EP0349811B1 - Système de régulation d'un moteur à combustion - Google Patents

Système de régulation d'un moteur à combustion Download PDF

Info

Publication number
EP0349811B1
EP0349811B1 EP89111045A EP89111045A EP0349811B1 EP 0349811 B1 EP0349811 B1 EP 0349811B1 EP 89111045 A EP89111045 A EP 89111045A EP 89111045 A EP89111045 A EP 89111045A EP 0349811 B1 EP0349811 B1 EP 0349811B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas temperature
feed
control system
back control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89111045A
Other languages
German (de)
English (en)
Other versions
EP0349811A1 (fr
Inventor
Heinz Ing. Möller
Josef Dipl.-Ing. Wahl
Hermann Dipl.-Ing. Eisele (Fh)
Wolfgang Dipl.-Ing. Löwl (FH)
Bernhard Dipl.-Ing. Ebinger
Günter Dr. Dipl.-Phys. Bechtold
Rolf Dipl.-Ing. Niethammer (Fh)
Udo Dipl.-Ing. Diehl (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0349811A1 publication Critical patent/EP0349811A1/fr
Application granted granted Critical
Publication of EP0349811B1 publication Critical patent/EP0349811B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the invention relates to a control system for a self-igniting internal combustion engine according to the preamble of claim 1, see GB-A-2 111 255.
  • a further system for controlling operating parameters of an internal combustion engine is known from SAE paper 800167 "Electronic Control of Diesel Passenger Cars.
  • SAE paper 800167 Electric Control of Diesel Passenger Cars.
  • a control system for a self-igniting internal combustion engine which contains sensors for operating parameters, an electronic control unit and an actuator for the amount of fuel to be metered to the engine.
  • the control unit calculates the amount of fuel to be metered to the engine depending on various operating parameters.
  • DE-OS 33 03 617 describes a control system for controlling operating parameters of a self-igniting internal combustion engine, depending on the difference between a target value of the exhaust gas temperature and one which is dependent on the operating state of the internal combustion engine Actual value controlled a quantity-determining setting element. Furthermore, from DE-OS-31 49 095 a device is known which determines the amount of fuel to be injected depending on various operating parameters. The fuel quantity signal is limited to a maximum permissible value depending on an exhaust gas temperature signal.
  • the invention has for its object to correct harmful interference in a control system for a self-igniting internal combustion engine of the type mentioned.
  • the control system according to the invention with the features of claim 1 has the advantage that the exhaust gas temperature is obtained from the measured exhaust gas temperature by means of a correction method.
  • Various operating parameters, which are influenced by interference, are included in the correction process. This makes it possible to correct external and internal interference.
  • FIG. 1 shows schematically the principle of the fuel mass control of a self-igniting internal combustion engine
  • FIG. 2 shows a diagram to illustrate the correction of the time behavior of the measured exhaust gas temperature
  • FIG. 3 shows a detailed representation of the stationary measurement value processing
  • FIG. 4 shows a detailed representation of the dynamic exhaust gas temperature correction
  • FIG of controller 56 shows schematically the principle of the fuel mass control of a self-igniting internal combustion engine
  • the exemplary embodiment relates to an electronic control system for the fuel mass to be injected per stroke of a self-igniting fuel Internal combustion engine.
  • a fuel mass controller 12 known per se is supplied with signals depending on the accelerator pedal position FP and on various operating parameters y.
  • This fuel mass controller 12 generates a basic fuel mass value ME.
  • ME basic fuel mass value
  • the output signal MEA of the correction element is applied to a quantity-determining actuator 15 of the internal combustion engine 16, on which various external and internal interference influences 18 act.
  • Two output signals from the measurement data acquisition and standardization arrive at a characteristic diagram 50.
  • the output signals of the exhaust gas temperature correction element 30 and the characteristic diagram 50 are forwarded to the controller 56 via a comparator 54.
  • the controller 56 receives another signal directly from the measurement data acquisition and standardization 25.
  • the output signals from the controller 56 reach the correction element 14.
  • the control system shown in FIG. 1 now works as follows:
  • the fuel mass controller 12 calculates the basic fuel mass value ME as a function of the accelerator pedal position, which reflects the driver's desired travel speed and other operating parameters.
  • This signal ME is forwarded on the one hand to the measurement data acquisition and standardization 25 and on the other hand to the correction element 14.
  • the correction element calculates a signal MEA for controlling the actuator 15 by means of adaptation variables AF1 and AF2, which are supplied by the controller 56.
  • This signal is fed to the quantity-determining actuator 15 of the internal combustion engine.
  • the actuator measures the internal combustion engine 16 the fuel mass corresponding to the output signal of the correction element 14.
  • On the internal combustion engine act different external and internal interference 18 such as air pressure, aging and other influences.
  • Various operating parameters such as engine temperature, exhaust manifold temperature, measured exhaust gas temperature, engine speed and other variables are determined by sensors and recorded and processed by the measurement data acquisition and standardization 25.
  • the data recorded by measurement data acquisition and standardization 25 are processed in such a way that they can be processed further by an electronic system.
  • the standardized measurement data are forwarded to the exhaust gas temperature correction element 30.
  • This exhaust gas temperature correction element 30 calculates the corrected exhaust gas temperature TA ⁇ from the measured exhaust gas temperature TA as a function of the other recorded operating parameters of the internal combustion engine.
  • This corrected exhaust gas temperature serves as an actual variable and is compared with the target variable of the exhaust gas temperature.
  • the target variable is taken from a characteristic diagram 50, which contains the target relationship between the target exhaust gas temperature and various operating parameters, in particular the fuel mass ME to be injected and the engine speed n.
  • a target characteristic map can be defined using engine test bench tests representative of a specific engine type using defined environmental and operating conditions.
  • the control deviation which is obtained by comparing the actual and target exhaust gas temperatures, is fed to the controller 56.
  • the additive or multiplicative adjustment variables are generated by the controller 56.
  • An adaptation variable AF1 is determined in the lower load range and has an additive effect in the entire load range. It should preferably compensate for the influence of aging and drift phenomena in the injection system.
  • the other adaptation variable AF2 is determined in the upper load range and has a multiplicative effect in the entire load range. It is primarily intended to compensate for external influences such as air pressure and air temperature.
  • adaptation variables are not generated in every period and every operating state, the adaptation variables for controlling the fuel mass to be injected per stroke, which were determined before this period, are used.
  • the adaptation variables are preferably stored by the controller 56 such that they are available even after the vehicle has been switched off. In this way, the last adjustment values determined are immediately available again when the device is switched on again.
  • FIG. 2 is used to illustrate the exhaust gas correction method.
  • the diagram shows the temperature profile of various temperature sensors and the true exhaust gas temperature in the event of a sudden positive load change.
  • the installation locations of the exhaust gas temperature sensor 37 and the exhaust manifold temperature sensor 38 in the exhaust manifold 40 are shown in the sketch.
  • the exhaust gas temperature TA ' follows the change in load immediately.
  • the exhaust gas temperature TA measured in the exhaust gas flow follows the load change only with a delay.
  • the exhaust manifold temperature TAK is lower than the measured exhaust gas temperature after a positive load jump.
  • the exhaust gas temperature TA ' is calculated from the difference between the measured exhaust gas temperature TA and the exhaust manifold temperature TAK.
  • the correction factor F depends on the load and speed of the internal combustion engine. It is determined experimentally.
  • FIG. 3 shows a special embodiment of the exhaust gas temperature correction element 30.
  • the input signals such as measured exhaust gas temperature TA, speed n, basic fuel mass value ME, exhaust manifold temperature TAK and engine temperature TM go directly to averaging 33.
  • the speed signal and a signal about the fuel mass ME to be injected are fed to control range search 31 .
  • the output signal of the control range search, the measured exhaust gas temperature TA and possibly other variables such as time serve as an input signal for the measurement window search 32.
  • Their output signals go directly to the averaging 33.
  • a part of the output signals of the averaging reaches the first correction element 34. Its output signal and the remaining output signals averaging is fed to a second correction element 36. Its output signal serves as the output signal of the exhaust gas temperature correction element 30.
  • the exhaust gas temperature correction member 30 has the following function. All output signals of the measurement data acquisition and standardization 25 serve as input signals of the correction element.
  • the control range search 31 selects a control range which is predetermined by lower and upper speed and load limits. The upper speed limit and, or the upper load limit can also be omitted. The internal combustion engine is only controlled within these limit values (control range), it is controlled outside the control range, the controller manipulated variable is retained even when the controller is switched off.
  • the measurement window search 32 searches in the course of the measured exhaust gas temperature TA for a measurement window with a quasi-steady state in the range of seconds.
  • a measurement window is only formed when the engine temperature exceeds a certain threshold value and the speed and the load are within defined limits within the control range. This can prevent the activation of the exhaust gas temperature control in unfavorable operating conditions.
  • a range is selected in which the exhaust gas temperature has a quasi-steady state.
  • a certain period of time is specified for the measurement window search and a check is carried out to determine whether the exhaust gas temperature exceeds predetermined limits in this period. If the limits are not exceeded, one speaks of a measurement window with a quasi-steady state of the measurement signal.
  • the measuring window is defined by the specified period (length of the measuring window) and by the temperature range covered during this period (height of the measuring window).
  • the measurement window is defined by the temperature range and the period in which the temperature lies within the selected temperature range.
  • the classes are classified based on various criteria. These are the length, area or height of the measuring window the gradient of the exhaust gas temperature curve or the number of turning points occurring in the exhaust gas temperature curve. Measuring windows of the same classes can have the same length in time with different heights, the same height with different lengths or with the same area different lengths with correspondingly different heights.
  • the usability of the measurement window can also be made dependent on its history, for example the course of the exhaust gas temperature or other recorded operating parameters. If a usable measurement window is found, the signals required for the control, such as e.g. B. speed, basic fuel mass value exhaust gas manifold temperature, engine temperature and possibly other quantities, in the averaging 33 formed the arithmetic mean values. All measurement data recorded within the measurement window limits can be used for averaging, or only part of the data is used.
  • the first correction element 34 calculates the exhaust gas temperature TA 'from the average measured exhaust gas temperature TAM, the average speed nM, the average fuel mass basic value MEM and the average exhaust manifold temperature TAKM.
  • This correction element includes the correction of the time behavior of the measured exhaust gas temperature.
  • the correction factor F is dependent on the load and speed. It is determined empirically and, if necessary, adjusted for long-term changes in the self-igniting internal combustion engine.
  • the correction element 42 in FIG. 4 has the same task as the correction element 34 in FIG. 3. From the measured exhaust gas temperature TA, speed n, basic fuel mass value ME and exhaust manifold temperature TAK, the correction element 42 calculates the exhaust gas temperature TA '. The calculation is carried out continuously via a model feedback, so that the control can also be carried out continuously. The measured variables are not averaged.
  • the adaptation to the current operating state of the engine is carried out by taking the average engine temperature TMM into account. Other variables such as the intake air temperature can also be taken into account.
  • the second correction element 36 supplies the corrected exhaust gas temperature TA ⁇ .
  • FIG. 4 shows a further possible embodiment of the exhaust gas temperature correction element 30.
  • All output signals of the measurement data acquisition and standardization 25 serve as input signals of the exhaust gas temperature correction element.
  • Four input signals are fed to the first correction element 42.
  • the second correction element 44 is acted upon by the output signal of the first correction element and the other input signals. It fulfills the same function as the correction element 36 in FIG. 3.
  • the output signal of the second correction element 44 also serves as the output signal of the exhaust gas temperature correction element 30.
  • the correction takes place depending on the class of the measurement window found.
  • the control parameters are selected depending on the class of the measurement window.
  • the exhaust manifold exchanges thermal energy with the exhaust gas. On the other hand, it releases thermal energy into the environment.
  • the exhaust manifold changes its temperature with the time constant zkr, which depends on the speed and the load.
  • the exhaust gas temperature TABG at the installation location of the thermocouple is lower in the steady state than the exhaust gas temperature TA 'at the exhaust valve, since part of the heat energy flows through the exhaust manifold to the environment.
  • the factor kkr describes this proportion. Because the exhaust gas exchanges heat energy with the exhaust manifold, the exhaust gas temperature at the installation location of the temperature sensor does not reach its steady-state value immediately after a load change, but rather a value which is determined by the factor x.
  • the factor (1 - x) denotes the exhaust gas temperature component that is missing from the stationary value. This value is reached when the heat energy inflow from the exhaust gas to the exhaust manifold is equal to the outflow from the manifold to the surroundings (see FIG. 2). When this flow equilibrium is reached, the exhaust manifold temperature also no longer changes.
  • the exhaust gas temperature TA measured by the temperature sensor is delayed by the inertia of the sensor. The time constant for this temperature change in the sensor is designated zf.
  • the correction model can thus be described by the following equations in the Laplace area.
  • TA TABG / (1 + zf * s)
  • TABG (1 - x) * TAK + x + TA ′
  • TAK kkr * TA ′ / (1 + zkr * s)
  • the calculation of the exhaust gas temperature TA ' is carried out in two stages. First TABG is determined from TA, then TA ′ is calculated from TABG and TAK. In order to reduce excessive noise when evaluating the recursion formula for TABG, the measured exhaust gas temperature signal is filtered in the measurement data acquisition and standardization 25. The recursion formula for TABG is obtained by transforming equation 3 into the time domain and by introducing the backward difference quotient. This is how you get the recursion formula.
  • TABG (k) TA (k) * (1 + zf / t) - TA (k-1) * zf / t
  • Equations 6 and 7 are evaluated in each calculation step.
  • the values of the previous calculation step k-1 are used for each calculation step k.
  • the model also contains the exhaust manifold temperature TAK as a state variable, the hardware expenditure can be reduced by dispensing with the measurement of TAK.
  • the exhaust manifold temperature TAK is calculated from the measured exhaust gas temperature TA. This means that the measurement of TAK can be dispensed with and TA 'can be determined from TA alone. Since two differentiations have to be made in the back calculation, an exact determination of the model parameters is kkr, x, zkr and zf and a smooth measurement signal of the thermocouple necessary.
  • TA ′ k (x * zkr / t * TA ′ k-1 + [(1 + (zkr + zf) / t + (zkr * zf) / t2)] * TA k + [(zkr + zf) / t + 2 * (zkr * zf) / t2] * TA k-1 + (zkr * zf) / t2) * TA k-2 ) / (kkr - x * kkr + x + x * zkr / t)
  • the exhaust gas temperature TA ' k is therefore a function of the last calculated exhaust gas temperature TA' k-1 and the three last measured exhaust gas temperatures TA k , TA k-1 and TA k-2 .
  • the model is adapted to the motor-vehicle combination using the four parameters zkr, zf, x and kkr.
  • the two time constants zkr and zf as well as the parameter x are determined from load jumps on the test bench, where x, as shown in Figure 2, is determined directly from the initial jump height. All parameters vary depending on the speed and load.
  • the continuously calculated exhaust gas temperature TA ' is adapted in the second correction element 44 to the engine temperature TM. This gives the corrected exhaust gas temperature TA ⁇ .
  • FIG. 5 shows possible exemplary embodiments of the controller 56.
  • the output signal T of the comparator 54 (FIG. 1) is supplied to either the controller 71 or the controller 72 depending on a load-dependent signal ME. These generate the adaptation variables AF1 or AF2 for the corresponding load range.
  • the controller 71 determines the adaptation variable AF1 as a function of T.
  • the controller 72 determines the adaptation variable AF2 as a function of T.
  • a separate controller is available for the upper and the lower load range, which calculates the adjustment variable which is most effective for this load range.
  • the adaptation variables are then used in all load ranges to calculate the fuel mass MEA to be injected.
  • a self-adjusting controller can also be used in each case.
  • Figure 5b shows such a self-adjusting controller. This can take the place of controller 71 or 72 of Figure 5a.
  • the controller 70 generates one of the adaptation variables which are supplied to the node 63 on the one hand and to the map 61 on the other.
  • the adaptation variable is stored weighted in the map 61 at the associated operating point.
  • the average speed nM and the average fuel mass value MEM define this operating point.
  • the evaluation circuit 60 processes the values of the map 61 according to a suitable strategy and stores the values in the map 62 and at the same time corrects the integral negotiation of the PI controller 70.
  • the evaluation circuit 60 can operate according to the following strategy, for example.
  • the evaluation circuit 60 is activated after a certain number of control windows found or a certain number of entries in the characteristic diagram 61.
  • the mean value is first formed from all the adjustment variables stored in the characteristic map 61, weighted.
  • This mean value forms the new integral value of the controller 70.
  • the difference between the mean value and all the adaptation variables stored in the map 61 at a specific operating point is stored in the map 62 at the same operating point. Map 61 is then deleted.
  • An operating point in the map 62 is defined by the fuel mass ME and the speed n.
  • the characteristic diagram 62 delivers an output signal depending on the instantaneous speed n and the load ME, which is led to the node 63 and is superimposed there on the respective adaptation variable.
  • This evaluation of the exhaust gas temperature can be used for one as well as for several signals, e.g. also for one or more exhaust gas temperature signals per cylinder, or separately for each cylinder. Special correction methods, which are adapted to the conditions of the respective installation site, can be used.
  • control can also be extended to the sequential influencing of certain cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (13)

1. Système de réglage pour un moteur à combustion interne à allumage spontané, avec des détecteurs pour des grandeurs caractéristiques de fonctionnement, avec un appareil électronique de commande (12) ainsi qu'un organe de réglage (15) branché à la suite pour la masse de carburant à amener au moteur à combustion interne (16), système de réglage dans lequel une valeur de base (ME) de la masse de carburant est calculée dans l'appareil de commande (12) en fonction d'au moins la vitesse de rotation et la position de la pédale d'accélérateur, puis cette valeur est corrigée, la correction s'effectuant en fonction d'un signal de température des gaz d'échappement influencé par des grandeurs caractéristiques du fonctionnement, tandis que le signal de température des gaz d'échappement est obtenu par la comparaison d'un signal corrigé (TA˝) de la température des gaz d'échappement avec une valeur de consigne (TA) de la température des gaz d'échappement. Système de réglage caractérisé en ce que la valeur de consigne (TA) de la température des gaz d'échappement est prélevée dans un champ caractéristique (50) qui contient la corrélation entre la masse de carburant (ME) à injecter, la température résultant (TA) des gaz d'échappement et au moins une autre grandeur caractéristique du fonctionnement (n).
2. Système de réglage selon la revendication 1, caractérisé en ce qu'au moins un régulateur (56) avec un comportement (PI) fournit à partir de l'écart de réglage résultant de la comparaison, et en fonction de la charge actuelle, au moins une grandeur d'adaptation (AF1, AF2) par laquelle la masse de carburant à injecter par course est influencée.
3. Système de réglage selon la revendication 1 et la revendication 2, caractérisé en ce qu'une grandeur d'adaptation additive avec laquelle de préférence des influences internes sont compensées, est déterminée dans la zone de charge inférieure et agit additivement dans l'ensemble de la zone de charge.
4. Système de réglage selon la revendication 1 et la revendication 2, caractérisé en ce qu'une grandeur d'adaptation multiplicative avec laquelle de préférence des influences externes sont compensées, est déterminée dans la zone de charge supérieure et agit de façon multiplicative dans l'ensemble de la zone de charge.
5. Système de réglage selon au moins une des revendications 1 à 4, caractérisé en ce que les grandeurs d'adaptation sont de préférence mémorisées de façon qu'elles conservent leur information après l'arrêt du véhicule ou la suppression de l'alimentation en tension et qu'elles soient à nouveau immédiatement disponibles après la remise en service.
6. Système de réglage selon au moins une des revendications 1 à 5, caractérisé en ce que dans un procédé de correction stationnaire, on recherche une zone de réglage à une fenêtre de mesure dans laquelle la température mesurée des gaz d'échappement, est quasi stationnaire (recherche 32 d'une fenêtre de mesure).
7. Système de réglage selon au moins une des revendications 1 à 5, caractérisé en ce qu'une fenêtre de mesure est formée en fonction d'au moins une des grandeurs, intervalle de temps désiré, grandeurs de la température des gaz d'échappement, évolution de la température des gaz d'échappement ou des antécédents de la température des gaz d'échappement.
8. Système de réglage selon la revendication 7, caractérisé en ce que la fenêtre de mesure est divisée en différentes classes et la correction s'effectue en fonction de cette classe.
9. Système de réglage selon une des revendications 6 à 8, caractérisé en ce qu'à partir des grandeurs caractéristiques du fonctionnement utilisées pour la régulation, on forme des valeurs moyennes arithmétiques en utilisant au moins une partie des grandeurs caractéristiques du fonctionnement détectées à l'intérieur de la fenêtre de mesure.
10. Système de réglage selon au moins une des revendications 6 à 9, caractérisé en ce que dans une première étape du procédé de correction, au moyen d'au moins un facteur de correction qui peut être déterminé empiriquement, une température des gaz d'échappement est calculée, qui dans une seconde étape est adaptée à au moins une autre grandeur caractéristique actuelle du fonctionnement.
11. Système de réglage selon au moins une des revendications 1 à 5, caractérisé en ce que dans un procédé de correction dynamique, la température momentanée des gaz d'échappement mesurée par un détecteur de température des gaz d'échappement, est exploitée en continu au moyen d'un modèle thermodynamique, et la température corrigée des gaz d'échappement est obtenue par adaptation à d'autres grandeurs caractéristiques du fonctionnement.
12. Système de réglage selon au moins une des revendications 2 à 11, caractérisé en ce que les grandeurs d'adaptation sont mémorisées dans un champ caractéristique et sont ainsi disponibles en tout point de fonctionnement.
13. Système de réglage selon la revendication 12, caractérisé en ce que le comportement intégral du régulateur dépend des grandeurs d'adaptation.
EP89111045A 1988-07-01 1989-06-19 Système de régulation d'un moteur à combustion Expired - Lifetime EP0349811B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3822245 1988-07-01
DE3822245 1988-07-01

Publications (2)

Publication Number Publication Date
EP0349811A1 EP0349811A1 (fr) 1990-01-10
EP0349811B1 true EP0349811B1 (fr) 1992-03-04

Family

ID=6357722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89111045A Expired - Lifetime EP0349811B1 (fr) 1988-07-01 1989-06-19 Système de régulation d'un moteur à combustion

Country Status (3)

Country Link
EP (1) EP0349811B1 (fr)
JP (1) JPH0264251A (fr)
DE (1) DE58900907D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000432B4 (de) * 2006-08-09 2014-08-07 Denso Corporation Unverbrannter-Kraftstoff-Mengenabschätzvorrichtung in einer Kraftmaschine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59009588D1 (de) * 1990-03-17 1995-10-05 Bosch Gmbh Robert Fehlerkorrigiertes Regelsystem.
US5082797A (en) * 1991-01-22 1992-01-21 Micron Technology, Inc. Method of making stacked textured container capacitor
JPH08270477A (ja) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd エンジンの排気脈動制御装置
US7024301B1 (en) * 2005-01-14 2006-04-04 Delphi Technologies, Inc. Method and apparatus to control fuel metering in an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3149095A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer die kraftstoffmenge einer brennkraftmaschine mit selbstzuendung
DE3204804A1 (de) * 1982-02-11 1983-08-18 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer eine dieseleinspritzanlage einer brennkraftmaschine
DE3303617A1 (de) * 1983-02-03 1984-08-09 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und einrichtung zur regelung von betriebsparametern einer selbstzuendenden brennkraftmaschine
FR2567962B1 (fr) * 1984-07-23 1989-05-26 Renault Procede adaptatif de regulation de l'injection d'un moteur a injection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE-paper 800167 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000432B4 (de) * 2006-08-09 2014-08-07 Denso Corporation Unverbrannter-Kraftstoff-Mengenabschätzvorrichtung in einer Kraftmaschine

Also Published As

Publication number Publication date
DE58900907D1 (de) 1992-04-09
JPH0264251A (ja) 1990-03-05
EP0349811A1 (fr) 1990-01-10

Similar Documents

Publication Publication Date Title
DE19606652B4 (de) Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE3408223C2 (fr)
DE3408215C2 (fr)
DE102007012604B4 (de) Verfahren zum Regeln einer Einspritzung eines Injektors einer direkteinspritzenden Verbrennungskraftmaschine und direkteinspritzende Verbrennungskraftmaschine
DE3015832A1 (de) Verfahren und vorrichtung zum steuern und/oder regeln der luftmengenzufuhr bei verbrennungskraftmaschinen
DE4115211A1 (de) Elektronisches steuersystem fuer die kraftstoffzumessung bei einer brennkraftmaschine
DE4207541B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102011085115A1 (de) Verfahren und Vorrichtung zur Adaption einer Lambdaregelung
WO2005078263A1 (fr) Procede de synchronisation des cylindres en termes de quantites d'injection de carburant dans un moteur thermique
EP0151768B1 (fr) Système de dosage du mélange air-carburant pour un moteur à combustion
DE4344960A1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
WO2013171015A1 (fr) Procédé et unité de commande pour la compensation d'un écart de tension d'une sonde lambda à deux points
DE3840247A1 (de) Messvorrichtung fuer das luft-kraftstoff-mischungsverhaeltnis fuer eine brennkraftmaschine
DE4029537A1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgroesse einer brennkraftmaschine
EP1329627B1 (fr) Procédé et dispositif de contrôle d'une fonction de protection de composants
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
EP1347165B1 (fr) Procédé et dispositif de commande du dosage de carburant pour un moteur à combustion interne
EP0349811B1 (fr) Système de régulation d'un moteur à combustion
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4344633B4 (de) Lasterfassung mit Diagnose bei einer Brennkraftmaschine
EP0757168A2 (fr) Méthode et dispositif pour la commande d'un moteur à combustion interne
DE19931823A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
DE3919877A1 (de) Regelsystem fuer eine brennkraftmaschine
EP0150437B1 (fr) Système de dosage du mélange air-carburant pour moteur à combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19900531

17Q First examination report despatched

Effective date: 19910208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58900907

Country of ref document: DE

Date of ref document: 19920409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990826

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403