Wenzel
Roberto SARACINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2729688A1 publication Critical patent/EP2729688A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks

Definitions

  • the invention relates to a method for operating an internal combustion engine according to the preamble of claim 1. It is known, a correction variable depending on an operating variable of an internal combustion engine, which is obtained for example by sensor signals, and in dependence on a comparison of an actual value and a target - to determine the value of the farm size.
  • the correction quantity is combined with an associated control quantity to adjust the control quantity to the actual operating conditions represented by the actual value of the operating quantity.
  • Internal combustion engine for example, to a higher noise level, an increase in pollutants, an unstable torque or generally lead to unstable operation of the internal combustion engine.
  • Combustion size to a target value Combustion size to a target value.
  • a control and / or a regulation influences the moment of the internal combustion engine
  • Deviation value is adapted to a first manipulated variable of a first actuating element for influencing the control start.
  • a second manipulated variable of a second actuator Starting from the first manipulated variable is a second manipulated variable of a second actuator for
  • a critical state change of the internal combustion engine is detected.
  • the course of the control variable can advantageously be adapted to the critical state change.
  • a control variable is essentially determined from a previously stored fixed value of a basic control variable and a correction variable.
  • Torque a loud combustion or an increase in pollutants result. Also can thus be advantageously prevented damage to the internal combustion engine. Particularly needed this
  • control variable is determined before a start time and after an end time of the critical change in state essentially from the base control variable, in particular an actual value of the base control variable, and the correction variable. This can be advantageous in a normal mode, that is, before and after a critical
  • control variable after the end time as a function of a slope of the course of the
  • Control size before and / or in the range of the end time determined are determined.
  • unsteady and undifferentiable transitions in the region of the end time are prevented.
  • a difference is formed from the actual value of the state variable and a desired value of the state variable, and the critical state change is recognized when the difference formed exceeds a threshold.
  • the critical state change is detected in a simple manner.
  • Figure 1 is a schematic block diagram for determining a
  • Figure 2 is a schematic block diagram for determining a critical
  • FIG. 3 shows a schematic time diagram with a time profile of the
  • FIG. 1 shows a schematic block diagram 2 for determining a
  • Control variable 4 is in particular an injection duration, an injection start time, an injection end time, a fuel injection amount, a position of the throttle valve or a position of the exhaust gas recirculation valve.
  • the block diagram 2 represents a function or functions that can be executed on a control unit, not shown, of an internal combustion engine, in particular of a motor vehicle.
  • the control variable 4 is determined from an intermediate control variable 6 and a correction value 8. At a 10, the control variable 4 results from the addition of the intermediate control variable 6 and the correction variable 8.
  • the intermediate control variable 6 is generated by a block 12.
  • the correction quantity 8 is generated by a controller 14.
  • a status signal 16 is generated by a block 18 for state determination and supplied to the block 12 and the controller 14.
  • the status signal 16 is preferably a logic signal.
  • the block 18 is explained in more detail in FIG.
  • Block 12 is supplied with a base control variable 20.
  • the basic control variable 20 for example, from a map, a
  • Assignment diagram and / or other units of the controller such as another controller determined.
  • the basic control variable 20 and depending on the correction value 8 the
  • Tax quantity 4 determined.
  • the controller 14, a control difference 22 is supplied.
  • the control difference 22 results from the subtraction of an actual value 24 of an operating variable of the internal combustion engine from a desired value 26 of the operating variable
  • the basic control variable 20 influences the actual value 24 of the operating variable by feedback if the basic control variable 20 corresponds to or at least influences the intermediate control variable 6.
  • the determination of the correction quantity 8 serves to correct the base control variable 20 with respect to a desired setpoint value 26 of the operating variable.
  • controller 14 is supplied with minimum and / or maximum limit values 28 which limit the value range of the correction quantity 8 or an increase of the correction quantity.
  • the operating quantity is a quality of fuel combustion, a noise indicative quantity for the fuel
  • Fuel combustion, or a torque indexing quantity is determined for example on the basis of a sensor signal from a sensor, for example a torque sensor, determined.
  • the actual value 24 of the operating variable may also originate from a map or a function of the control unit.
  • the operating quantity is a quality of fuel combustion
  • a center of combustion is used for this purpose.
  • the center of the combustion corresponds to a motor position, for example a certain one
  • the operating quantity in the form of the quality of the fuel combustion may also represent a start of the fuel injection, wherein, for example, substantially 5% of the total combustion heat has been released or wherein substantially 5% of the mass of the fuel has already been burned.
  • the operating size is a noise indicative size for the
  • Fuel combustion it shows, for example, when exceeding a maximum pressure gradient through the gradient of
  • In-cylinder pressure indicates a high noise level.
  • Other methods can be used which determine a sound pressure level in decibels from available values of the internal combustion engine.
  • the operating variable is a torque-indicative variable, this can be, for example, a determined work per working cycle or an indexed medium pressure.
  • the indicated mean pressure is a measure of the output power of the internal combustion engine and results, for example, from a time average of the cylinder internal pressure during a power stroke reduced by a time average of the cylinder internal pressure during a
  • the control variable 4 is supplied in an unillustrated form an actuator, wherein the actuator (not shown) determines a manipulated variable which is fed to a controlled system.
  • the actuator is designed as a part of the control unit, which allows an influence on parameters of the internal combustion engine, the Influence farm size. In particular, these parameters are
  • control variable 4 for example, a timing for the fuel injection, so determines the actuator of the controller, when the fuel injection begins and ends, wherein the actuator is a corresponding part of the control unit and the
  • Control electronics comprises, which transmits via a line the determined in dependence on the control variable 4 manipulated variable to an injection valve.
  • the controlled system essentially comprises the injection valve, the cylinder and all the components of the internal combustion engine involved.
  • the controlled system generates a controlled variable that corresponds to the farm size and the one
  • Measuring element is supplied.
  • the controlled system includes all components of the internal combustion engine, which have an influence on the generated control variable, whereby parts of the control unit can be part of the controlled system.
  • pressure profiles of the in-cylinder pressure in the cylinder are made available to the control unit by means of the measuring element, which, for example, via a corresponding pressure sensor in the cylinder, a corresponding
  • Cable connection and signal conditioner such as amplifiers and filters and analog-to-digital converter is realized.
  • the measuring element determines as a function of the
  • Figure 2 shows a schematic block diagram of the block 18 of Figure 1 for determining a critical change in state.
  • the block 18 is used to generate the preferred logic state signal 16.
  • a difference 36 is formed by a difference formation at the point 34 from the actual value 30 and the desired value 32.
  • the setpoint value 32 can be generated, for example, by a characteristic map, which can be combined with others
  • the actual value 30 of the state variable can be determined by evaluating a corresponding sensor signal from a corresponding sensor, for example a pressure sensor for the fuel pressure, or alternatively or additionally from another function of the control device.
  • the state variable is an exhaust gas recirculation rate, a fresh air mass, a boost pressure, an injection time, a fuel pressure, an amount of fuel or an operating mode.
  • the state quantity is one
  • Control variable corresponds to a time specification of a main injection
  • the start of injection for example, the start of injection, the end of injection and / or the
  • the state variable is a
  • the operating variable is the gradient of the cylinder internal pressure
  • the control variable corresponds to a timing of a pilot injection, for example, the start of injection, the end of injection and / or the duration of injection.
  • Tax size conceivable.
  • the difference 36 is fed to a block 38.
  • Block 38 is further supplied with an upper threshold 40 and a lower threshold 42.
  • the block 38 generates a logic signal 44. If the difference 36 now exceeds the upper threshold value 40 or the lower threshold value 42, the signal 44 indicates a critical state change, in particular the value logical "1" between the upper threshold 40 and the lower threshold 42, the signal 44 is not critical
  • the logic signal 44 is a block 46 for
  • Block 46 generates the status signal 16 in FIG.
  • the debounce in block 46 means, for example, that momentarily exceeding the upper threshold 40 up or the lower threshold 42 down by the difference 36, visible by a momentary logic "1" of the signal 44 does not a logical one
  • FIG. 3 shows a schematic time diagram 48 with an exemplary time profile of the control variable 4 and further exemplary time profiles.
  • t is a start time t1 and an end time
  • the end time t2 is another start time of a further time interval Tb with no critical
  • area A an exemplary course of the difference 36 from FIG. 2 is shown. Furthermore, the upper threshold value 40 is plotted. At the start time t1, the course of the difference 36 exceeds the upper threshold value 40. Between the start time t1 and the end time t2 dwells the
  • Time interval Ta of the critical state change of the internal combustion engine determined. Likewise, depending on the actual value 30 of the state variable, the end time t2 of the time interval Ta of the critical state change is determined.
  • the status signal 16 from FIGS. 1 and 2 indicates the critical state change as logic "1" in the time interval Ta. Before the start time t1 and after the end time t2, the internal combustion engine is not in the critical state change but in the normal mode.
  • Both courses show a rising course, whereby the set value 26 is below the actual value 24 around the end time t2.
  • the course of the actual value 24 of the actual indicated mean pressure actually moves above the desired indicated mean pressure parameter value 26 in the region of the end time t2, however, this distance remains low. This small distance between the actual value 24 and the target value 26 is achieved by the described method.
  • control variable 4 In area B, the exemplary course of the control variable 4 is shown. Before the start time t1, the control variable 4 is essentially made up of the base Control size 20 and the correction size 8 formed. Prior to the start time t1, the status signal 16 is equal to logic "0" and the block 12 of FIG. 1 forwards the base control variable 20 directly to the location 10 as an intermediate control variable 6 in this normal mode
  • the block 12 determines a fixed value 50 of the base control variable 4 as an actual value of the base control variable 20 determined before the start time t1 Range of the start time t1 thus the fixed value 50 of the base control variable 20 is determined and stored.
  • the course of the basic control variable 20 shown is essentially always above the course of the control variable 4 within the time interval Ta.
  • the profile of the control variable 4 has a smaller slope than the curve of the base control variable 20
  • Control variable 4 in the time interval Ta the control variable 4 is less erratic than the base control variable 20.
  • control amount 4 becomes substantially the stored fixed value 50 of the basic control amount 20 and the correction amount
  • the intermediate control amount 6 is generated based on the base control amount 20 such that the slope of the intermediate control amount 6 is limited by a maximum value.
  • control variable 4 essentially consists of the base control variable 20 and the correction variable 8.
  • Time t2 is from the operation with the critical state change in the Normal operation changed, that is, the state signal 16 goes from its logic state "1" in the logic state "0".
  • the block 12 redirects the actual value of the base control variable 20 as an intermediate control variable 6, whereby the intermediate control variable 6 corresponds to the base control variable 20.
  • the controller 14 gets the information at the end time t2 by means of the transition from logic "1" to logic "0" that the correction quantity 8 is now calculated on the basis of the actual value of the basic control variable 20.
  • the controller 14 may be implemented, for example, as a proportional-integral controller.
  • control variable 4 is determined as Final_Sg_val according to Formula 1, with Pre_corr_Sg_val corresponding to the intermediate control variable 6 and Gov_Corr_val to the correction variable 8.
  • the intermediate control variable 6, that is to say Pre_corr_Sg_val, corresponds to the fixed value 50 in the time interval Ta.
  • the correction quantity 8 is determined according to formula 2, wherein the correction quantity 8 as Gov_Corr_val is composed of the addition of a proportional component P_comp and an integral component l_comp.
  • the parameter t describes the dependence on time.
  • the proportional component P_comp results from formula 3, where P_par is a proportional parameter, Des_Bt_val is the setpoint value 26 of the operating variable, and Act_Bt_val is the actual value 24 of the operating variable.
  • I_comp results from formula 4, where I_par is an integral parameter.
  • I comp (t) I_par * j " (Des_Bt_val (t) -act Bt val (t)) dt
  • the controller 14 stores within the integral component l_comp (t) the previous course of the control deviation 22 up to the time t.
  • the intermediate control amount 6 again becomes the basic control amount 20.
  • the integral component I_comp (t) becomes t2 + dt at a further time, i. immediately after the time t2, with a further integral portion l_comp (t2 + dt) overwritten.
  • the control variable 4 results as Final_Sg_val according to formula 5.
  • the intermediate control variable 6, ie Pre_corr_Sg_val corresponds to the fixed value 50 in the time interval Ta and from the further time t2 + dt, ie in the time interval Tb of the base control variable 20.
  • the integral component l_comp (t2 + dt) results according to the formula
  • the methods described above can be implemented as a computer program for a digital computing device.
  • the digital computing device is suitable for carrying out the methods described above as a computer program.
  • the internal combustion engine is provided in particular for a motor vehicle and comprises a control device which comprises the digital computing device, in particular a microprocessor.
  • the control device comprises a storage medium on which the computer program is stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'un moteur à combustion interne. Un paramètre de commande de base (20) influençant une valeur réelle (24) d'un paramètre de fonctionnement du moteur à combustion interne est déterminé. La valeur réelle (24) du paramètre de fonctionnement est comparée à une valeur de consigne (26) du paramètre de fonctionnement. Un paramètre de correction (8) est déterminé en fonction de la comparaison. Un paramètre de commande (4) est déterminé en fonction du paramètre de commande de base (20) et du paramètre de correction (8). Une valeur réelle d'une grandeur d'état du moteur à combustion interne est déterminée. Un point de départ d'un intervalle de temps d'un changement d'état critique du moteur à combustion interne est déterminé en fonction de la valeur réelle de grandeur d'état déterminée. Le paramètre de commande (4) est déterminé après le point de départ sensiblement à partir d'une grandeur intermédiaire (6) et d'un paramètre de correction (8).
EP12730919.3A 2011-07-04 2012-06-26 Procédé pour faire fonctionner un moteur à combustion interne Withdrawn EP2729688A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078609A DE102011078609A1 (de) 2011-07-04 2011-07-04 Verfahren zum Betreiben einer Brennkraftmaschine
PCT/EP2012/062310 WO2013004545A1 (fr) 2011-07-04 2012-06-26 Procédé pour faire fonctionner un moteur à combustion interne

Publications (1)

Publication Number Publication Date
EP2729688A1 true EP2729688A1 (fr) 2014-05-14

Family

ID=46420157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12730919.3A Withdrawn EP2729688A1 (fr) 2011-07-04 2012-06-26 Procédé pour faire fonctionner un moteur à combustion interne

Country Status (5)

Country Link
US (1) US20140236452A1 (fr)
EP (1) EP2729688A1 (fr)
CN (1) CN103649503B (fr)
DE (1) DE102011078609A1 (fr)
WO (1) WO2013004545A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213716A1 (de) * 2014-07-15 2016-01-21 Robert Bosch Gmbh Verfahren und Anordnung zur Analyse und Diagnose eines Steuergeräts eines Antriebssystems
US9920669B2 (en) * 2015-02-27 2018-03-20 MAGNETI MARELLI S.p.A. Method to control the sealing of a blow-by gas breather circuit of an internal combustion engine
US9683506B2 (en) * 2015-03-06 2017-06-20 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105530A (en) * 1980-12-23 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine
US4991102A (en) * 1987-07-09 1991-02-05 Hitachi, Ltd. Engine control system using learning control
US4970864A (en) * 1987-12-29 1990-11-20 Honda Giken Kogyo K.K. Supercharging pressure control method for internal combustion engines
US5261378A (en) * 1989-08-03 1993-11-16 Robert Bosch Gmbh Device for producing a desired value of a control parameter of an internal combustion engine
US5315976A (en) * 1990-03-17 1994-05-31 Robert Bosch Gmbh Error-corrected closed-loop control system
DE4120000A1 (de) * 1991-06-18 1992-12-24 Vdo Schindling Verfahren und schaltungsanordnung zur beeinflussung einer stellgroesse
US5657736A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5505180A (en) * 1995-03-31 1996-04-09 Ford Motor Company Returnless fuel delivery mechanism with adaptive learning
US5771861A (en) * 1996-07-01 1998-06-30 Cummins Engine Company, Inc. Apparatus and method for accurately controlling fuel injection flow rate
JP3878258B2 (ja) * 1996-11-01 2007-02-07 株式会社日立製作所 エンジン制御装置
DE19706821A1 (de) * 1997-02-21 1998-08-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung eines Stellelements
DE19708308C2 (de) * 1997-02-28 2001-07-12 Siemens Ag Verfahren zur Regelung einer Regelgröße mit einem begrenzten Reglereingriff
JP3845996B2 (ja) * 1997-12-04 2006-11-15 スズキ株式会社 内燃機関の空燃比制御装置
US6202629B1 (en) * 1999-06-01 2001-03-20 Cummins Engine Co Inc Engine speed governor having improved low idle speed stability
JP3744328B2 (ja) * 2000-09-08 2006-02-08 トヨタ自動車株式会社 筒内燃料噴射式火花点火機関の燃料噴射制御装置
DE10159016A1 (de) * 2001-12-01 2003-06-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10205375A1 (de) * 2002-02-09 2003-08-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine, insbesondere zur Regelung der Drehzahl der Brennkraftmaschine
JP4039380B2 (ja) * 2004-03-24 2008-01-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE102004046086A1 (de) 2004-09-23 2006-03-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4400526B2 (ja) * 2005-07-29 2010-01-20 株式会社デンソー 内燃機関用制御装置
DE102006001374B4 (de) 2005-10-26 2017-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine
JP4503631B2 (ja) * 2007-05-18 2010-07-14 本田技研工業株式会社 内燃機関の制御装置
JP4244237B2 (ja) * 2007-06-04 2009-03-25 三菱電機株式会社 内燃機関の空燃比制御装置
DE102008004361A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Verfahren zur Regelung eines Verbrennungsmotors, Computerprogramm und Steuergerät
DE102008005524A1 (de) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Verfahren zum Steuern eines selbstzündenden Verbrennungsmotors und Steuervorrichtung zum Steuern eines selbstzündenden Verbrennungsmotors
DE102008002121B4 (de) * 2008-05-30 2010-11-04 Robert Bosch Gmbh Verfahren und Steuergerät zur Kalibrierung eines Einspritzventils einer Brennkraftmaschine, Computerprogramm und Computergrogrammprodukt
DE102009047929B4 (de) * 2009-10-01 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ladedruckregelung einer zweistufigen Abgasturboaufladung für eine Brennkraftmaschine
IT1395985B1 (it) * 2009-10-15 2012-11-09 Magneti Marelli Spa Metodo di controllo a zone di una valvola wastegate in un motore a combustione interna turbocompresso
JP4924694B2 (ja) * 2009-11-02 2012-04-25 株式会社デンソー エンジン制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013004545A1 *

Also Published As

Publication number Publication date
CN103649503B (zh) 2016-09-21
DE102011078609A1 (de) 2013-01-10
CN103649503A (zh) 2014-03-19
WO2013004545A1 (fr) 2013-01-10
US20140236452A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
DE102004006294B3 (de) Verfahren zur Gleichstellung der Einspritzmengenunterschiede zwischen den Zylindern einer Brennkraftmaschine
DE102006001374B4 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine
EP0286644B1 (fr) Procede pour determiner electroniquement le debit de carburant d'un moteur a combustion interne
DE19901527C1 (de) Verfahren zum Regeln der Fahrgeschwindigkeit eines Kraftfahrzeuges
DE3925877C2 (de) Verfahren und Einrichtung zur Steuerung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine
DE102006007365B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
WO2014114442A1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne à taux de compression variable
WO2013004545A1 (fr) Procédé pour faire fonctionner un moteur à combustion interne
DE102014226259B4 (de) Verfahren zum Betrieb eines Verbrennungsmotors
EP1232337B2 (fr) Procede et dispositif pour actionner l'unite d'entrainement d'un vehicule
EP1478986B1 (fr) Procede et dispositif pour la regulation du regime d'un moteur a combustion interne
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19506082A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
WO2012119625A1 (fr) Procédé de réglage d'un moteur à combustion interne
EP2142783A1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
DE10051974A1 (de) Verfahren zur Klopfregelung einer Brennkraftmaschine und entsprechende Vorrichtung
DE102005049970A1 (de) Verfahren zur Steuerung eines Einspritzventils
EP0349811B1 (fr) Système de régulation d'un moteur à combustion
DE102007051252A1 (de) Verfahren und Vorrichtung zur Reduzierung des Antriebsmoments bei kurzzeitigen Momenten reduzierenden Eingriffen
DE3931455A1 (de) Verfahren zur steuerung der luftzufuhr einer brennkraftmaschine eines kraftfahrzeugs
DE102006015968B3 (de) Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
DE102005029633B3 (de) Verfahren zur Regelung des einer Brennkraftmaschine mit einem sauerstoffspeicherfähigen Katalysator zugeführten Kraftstoff/Luftverhältnisses
DE102004032537A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung
DE102007062173A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Steuer- oder Regelrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180103