EP2717002B1 - Procédé de détermination de moments de décongélation - Google Patents

Procédé de détermination de moments de décongélation Download PDF

Info

Publication number
EP2717002B1
EP2717002B1 EP12187607.2A EP12187607A EP2717002B1 EP 2717002 B1 EP2717002 B1 EP 2717002B1 EP 12187607 A EP12187607 A EP 12187607A EP 2717002 B1 EP2717002 B1 EP 2717002B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
temperature
correction
temperature difference
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12187607.2A
Other languages
German (de)
English (en)
Other versions
EP2717002A1 (fr
Inventor
Jean-Pierre Van Herstraeten
Raymond Steils
Jean-Francois Renard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Europe GmbH
Original Assignee
Emerson Climate Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Climate Technologies GmbH filed Critical Emerson Climate Technologies GmbH
Priority to EP12187607.2A priority Critical patent/EP2717002B1/fr
Publication of EP2717002A1 publication Critical patent/EP2717002A1/fr
Application granted granted Critical
Publication of EP2717002B1 publication Critical patent/EP2717002B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Definitions

  • the present invention relates to a method for determining defrosting times for a refrigerating machine, in particular for a heat pump, wherein the refrigerating machine comprises a refrigerant-flowing refrigeration cycle with at least one evaporator, which is in heat exchange relationship with ambient air, wherein the temperature of the ambient air and the evaporation temperature of the refrigerant are determined in the evaporator and the defrosting times are determined in dependence on a temperature difference between the temperature of the ambient air and the evaporation temperature.
  • Refrigerators make it possible to extract heat from a first medium, such as air, and to supply this heat to a second medium.
  • heat pumps are used to extract heat energy by means of an evaporator of the ambient air, the heat energy is used for example as heating energy.
  • the ambient air is passed through an evaporator of the heat pump, wherein refrigerant is evaporated in the evaporator, thereby extracting energy from the ambient air.
  • each defrosting process degrades the energy balance of the heat pump because, on the one hand, energy is needed for the defrosting process itself and, on the other hand, during the defrosting process, no heat energy can be recovered from the ambient air.
  • known heat pumps use, for example, light sensors, air differential pressure measurements or structure-borne noise measurements to detect ice on the evaporator.
  • known methods for ice detection and thus the definition of defrosting times are complex and complex to carry out.
  • the invention is based on the idea of using the temperature difference between the ambient air and the evaporation temperature of the refrigerant to detect whether ice has formed on the evaporator.
  • the evaporation temperature of the refrigerant which is also referred to as the saturation temperature, can approach the temperature of the ambient air theoretically. This is possible because a very good heat transfer between ambient air and refrigerant through the ice-free evaporator is possible. If ice forms on the evaporator, the heat transfer from the ambient air to the refrigerant becomes more and more difficult as the thickness of the ice layer increases. Consequently, less heat can be transferred to the refrigerant than in the ice-free state.
  • the pressure in the evaporator and thus the evaporation temperature of the refrigerant decreases. Due to the lowered evaporation temperature, the difference between the temperature of the ambient air and the evaporation temperature becomes greater. The greater the temperature difference, the sooner it can be assumed that ice formation on the evaporator.
  • the method according to the invention makes it possible to detect ice on the evaporator and to determine defrosting times for the refrigerating machine in dependence on parameters that have been recorded in any case, namely the evaporation temperature of the refrigerant and the temperature of the ambient air.
  • the inventive method is thus easy and inexpensive to implement and perform. moreover a control unit for carrying out the method according to the invention can be retrofitted with little effort in existing refrigerating machines.
  • a first correction value dependent on the rotational speed of a fan which supplies ambient air to the evaporator and the first correction value dependent on the evaporator output, are determined and added to the temperature difference or subtracted from the temperature difference.
  • a dependent on the overheating of the refrigerant in the evaporator second correction value is determined and added to the temperature difference or subtracted from the temperature difference.
  • the evaporator performance is increased by the use of a fan by the fan increases the flow rate of ambient air through the evaporator.
  • the speed of the fan is increased with incipient icing.
  • the detection of ice on the evaporator, and thus the determination of the defrosting times can be affected by the varying speeds of the fan, which is why the difference is added to the first correction value, which takes into account the varying speeds of the fan.
  • the speed of the fan is usually greater when low ambient air temperatures are detected.
  • the first correction value may, for example, be in a range from 0 K to 3 K.
  • the first correction value is advantageously determined specifically for each refrigerating machine or each series of refrigerating machines and can be stored, for example in the form of a look-up table, in a control unit of the refrigerating machine.
  • overheating a complete evaporation of the refrigerant is ensured in the evaporator, with a usual overheating, for example, between 0 K and 10 K.
  • the higher the overheating the more additional heat energy is removed from the ambient air, which may increase the likelihood of ice formation on the evaporator. This increased risk of icing is taken into account by the second correction value.
  • the second correction value can be greater, the greater the overheating of the refrigerant.
  • a function of the second correction value in a predetermined range of overheating for example between 6 K and 10 K, has a predetermined slope, e.g. a slope of 1. In the remaining areas, however, the function can be constant.
  • the second correction value can be determined specifically for a specific chiller or a series of chillers.
  • a third correction value dependent on the evaporator output can be determined and subtracted from the temperature difference.
  • a function describing the dependence of the third correction value on the evaporator output is advantageously stored in the chiller.
  • a defrosting time may be present when the temperature difference or a difference corrected by at least one correction value exceeds a threshold value. So it can be both the temperature difference, which is determined from the evaporating temperature and the ambient air temperature, as well as a difference corrected by one or more correction values, at defrosting times to determine. Since the temperature difference is greater, the greater the thermal resistance of the evaporator, it can be assumed that the temperature difference of more insulating ice on the evaporator becomes larger.
  • the threshold value may be selected depending on whether the correction values have been subtracted from the temperature difference or added to the temperature difference.
  • the threshold is an absolute temperature value.
  • the threshold value can be specified, for example, in Kelvin or degrees Celsius, and in the case of the addition of correction values, for example, in a range from 5 K to 20 K.
  • a defrost time may be present when the temperature difference minus the correction values exceeds 7K.
  • the threshold may be a time-dependent threshold. That is, the threshold may change over the operating time of the chiller, for example, and a function may be used for the threshold describing the time dependency. If defrosting is performed, the function can be reset.
  • the time-dependent course can be determined empirically, for example.
  • the threshold may decrease linearly over time, which may force a defrost operation after a certain amount of time has elapsed.
  • the threshold value is determined as a function of a difference minimum, which is achieved with an ice-free evaporator.
  • the temperature difference is determined at which under normal operating conditions, no ice still deposits on the evaporator.
  • the temperature difference minimum may additionally be time-dependent, ie over the operating time of the chiller vary. The operating time of the chiller is reset at initial startup and after each defrost cycle.
  • a defrosting instant may be present when a determined temperature difference or a difference corrected by at least one correction value exceeds a respective difference minimum, which was determined in a predetermined time interval, by a predetermined threshold value.
  • a predetermined threshold value for example 5 K.
  • the defrost times are additionally determined by an expiration timer.
  • a defrosting operation is performed at fixed intervals regardless of the temperature difference or a threshold value.
  • it is additionally ensured by a separate mechanism that the efficient heat exchange at the evaporator is not hindered by ice.
  • the drain timer can thus be adapted to the temperature of the ambient air and thus to varying operating conditions.
  • a relatively high moisture content which occurs when cooling the ambient air in the evaporator as ice on the evaporator precipitates.
  • the evaporator freezes very quickly around 0 ° C, which is why the expiry time of the drainage timer in this area is shortened.
  • Defrosting can also be completely suppressed if the ambient air temperature exceeds + 15 ° C or if the evaporative temperature of the refrigerant is greater than 0 ° C. In both cases, no ice can precipitate on the evaporator, which is why no defrosting is necessary.
  • the expiration timer is reset if there is a defrost time. It is irrelevant whether the defrosting time was triggered by exceeding a threshold value, by expiry of the expiry timer or in another way. An unnecessary triggering of defrosting is thus prevented.
  • the defrost times are preferably additionally determined by a low-pressure alarm.
  • a low pressure alarm is triggered when the evaporator performance decreases so much that in the evaporator only still a very small amount of refrigerant can be evaporated, the flow of refrigerant is throttled accordingly and the pressure in the evaporator drops sharply.
  • a possible reason for such a low evaporator performance may be icing of the evaporator, which is why the evaporator is preemptively de-iced in a low pressure alarm.
  • the low pressure alarm also determines a defrost time.
  • the invention further relates to a refrigerating machine, in particular a heat pump, comprising a refrigerant circuit through which refrigerant flows with at least one evaporator, which is in heat exchange relationship with ambient air, and a control unit, wherein the control unit with a temperature sensor for detecting the temperature of the ambient air and a pressure sensor for detecting the pressure of the refrigerant is connected in the evaporator.
  • the control unit is designed to determine the evaporation temperature of the refrigerant in the evaporator and to determine defrosting in dependence on a difference between the temperature of the ambient air and the evaporation temperature.
  • Fig. 1 1 shows an exemplary sequence of a first embodiment of a method for determining defrost times for a heat pump, which has a cooling circuit through which refrigerant flows, in which a compressor, a condenser, an expansion valve and an evaporator are arranged in succession.
  • a temperature 12 of the ambient air and an evaporation temperature 14 of the refrigerant are first detected.
  • a temperature difference ⁇ between the temperature 12 of the ambient air and the evaporation temperature 14 of the refrigerant is determined in a subtractor 10.
  • the evaporation temperature of 14 is a (non-shown) control unit of a pressure P of the refrigerant vaporized in the evaporator calculated.
  • the phase transition diagram of the refrigerant is stored in the control unit.
  • the determined temperature difference ⁇ is forwarded by the subtractor 10 to a normalizer 16, wherein the normalizer 16 in addition to the determined temperature difference ⁇ still an evaporator capacity 18, the speed 20 of the evaporator associated fan (not shown) and the superheating 22 of the evaporator flowing through the refrigerant considered. More specifically, depending on the speed 20 of the fan and the evaporator power 18, the normalizer 16 adds to the temperature difference ⁇ a first correction value ⁇ corre-tur_Fan . Furthermore, a second correction value ⁇ Korrektur_ÜH, which is dependent on the overheating of the refrigerant, is added to the temperature difference ⁇ .
  • the normalizer 16 the in Fig. 2 and Fig. 4 stored reference curves stored.
  • Fig. 2 Graphically shows the relationship between the evaporator power 18, which is plotted on the X-axis, and the first correction value ⁇ Korrektur_Fan , which is plotted on the Y-axis.
  • Fig. 2 is a Functional set 24 shown, which includes several functions for different speeds 20 of the fan.
  • a graph 26b shows the same relationship at a speed 20 of 60% of the maximum speed.
  • the rotational speed 20 is determined according to the in Fig. 3 controlled relationship, wherein on the X-axis, the temperature 12 of the ambient air and the Y-axis, the rotational speed 20 of the fan are plotted. It can be seen that the speed is increased at temperatures below 2 ° C in order to supply more heat energy to the evaporator. Above about 2 ° C, the fan is operated at a speed 20 of 50% of the maximum speed.
  • the normalizer 16 can thus the first correction value ⁇ Korrektur_Fan from the evaporator power 18 and the speed 20 of the fan with the aid of in Fig. 2 determine graphs 26 shown.
  • the second correction value ⁇ Korrektur_ÜH is determined by the normalizer 16 from the in Fig. 4 shown diagram in which the second correction value ⁇ Korrektur_ÜH is plotted against the superheat 22 of the refrigerant in the evaporator.
  • the second correction value ⁇ Korrektur_ÜH is constant -2 K.
  • the second correction value ⁇ Korrektur_ÜH increases linearly from -2 K to + 2 K.
  • the second correction value ⁇ Korrektur_ÜH is constant +2 K.
  • the corrected difference ⁇ Korr is then passed to an estimator 28, which compares the corrected difference ⁇ Korr with a time-dependent threshold, which may be between 5 K and 20 K, for example. If the corrected difference ⁇ Korr is greater than the currently valid threshold, there is a defrost time 30 which is signaled and triggers a defrost operation.
  • a time-dependent threshold which may be between 5 K and 20 K, for example.
  • the estimator 28 determines the defrost time 30 not only based on the corrected difference ⁇ Corr and the threshold, but also in response to a low pressure alarm 32 which is triggered when the pressure in the evaporator falls below a predetermined threshold. If a low pressure alarm 32 is signaled to the estimator 28, a defrost time 30 is immediately output.
  • the estimator 28 further includes an internal expiration timer 34, at the expiration of which a defrost time 30 is issued.
  • An expiration time of the expiry timer 34 is determined according to the in Fig. 5 shown function of the temperature 12 of the ambient air by an adjustment value 36, which can shorten the expiration time of the drain timer 34 by a maximum of one hour or by two hours.
  • the estimator 28 is also supplied with the temperature 12 of the ambient air and the evaporation temperature 14 of the coolant, wherein the estimator 28 does not output defrosting times 30 when the ambient air temperature 12 is above + 15 ° C or the evaporation temperature 14 is above 0 ° C.
  • the heat pump's refrigeration cycle is reversed, which generates heat at the evaporator and melts the ice present on the evaporator. Subsequently, the refrigeration cycle is again operated in the "normal" flow direction, and the determination of the next defrost time 30 begins.
  • a second embodiment of the method according to the invention is in Fig. 6 shown schematically.
  • the second embodiment is substantially different from the first embodiment in that the temperature difference ⁇ in the normalizer 16 of the second embodiment is reduced by the subtraction of correction values.
  • Identical to the first embodiment of Fig. 1 is also in the second embodiment of Fig. 6 determined by the subtractor 10, the temperature difference ⁇ from the temperature 12 of the ambient air and the evaporation temperature 14. Also, the normalizer 16, the evaporator power 18, the speed 20 of the fan and the superheating 22 of the refrigerant are provided in the evaporator.
  • a function is stored in the logic unit 38a, which in Fig. 7 is shown and shows the relationship between evaporator power 18 and the third correction value ⁇ Korrektur_VL .
  • the third correction value ⁇ Korrektur_VL is greater, the higher the evaporator power 18.
  • Both the third correction value ⁇ Korrektur_VL and the overheating 22 are generated by a second logic unit 38b (FIG. Fig. 6 ) processed.
  • the second logic unit 38b determines from the overheating 22 a second correction value ⁇ Korrektur_ÜH and adds this to the third correction value ⁇ Korrektur_VL .
  • the result of the addition is output as an intermediate result ⁇ intermediate .
  • the intermediate result ⁇ between and the rotational speed 20 are supplied to a third logic unit 38c, which, as in the first embodiment, determines a first correction value ⁇ Korrektur_Fan from the rotational speed 20 and the evaporator power 18 and adds it to ⁇ pregnant .
  • the detection unit 40 also continuously stores a minimum trigger difference ⁇ Trigger_min , which is replaced by a new minimum trigger difference ⁇ Trigger_min as soon as a new trigger difference ⁇ Trigger is below the previous minimum trigger difference ⁇ Trigger_min .
  • the detection unit 40 outputs a defrost signal 42 when either the trigger difference ⁇ trigger exceeds a predetermined absolute threshold, that is, for example ⁇ trigger > 7 K . or if the trigger difference ⁇ trigger exceeds the minimum trigger difference ⁇ Trig-ger_mm by a predetermined amount.
  • a defrost signal 42 is output when ⁇ trigger - ⁇ trigger _ min > 5 K is.
  • the defrost signal 42 is fed to an estimator 44 which, similarly as in the first embodiment, checks whether a defrosting operation is to be performed based on the ambient air temperature 12 and the evaporating temperature 14. This means that the estimator 44 checks whether the temperature 12 of the ambient air is above + 15 ° C.
  • defrost signal 42 is discarded. Otherwise, a defrost time 30 is signaled.
  • the estimator 44 checks, as in the first embodiment, whether a defrost time 30 must be signaled because of an expired timer 34 or because of a low pressure alarm 32.

Claims (10)

  1. Procédé de détermination des instants de dégivrage (30) pour une machine frigorifique, en particulier pour une pompe à chaleur, dans lequel la machine frigorifique comprend un circuit frigorifique traversé par un fluide frigorigène et pourvu d'au moins un évaporateur qui est en relation d'échange thermique avec l'air ambiant, et dans lequel la température de l'air ambiant (12) et la température d'évaporation (14) du fluide frigorigène dans l'évaporateur sont détectées et les instants de dégivrage (30) sont déterminés en fonction d'une différence de température (Δ) entre la température de l'air ambiant (12) et la température d'évaporation (14),
    caractérisé en ce que
    une première valeur de correction (ΔCorrection_ven) dépendante de la vitesse de rotation (20) d'un ventilateur qui fournit de l'air ambiant à l'évaporateur, et dépendante de la puissance de l'évaporateur (18) est détectée et ajoutée à la différence de température (Δ) ou soustraite de la différence de température (Δ),
    et en ce qu'une seconde valeur de correction (ΔCorrection_SURCHAUFFE) dépendante de la surchauffe (22) du fluide frigorigène dans l'évaporateur est détectée et ajoutée à la différence de température (Δ) ou soustraite de la différence de température (Δ).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    une fonction de la seconde valeur de correction (Δcorrection_SURCHAUFFE) présente une montée prédéterminée, de préférence une montée de 1, dans une plage prédéterminée de la surchauffe (22), par exemple entre 6 K et 10 K, et s'étend de façon constante dans d'autres plages.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    une troisième valeur de correction (Δcorrection_PUISSANCE_EVAPOR) dépendante de la puissance de l'évaporateur (18) est détectée et soustraite de la différence de température (Δ).
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    il se présente un instant de dégivrage lorsque la différence de température (Δ) ou une différence (Δcorrection, Δdéclenche) corrigée par au moins une valeur de correction dépasse une valeur seuil.
  5. Procédé selon la revendication 4,
    caractérisé en ce que
    la valeur seuil est une valeur de température absolue ou une valeur seuil dépendante du temps, et/ou
    la valeur seuil est détectée en fonction d'un minimum de la différence de température, qui est atteint dans le cas d'un évaporateur sans givre.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    il se présente un instant de dégivrage lorsque la différence de température (Δ) ou une différence (Δcorrection, Δdéclenche) corrigée par au moins une valeur de correction dépasse d'une valeur seuil prédéterminée un minimum de différence respectif qui a été détecté dans un intervalle de temps prédéterminé.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    les instants de dégivrage sont déterminés en supplément par une minuterie, et en particulier la minuterie est remise à zéro lorsqu'il se présente un instant de dégivrage (30).
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    un temps d'expiration de la minuterie est raccourci à des températures de l'air ambiant (12) dans une plage prédéterminée autour de 0 °C, en particulier dans une plage de -4 °C à +4 °C, de préférence entre -20 °C et +10 °C, et est prolongé à des températures (12) supérieures à une valeur seuil prédéterminée, par exemple de +10 °C.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    les instants de dégivrage (30) sont déterminés en supplément par une alerte de basse pression (32).
  10. Machine frigorifique, en particulier pompe à chaleur, comprenant un circuit frigorifique traversé par un fluide frigorigène et pourvu d'au moins un évaporateur qui est en relation d'échange thermique avec l'air ambiant, et d'une unité de commande, l'unité de commande étant reliée à un capteur de température pour détecter la température de l'air ambiant (12) et à un capteur de pression pour détecter la pression du fluide frigorigène dans l'évaporateur, l'unité de commande étant réalisée pour détecter la température d'évaporation (14) du fluide frigorigène dans l'évaporateur et pour déterminer des instants de dégivrage (30) en fonction d'une différence (Δ) entre la température de l'air ambiant (12) et la température d'évaporation (14),
    caractérisée en ce que
    l'unité de commande est réalisée pour détecter une première valeur de correction (Δcorrection_ven) dépendante de la vitesse de rotation (20) d'un ventilateur qui fournit de l'air ambiant à l'évaporateur, et dépendante de la puissance de l'évaporateur (18), et pour l'ajouter à la différence de température (Δ) ou pour la soustraire de la différence de température (Δ),
    et en ce que l'unité de commande est réalisée pour détecter une seconde valeur de correction (Δcorrection_SURCHAUFFE) dépendante de la surchauffe (22) du fluide frigorigène dans l'évaporateur, et pour l'ajouter à la différence de température (Δ) ou pour la soustraire de la différence de température (Δ).
EP12187607.2A 2012-10-08 2012-10-08 Procédé de détermination de moments de décongélation Active EP2717002B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12187607.2A EP2717002B1 (fr) 2012-10-08 2012-10-08 Procédé de détermination de moments de décongélation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12187607.2A EP2717002B1 (fr) 2012-10-08 2012-10-08 Procédé de détermination de moments de décongélation

Publications (2)

Publication Number Publication Date
EP2717002A1 EP2717002A1 (fr) 2014-04-09
EP2717002B1 true EP2717002B1 (fr) 2019-01-02

Family

ID=47080259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12187607.2A Active EP2717002B1 (fr) 2012-10-08 2012-10-08 Procédé de détermination de moments de décongélation

Country Status (1)

Country Link
EP (1) EP2717002B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093039A2 (fr) * 2018-11-04 2020-05-07 Elemental Machines, Inc. Procédé et appareil permettant de déterminer l'état d'un congélateur
CN113915734B (zh) * 2021-09-27 2022-11-25 宁波奥克斯电气股份有限公司 空调的控制方法、装置及空调

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227555A (ja) * 1997-02-18 1998-08-25 Toshiba Corp 冷蔵庫制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150736A (ja) * 1982-03-03 1983-09-07 Hitachi Ltd 除霜制御回路
DE3333907A1 (de) * 1983-09-20 1985-04-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Verfahren und vorrichtung zur abtauregelung von waermepumpen
US4563877A (en) * 1984-06-12 1986-01-14 Borg-Warner Corporation Control system and method for defrosting the outdoor coil of a heat pump
US4882908A (en) * 1987-07-17 1989-11-28 Ranco Incorporated Demand defrost control method and apparatus
DE4105880A1 (de) * 1991-02-25 1992-08-27 Kueba Kaeltetechnik Gmbh Verfahren und vorrichtung zur leistungsoptimierung und abtausteuerung von kaeltemittelverdampfern
WO2001022014A1 (fr) * 1999-09-24 2001-03-29 Arçelik A.S. Commande de degivrage
US6334321B1 (en) * 2000-03-15 2002-01-01 Carrier Corporation Method and system for defrost control on reversible heat pumps
EP2588819B1 (fr) * 2010-07-01 2019-12-11 Carrier Corporation Dégivrage à la demande à saturation de réfrigérant d'évaporateur

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227555A (ja) * 1997-02-18 1998-08-25 Toshiba Corp 冷蔵庫制御装置

Also Published As

Publication number Publication date
EP2717002A1 (fr) 2014-04-09

Similar Documents

Publication Publication Date Title
DE3333907C2 (fr)
EP1771689B1 (fr) Machine frigorifique et procede d'exploitation d'une machine frigorifique
EP2717002B1 (fr) Procédé de détermination de moments de décongélation
WO2013139909A1 (fr) Installation frigorifique
DE60118588T2 (de) Fahrzeugklimaanlage unter verwendung eines überkritischen kreislaufes
DE102010024986A1 (de) Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit
DE102018212127A1 (de) Haushaltskältegerät mit einem drehzahlgeregelten Lüfter und Verfahren zum Betreiben eines Haushaltskältegerätes mit einem drehzahlgeregelten Lüfter
EP2769155A2 (fr) Appareil de froid à bac d'évaporation et dispositif de chauffe favorisant l'évaporation
DE102007010645B4 (de) Verfahren zum Steuern einer Kompressionskälteanlage und eine Kompressionskälteanlage
EP1775533B1 (fr) Procédé pour faire fonctionner un système frigorifique à compression
EP3816543B1 (fr) Procédé de régulation d'un détendeur
DE3442169A1 (de) Verfahren zum regeln eines kaeltekreisprozesses fuer eine waermepumpe oder eine kaeltemaschine und eine waermepumpe oder kaeltemaschine hierzu
EP3922926B1 (fr) Procédé de régulation d'un processus de dégivrage d'un évaporateur d'une installation de réfrigération à compression et installation de réfrigération à compression
EP1813897A2 (fr) Procédé et dispositif destinés à la fabrication de bandes de matière fibreuse multicouches
DE102012109198A1 (de) Verfahren zur Steuerung des Abtauens eines Kältemittelverdampfers
EP3596412A1 (fr) Procédé permettant de faire fonctionner d'un circuit de réfrigérant pour un système de climatisation de véhicule
WO2016192949A1 (fr) Appareil frigorifique comportant un compresseur frigorifique
EP1367346B1 (fr) Procédé de commande de l'opération de dégivrage d'un évaporateur
EP2335128B1 (fr) Appareil de réfrigération et/ou de congélation et procédé de régulation d'un tel appareil de réfrigération et/ou de congélation
DE102014100093A1 (de) Kälteanlage und Verfahren zur Regelung der Überhitzung eines Kältemittels einer Kälteanlage
EP2028429A2 (fr) Installation de pompe de chaleur
EP4043252B1 (fr) Procédé de démarrage d'un processus de dégivrage d'un échangeur de chaleur d'une pompe à chaleur d'un véhicule automobile
EP2827081B1 (fr) Procédé de commande d'une pompe à chaleur
DE102014217672A1 (de) Kältegerät und Kältemaschine dafür
DE19854060B4 (de) Verfahren zur Bestimmung einer Kältemittelunterfüllung in einer Klimaanlage eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170821

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMERSON CLIMATE TECHNOLOGIES GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1084914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014088

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014088

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

26N No opposition filed

Effective date: 20191003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191008

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 12

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230922

Year of fee payment: 12

Ref country code: FR

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

Ref country code: AT

Payment date: 20230921

Year of fee payment: 12