EP0349811B1 - Regelsystem für eine Brennkraftmaschine - Google Patents

Regelsystem für eine Brennkraftmaschine Download PDF

Info

Publication number
EP0349811B1
EP0349811B1 EP89111045A EP89111045A EP0349811B1 EP 0349811 B1 EP0349811 B1 EP 0349811B1 EP 89111045 A EP89111045 A EP 89111045A EP 89111045 A EP89111045 A EP 89111045A EP 0349811 B1 EP0349811 B1 EP 0349811B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas temperature
feed
control system
back control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89111045A
Other languages
English (en)
French (fr)
Other versions
EP0349811A1 (de
Inventor
Heinz Ing. Möller
Josef Dipl.-Ing. Wahl
Hermann Dipl.-Ing. Eisele (Fh)
Wolfgang Dipl.-Ing. Löwl (FH)
Bernhard Dipl.-Ing. Ebinger
Günter Dr. Dipl.-Phys. Bechtold
Rolf Dipl.-Ing. Niethammer (Fh)
Udo Dipl.-Ing. Diehl (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0349811A1 publication Critical patent/EP0349811A1/de
Application granted granted Critical
Publication of EP0349811B1 publication Critical patent/EP0349811B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the invention relates to a control system for a self-igniting internal combustion engine according to the preamble of claim 1, see GB-A-2 111 255.
  • a further system for controlling operating parameters of an internal combustion engine is known from SAE paper 800167 "Electronic Control of Diesel Passenger Cars.
  • SAE paper 800167 Electric Control of Diesel Passenger Cars.
  • a control system for a self-igniting internal combustion engine which contains sensors for operating parameters, an electronic control unit and an actuator for the amount of fuel to be metered to the engine.
  • the control unit calculates the amount of fuel to be metered to the engine depending on various operating parameters.
  • DE-OS 33 03 617 describes a control system for controlling operating parameters of a self-igniting internal combustion engine, depending on the difference between a target value of the exhaust gas temperature and one which is dependent on the operating state of the internal combustion engine Actual value controlled a quantity-determining setting element. Furthermore, from DE-OS-31 49 095 a device is known which determines the amount of fuel to be injected depending on various operating parameters. The fuel quantity signal is limited to a maximum permissible value depending on an exhaust gas temperature signal.
  • the invention has for its object to correct harmful interference in a control system for a self-igniting internal combustion engine of the type mentioned.
  • the control system according to the invention with the features of claim 1 has the advantage that the exhaust gas temperature is obtained from the measured exhaust gas temperature by means of a correction method.
  • Various operating parameters, which are influenced by interference, are included in the correction process. This makes it possible to correct external and internal interference.
  • FIG. 1 shows schematically the principle of the fuel mass control of a self-igniting internal combustion engine
  • FIG. 2 shows a diagram to illustrate the correction of the time behavior of the measured exhaust gas temperature
  • FIG. 3 shows a detailed representation of the stationary measurement value processing
  • FIG. 4 shows a detailed representation of the dynamic exhaust gas temperature correction
  • FIG of controller 56 shows schematically the principle of the fuel mass control of a self-igniting internal combustion engine
  • the exemplary embodiment relates to an electronic control system for the fuel mass to be injected per stroke of a self-igniting fuel Internal combustion engine.
  • a fuel mass controller 12 known per se is supplied with signals depending on the accelerator pedal position FP and on various operating parameters y.
  • This fuel mass controller 12 generates a basic fuel mass value ME.
  • ME basic fuel mass value
  • the output signal MEA of the correction element is applied to a quantity-determining actuator 15 of the internal combustion engine 16, on which various external and internal interference influences 18 act.
  • Two output signals from the measurement data acquisition and standardization arrive at a characteristic diagram 50.
  • the output signals of the exhaust gas temperature correction element 30 and the characteristic diagram 50 are forwarded to the controller 56 via a comparator 54.
  • the controller 56 receives another signal directly from the measurement data acquisition and standardization 25.
  • the output signals from the controller 56 reach the correction element 14.
  • the control system shown in FIG. 1 now works as follows:
  • the fuel mass controller 12 calculates the basic fuel mass value ME as a function of the accelerator pedal position, which reflects the driver's desired travel speed and other operating parameters.
  • This signal ME is forwarded on the one hand to the measurement data acquisition and standardization 25 and on the other hand to the correction element 14.
  • the correction element calculates a signal MEA for controlling the actuator 15 by means of adaptation variables AF1 and AF2, which are supplied by the controller 56.
  • This signal is fed to the quantity-determining actuator 15 of the internal combustion engine.
  • the actuator measures the internal combustion engine 16 the fuel mass corresponding to the output signal of the correction element 14.
  • On the internal combustion engine act different external and internal interference 18 such as air pressure, aging and other influences.
  • Various operating parameters such as engine temperature, exhaust manifold temperature, measured exhaust gas temperature, engine speed and other variables are determined by sensors and recorded and processed by the measurement data acquisition and standardization 25.
  • the data recorded by measurement data acquisition and standardization 25 are processed in such a way that they can be processed further by an electronic system.
  • the standardized measurement data are forwarded to the exhaust gas temperature correction element 30.
  • This exhaust gas temperature correction element 30 calculates the corrected exhaust gas temperature TA ⁇ from the measured exhaust gas temperature TA as a function of the other recorded operating parameters of the internal combustion engine.
  • This corrected exhaust gas temperature serves as an actual variable and is compared with the target variable of the exhaust gas temperature.
  • the target variable is taken from a characteristic diagram 50, which contains the target relationship between the target exhaust gas temperature and various operating parameters, in particular the fuel mass ME to be injected and the engine speed n.
  • a target characteristic map can be defined using engine test bench tests representative of a specific engine type using defined environmental and operating conditions.
  • the control deviation which is obtained by comparing the actual and target exhaust gas temperatures, is fed to the controller 56.
  • the additive or multiplicative adjustment variables are generated by the controller 56.
  • An adaptation variable AF1 is determined in the lower load range and has an additive effect in the entire load range. It should preferably compensate for the influence of aging and drift phenomena in the injection system.
  • the other adaptation variable AF2 is determined in the upper load range and has a multiplicative effect in the entire load range. It is primarily intended to compensate for external influences such as air pressure and air temperature.
  • adaptation variables are not generated in every period and every operating state, the adaptation variables for controlling the fuel mass to be injected per stroke, which were determined before this period, are used.
  • the adaptation variables are preferably stored by the controller 56 such that they are available even after the vehicle has been switched off. In this way, the last adjustment values determined are immediately available again when the device is switched on again.
  • FIG. 2 is used to illustrate the exhaust gas correction method.
  • the diagram shows the temperature profile of various temperature sensors and the true exhaust gas temperature in the event of a sudden positive load change.
  • the installation locations of the exhaust gas temperature sensor 37 and the exhaust manifold temperature sensor 38 in the exhaust manifold 40 are shown in the sketch.
  • the exhaust gas temperature TA ' follows the change in load immediately.
  • the exhaust gas temperature TA measured in the exhaust gas flow follows the load change only with a delay.
  • the exhaust manifold temperature TAK is lower than the measured exhaust gas temperature after a positive load jump.
  • the exhaust gas temperature TA ' is calculated from the difference between the measured exhaust gas temperature TA and the exhaust manifold temperature TAK.
  • the correction factor F depends on the load and speed of the internal combustion engine. It is determined experimentally.
  • FIG. 3 shows a special embodiment of the exhaust gas temperature correction element 30.
  • the input signals such as measured exhaust gas temperature TA, speed n, basic fuel mass value ME, exhaust manifold temperature TAK and engine temperature TM go directly to averaging 33.
  • the speed signal and a signal about the fuel mass ME to be injected are fed to control range search 31 .
  • the output signal of the control range search, the measured exhaust gas temperature TA and possibly other variables such as time serve as an input signal for the measurement window search 32.
  • Their output signals go directly to the averaging 33.
  • a part of the output signals of the averaging reaches the first correction element 34. Its output signal and the remaining output signals averaging is fed to a second correction element 36. Its output signal serves as the output signal of the exhaust gas temperature correction element 30.
  • the exhaust gas temperature correction member 30 has the following function. All output signals of the measurement data acquisition and standardization 25 serve as input signals of the correction element.
  • the control range search 31 selects a control range which is predetermined by lower and upper speed and load limits. The upper speed limit and, or the upper load limit can also be omitted. The internal combustion engine is only controlled within these limit values (control range), it is controlled outside the control range, the controller manipulated variable is retained even when the controller is switched off.
  • the measurement window search 32 searches in the course of the measured exhaust gas temperature TA for a measurement window with a quasi-steady state in the range of seconds.
  • a measurement window is only formed when the engine temperature exceeds a certain threshold value and the speed and the load are within defined limits within the control range. This can prevent the activation of the exhaust gas temperature control in unfavorable operating conditions.
  • a range is selected in which the exhaust gas temperature has a quasi-steady state.
  • a certain period of time is specified for the measurement window search and a check is carried out to determine whether the exhaust gas temperature exceeds predetermined limits in this period. If the limits are not exceeded, one speaks of a measurement window with a quasi-steady state of the measurement signal.
  • the measuring window is defined by the specified period (length of the measuring window) and by the temperature range covered during this period (height of the measuring window).
  • the measurement window is defined by the temperature range and the period in which the temperature lies within the selected temperature range.
  • the classes are classified based on various criteria. These are the length, area or height of the measuring window the gradient of the exhaust gas temperature curve or the number of turning points occurring in the exhaust gas temperature curve. Measuring windows of the same classes can have the same length in time with different heights, the same height with different lengths or with the same area different lengths with correspondingly different heights.
  • the usability of the measurement window can also be made dependent on its history, for example the course of the exhaust gas temperature or other recorded operating parameters. If a usable measurement window is found, the signals required for the control, such as e.g. B. speed, basic fuel mass value exhaust gas manifold temperature, engine temperature and possibly other quantities, in the averaging 33 formed the arithmetic mean values. All measurement data recorded within the measurement window limits can be used for averaging, or only part of the data is used.
  • the first correction element 34 calculates the exhaust gas temperature TA 'from the average measured exhaust gas temperature TAM, the average speed nM, the average fuel mass basic value MEM and the average exhaust manifold temperature TAKM.
  • This correction element includes the correction of the time behavior of the measured exhaust gas temperature.
  • the correction factor F is dependent on the load and speed. It is determined empirically and, if necessary, adjusted for long-term changes in the self-igniting internal combustion engine.
  • the correction element 42 in FIG. 4 has the same task as the correction element 34 in FIG. 3. From the measured exhaust gas temperature TA, speed n, basic fuel mass value ME and exhaust manifold temperature TAK, the correction element 42 calculates the exhaust gas temperature TA '. The calculation is carried out continuously via a model feedback, so that the control can also be carried out continuously. The measured variables are not averaged.
  • the adaptation to the current operating state of the engine is carried out by taking the average engine temperature TMM into account. Other variables such as the intake air temperature can also be taken into account.
  • the second correction element 36 supplies the corrected exhaust gas temperature TA ⁇ .
  • FIG. 4 shows a further possible embodiment of the exhaust gas temperature correction element 30.
  • All output signals of the measurement data acquisition and standardization 25 serve as input signals of the exhaust gas temperature correction element.
  • Four input signals are fed to the first correction element 42.
  • the second correction element 44 is acted upon by the output signal of the first correction element and the other input signals. It fulfills the same function as the correction element 36 in FIG. 3.
  • the output signal of the second correction element 44 also serves as the output signal of the exhaust gas temperature correction element 30.
  • the correction takes place depending on the class of the measurement window found.
  • the control parameters are selected depending on the class of the measurement window.
  • the exhaust manifold exchanges thermal energy with the exhaust gas. On the other hand, it releases thermal energy into the environment.
  • the exhaust manifold changes its temperature with the time constant zkr, which depends on the speed and the load.
  • the exhaust gas temperature TABG at the installation location of the thermocouple is lower in the steady state than the exhaust gas temperature TA 'at the exhaust valve, since part of the heat energy flows through the exhaust manifold to the environment.
  • the factor kkr describes this proportion. Because the exhaust gas exchanges heat energy with the exhaust manifold, the exhaust gas temperature at the installation location of the temperature sensor does not reach its steady-state value immediately after a load change, but rather a value which is determined by the factor x.
  • the factor (1 - x) denotes the exhaust gas temperature component that is missing from the stationary value. This value is reached when the heat energy inflow from the exhaust gas to the exhaust manifold is equal to the outflow from the manifold to the surroundings (see FIG. 2). When this flow equilibrium is reached, the exhaust manifold temperature also no longer changes.
  • the exhaust gas temperature TA measured by the temperature sensor is delayed by the inertia of the sensor. The time constant for this temperature change in the sensor is designated zf.
  • the correction model can thus be described by the following equations in the Laplace area.
  • TA TABG / (1 + zf * s)
  • TABG (1 - x) * TAK + x + TA ′
  • TAK kkr * TA ′ / (1 + zkr * s)
  • the calculation of the exhaust gas temperature TA ' is carried out in two stages. First TABG is determined from TA, then TA ′ is calculated from TABG and TAK. In order to reduce excessive noise when evaluating the recursion formula for TABG, the measured exhaust gas temperature signal is filtered in the measurement data acquisition and standardization 25. The recursion formula for TABG is obtained by transforming equation 3 into the time domain and by introducing the backward difference quotient. This is how you get the recursion formula.
  • TABG (k) TA (k) * (1 + zf / t) - TA (k-1) * zf / t
  • Equations 6 and 7 are evaluated in each calculation step.
  • the values of the previous calculation step k-1 are used for each calculation step k.
  • the model also contains the exhaust manifold temperature TAK as a state variable, the hardware expenditure can be reduced by dispensing with the measurement of TAK.
  • the exhaust manifold temperature TAK is calculated from the measured exhaust gas temperature TA. This means that the measurement of TAK can be dispensed with and TA 'can be determined from TA alone. Since two differentiations have to be made in the back calculation, an exact determination of the model parameters is kkr, x, zkr and zf and a smooth measurement signal of the thermocouple necessary.
  • TA ′ k (x * zkr / t * TA ′ k-1 + [(1 + (zkr + zf) / t + (zkr * zf) / t2)] * TA k + [(zkr + zf) / t + 2 * (zkr * zf) / t2] * TA k-1 + (zkr * zf) / t2) * TA k-2 ) / (kkr - x * kkr + x + x * zkr / t)
  • the exhaust gas temperature TA ' k is therefore a function of the last calculated exhaust gas temperature TA' k-1 and the three last measured exhaust gas temperatures TA k , TA k-1 and TA k-2 .
  • the model is adapted to the motor-vehicle combination using the four parameters zkr, zf, x and kkr.
  • the two time constants zkr and zf as well as the parameter x are determined from load jumps on the test bench, where x, as shown in Figure 2, is determined directly from the initial jump height. All parameters vary depending on the speed and load.
  • the continuously calculated exhaust gas temperature TA ' is adapted in the second correction element 44 to the engine temperature TM. This gives the corrected exhaust gas temperature TA ⁇ .
  • FIG. 5 shows possible exemplary embodiments of the controller 56.
  • the output signal T of the comparator 54 (FIG. 1) is supplied to either the controller 71 or the controller 72 depending on a load-dependent signal ME. These generate the adaptation variables AF1 or AF2 for the corresponding load range.
  • the controller 71 determines the adaptation variable AF1 as a function of T.
  • the controller 72 determines the adaptation variable AF2 as a function of T.
  • a separate controller is available for the upper and the lower load range, which calculates the adjustment variable which is most effective for this load range.
  • the adaptation variables are then used in all load ranges to calculate the fuel mass MEA to be injected.
  • a self-adjusting controller can also be used in each case.
  • Figure 5b shows such a self-adjusting controller. This can take the place of controller 71 or 72 of Figure 5a.
  • the controller 70 generates one of the adaptation variables which are supplied to the node 63 on the one hand and to the map 61 on the other.
  • the adaptation variable is stored weighted in the map 61 at the associated operating point.
  • the average speed nM and the average fuel mass value MEM define this operating point.
  • the evaluation circuit 60 processes the values of the map 61 according to a suitable strategy and stores the values in the map 62 and at the same time corrects the integral negotiation of the PI controller 70.
  • the evaluation circuit 60 can operate according to the following strategy, for example.
  • the evaluation circuit 60 is activated after a certain number of control windows found or a certain number of entries in the characteristic diagram 61.
  • the mean value is first formed from all the adjustment variables stored in the characteristic map 61, weighted.
  • This mean value forms the new integral value of the controller 70.
  • the difference between the mean value and all the adaptation variables stored in the map 61 at a specific operating point is stored in the map 62 at the same operating point. Map 61 is then deleted.
  • An operating point in the map 62 is defined by the fuel mass ME and the speed n.
  • the characteristic diagram 62 delivers an output signal depending on the instantaneous speed n and the load ME, which is led to the node 63 and is superimposed there on the respective adaptation variable.
  • This evaluation of the exhaust gas temperature can be used for one as well as for several signals, e.g. also for one or more exhaust gas temperature signals per cylinder, or separately for each cylinder. Special correction methods, which are adapted to the conditions of the respective installation site, can be used.
  • control can also be extended to the sequential influencing of certain cylinders.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Refgelsystem für eine selbstzündende Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1 vergleiche GB-A-2 111 255. Ein weiteres System zur Regelung von Betriebsparametern einer Brennkraftmaschine ist aus dem SAE-Paper 800167 "Electronic Control of Diesel Passenger Cars bekannt. Dort wird ein Regelsystem für eine selbstzündende Brennkraftmaschine beschrieben. Dieses enthält Sensoren für Betriebskenngrößen, ein elektronisches Steuergerät und ein Stellglied für die der Brennkraftmaschine zuzumessende Kraftstoffmenge. Dabei berechnet das Steuergerät abhängig von verschiedenen Betriebskenngrößen die der Brennkraftmaschine zuzumessende Kraftstoffmenge. Des weiteren ist aus der DE-OS 33 03 617 ein Regelsystem zur Regelung von Betriebsparametern einer selbstzündenden Brennkraftmaschine beschrieben. Dabei wird abhängig von der Differenz zwischen einem Sollwert der Abgastemperatur und einem vom Betriebszustand der Brennkraftmaschine abhängigen Istwert ein mengenbestimmendes Einstellorgan angesteuert. Ferner ist aus der DE-OS-31 49 095 eine Einrichtung bekannt, die abhängig von verschiedenen Betriebkenngrößen die einzuspritzende Kraftstoffmenge bestimmt. Dabei wird das Kraftstoffmengensignal abhängig von einem Abgastemperatursignal auf einen höchstzulässigen Wert begrenzt.
  • Bei diesen Verfahren können keinerlei Störeinflüsse, die die Betriebskenngrößen der Brennkraftmaschine beeinflussen, korrigiert werden.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem Regelsystem für eine selbstzündende Brennkraftmaschine der eingangs genannten Art, schädliche Störeinflüsse zu korrigieren.
  • Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Regelsystem mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß mittels eines Korrekturverfahrens die Abgastemperatur aus der gemessenen Abgastemperatur gewonnen wird. In das Korrekturverfahren gehen dabei verschiedene Betriebskenngrößen ein, die durch Störeinflüsse beeinflußt werden. Dadurch ist es möglich, äußere und innere Störeinflüsse auszuregeln.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung wird in den Zeichnungen dargestellt und im Beschreibungsteil näher erläutert. Es zeigen Figur 1 schematisch das Prinzip der Kraftstoffmassenregelung einer selbstzündenden Brennkraftmaschine, Figur 2 ein Schaubild zur Verdeutlichung der Korrektur des Zeitverhaltens der gemessenen Abgastemperatur, Figur 3 eine detaillierte Darstellung der stationären Meßwertverarbeitung, Figur 4 eine detallierte Darstellung der dynamischen Abgastemperaturkorrektur, Figur 5 zeigt mögliche Realisierungen des Reglers 56.
  • Beschreibung des Ausführungsbeispiels
  • Das Ausführungsbeispiel betrifft ein elektronisches Regelsystem für die pro Hub einzuspritzende Kraftstoffmasse einer selbstzündenden Brennkraftmaschine. Einem an sich bekannten Kraftstoffmassenregler 12 werden Signale abhängig von der Fahrpedalstellung FP und von verschiedenen Betriebskenngrößen y zugeführt. Dieser Kraftstoffmassenregler 12 erzeugt einen Kraftstoffmassengrundwert ME. Dieser wird zum einen der Meßdatenerfassung und Normierung 25 und zum anderen dem Korrekturglied 14 zugeführt. Mit dem Ausgangssignal MEA des Korrekturglieds wird ein mengenbestimmendes Stellglied 15 der Brennkraftmaschine 16, auf die verschiedene äußere und innere Störeinflüsse 18 einwirken, beaufschlagt. Von Sensoren erzeugte Signale von Betriebskenngrößen wie Motortemperatur TM, Abgaskrümmertemperatur TAK, Drehzahl n, gemessene Abgastemperatur TA und weitere Betriebskenngrößen x, wie z.B. die Ansauglufttemperatur, gelangen zur Meßdatenerfassung und Normierung 25, von wo sie zu einem Abgastemperaturkorrekturglied 30 weitergeleitet werden. Zwei Ausgangssignale der Meßdatenerfassung und Normierung gelangen zu einem Kennfeld 50. Die Ausgangssignale des Abgastemperaturkorrekturglieds 30 und des Kennfeldes 50 werden über einen Vergleicher 54 zum Regler 56 weitergeleitet. Der Regler 56 erhält ein weiteres Signal direkt von der Meßdatenerfassung und Normierung 25. Die Ausgangssignale des Reglers 56 gelangen zum Korrekturglied 14.
  • Die in Figur 1 dargestellte Regelung funktioniert nun wie folgt: Der Kraftstoffmassenregler 12 berechnet in Abhängigkeit von der Fahrpedalstellung, die den Fahrgeschwindigkeitswunsch des Fahrers wiederspiegelt und weiteren Betriebskenngrößen den Kraftstoffmassengrundwert ME. Dieses Signal ME wird zum einen zu der Meßdatenerfassung und Normierung 25 und zum anderen zu dem Korrekturglied 14 weitergeleitet. Das Korrekturglied berechnet mittels Anpaßgrößen AF1 und AF2, die von dem Regler 56 geliefert werden, ein Signal MEA zur Ansteuerung des Stellglieds 15. Dieses Signal wird dem mengenbestimmenden Stellglied 15 der Brennkraftmaschine zugeführt. Das Stellglied mißt der Brennkraftmaschine 16 die dem Ausgangssignal des Korrekturglieds 14 entsprechende Kraftstoffmasse zu. Auf die Brennkraftmaschine wirken verschiedene äußere und innere Störeinflüsse 18 wie Luftdruck, Alterung und weitere Einflüsse ein. Verschiedene Betriebskenngrößen wie Motortemperatur, Abgaskrümmertemperatur, gemessene Abgastemperatur, Motordrehzahl und weitere Größen werden durch Sensoren ermittelt und von der Meßdatenerfassung und Normierung 25 erfaßt und aufgearbeitet. Die von Meßdatenerfassung und Normierung 25 erfaßten Daten werden so aufgearbeitet, daß sie von einem elektronischen System weiterverarbeitet werden können. Die normierten Meßdaten werden zu dem Abgastemperaturkorrekturglied 30 weitergeleitet. Dieses Abgastemperaturkorrekturglied 30 berechnet aus der gemessenen Abgastemperatur TA die korrigierte Abgastemperatur TA˝ in Abhängigkeit der übrigen erfaßten Betriebskenngrößen der Brennkraftmaschine. Diese korrigierte Abgastemperatur dient als Istgröße und wird mit der Sollgröße der Abgastemperatur verglichen. Die Sollgröße wird einem Kennfeld 50 entnommen, das den Sollzusammenhang zwischen Sollabgastemperatur und verschiedenen Betriebskenngrößen, insbesondere der einzuspritzenden Kraftstoffmasse ME und der Motordrehzahl n, enthält. Ein solches Sollkennfeld kann, unter Verwendung definierter Umgebungs- und Betriebsbedingungen, durch Motor-Prüfstandsversuche repräsentativ für einen bestimmten Motortyp festgelegt werden.
  • Die Regelabweichung, die man durch den Vergleich von Ist- und Sollabgastemperatur erhält, wird dem Regler 56 zugeführt. Abhängig von der Regelabweichung und dem aktuellen Lastbereich, werden durch den Regler 56 additiv bzw. multiplikativ wirkende Anpaßgrößen erzeugt. In diesem Ausführungsbeispiel wirken zwei Größen. Eine Anpassungsgröße AF1 wird im unteren Lastbereich ermittelt und wirkt im gesamten Lastbereich additiv. Sie soll vorzugsweise den Einfluß von Alterungs- und Drifterscheinungen des Einspritzsystems ausgleichen. Die andere Anpaßgröße AF2 wird im oberen Lastbereich ermittelt und wirkt im gesamten Lastbereich multiplikativ. Sie soll vorwiegend äußere Einflüsse, wie Luftdruck und Lufttemperatur, ausgleichen. Das Korrekturglied 14 bestimmt in Abhängigkeit von dem vom Regler 12 berechneten Kraftstoffmassengrundwert ME und den Anpaßgrößen die angepaßte einzuspritzende Kraftstoffmasse MEA, nach folgender Formel: MEA = AF2 * ME + AF1
    Figure imgb0001
  • Werden nicht in jedem Zeitraum und jedem Betriebszustand Anpassungsgrößen erzeugt, so werden die Anpaßgrößen zur Steuerung der einzuspritzenden Kraftstoffmasse pro Hub verwendet, die vor diesem Zeitraum ermittelt wurden. Die Anpassungsgrößen werden vorzugsweise so von dem Regler 56 gespeichert, daß sie auch nach dem Ausschalten des Fahrzeuges zur Verfügung stehen. Auf diese Weise stehen die zuletzt ermittelten Anpassungsgrößen bei erneutem Einschalten sofort wieder zur Verfügung.
  • Figur 2 dient zur Verdeutlichung des Abgaskorrekturverfahrens. Das Diagramm zeigt den Temperaturverlauf verschiedener Temperatursensoren und der wahren Abgastemperatur bei plötzlicher positiver Laständerung. In der Skizze sind die Einbauorte des Abgastemperatursensors 37 und des Abgaskrümmertemperatursensors 38 im Abgaskrümmer 40 eingezeichnet. Die Abgastemperatur TA′ folgt der Laständerung unverzüglich. Die im Abgasstrom gemessene Abgastemperatur TA folgt der Laständerung nur mit einer Verzögerung. Die Abgaskrümmertemperatur TAK ist nach positivem Lastsprung kleiner als die gemessene Abgastemperatur. Aus der Differenz zwischen gemessener Abgastemperatur TA und der Abgaskrümmertemperatur TAK wird die Abgastemperatur TA′ berechnet. Der Korrekturfaktor F ist abhängig von Last und Drehzahl der Brennkraftmaschine. Er wird experimentiell ermittelt. Die Berechnung der Abgastemperatur TA′ erfolgt mit folgender Formel: TA′ = TA + F * (TA - TAK)
    Figure imgb0002
  • Diese Formel gilt sowohl für die gemessenen Größen als auch die gemittelten Größen (TAM, TAKM)
  • Figur 3 zeigt eine spezielle Ausführung des Abgastemperaturkorrekturgliedes 30. Die Eingangssignale wie gemessene Abgastemperatur TA, Drehzahl n, Kraftstoffmassengrundwert ME, Abgaskrümmertemperatur TAK und der Motortemperatur TM gelangen direkt zur Mittelwertbildung 33. Das Drehzahlsignal und ein Signal über die einzuspritzende Kraftstoffmasse ME werden der Regelbereichsuche 31 zugeführt. Das Ausgangssignal der Regelbereichsuche, die gemessene Abgastemperatur TA und eventuel weitere Größen wie die Zeit dienen als Eingangssignal für die Meßfenstersuche 32. Deren Ausgangssignale gelangen direkt zur Mittelwertbildung 33. Ein Teil der Ausgangssignale der Mittelwertbildung gelangt zum ersten Korrekturglied 34. Dessen Ausgangssignal und die restlichen Ausgangssignale der Mittelwertbildung werden einem zweiten Korrekturglied 36 zugeführt. Dessen Ausgangssignal dient als Ausgangssignal des Abgastemperaturkorrekturgliedes 30.
  • Das Abgastemperaturkorrekturglied 30 hat folgende Funktion. Als Eingangssignale des Korrekturgliedes dienen alle Ausgangssignale der Meßdatenerfassung und Normierung 25. Die Regelbereichsuche 31 wählt einen durch untere und obere Drehzahl- und Lastgrenzen vorgegebenen Regelbereich aus. Die obere Drehzahlgrenze und, oder die obere Lastgrenze kann auch entfallen. Nur innerhalb dieser Grenzwerte (Regelbereich) wird die Brennkraftmaschine geregelt, außerhalb des Regelbereichs wird sie gesteuert, die Reglerstellgröße bleibt auch bei ausgeschaltetem Regler erhalten.
  • Die Meßfenstersuche 32 sucht im Verlauf der gemessenen Abgastemperatur TA nach einem Meßfenster mit quasistationärem Zustand im Sekundenbereich. Die Bildung eines Meßfensters erfolgt erst, wenn die Motortemperatur einen bestimmten Schwellwert übersteigt, und die Drehzahl und die Last innerhalb festgelegter Grenzwerte dem Regelbereich liegen. Dadurch kann die Aktivierung der Abgastemperaturregelung bei ungünstigen Betriebsbedingungen verhindert werden. Es wird ein Bereich ausgewählt in dem die Abgastemperatur einen quasistationären Zustand besitzt.
  • Zur Meßfenstersuche wird ein bestimmter Zeitraum vorgegeben und überprüft ob in diesem Zeitraum die Abgastemperatur vorgegebene Grenzen überschreited. Werden die Grenzen nicht überschritten, so spricht man von einem Meßfenster mit quasistationärem Zustand des Meßsignals. Das Meßfenster ist durch den vorgegebenen Zeitraum (Länge des Meßfensters) und durch den in diesem Zeitraum überstrichenen Temperaturbereich (Höhe des Meßfensters) definiert.
  • Es ist aber auch möglich einen bestimmten Temperaturbereich für die Bildung des Meßfensters vorzugeben und die Zeit zu erfassen, während der die Abgastemperatur in dem bestimmten Bereich liegt. Auch in diesem Fall ist das Meßfenster durch den Temperaturbereich und den Zeitraum, in dem die Temperatur innerhalb des gewählten Temperaturbereichs liegt, definiert.
  • Besonders vorteilhaft ist es, die Meßfenster in verschiedene Klassen einzuteilen. Die Einteilung der Klassen erfolgt anhand verschiedener Kriterien. Dies sind die Länge, Fläche oder die Höhe des Meßfensters b.z.w. die Steigung des Abgastemperaturverlaufs oder die Anzahl der im Abgastemperaturverlauf auftretenden Wendepunkte. Meßfenster der gleichen Klassen können die gleiche zeitliche Länge bei unterschiedlicher Höhe, die gleiche Höhe bei unterschiedlicher Länge oder bei gleicher Fläche unterschiedliche Längen bei entsprechend unterschiedlichen Höhen haben.
  • Die Verwendbarkeit des Meßfensters kann zusätzlich von dessen Vorgeschichte, z.B. dem Verlauf der Abgastemperatur oder weiterer erfaßter Betriebskenngrößen, abhängig gemacht werden. Ist ein verwendbares Meßfenster gefunden, werden von den für die Regelung benötigten Signalen, wie z. B. Drehzahl, Kraftstoffmassengrundwert Abgaskrümmertemperatur,der Motortemperatur und eventuel weiterer Größen, in der Mittelwertbildung 33 die arithmetischen Mittelwerte gebildet. Zur Mittelwertbildung können alle innerhalb der Meßfenstergrenzen erfaßten Meßdaten verwendet werden, oder es findet nur ein Teil der Daten Verwendung.
  • Aus der gemittelten gemessenen Abgastemperatur TAM, der mittleren Drehzahl nM, dem mittleren Kraftstoffmassengrundwerts MEM und der mittleren Abgaskrümmertempertur TAKM errechnet das erste Korrekturglied 34 die Abgastemperatur TA′. Dieses Korrekturglied beinhaltet die Korrektur des Zeitverhaltens der gemessenen Abgastemperatur. Mit Hilfe des Korrekturfaktors F und der Temperaturdifferenz zwischen mittlerer Abgastemperatur TAM und der mittleren Abgaskrümmertemperatur TAKM wird mittels der Formel 2 die Abgastemperatur TA′ errechnet. Der Korrekturfaktor F ist last- und drehzahlabhängig. Er wird empirisch ermittelt und bei Bedarf an Langzeitänderungen der selbstzündenden Brennkraftmaschine angeglichen.
  • Das Korrekturglied 42 in Figur 4 hat diesselbe Aufgabe wie das Korrekturglied 34 in Figur 3. Aus gemessener Abgastemperatur TA, Drehzahl n, Kraftstoffmassengrundwert ME und Abgaskrümmertemperatur TAK berechnet das Korrekturglied 42 die Abgastemperatur TA′. Die Berechnung erfolgt kontinuierlich über eine Modellrückführung, so daß auch die Regelung kontinuierlich erfolgen kann. Es folgt keine Mittelwertbildung der Meßgrößen.
  • Im zweiten Korrekturglied 36 wird durch Berücksichtigung der mittleren Motortemperatur TMM die Anpassung an den aktuellen Betriebszustand des Motors vorgenommen. Es können auch weitere Größen wie die Ansauglufttemperatur berücksichtigt werden. Das zweite Korrekturglied 36 liefert die korrigierte Abgastemperatur TA˝.
  • Figur 4 zeigt eine weitere mögliche Ausgestaltung des Abgastemperaturkorrekturgliedes 30. Alle Ausgangssignale der Meßdatenerfassung und Normierung 25 dienen als Eingangssignale des Abgastemperaturkorrekturgliedes. Vier Eingangssignale werden dem ersten Korrekturglied 42 zugeleitet. Das zweite Korrekturglied 44 wird mit dem Ausgangssignal des ersten Korrekturglieds und den übrigen Eingangssignalen beaufschlagt. Es erfüllt die gleiche Funktion wie das Korrekturglied 36 der Figur 3. Das Ausgangssignal des zweiten Korrekturgliedes 44 dient gleichzeitig auch als Ausgangssignal des Abgastemperaturkorrekturgliedes 30. Die Korrektur erfolgt abhängig von der Klasse des gefundenen Meßfensters. Die Regelparameter werden abhängig von der Klasse des Meßfensters gewählt.
  • Den Gleichungen liegt folgendes Modell zugrunde:
  • Der Abgaskrümmer tauscht mit dem Abgas Wärmeenergie us. Auf der anderen Seite gibt er Wärmeenergie an die Umgebung ab. Der Abgaskrümmer ändert seine Temperatur mit der Zeitkonstanten zkr, die von der Drehzahl und der Last abhängt. Die Abgastemperatur TABG am Einbauort des Thermoelements ist im eingeschwungenen Zustand niedriger als die Abgastemperatur TA′ am Auslaßventil, da ein Teil der Wärmeenergie über den Abgaskrümmer an die Umgebung abfließt. Diesen Anteil beschreibt der Faktor kkr. Dadurch, daß das Abgas mit dem Abgaskrümmer Wärmeenergie austauscht, erreicht die Abgastemperatur am Einbauort des Temperaturssensors nicht sofort nach einer Laständerung ihren Stationärwert, sondern einen Wert, der durch den Faktor x bestimmt wird. Der Faktor (1 - x) bezeichnet den Abgastemperaturanteil, der zum stationären Wert fehlt. Dieser Wert ist dann erreicht, wenn der Wärmeenergiezufluß vom Abgas zum Abgaskrümmer gleich dem Abfluß vom Krümmer zur Umgebung ist (siehe Figur 2). Wenn dieses Fließgleichgewicht erreicht ist, ändert sich auch die Abgaskrümmertemperatur nicht mehr. Die vom Temperatursensor gemessene Abgastemperatur TA wird durch die Trägheit des Sensors verzögert. Die Zeitkonstante für diese Temperaturänderung des Sensors wird mit zf bezeichnet. Das Korrekturmodell läßt sich damit durch folgende Gleichungen im Laplace-Bereich beschreiben. TA = TABG/(1 + zf * s)
    Figure imgb0003
    TABG = (1 - x) * TAK + x + TA′
    Figure imgb0004
    TAK = kkr * TA′/(1 + zkr * s)
    Figure imgb0005
  • Die Berechnung der Abgastemperatur TA′ wird in zwei Stufen durchgeführt. Zunächst wird TABG aus TA bestimmt, danach erfolgt die Berechnung von TA′ aus TABG und TAK. Um ein zu großes Rauschen bei der Auswertung der Rekursionsformel für TABG zu verringern, wird das gemessene Abgastemperatursignal in der Meßdatenerfassung und Normierung 25 gefiltert. Die Rekursionsformel für TABG erhält man durch Transformation der Gleichung 3 in den Zeitbereich, und durch Einführen des rückwärtigen Differenzenquotienten. So erhält man die Rekursionsformel. TABG(k) = TA(k) * (1 + zf/ t) - TA(k-1) * zf/ t
    Figure imgb0006
  • Aus Gleichung 4 ergibt sich: TA′ = (TABG - (1 - x) * TAK) / x
    Figure imgb0007
  • In jedem Rechenschritt werden die Gleichungen 6 und 7 ausgewertet. Dabei werden für jeden Rechenschritt k die Werte des vorhergehenden Rechenschritts k-1 verwendet.
  • Da das Modell auch die Abgaskrümmertemperatur TAK als Zustandsgröße enthält, kann der Hardwareaufwand dadurch reduziert werden, daß man auf die Messung von TAK verzichtet. Dazu wird die Abgaskrümmertemperatur TAK aus der gemessenen Abgastemperatur TA berechnet. Damit kann auf die Messung von TAK verzichtet und TA′ allein aus TA bestimmt werden. Da bei der Rückrechnung zweimal differenziert werden muß, ist eine genaue Bestimmung der Modellparameter kkr, x, zkr und zf sowie ein möglichst glattes Meßsignal des Thermoelements notwendig. Dann kann aus den Gleichungen 3 bis 5 eine Bestimmungsgleichung 8 für TA′ abgeleitet werden: TA′ k = (x * zkr/ t * TA′ k-1 + [(1 + (zkr + zf)/ t + (zkr * zf)/ t²)] * TA k + [(zkr + zf)/ t + 2 * (zkr * zf)/ t²] * TA k-1 + (zkr * zf)/ t²) * TA k-2 )/(kkr - x * kkr + x + x * zkr/ t)
    Figure imgb0008
  • Die Abgastemperatur TA′k ist also eine Funktion der letzten berechnten Abgastemperatur TA′k-1 sowie der drei letzten gemessenen Abgastemperaturen TAk, TAk-1 und TAk-2.
  • Mit Hilfe der vier Parameter zkr, zf, x und kkr wird das Modell an die Motor-Fahrzeug-Kombination angepaßt. Die beiden Zeitkonstanten zkr und zf sowie der Parameter x werden aus Lastsprüngen am Prüfstand bestimmt, wobei x, wie in Figur 2 gezeigt, direkt aus der Anfangssprunghöhe bestimmt wird. Alle Parameter variieren drehzahl- und lastabhängig. Der Faktor kkr in Formel 8 wird aus den Stationärwerten von Krümmertemperatur TAK und gemessener Abgastemperatur TA bestimmt. Im eingeschwungenen Zustand vereinfacht sich das Modell wie folgt: TABG = TA = x * TA′ + (1 - x) * TAK
    Figure imgb0009
  • Daraus ergibt sich die Bestimmungsgleichung für den Parameter kkr: TA = (x/kkr + 1 - x) * TAK
    Figure imgb0010
  • Die kontinuierlich berechnete Abgastemperatur TA′ wird im zweiten Korrekturglied 44 an die Motortemperatur TM angepaßt. Dadurch erhält man die korrigierter Abgastemperatur TA˝.
  • Figur 5 zeigt mögliche Ausführungsbeispiele des Reglers 56. Das Ausgangssignal T des Vergleichers 54 (Figur 1) wird abhängig von einem lastabhängigen Signal ME, entweder dem Regler 71 oder dem Regler 72 zugeführt. Diese erzeugen die Anpaßgrößen AF1 oder AF2 für den entsprechenden Lastbereich. Bei großer Last, der Mittelwert des Kraftstoffmassengrundwertes MEM liegt über einer bestimmten Schwelle, bestimmt der Regler 71 abhängig von T die Anpaßgröße AF1. Bei kleiner Last, der Mittelwert des Kraftstoffmassengrundwertes liegt unterhalb der Schwelle, bestimmt der Regler 72 abhängig von T die Anpaßgröße AF2. Für den oberen und den unteren Lastbereich ist ein separater Regler vorhanden, der die für diesen Lastbereich am stärksten wirkende Anpaßgröße berechnet. Die Anpaßgrößen werden dann in allen Lastbereichen zur Berechnung der einzuspritzenden Kraftstoffmasse MEA verwendet.
  • Statt der PI-Regler 71 und 72 kann auch jeweils ein selbstanpassender Regler verwendet werden. Figur 5b zeigt einen solchen selbstanpassenden Regler. Dieser kann an die Stelle der Regler 71 oder 72 von Figur 5a treten. Der Regler 70 erzeugt eine der Anpaßgrößen die zum einen dem Verknüpfungspunkt 63 und zum anderen dem Kennfeld 61 zugeführt werden. Die Anpaßgröße wird in dem Kennfeld 61 an dem zugehörigen Betriebspunkt gewichtet abgespeichert. Die mittlere Drehzahl nM und der mittlere Kraftstoffmassengrundwert MEM definieren diesen Betriebspunkt. Die Auswerteschaltung 60 arbeitet die Werte des Kennfeldes 61 nach einer geeigneten Strategie um und speichert die Werte ins Kennfeld 62 ab und korrigiert gleichzeitig das integrale Verhanden des PI-Reglers 70.
  • Die Auswerteschaltung 60 kann z.B. nach folgender Strategie arbeiten. Die Auswerteschaltung 60 wird nach einer bestimmten Anzahl von gefundenen Regelfenstern, oder einer bestimmten Anzahl von Einträgen in das Kennfeld 61 aktiviert. Es wird zuerst von allen im Kennfeld 61 gewichtet abgespeicherten Anpaßgrößen der Mittelwert gebildet.
  • Dieser Mittelwert bildet den neuen Integralwert des Reglers 70. Die Differenz zwischen Mittelwert und allen im Kennfeld 61 an einem bestimmten Betriebspunkt abgespeicherten Anpaßgrößen wird am gleichen Betriebspunkt im Kennfeld 62 gespeichert. Anschließend wird Kennfeld 61 gelöscht. Durch die Kraftstoffmasse ME und die Drehzahl n wird ein Betriebspunkt im Kennfeld 62 definiert. Das Kennfeld 62 liefert abhängig von Momentandrehzahl n und Last ME ein Ausgangssignal das zum Verknüpfungspunkt 63 geführt wird, und dort der jeweiligen Anpaßgröße überlagert wird.
  • Diese Auswertung der Abgastemperatur kann sowohl für ein als auch für mehrere Signale angewendet werden, so z.B. auch für ein oder mehrere Abgastemperatursignale pro Zylinder, oder auch für jeden Zylinder separat. Dabei können spezielle Korrekturverfahren, die den Verhältnissen der jeweiligen Einbaustelle angepaßt sind, zur Verwendung kommen.
  • Die Realisierung des beschriebenen Regelsystems mit diskreten Bauteilen oder mit einem Mikrocomputer stellt für den Fachmann kein Problem dar.
  • Der Aufgabenbereich der Regelung kann auch auf die sequentielle Beeinflussung bestimmter Zylinder ausgedehnt werden.

Claims (13)

1. Regelsystem für eine Brennkraftmaschine mit Selbstzündung, mit Sensoren für Betriebskenngrößen, einem elektronischen Steuergerät (12,) sowie einem nachgeschalteten Stellglied (15) für die der Brennkraftmaschine (16) zuzuführende Kraftstoffmasse, wobei im Steuergerät (12) abhängig von wenigstens der Drehzahl und der Fahrpedalstellung ein Kraftstoffmassengrundwert (ME) berechnet wird, der anschließend korrigiert wird, wobei die Korrektur abhängig von einem von Betriebskenngrößen beeinflußten Abgastemperatursignal erfolgt, wobei das Abgastemperatursignal aus dem Vergleich eines korrigierten Abgastemperatursignals (TA˝) mit einem Abgastemperatursollwert (TA) gewonnen wird, dadurch gekennzeichnet, daß der Abgastemperatursollwert (TA) einem Kennfelt (50) entnommen wird, das den Sollzusammenhang zwischen einzuspritzender Kraftstoffmasse (ME), resultierender Abgastemperatur (TA) und wenigstens einer weiteren Betriebskenngröße (n) enthält.
2. Regelsystem nach Anspruch 1, dadurch gekennzeichnet, daß ein wenigstens PI-Verhalten aufweisender Regler (56) aus der durch den Vergleich entstehenden Regelabweichung, abhängig von der aktuellen Last, wenigstens eine Anpassungsgröße (AF1, AF2), mit der die einzuspritzende Kraftstoffmasse pro Hub beeinflußt wird, erzeugt.
3. Regelsystem nach Anspruch 1 und 2, dadurch gekennzeichnet, daß eine additive Anpaßgröße, mit der vorzugsweise innere Einflüsse ausgeglichen werden, im unteren Lastbereich ermittelt wird und im gesamten Lastbereich additiv wirkt.
4. Regelsystem nach Anspruch 1 und 2, dadurch gekennzeichnet, daß eine multiplikative Anpaßgröße, mit dem vorzugsweise äußere Einflüsse ausgeglichen werden, im oberen Lastbereich ermittelt wird und im gesamten Lastbereich multiplikativ wirkt.
5. Regelsystem nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Anpaßgrößen vorzugsweise so gespeichert werden, daß sie nach dem Ausschalten des Fahrzeuges oder dem Ausfall der Spannungsversorgung ihre Information behalten, und nach der Wiederinbetriebnahme sofort wieder zur Verfügung stehen.
6. Regelsystem nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei einem stationären Korrekturverfahren nach einem Regelbereich und einem Meßfenster, in dessen Verlauf die gemessene Abgastemperatur quasistationär ist, gesucht wird (Meßfenstersuche 32).
7. Regelsystem nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein Meßfenster abhängig von wenigstens einer der Größen gewünschtem Zeitraum, Größe der Abgastemperatur, Verlauf der Abgastemperatur oder der Vorgeschichte der Abgastemperatur gebildet wird.
8. Regelsystem nach Anspruch 7, dadurch gekennzeichnet, daß die Meßfenster in verschiedene Klassen eingeteilt werden , und die Korrektur abhängig von diesen Klassen erfolgt.
9. Regelsystem nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß von den für die Regelung benötigten Betriebskenngrößen arithmetische Mittelwerte, unter Verwendung mindestens eines Teils der innerhalb des Meßfenster erfaßten Betriebskenngrößen, gebildet werden.
10. Regelsystem nach wenigstens einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß in einem ersten Schritt des Korrekturverfahrens, mittels mindestens einem Korrekturfaktor, der empirisch ermittelt werden kann, eine Abgastemperatur berechnet wird, die in einem zweiten Schritt an wenigstens eine weitere aktuelle Betriebskenngröße angepaßt wird.
11. Regelsystem nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei einem dynamischen Korrekturverfahren, die momentane vom Abgastemperatursensor gemessene Abgastemperatur mittels eines thermodynamischen Modells laufend ausgewertet wird, und die korrigierte Abgastemperatur durch Anpassen an weitere Betriebskenngrößen gewonnen wird.
12. Regelsystem nach wenigstens einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß die Anpaßgrößen in einem Kennfeld abgespeichert werden und damit an jedem Betriebspunkt zur Verfügung stehen.
13. Regelsystem nach Anspruch 12, dadurch gekennzeichnet, daß das integrale Verhalten des Reglers von den Anpaßgrößen abhängig ist.
EP89111045A 1988-07-01 1989-06-19 Regelsystem für eine Brennkraftmaschine Expired - Lifetime EP0349811B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3822245 1988-07-01
DE3822245 1988-07-01

Publications (2)

Publication Number Publication Date
EP0349811A1 EP0349811A1 (de) 1990-01-10
EP0349811B1 true EP0349811B1 (de) 1992-03-04

Family

ID=6357722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89111045A Expired - Lifetime EP0349811B1 (de) 1988-07-01 1989-06-19 Regelsystem für eine Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP0349811B1 (de)
JP (1) JPH0264251A (de)
DE (1) DE58900907D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000432B4 (de) * 2006-08-09 2014-08-07 Denso Corporation Unverbrannter-Kraftstoff-Mengenabschätzvorrichtung in einer Kraftmaschine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59009588D1 (de) * 1990-03-17 1995-10-05 Bosch Gmbh Robert Fehlerkorrigiertes Regelsystem.
US5082797A (en) * 1991-01-22 1992-01-21 Micron Technology, Inc. Method of making stacked textured container capacitor
JPH08270477A (ja) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd エンジンの排気脈動制御装置
US7024301B1 (en) * 2005-01-14 2006-04-04 Delphi Technologies, Inc. Method and apparatus to control fuel metering in an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3149095A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer die kraftstoffmenge einer brennkraftmaschine mit selbstzuendung
DE3204804A1 (de) * 1982-02-11 1983-08-18 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer eine dieseleinspritzanlage einer brennkraftmaschine
DE3303617A1 (de) * 1983-02-03 1984-08-09 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und einrichtung zur regelung von betriebsparametern einer selbstzuendenden brennkraftmaschine
FR2567962B1 (fr) * 1984-07-23 1989-05-26 Renault Procede adaptatif de regulation de l'injection d'un moteur a injection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE-paper 800167 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000432B4 (de) * 2006-08-09 2014-08-07 Denso Corporation Unverbrannter-Kraftstoff-Mengenabschätzvorrichtung in einer Kraftmaschine

Also Published As

Publication number Publication date
DE58900907D1 (de) 1992-04-09
EP0349811A1 (de) 1990-01-10
JPH0264251A (ja) 1990-03-05

Similar Documents

Publication Publication Date Title
DE19606652B4 (de) Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE3408215C2 (de)
EP0154710B1 (de) Einrichtung zur Steuerung von Maschinenvariablen
DE102007012604B4 (de) Verfahren zum Regeln einer Einspritzung eines Injektors einer direkteinspritzenden Verbrennungskraftmaschine und direkteinspritzende Verbrennungskraftmaschine
DE3015832A1 (de) Verfahren und vorrichtung zum steuern und/oder regeln der luftmengenzufuhr bei verbrennungskraftmaschinen
DE4115211A1 (de) Elektronisches steuersystem fuer die kraftstoffzumessung bei einer brennkraftmaschine
DE4207541B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102011085115A1 (de) Verfahren und Vorrichtung zur Adaption einer Lambdaregelung
WO2005078263A1 (de) Verfahren zur zylindergleichstellung bezüglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
EP0151768B1 (de) Kraftstoff-Luft-Gemischzumesssystem für eine Brennkraftmaschine
DE4344960A1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
WO2013171015A1 (de) Verfahren und steuereinheit zur kompensation eines spannungsoffsets einer zweipunkt-lambdasonde
DE3840247A1 (de) Messvorrichtung fuer das luft-kraftstoff-mischungsverhaeltnis fuer eine brennkraftmaschine
DE4029537A1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgroesse einer brennkraftmaschine
EP1329627B1 (de) Verfahren und Vorrichtung zum Steuern einer Bauteilschutzfunktion
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
DE19836845A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
EP1347165B1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
EP0349811B1 (de) Regelsystem für eine Brennkraftmaschine
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4344633B4 (de) Lasterfassung mit Diagnose bei einer Brennkraftmaschine
DE19931823A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
DE3919877A1 (de) Regelsystem fuer eine brennkraftmaschine
EP0150437B1 (de) Kraftstoff-Luft-Gemischzumesssystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19900531

17Q First examination report despatched

Effective date: 19910208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58900907

Country of ref document: DE

Date of ref document: 19920409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990826

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403