EP2728279A1 - Climatiseur - Google Patents
Climatiseur Download PDFInfo
- Publication number
- EP2728279A1 EP2728279A1 EP13191783.3A EP13191783A EP2728279A1 EP 2728279 A1 EP2728279 A1 EP 2728279A1 EP 13191783 A EP13191783 A EP 13191783A EP 2728279 A1 EP2728279 A1 EP 2728279A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- lubricant
- accumulator
- compressor
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 155
- 239000000314 lubricant Substances 0.000 claims abstract description 93
- 239000007788 liquid Substances 0.000 claims abstract description 78
- 238000000926 separation method Methods 0.000 claims abstract description 18
- 238000002156 mixing Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 6
- 239000003921 oil Substances 0.000 description 33
- 238000004781 supercooling Methods 0.000 description 11
- 238000005461 lubrication Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
- F25B31/004—Lubrication oil recirculating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/006—Accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/06—Damage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/16—Lubrication
Definitions
- the present invention relates to an air conditioner.
- a known technique uses an HFC (Hydro Fluorocarbon) refrigerant as a refrigerant for an air conditioner and PVE (Polyvinylether) oil compatible with the refrigerant as refrigerating machine oil (Patent Literature 1).
- PVE Polyvinylether
- a known technique sets refrigerant quality on the suction side of the compressor at 0.65 or more and 0.85 or less to reduce the discharge temperature (Patent Literature 2).
- R32 serving as an HFC refrigerant has been expected to be an environmentally-friendly refrigerant.
- the compatibility of the refrigerant R32 reduces with a low lubricant mixing ratio, which causes an area where the mixture of the refrigerant R32 and the lubricant is separated into the two layers of the lubricant and a liquid refrigerant.
- a refrigerant R32 is controlled to have less refrigerant quality on the suction side of a compressor than a conventional refrigerant R410A. Accordingly, when the R32 is used, a lubricant mixing ratio in the mixture of a liquid refrigerant and a lubricant inside an accumulator provided on the suction side of the compressor becomes low. For this reason, two-layer separation is likely to occur between the liquid refrigerant and the lubricant inside the accumulator, which makes it difficult to return the lubricant to the compressor. Thus, due to a shortage of the lubricant in the compressor, a problem such as improper lubrication is caused. As a result, reliability is decreased.
- an object of the present invention to provide an air conditioner capable of preventing the two-layer separation between a liquid refrigerant and a lubricant and reducing the occurrence of improper lubrication.
- an air conditioner according to the present invention is the air conditioner in which an indoor unit and an outdoor unit are connected to each other via a pipe to circulate a refrigerant, characterized in that a refrigerant made of only R32 or a mixed refrigerant containing a predetermined mass percent or more of the R32 is used as the refrigerant, and the refrigerant mixed with a predetermined level or more of a lubricant to prevent an occurrence of two-layer separation between a liquid refrigerant and the lubricant is supplied to a compressor of the outdoor unit.
- the outdoor unit may include the compressor, an oil separator connected to an discharge side of the compressor and configured to separate and collect oil from the refrigerant discharged from the compressor, an accumulator connected to an inflow side of the compressor, configured to separate the liquid refrigerant from the refrigerant and accumulate the same, and configured to supply a gas refrigerant to the compressor, and a supply oil amount control unit configured to return the lubricant separated by the oil separator to the accumulator to control a lubricant mixing ratio in a mixture of the liquid refrigerant and the lubricant accumulated in the accumulator to a predetermined level or more.
- a refrigerant mixed with a predetermined level or more of a lubricant is supplied to a compressor in a case in which the refrigerant containing at least predetermined mass percent or more of R32 serving as an HFC refrigerant is used.
- the mixing ratio of the lubricant is set at the predetermined level or more.
- the lubricant separated by an oil separator connected to the discharge side of the compressor is returned to the accumulator so as to satisfy a predetermined condition.
- the mixed refrigerant containing 70 mass percent or more of the R32 is used. This is because the mixed refrigerant with a ratio of 70 mass percent or more of the R32 becomes equal to the R32 in characteristics such as GWP levels, suction wetness, and compatibility with the oil.
- the control of the mixing ratio of the lubricant in the mixture of the refrigerant R32 and the lubricant inside the accumulator it is possible to prevent the two-layer separation between the liquid refrigerant and the lubricant inside the accumulator.
- FIG. 1 shows a configuration example of the refrigeration cycle of an air conditioner 1 according to the embodiment.
- the refrigeration cycle of the air conditioner 1 includes at least one outdoor unit 100 and at least one indoor unit 200.
- a plurality of indoor units 200A and 200B are shown in FIG. 1 , but they are called the indoor units 200 unless otherwise classified.
- FIG. 1 shows a case in which one outdoor unit 100 and two indoor units 200 are connected to each other.
- the refrigerant cycle may include two or more outdoor units 100 and three or more indoor units 200 connected to each other.
- the outdoor unit 100 includes, for example, an outdoor heat exchanger 101, an outdoor fan 102, an outdoor expansion valve 103, a compressor 104, an accumulator 105, an oil separator 106, an oil return capillary 107, a four-way valve 108, a supercooling heat exchanger 109, a supercooling bypass expansion valve 110, and pipes 112 to 117.
- Each of the indoor units 200 includes, for example, an indoor heat exchanger 201, an indoor fan 202, and an indoor expansion valve 203.
- the outdoor unit 100 and the indoor units 200 are connected to each other by a liquid pipe 121 and a gas pipe 302.
- a refrigerant made of only R32 or a mixed refrigerant containing 70 mass percent or more of the R32 is used.
- the compressor 104 includes, for example, a crankcase and a compressor main body (both not shown) provided inside the crankcase, and a lubricant is accumulated at the bottom of the crankcase.
- a lubricant is accumulated at the bottom of the crankcase.
- the lubricant inside the crankcase is pumped up by the pumping action and supplied to a part where lubrication is required. Some of the lubricant is discharged to the discharge pipe 112 together with the refrigerant.
- a low-pressure gaseous refrigerant flows in the compressor 104 from the accumulator 105 via the pipe 117.
- the compressor 104 compresses the refrigerant to discharge a high-temperature and high-pressure gaseous refrigerant from the discharge port.
- the high-pressure gaseous refrigerant discharged from the discharge port of the compressor 104 into the pipe 112 flows in the oil separator 106 via the pipe 112.
- the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 104 contains the lubricant.
- the oil separator 106 collects the lubricant contained in the high-pressure gaseous refrigerant and returns the collected lubricant to the accumulator 105 via the oil return capillary 107 and the pipe 116.
- the pipe 116 is a pipe used to connect the port on the compressor inflow port side of the four-way valve 108 and the inflow port of the accumulator 105 to each other.
- the oil return capillary 107 as an example of a "supply oil amount control unit” is a unit used to control the flow and pressure of the lubricant returned from the oil separator 106 to the accumulator 105.
- the four-way valve 108 is a direction switch valve used to select whether the high-pressure gaseous refrigerant is introduced into the outdoor heat exchanger 101 or the indoor heat exchangers 201 inside the indoor units 200. During a cooling operation, the four-way valve 108 causes the high-pressure gaseous refrigerant to flow in a direction as indicated by an arrow C in FIG. 1 .
- the high-pressure gaseous refrigerant flows in the outdoor heat exchanger 101 serving as a condenser via the pipe 113 that connects the port on the outdoor heat exchanger side of the four-way valve 108 and the suction side of the outdoor heat exchanger 101 to each other.
- the high-temperature and high-pressure gaseous refrigerant When passing through the outdoor heat exchanger 101, the high-temperature and high-pressure gaseous refrigerant is heat-exchanged with outdoor air supplied by the outdoor fan 102 for condensation and converted to a high-temperature and high-pressure liquid refrigerant (liquid refrigerant).
- the high-temperature and high-pressure liquid refrigerant flows in the outdoor expansion valve 103 via the pipe 114 connected to the exit side of the outdoor heat exchanger 101.
- a low-pressure liquid refrigerant flowing out from the outdoor expansion valve 103 is branched off. Among the branched liquid refrigerant, some flows in the supercooling bypass expansion valve 110 while other flows in a pipe 301 after being further cooled via the supercooling heat exchanger 109.
- the pipe 301 is a pipe used to connect the heat exchanger 101 of the outdoor unit 100 and the heat exchangers 201 of the indoor units 200 to each other.
- the liquid refrigerant flowing in the supercooling bypass expansion valve 110 is depressurized by the supercooling bypass expansion valve 110 and flows in the supercooling heat exchanger 109.
- the liquid refrigerant flowing in the supercooling heat exchanger 109 is heat-exchanged with another liquid refrigerant for evaporation and converted to a low-pressure gaseous refrigerant.
- the low-pressure gaseous refrigerant flows in the accumulator 105 via the return pipe 115 connected to the pipe 116.
- the low-pressure liquid refrigerant supplied to the indoor units 200 is depressurized by the indoor expansion valves 203 and flows in the indoor heat exchangers 201.
- the low-pressure liquid refrigerant flowing in the indoor heat exchangers 201 is heat-exchanged with indoor air supplied by the indoor fans 202 for evaporation and converted to a gaseous refrigerant (gas refrigerant).
- the gas refrigerant flowing in the outdoor unit 100 flows in the accumulator 105 via the four-way valve 108 and the pipe 116.
- the accumulator 105 accumulates a non-evaporated liquid refrigerant to prevent the liquid refrigerant from flowing in the compressor 104. This is because there is a likelihood of damage or the like to the parts of the compressor 104 when the compressor 104 compresses the liquid refrigerant.
- the gaseous refrigerant, the liquid refrigerant, and the lubricant returned from the oil separator 106 flow in the accumulator 105.
- the gas refrigerant and the lubricant are mixed together inside the accumulator 105 and supplied to the compressor 104.
- the liquid refrigerant remains in the accumulator 105.
- a heating operation will be described.
- the flow of a refrigerant at the heating operation is indicated by an arrow H.
- a high-temperature and high-pressure gas refrigerant discharged from the compressor 104 is supplied to the gas pipe 302 via the four-way valve 108.
- the lubricant separated by the oil separator 106 is supplied to the accumulator 105 via the oil return capillary 107.
- the high-temperature and high-pressure gas refrigerant from the outdoor unit 100 is supplied to the indoor units 200 via the gas pipe 302.
- the high-temperature gas refrigerant supplied to the indoor units 200 is heat-exchanged with indoor air supplied by the indoor fans 202 for condensation and converted to a liquid refrigerant.
- the liquid refrigerant flows out from the indoor units 200 via the indoor expansion valves 203.
- the high-temperature and high-pressure gas refrigerant is heat-exchanged with the indoor air at the indoor heat exchangers 201 to perform the heating operation.
- the liquid refrigerant flowing out from the indoor units 200 flows in the outdoor unit 100 via the liquid pipe 301. After passing through the outdoor expansion valve 103, the liquid refrigerant flowing in the outdoor unit 100 is branched off into two liquid refrigerants. Among the branched liquid refrigerants, some flows in the supercooling bypass expansion valve 110 and is supplied to the accumulator 105 via the pipes 115 and 116.
- liquid refrigerant is depressurized by the outdoor expansion valve 103 and then flows in the outdoor heat exchanger 101.
- the liquid refrigerant is heat-exchanged with outdoor air supplied by the outdoor fan 102 for evaporation and converted to a gas refrigerant.
- the gas refrigerant flows in the accumulator 105 via the four-way valve 108 and the pipe 116. As described above, the gas refrigerant and the lubricant flow in the accumulator 105 to be mixed together, and the gas refrigerant containing the lubricant is supplied to the compressor 104.
- FIG. 2 shows the accumulator 105 inside the outdoor unit 100 of the refrigeration cycle in FIG. 1 .
- the introduction pipe 116 is a pipe used to introduce the gas refrigerant and/or the lubricant into the accumulator 105.
- the delivery pipe 117 has a substantially U-shape on the tip end side thereof and is a pipe used to supply the gas refrigerant mixed with the lubricant from the accumulator 105 to the compressor 104.
- the delivery pipe 117 is attached to the accumulator 105 with the U-shaped curve thereof positioned on the bottom side of the accumulator 105.
- the U-shaped curve of the delivery pipe 117 is soaked in the liquid refrigerant accumulated in the accumulator 105.
- the delivery pipe 117 has a first liquid return port 121A at the U-shaped curve thereof.
- the delivery pipe 117 has a second liquid return port 121B positioned on an upper side than the first liquid return port 121A.
- the delivery pipe 117 has, on the upper side thereof, a pressure equalization hole 122 positioned on the upper side of the accumulator 105 and used to control pressure inside the delivery pipe 117.
- the refrigerant and lubricant flowing in the accumulator 105 via the introduction pipe 116 are separated into the liquid and gas.
- the gas refrigerant is supplied to the compressor 104 via the delivery pipe 117. With the circulation of the gas refrigerant, the liquid is sucked in the delivery pipe 117 from the first liquid return port 121A and supplied from the accumulator 105 to the compressor 104 at a predetermined liquid mixing ratio.
- the liquid level of the accumulator 105 is above the second liquid return port 121B, the liquid is also sucked from the second liquid return port 121B, which increases the liquid mixing ratio.
- the liquid mixing ratio is controlled by the hole diameters of the two liquid return ports 121A and 121B and the hole diameter of the pressure equalization hole 122.
- a conventional refrigerant R410A is replaced with the refrigerant R32 having a lower GWP.
- the use of the R32 as a refrigerant results in an increase in the discharge temperature of the compressor 104 by 10 to 15°C.
- the suction quality of the compressor 104 is kept at a lower level than in the past to prevent the increase in the discharge temperature.
- the accumulator 105 of the embodiment accumulates a greater amount of the liquid refrigerant than the conventional refrigerant R410A.
- the lubricant mixing ratio in the mixture accumulated at the lower part of the accumulator 105 becomes low.
- FIG. 3 shows the mixing characteristics of the refrigerant and the lubricant in a case in which the R32 is used as a refrigerant. If the lubricant mixing ratio becomes 40% or less in the refrigerant R32, a two-layer separation area including the layers of the liquid refrigerant and the lubricant occurs at low temperature. That is, the liquid refrigerant is accumulated on the lower side of the accumulator 105, and the layer of the lubricant is formed on the layer of the liquid refrigerant.
- the mixture is separated into the liquid refrigerant and the lubricant on the lower side of the accumulator 105. If the density of the lubricant is lower than that of the liquid refrigerant, the lubricant floats on the upper side. When floating on the upper side of the liquid refrigerant, the lubricant is not sucked in the delivery pipe 117 from the first liquid return port 121A, which reduces the amount of the lubricant supplied to the compressor 104. The reduction in the amount of the lubricant supplied to the compressor 104 causes a problem such as improper lubrication. As a result, reliability may be decreased.
- the shape (such as the pipe area and pipe length) of the oil return capillary 107 is designed such that a predetermined amount or more of the lubricant collected by the oil separator 106 is returned to the accumulator 105.
- a method for setting the design is as follows.
- the oil return ratio x of the lubricant flowing through the oil return capillary 107 is found by the following formula (1). x ⁇ n ⁇ R - y
- the ratio R of the liquid flowing from the accumulator 105 to the compressor 104 is controlled by the hole diameters of the liquid return ports 121A and 121B and the hole diameter of the pressure equalization hole 122 of the delivery pipe 117 of the accumulator 105.
- the circulation ratio y of the lubricant flowing from the oil separator 106 to the refrigeration cycle depends on the characteristics of the compressor 104 and the oil separator 106.
- the use of the R32 as a refrigerant requires an increase in the amount of the liquid refrigerant accumulated in the accumulator 105, which reduces the lubricant mixing ratio.
- a greater amount of the lubricant collected by the oil separator 106 is returned to the accumulator 105 than in the past. Therefore, the lubricant mixing ratio in the accumulator 105 can be increased to a predetermined level (40% or more and preferably 50% or more).
- the present invention is not limited to the embodiment described above. Persons skilled in the art could make various additions, modifications, and the like, within the scope of the present invention.
- means for returning the lubricant from the oil separator to the accumulator is not limited to the oil return capillary but may be replaced by other means.
- the present invention can be expressed as, for example, "the outdoor unit for the air conditioner that uses the refrigerant made of only the R32 or the mixed refrigerant containing a predetermined mass percent or more of the R32 as a refrigerant and supplies to the compressor the refrigerant mixed with a predetermined level or more of the lubricant to prevent the occurrence of the two-layer separation between the liquid refrigerant and the lubricant.”
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Lubricants (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012244492A JP5927633B2 (ja) | 2012-11-06 | 2012-11-06 | 空気調和機 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2728279A1 true EP2728279A1 (fr) | 2014-05-07 |
EP2728279B1 EP2728279B1 (fr) | 2018-01-10 |
Family
ID=49517438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13191783.3A Active EP2728279B1 (fr) | 2012-11-06 | 2013-11-06 | Climatiseur |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2728279B1 (fr) |
JP (1) | JP5927633B2 (fr) |
CN (2) | CN106382768B (fr) |
ES (1) | ES2661868T3 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3043124A1 (fr) * | 2013-09-05 | 2016-07-13 | Toshiba Carrier Corporation | Compresseur et dispositif de cycle de réfrigération |
EP3404341A1 (fr) * | 2017-05-15 | 2018-11-21 | Panasonic Intellectual Property Management Co., Ltd. | Appareil à cycle de réfrigération et appareil de circulation de liquides comprenant le même |
CN114111112A (zh) * | 2021-12-01 | 2022-03-01 | 天津双昊车用空调有限公司 | 一种气液分离的自适应回油工艺 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6736910B2 (ja) * | 2016-02-25 | 2020-08-05 | ダイキン工業株式会社 | 冷凍装置 |
US11162705B2 (en) | 2019-08-29 | 2021-11-02 | Hitachi-Johnson Controls Air Conditioning, Inc | Refrigeration cycle control |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2159260A (en) * | 1984-05-18 | 1985-11-27 | Mitsubishi Electric Corp | Heat pump with multiple compressors |
EP0485979A2 (fr) * | 1990-11-16 | 1992-05-20 | Hitachi, Ltd. | Appareil frigorifique et compresseur pour réfrigérant |
JPH11325620A (ja) | 1998-05-13 | 1999-11-26 | Hitachi Ltd | 冷媒圧縮機および冷凍装置 |
EP1174665A1 (fr) * | 2000-02-16 | 2002-01-23 | Daikin Industries, Ltd. | Congelateur |
EP1275912A1 (fr) * | 2000-04-19 | 2003-01-15 | Daikin Industries, Ltd. | Refrigerateur |
JP3956589B2 (ja) | 1999-10-18 | 2007-08-08 | ダイキン工業株式会社 | 冷凍装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08159569A (ja) * | 1994-11-30 | 1996-06-21 | Sanyo Electric Co Ltd | 冷凍装置 |
JP4039921B2 (ja) * | 2002-09-11 | 2008-01-30 | 三洋電機株式会社 | 遷臨界冷媒サイクル装置 |
JP4295530B2 (ja) * | 2003-03-04 | 2009-07-15 | 東芝キヤリア株式会社 | 空気調和装置 |
JP2005083704A (ja) * | 2003-09-10 | 2005-03-31 | Mitsubishi Electric Corp | 冷凍サイクル、空気調和機 |
JP5502459B2 (ja) * | 2009-12-25 | 2014-05-28 | 三洋電機株式会社 | 冷凍装置 |
JP2011208860A (ja) * | 2010-03-29 | 2011-10-20 | Hitachi Appliances Inc | 空気調和機 |
-
2012
- 2012-11-06 JP JP2012244492A patent/JP5927633B2/ja active Active
-
2013
- 2013-11-06 ES ES13191783.3T patent/ES2661868T3/es active Active
- 2013-11-06 EP EP13191783.3A patent/EP2728279B1/fr active Active
- 2013-11-06 CN CN201610757973.9A patent/CN106382768B/zh active Active
- 2013-11-06 CN CN201310544957.8A patent/CN103808070B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2159260A (en) * | 1984-05-18 | 1985-11-27 | Mitsubishi Electric Corp | Heat pump with multiple compressors |
EP0485979A2 (fr) * | 1990-11-16 | 1992-05-20 | Hitachi, Ltd. | Appareil frigorifique et compresseur pour réfrigérant |
JPH11325620A (ja) | 1998-05-13 | 1999-11-26 | Hitachi Ltd | 冷媒圧縮機および冷凍装置 |
JP3956589B2 (ja) | 1999-10-18 | 2007-08-08 | ダイキン工業株式会社 | 冷凍装置 |
EP1174665A1 (fr) * | 2000-02-16 | 2002-01-23 | Daikin Industries, Ltd. | Congelateur |
EP1275912A1 (fr) * | 2000-04-19 | 2003-01-15 | Daikin Industries, Ltd. | Refrigerateur |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3043124A1 (fr) * | 2013-09-05 | 2016-07-13 | Toshiba Carrier Corporation | Compresseur et dispositif de cycle de réfrigération |
EP3043124A4 (fr) * | 2013-09-05 | 2017-04-26 | Toshiba Carrier Corporation | Compresseur et dispositif de cycle de réfrigération |
EP3404341A1 (fr) * | 2017-05-15 | 2018-11-21 | Panasonic Intellectual Property Management Co., Ltd. | Appareil à cycle de réfrigération et appareil de circulation de liquides comprenant le même |
CN114111112A (zh) * | 2021-12-01 | 2022-03-01 | 天津双昊车用空调有限公司 | 一种气液分离的自适应回油工艺 |
Also Published As
Publication number | Publication date |
---|---|
EP2728279B1 (fr) | 2018-01-10 |
CN103808070A (zh) | 2014-05-21 |
JP5927633B2 (ja) | 2016-06-01 |
JP2014092339A (ja) | 2014-05-19 |
ES2661868T3 (es) | 2018-04-04 |
CN103808070B (zh) | 2016-09-21 |
CN106382768B (zh) | 2019-07-30 |
CN106382768A (zh) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4640142B2 (ja) | 冷凍装置 | |
EP2728279B1 (fr) | Climatiseur | |
JP4013261B2 (ja) | 冷凍装置 | |
KR20070046967A (ko) | 냉동장치 | |
EP2873935A1 (fr) | Congélateur | |
EP2865970A1 (fr) | Congélateur | |
JP2008196762A (ja) | 分流器、熱交換器ユニット、及び冷凍装置 | |
JP2012083010A (ja) | 冷凍サイクル装置 | |
KR20110097367A (ko) | 칠러 | |
JP5940489B2 (ja) | 空気調和装置 | |
CN112648754B (zh) | 一种空调循环系统及其循环方法 | |
JP2015158317A (ja) | 空気調和装置 | |
CN110892213B (zh) | 制冷循环装置 | |
JP2016114351A (ja) | 冷凍装置 | |
JP6765086B2 (ja) | 冷凍装置 | |
JP6507121B2 (ja) | 空気調和機 | |
JP2018204945A (ja) | 冷凍装置の気液分離ユニット、及び冷凍装置 | |
JP2008082674A (ja) | 過冷却装置 | |
CN100516682C (zh) | 具有均油功能的空调机 | |
JP7542579B2 (ja) | 冷凍サイクル装置 | |
JP5908177B1 (ja) | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置の制御方法 | |
JP5193450B2 (ja) | 過冷却装置 | |
JP2008082676A (ja) | 過冷却装置 | |
JP2008196760A (ja) | 冷凍装置 | |
JP2009024998A (ja) | 過冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131213 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JOHNSON CONTROLS-HITACHI AIR CONDITIONING TECHNOLO |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 9/00 20060101AFI20170613BHEP Ipc: F25B 31/00 20060101ALI20170613BHEP Ipc: F25B 43/00 20060101ALI20170613BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170725 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 962831 Country of ref document: AT Kind code of ref document: T Effective date: 20180115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602013032046 Country of ref document: DE Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN PATENTANWA, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602013032046 Country of ref document: DE Owner name: HITACHI-JOHNSON CONTROLS AIR CONDITIONING, INC, JP Free format text: FORMER OWNER: JOHNSON CONTROLS-HITACHI AIR CONDITIONING TECHNOLOGY (HONG KONG) LTD., HONG KONG, HK |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013032046 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HITACHI-JOHNSON CONTROLS AIR CONDITIONING, INC. |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2661868 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180404 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180110 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 962831 Country of ref document: AT Kind code of ref document: T Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180410 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180410 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180510 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013032046 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
26N | No opposition filed |
Effective date: 20181011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181106 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231201 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231019 Year of fee payment: 11 Ref country code: FR Payment date: 20231019 Year of fee payment: 11 Ref country code: DE Payment date: 20231019 Year of fee payment: 11 |