EP2688916A2 - Neuartige katalysatoren und verwendungsverfahren dafür zur herstellung von vinylterminierten polymeren - Google Patents
Neuartige katalysatoren und verwendungsverfahren dafür zur herstellung von vinylterminierten polymerenInfo
- Publication number
- EP2688916A2 EP2688916A2 EP12763666.0A EP12763666A EP2688916A2 EP 2688916 A2 EP2688916 A2 EP 2688916A2 EP 12763666 A EP12763666 A EP 12763666A EP 2688916 A2 EP2688916 A2 EP 2688916A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rac
- bis
- borate
- tetrakis
- methyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2314/00—Polymer mixtures characterised by way of preparation
- C08L2314/06—Metallocene or single site catalysts
Definitions
- This invention relates to olefin polymerization, particularly to produce vinyl terminated polymers.
- Alpha-olefins especially those containing about 6 to about 20 carbon atoms, have been used as intermediates in the manufacture of detergents or other types of commercial products. Such alpha-olefins have also been used as monomers, especially in linear low density polyethylene. Commercially produced alpha-olefins are typically made by oligomerizing ethylene. Longer chain alpha-olefins, such as vinyl-terminated polyethylenes are also known and can be useful as building blocks following functionalization or as macromonomers .
- U.S. Patent No. 4,814,540 discloses bis(pentamethyl cyclopentadienyl) hafnium dichloride, bis(pentamethyl cyclopentadienyl) zirconium dichloride and bis(tetramethyl n-butyl cyclopentadienyl) hafnium dichloride with methylalumoxane in toluene or hexane with or without hydrogen to make allylic vinyl terminated propylene homo-oligomers having a low degree of polymerization of 2-10. These oligomers do not have high Mn's and do not have at least 93% allylic vinyl unsaturation.
- Weng et al. discloses materials with up to about 81 percent vinyl termination made using dimethylsilyl bis(2- methyl, 4-phenyl-indenyl) zirconium dichloride and methylalumoxane in toluene at about 120°C.
- the materials have a Mn of about 12,300 (measured with NMR) and a melting point of about 143°C.
- Macromolecules, 33, 2000, pp. 8541-8548 discloses preparation of branch-block ethylene-butene polymer by reincorporation of vinyl terminated polyethylene, said branch- block polymer made by a combination of CP2 rCL2 and (C5Me4SiMe2 C 1 2H23)TiCl2 activated with methylalumoxane.
- Moscardi et al. (Organometallics, 20, 2001, pp. 1918-1931) disclose the use of rac-dimethylsilylmethylenebis(3-t-butyl indenyl)zirconium dichloride with methylalumoxane in batch polymerizations of propylene to produce materials where "...allyl end group always prevails over any other end groups, at any [propene]." In these reactions, morphology control was limited and approximately 60% of the chain ends are allylic.
- PHI bis(phenoxyimine)titanium dichloride
- MMAO modified methyl alumoxane
- Catalyst productivity was very low (0.95 to 1.14 g/mmol Ti/hr).
- JP 2005-336092 A2 discloses the manufacture of vinyl-terminated propylene polymers using materials such as H2SO4 treated montmorillonite, triethylaluminum, triisopropyl aluminum, where the liquid propylene is fed into a catalyst slurry in toluene. This process produces substantially isotactic macromonomers that do not have a significant amount of amorphous material.
- the invention relates to a process, preferably a homogenous process, for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, with a catalyst system, comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula:
- each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R 1 is, independently, a Q to alkyl group; each R 2 is, independently, a to alkyl group; each R 3 is hydrogen; each R 4 , R 5 , and R ⁇ , is, independently, hydrogen or a substituted hydrocarbyl group or an unsubstituted hydrocarbyl group, or a heteroatom; T is a bridging group; and further provided that any of adjacent R 4 , R 5 , and R ⁇ groups may form a fused ring or multicenter fused ring system where the rings may be
- the invention relates to a catalyst system comprising an activator and at least one metallocene compound, wherein the metallocene compound is represented by the formula:
- Figure 1 represents trends observed in Mn and % vinyls for exemplary vinyl terminated polymers (Runs 13-18) of the present invention (2.3M propylene).
- the inventors have surprisingly discovered a new class of metallocene compounds used in catalyst systems and processes herein, where the catalyst systems are useful to produce vinyl terminated polymers.
- the catalyst systems demonstrate unexpectedly high activity, and in some embodiments, produce atactic propylene polymers.
- These vinyl terminated polymers may find utility as macromonomers for the synthesis of poly(macromonomer) block copolymers, and as additives.
- the vinyl group of these vinyl terminated polymers provides a path to functionalization. These functionalized polymers may be also useful as additives.
- Catalyst productivity is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcaHhr 1 . Conversion is the amount of monomer that is converted to polymer product, and is reported as mol% and is calculated based on the polymer yield and the amount of monomer fed into the reactor. Catalyst activity is a measure of how active the catalyst is and is reported as the mass of product polymer (P) produced per mole of catalyst (cat) used (kgP/molcat).
- an "olefin,” alternatively referred to as “alkene,” is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
- alkene is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
- a polymer or copolymer is referred to as comprising an olefin, including, but not limited to ethylene, propylene, and butene
- the olefin present in such polymer or copolymer is the polymerized form of the olefin.
- a copolymer when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer.
- a "polymer” has two or more of the same or different mer units.
- a “homopolymer” is a polymer having mer units that are the same.
- a “copolymer” is a polymer polymer having two or more mer units that are different from each other.
- a “terpolymer” is a polymer having three mer units that are different from each other.
- oligomer is typically a polymer having a low molecular weight (such an Mn of less than 25,000 g/mol, preferably less than 2,500 g/mol) or a low number of mer units (such as 75 mer units or less).
- ethylene shall be considered an a-olefin.
- a "catalyst system” is combination of at least one catalyst compound, at least one activator, an optional co-activator, and an optional support material.
- catalyst systems are described as comprising neutral stable forms of the components, it is well understood by one of ordinary skill in the art, that the ionic form of the component is the form that reacts with the monomers to produce polymers.
- the metallocene catalyst may be described as a catalyst precursor, a pre-catalyst compound, or a transition metal compound, and these terms are used interchangeably.
- a polymerization catalyst system is a catalyst system that can polymerize monomers to polymer.
- An "anionic ligand” is a negatively charged ligand which donates one or more pairs of electrons to a metal ion.
- a "neutral donor ligand” is a neutrally charged ligand which donates one or more pairs of electrons to a metal ion.
- a metallocene catalyst is defined as an organometallic compound with at least one ⁇ -bound cyclopentadienyl moiety (or substituted cyclopentadienyl moiety) and more frequently two ⁇ -bound cyclopentadienyl moieties or substituted cyclopentadienyl moieties.
- the invention relates to at least one metallocene catalyst, at least one activator, an optional co-activator, and an optional support material, and are discussed below.
- substituted means that a hydrogen group has been replaced with a hydrocarbyl group, a heteroatom, or a heteroatom containing group.
- methyl cyclopentadiene (Cp) is a Cp group substituted with a methyl group
- ethyl alcohol is an ethyl group substituted with an -OH group
- a "substituted hydrocarbyl” is a radical made of carbon and hydrogen where at least one hydrogen is replaced by a heteroatom or heteroatom containing group.
- alkoxides include those where the alkyl group is a to hydrocarbyl.
- the alkyl group may be straight chain, branched, or cyclic.
- the alkyl group may be saturated or unsaturated.
- the alkyl group may comprise at least one aromatic group.
- the invention relates to a catalyst system comprising an activator and at least one metallocene compound, wherein the metallocene compound is represented by the formula:
- M is hafnium or zirconium, preferably hafnium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system), preferably each X is independently selected from halides and Ci to C5 alkyl groups, preferably each X is a methyl group; each R 1 is, independently, a to alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, or isomers thereof, preferably each R 1 is a methyl group; each R2 is, independently, a Q to alkyl group, preferably methyl, ethyl, propy
- T is a bridging group comprising carbon or silica, such as dialkylsilyl, preferably T is selected from CH 2 , CH 2 CH 2 , C(CH 3 ) 2 , SiMe 2 , SiPh 2 , SiMePh, silylcyclobutyl (Si(CH 2 ) 3 ), (Ph) 2 C, (p-(Et) 3 SiPh) 2 C, and silylcyclopentyl (Si(CH 2 ) 4 ).
- T is selected from CH 2 , CH 2 CH 2 , C(CH 3 ) 2 , SiMe 2 , SiPh 2 , SiMePh, silylcyclobutyl (Si(CH 2 ) 3 ), (Ph) 2 C, (p-(Et) 3 SiPh) 2 C, and silylcyclopentyl (Si(CH 2 ) 4 ).
- T is represented by the formula R 2 a J, where J is C, Si, or Ge, and each R a is, independently, hydrogen, halogen, to C 2Q hydrocarbyl or a Q to C 2Q substituted hydrocarbyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system.
- Metallocene compounds that are particularly useful in this invention include one or more of:
- the "dimethyl" after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.
- a dihalide such as dichloride or difluoride
- a bisphenoxide particularly for use with an alumoxane activator.
- the metallocene compound is rac-dimethylsilylbis(2- methyl,3-propylindenyl)hafniumdimethyl (I), or rac-dimethylsilylbis(2-methyl,3- propylindenyl)zirconiumdimethyl (II), represented by the formulae below:
- activator is used herein interchangeably and are defined to be any compound which can activate any one of the catalyst compounds described above by converting the neutral catalyst compound to a catalytically active catalyst compound cation.
- Non-limiting activators include alumoxanes, aluminum alkyls, ionizing activators, which may be neutral or ionic, and conventional-type cocatalysts.
- Preferred activators typically include alumoxane compounds, modified alumoxane compounds, and ionizing anion precursor compounds that abstract one reactive, ⁇ -bound, metal ligand making the metal complex cationic and providing a charge-balancing noncoordinating or weakly coordinating anion.
- alumoxane activators are utilized as an activator in the catalyst composition.
- Alumoxanes are generally oligomeric compounds containing -Al(Ri)- O- sub-units, where R 1 is an alkyl group.
- Examples of alumoxanes include methylalumoxane (MAO), modified methylalumoxane (MMAO), ethylalumoxane and isobutylalumoxane.
- Alkylalumoxanes and modified alkylalumoxanes are suitable as catalyst activators, particularly when the abstractable ligand is an alkyl, halide, alkoxide or amide.
- alumoxanes Mixtures of different alumoxanes and modified alumoxanes may also be used. It may be preferable to use a visually clear methylalumoxane.
- a cloudy or gelled alumoxane can be filtered to produce a clear solution or clear alumoxane can be decanted from the cloudy solution.
- a useful alumoxane is a modified methyl alumoxane (MMAO) cocatalyst type 3A (commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A, covered under patent number U.S. Patent No. 5,041,584).
- MMAO modified methyl alumoxane
- the activator is an alumoxane (modified or unmodified)
- some embodiments select the maximum amount of activator at a 5000-fold molar excess Al/M over the catalyst precursor (per metal catalytic site).
- the minimum activator-to-catalyst-precursor is a 1 : 1 molar ratio. Alternate preferred ranges include from 1 : 1 to 500: 1, alternately from 1 : 1 to 200: 1, alternately from 1 : 1 to 100: 1, or alternately from 1 : 1 to 50: 1.
- alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to transition metal of less than 500: 1, preferably less than 300: 1, preferably less than 100: 1, or preferably less than 1 : 1.
- the alumoxane has been treated to remove free alkyl aluminum compounds, particularly trimethyl aluminum.
- the activator used herein to produce the vinyl terminated polymer is discrete.
- Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and the like.
- diethyl zinc is used in polymerizations comprising one, two, three or more catalysts, at least one of which is a metallocene of the types described herein.
- scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, or preferably less than 10: 1.
- an ionizing or stoichiometric activator such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, a tris perfluorophenyl boron metalloid precursor or a tris perfluoronaphthyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (U.S. Patent No. 5,942,459), or combination thereof.
- neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators. Much preferred activators are the ionic ones, not the neutral boranes.
- Examples of neutral stoichiometric activators include tri-substituted boron, tellurium, aluminum, gallium, and indium, or mixtures thereof.
- the three substituent groups are each independently selected from alkyls, alkenyls, halogens, substituted alkyls, aryls, arylhalides, alkoxy, and halides.
- the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds, and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl, or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups. Most preferably, the neutral stoichiometric activator is tris perfluorophenyl boron or tris perfluoronaphthyl boron.
- Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound.
- Such compounds and the like are described in European publications EP 0 570 982 A; EP 0 520 732 A; EP 0 495 375 A; EP 0 500 944 B l; EP 0 277 003 A; EP 0 277 004 A; U.S. Patent Nos. 5,153, 157; 5, 198,401 ; 5,066,741; 5,206, 197; 5,241,025; 5,384,299; 5,502,124; and U.S. Patent Application Serial No. 08/285,380, filed August 3, 1994; all of which are herein fully incorporated by reference.
- Ionic catalysts can be prepared by reacting a transition metal compound with neutral Lewis acids, such as B ⁇ F ⁇ , which upon reaction with the hydrolyzable ligand (X) of the transition metal compound forms an anion, such as ([B(C6F 5 ) 3 (X)]-), which stabilizes the cationic transition metal species generated by the reaction.
- the catalysts can be, and preferably are, prepared with activator components which are ionic compounds or compositions.
- Compounds useful as an activator component in the preparation of the ionic catalyst systems used in the process of this invention comprise a cation, which is preferably a Bronsted acid capable of donating a proton, and a compatible non-coordinating anion which anion is relatively large (bulky), capable of stabilizing the active catalyst species (the Group 4 cation) which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bases, such as ethers, amines, and the like.
- a cation which is preferably a Bronsted acid capable of donating a proton
- a compatible non-coordinating anion which anion is relatively large (bulky)
- the active catalyst species the Group 4 cation
- EP 0 277,003 Al Two classes of compatible non-coordinating anions have been disclosed in EP 0 277,003 Al, and EP 0 277,004 Al : 1) anionic coordination complexes comprising a plurality of lipophilic radicals covalently coordinated to and shielding a central charge-bearing metal or metalloid core; and 2) anions comprising a plurality of boron atoms such as carboranes, metallacarboranes, and boranes.
- the stoichiometric activators include a cation and an anion component, and are preferably represented by the following formula (14):
- L-H (L-H) d + (Ad-) (14) wherein L is an neutral Lewis base; H is hydrogen; (L-H) + is a Bronsted acid; A d_ is a non- coordinating anion having the charge d-; and d is an integer from 1 to 3.
- the cation component, (L-H) d + may include Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.
- Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.
- the activating cation (L-H) ⁇ "1" is preferably a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, ⁇ , ⁇ -dimethylaniline, methyldiphenylamine, pyridine, p-bromo ⁇ , ⁇ -dimethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxoniums from ethers, such as dimethyl ether diethyl ether, tetrahydrofuran
- each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group.
- suitable A d also include diboron compounds as disclosed in U.S. Patent No. 5,447,895, which is fully incorporated herein by reference.
- tripropylammonium tetraphenylborate tri(n-butyl)ammonium tetraphenylborate, tri(t- butyl)ammonium tetraphenylborate, ⁇ , ⁇ -dimethylanilinium tetraphenylborate, N,N- diethylanilinium tetraphenylborate, N,N-dimethyl-(2,4,6-trimethylanilinium)
- tetraphenylborate tropillium tetraphenylborate, triphenylcarbenium tetraphenylborate, triphenylphosphonium tetraphenylborate triethylsilylium tetraphenylborate,
- the activator is N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(perfluorobiphenyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(3 ,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetrakis(perfluorophenyl)borate.
- an activation method using ionizing ionic compounds not containing an active proton but capable of producing a bulky ligand metallocene catalyst cation and their non-coordinating anion are also contemplated, and are described in EP 0 426 637 Al, EP 0 573 403 Al, and U.S. Patent No. 5,387,568, which are all herein incorporated by reference.
- non-coordinating anion means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base.
- “Compatible” non- coordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral four coordinate metallocene compound and a neutral by-product from the anion.
- Non-coordinating anions useful in accordance with this invention are those that are compatible, stabilize the metallocene cation in the sense of balancing its ionic charge at +1, yet retain sufficient lability to permit displacement by an ethylenically or acetylenically unsaturated monomer during polymerization.
- scavengers may be used, such as trimethyl aluminum, triethyl aluminum, tri-isobutyl aluminum, and/or tri-octyl aluminum.
- tri-isobutyl aluminum and/or tri-octyl aluminum are used.
- invention process also can employ cocatalyst compounds or activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the invention compounds.
- tris(pentafluorophenyl) boron or aluminum act to abstract a hydrocarbyl or hydride ligand to yield an invention cationic metal complex and stabilizing noncoordinating anion, see EP 0 427 697 Al and EP 0 520 732 Al for illustrations of analogous Group 4 metallocene compounds.
- EP 0 495 375 Al for formation of zwitterionic complexes using analogous Group 4 compounds.
- Another suitable ion forming, activating cocatalyst comprises a salt of a cationic oxidizing agent and a noncoordinating, compatible anion represented by the formula (16):
- OXe+ is a cationic oxidizing agent having a charge of e+; e is an integer from 1 to 3; d is an integer from 1 to 3; and A d" is a non-coordinating anion having the charge of d-.
- cationic oxidizing agents include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag + , or Pb +2 .
- Preferred embodiments of A d" are those anions defined above, especially tetrakis(pentafluorophenyl)borate.
- the typical non-alumoxane activator-to-catalyst ratio, preferably NCA activator-to-catalyst ratio is a 1 : 1 molar ratio.
- Alternate preferred ranges include from 0.1 : 1 to 100: 1, alternately from 0.5: 1 to 200: 1, alternately from 1 : 1 to 500: 1 alternately from 1 : 1 to 1000: 1.
- a particularly useful range is from 0.5: 1 to 10: 1, preferably 1 : 1 to 5: 1.
- hafnocene catalysts described herein typically produce vinyl terminated polymers with a greater amount of allyl chain ends than the analogous zirconocene, under the same polymerization conditions; however, the inventors also surprisingly found that in the presence of a bulky activator, the zirconocenes produced similar amounts of allyl chain ends as the hafnocenes.
- Bulky activator refers to anionic activators represented by the formula:
- each is, independently, a halide, preferably a fluoride
- each R 2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R2 is a fluoride or a perfluorinated phenyl group);
- each R 3 is a halide, to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R3 is a fluoride or a perfluorinated aromatic hydrocarbyl group); wherein R2 and R3 can form one or more saturated or unsaturated, substituted or unsubstituted rings (preferably R2 and R3 form a perfluorinated phenyl ring);
- L is an neutral Lewis base
- (L-H) + is a Bronsted acid
- d is 1, 2, or 3
- the anion has a molecular weight of greater than 1020 g/mol
- at least three of the substituents on the B atom each have a molecular volume of greater than 250 cubic A, alternately greater than 300 cubic A, or alternately greater than 500 cubic A.
- Molecular volume is used herein as an approximation of spatial steric bulk of an activator molecule in solution. Comparison of substituents with differing molecular volumes allows the substituent with the smaller molecular volume to be considered “less bulky” in comparison to the substituent with the larger molecular volume. Conversely, a substituent with a larger molecular volume may be considered “more bulky” than a substituent with a smaller molecular volume.
- Molecular volume may be calculated as reported in "A Simple "Back of the Envelope” Method for Estimating the Densities and Molecular Volumes of Liquids and Solids," Journal of Chemical Education, Vol. 71, No. 11, November 1994, pp. 962-964.
- V s is the sum of the relative volumes of the constituent atoms, and is calculated from the molecular formula of the substituent using the following table of relative volumes. For fused rings, the V s is decreased by 7.5% per fused ring.
- Exemplary bulky activators useful in catalyst systems herein include: trimethylammonium tetrakis(perfluoronaphthyl)borate, triethylammonium tetrakis(perfluoronaphthyl)borate, tripropylammonium tetrakis(perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis(perfluoronaphthyl)borate, tri(t-butyl)ammonium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -diethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethyl-(2,4,6- trimethylanilinium) tetrakis(
- catalyst compounds can be combined with one or more activators or activation methods described above.
- activators have been described in U.S. Patent Nos. 5,153, 157 and 5,453,410, European publication EP 0 573 120 B l, and PCT publications WO 94/07928 and WO 95/14044. These documents all discuss the use of an alumoxane in combination with an ionizing activator.
- Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and diethyl zinc.
- the catalyst system may comprise an inert support material.
- the supported material is a porous support material, for example, talc, and inorganic oxides.
- Other support materials include zeolites, clays, organoclays, or any other organic or inorganic support material and the like, or mixtures thereof.
- the support material is an inorganic oxide in a finely divided form.
- Suitable inorganic oxide materials for use in metallocene catalyst systems herein include Groups 2, 4, 13, and 14 metal oxides, such as silica, alumina, and mixtures thereof.
- Other inorganic oxides that may be employed either alone or in combination with the silica, or alumina are magnesia, titania, zirconia, and the like.
- suitable support materials can be employed, for example, finely divided functionalized polyolefins, such as finely divided polyethylene.
- Particularly useful supports include magnesia, titania, zirconia, montmorillonite, phyllosilicate, zeolites, talc, clays, and the like.
- support materials may be used, for example, silica-chromium, silica-alumina, silica-titania, and the like.
- Preferred support materials include AI2O3, ⁇ (3 ⁇ 4, S1O2, and combinations thereof, more preferably S1O2, AI2O3, or S1O2/AI2O3.
- the support material most preferably an inorganic oxide, has a surface area in the range of from about 10 to about 700 m 2 /g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 ⁇ . More preferably, the surface area of the support material is in the range of from about 50 to about 500 m 2 /g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 ⁇ .
- the surface area of the support material is in the range is from about 100 to about 400 m 2 /g, pore volume from about 0.8 to about 3.0 cc/g and average particle size is from about 5 to about 100 ⁇ .
- the average pore size of the support material useful in the invention is in the range of from 10 to 1000 A, preferably 50 to about 500 A, and most preferably 75 to about 350 A.
- Preferred silicas are marketed under the tradenames of DAVISON 952 or DAVISON 955 by the Davison Chemical Division of W.R. Grace and Company. In other embodiments DAVISON 948 is used.
- the support material should be dry, that is, free of absorbed water. Drying of the support material can be effected by heating or calcining at about 100°C to about 1000°C, preferably at least about 600°C. When the support material is silica, it is heated to at least 200°C, preferably about 200°C to about 850°C, and most preferably at about 600°C; and for a time of about 1 minute to about 100 hours, from about 12 hours to about 72 hours, or from about 24 hours to about 60 hours.
- the calcined support material must have at least some reactive hydroxyl (OH) groups to produce supported catalyst systems of this invention.
- the calcined support material is then contacted with at least one polymerization catalyst comprising at least one metallocene compound and an activator.
- the support material having reactive surface groups, typically hydroxyl groups, is slurried in a non-polar solvent and the resulting slurry is contacted with a solution of a metallocene compound and an activator.
- the slurry of the support material is first contacted with the activator (preferably alumoxane) for a period of time in the range of from about 0.5 hours to about 24 hours, from about 2 hours to about 16 hours, or from about 4 hours to about 8 hours.
- the solution of the metallocene compound is then contacted with the isolated support/activator.
- the supported catalyst system is generated in situ.
- the mixture of the metallocene, activator, and support is heated to about 0°C to about 70°C, preferably to about 23 °C to about 60°C, preferably at room temperature.
- Contact times typically range from about 0.5 hours to about 24 hours, from about 2 hours to about 16 hours, or from about 4 hours to about 8 hours.
- Suitable non-polar solvents are materials in which all of the reactants used herein, i.e., the activator, and the metallocene compound, are at least partially soluble and which are liquid at reaction temperatures.
- Preferred non-polar solvents are alkanes, such as isopentane, hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, such as cyclohexane, aromatics, such as benzene, toluene, and ethylbenzene, may also be employed.
- the support material is contacted with a solution of a metallocene compound and an activator, such that the reactive groups on the support material are titrated, to form a supported polymerization catalyst.
- the period of time for contact between the metallocene compound, the activator, and the support material is as long as is necessary to titrate the reactive groups on the support material.
- titrate is meant to react with available reactive groups on the surface of the support material, thereby reducing the surface hydroxyl groups by at least 80%, at least 90%, at least 95%, or at least 98%.
- the surface reactive group concentration may be determined based on the calcining temperature and the type of support material used.
- the support material calcining temperature affects the number of surface reactive groups on the support material available to react with the metallocene compound and an activator: the higher the drying temperature, the lower the number of sites.
- the support material is silica which, prior to the use thereof in the first catalyst system synthesis step, is dehydrated by fluidizing it with nitrogen and heating at about 600°C for about 16 hours, a surface hydroxyl group concentration of about 0.7 millimoles per gram (mmols/gm) is typically achieved.
- mmols/gm millimoles per gram
- the exact molar ratio of the activator to the surface reactive groups on the carrier will vary. Preferably, this is determined on a case-by-case basis to assure that only so much of the activator is added to the solution as will be deposited onto the support material without leaving excess of the activator in the solution.
- the amount of the activator which will be deposited onto the support material without leaving excess in the solution can be determined in any conventional manner, e.g., by adding the activator to the slurry of the carrier in the solvent, while stirring the slurry, until the activator is detected as a solution in the solvent by any technique known in the art, such as by !fi NMR.
- the amount of the activator added to the slurry is such that the molar ratio of boron to the hydroxyl groups (OH) on the silica is about 0.5: 1 to about 4: 1, preferably about 0.8: 1 to about 3 : 1, more preferably about 0.9: 1 to about 2: 1 and most preferably about 1 : 1.
- the amount of boron on the silica may be determined by using ICPES (Inductively Coupled Plasma Emission Spectrometry), which is described in J. W. Olesik, "Inductively Coupled Plasma-Optical Emission Spectroscopy," in the Encyclopedia of Materials Characterization, C. R. Brundle, C. A. Evans, Jr.
- the inventors have surprisingly discovered that the catalyst systems described herein, particularly the hafnocenes, have a productivity of greater than 150 kg/g catalyst hr 1 , greater than 300 kg/g catalyst hr 1 , or greater than 450 kg/g catalyst hr 1 at a temperature of 90°C or greater.
- the invention relates to a process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, and an optional comonomer, with a catalyst system, comprising an activator and at least one metallocene compound, where the metallocene compound is any of the compounds described herein, typically represented by the formula:
- M is hafnium or zirconium, preferably hafnium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system), preferably each X is independently selected from halides and Ci to C5 alkyl groups, preferably each X is a methyl group; each R 1 is, independently, a to alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, or isomers thereof, preferably each R 1 is a methyl group; each R2 is, independently, a Q to alkyl group, preferably methyl, ethyl, propy
- additives may also be used, as desired, such as one or more scavengers, promoters, modifiers, chain transfer agents, reducing agents, oxidizing agents, hydrogen, aluminum alkyls, or silanes.
- Optional comonomers useful herein to make vinyl terminated polymers include ethylene and/or C 4 to C 4 Q olefins, preferably ethylene and/or C 5 to C25 olefins, or preferably ethylene and/or to C ⁇ g olefins.
- the C 4 to C 4 Q olefin monomers may be linear, branched, or cyclic.
- the C 4 to C 4 Q cyclic olefins may be strained or unstrained, monocyclic or polycyclic, and may optionally include heteroatoms and/or one or more functional groups.
- C 4 to C 4 Q olefin monomers include butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof, preferably hexene, heptene, octene, nonene, decene, dodecene, cyclooctene, 1,5 -cyclooctadiene, l-hydroxy-4- cyclooctene, l-acetoxy-4-cyclooctene, 5-methylcyclopentene, cyclopentene, di
- the butene source may be a mixed butene stream comprising various isomers of butene.
- the 1 -butene monomers are expected to be preferentially consumed by the polymerization process.
- Use of such mixed butene streams will provide an economic benefit, as these mixed streams are often waste streams from refining processes, for example, C 4 raffinate streams, and can therefore be substantially less expensive than pure 1 -butene.
- Processes of this invention can be carried out in any manner known in the art. Any suspension, homogeneous, bulk, solution, slurry, or gas phase polymerization process known in the art can be used. Such processes can be run in a batch, semi-batch, or continuous continuous mode. Homogeneous polymerization processes and slurry processes are preferred. (A homogeneous polymerization process is defined to be a process where at least 90 wt% of the product is soluble in the reaction media.) A bulk homogeneous process is particularly preferred.
- a bulk process is defined to be a process where monomer concentration in all feeds to the reactor is 70 vol% or more.
- no solvent or diluent is present or added in the reaction medium, (except for the small amounts used as the carrier for the catalyst system or other additives, or amounts typically found with the monomer; e.g., propane in propylene).
- the process is a slurry process.
- slurry polymerization process means a polymerization process where a supported catalyst is employed and monomers are polymerized on the supported catalyst particles. At least 95 wt% of polymer products derived from the supported catalyst are in granular form as solid particles (not dissolved in the diluent).
- Suitable diluents/solvents for polymerization include non-coordinating, inert liquids.
- examples include straight and branched-chain hydrocarbons, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof, such as can be found commercially (IsoparTM); perhalogenated hydrocarbons, such as perfluorinated C4 0 alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds, such as benzene, toluene, mesitylene, and xylene.
- straight and branched-chain hydrocarbons such as isobutan
- Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene, 1-pentene, 3 -methyl- 1-pentene, 4-methyl- 1-pentene, 1-octene, 1-decene, and mixtures thereof.
- aliphatic hydrocarbon solvents are used as the solvent, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof.
- the solvent is not aromatic, preferably aromatics are present in the solvent at less than 1 wt%, preferably less than 0.5 wt%, preferably less than 0 wt% based upon the weight of the solvents.
- the feed concentration of the monomers and comonomers for the polymerization is 60 vol% solvent or less, preferably 40 vol% or less, or preferably 20 vol% or less, based on the total volume of the feedstream.
- the polymerization is run in a bulk process.
- the productivity is 4500 g/mmol/hour or more, preferably 5000 g/mmol/hour or more, preferably 10,000 g/mmol/hr or more, preferably 50,000 g/mmol/hr or more. In other embodiments, the productivity is at least 80,000 g/mmol/hr, preferably at least 150,000 g/mmol/hr, preferably at least 200,000 g/mmol/hr, preferably at least 250,000 g/mmol/hr, preferably at least 300,000 g/mmol/hr.
- Preferred polymerizations can be run at any temperature and/or pressure suitable to obtain the desired vinyl terminated polymers.
- Typical temperatures and/or pressures such as at a temperature in the range of from about 0°C to about 300°C, preferably about 20°C to about 200°C, preferably about 35°C to about 150°C, preferably from about 40°C to about 120°C, preferably from about 45°C to about 80°C; and at a pressure in the range of from about 0.35 MPa to about 10 MPa, preferably from about 0.45 MPa to about 6 MPa, or preferably from about 0.5 MPa to about 4 MPa.
- the run time of the reaction is up to 300 minutes, preferably in the range of from about 5 to 250 minutes, or preferably from about 10 to 120 minutes.
- hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa), preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa). It has been found that in the present systems, hydrogen can be used to provide increased activity without significantly impairing the catalyst's ability to produce allylic chain ends.
- the catalyst activity (calculated as g/mmol catalyst/hr) is at least 20% higher than the same reaction without hydrogen present, preferably at least 50% higher, preferably at least 100% higher.
- the activity of the catalyst is at least 50 g/mmol/hour, preferably 500 or more g/mmol/hour, preferably 5000 or more g/mmol/hr, preferably 50,000 or more g/mmol/hr.
- the conversion of olefin monomer is at least 10%, based upon polymer yield and the weight of the monomer entering the reaction zone, preferably 20% or more, preferably 30% or more, preferably 50% or more, preferably 80% or more.
- alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to transition metal less than 500: 1, preferably less than 300: 1, preferably less than 100: 1, preferably less than 1 : 1.
- an alumoxane is used to produce the vinyl terminated polymers then, the alumoxane has been treated to remove free alkyl aluminum compounds, particularly trimethyl aluminum.
- the activator used herein to produce the vinyl terminated polymer is a bulky activator as defined herein and is discrete.
- scavenger such as tri alkyl aluminum
- the scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1.
- the polymerization 1) is conducted at temperatures of 0 to 300°C (preferably 25 to 150°C, preferably 40 to 120°C, preferably 45 to 80°C); 2) is conducted at a pressure of atmospheric pressure to 10 MPa (preferably 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, preferably from 0.5 to 4 MPa); 3) is conducted in an aliphatic hydrocarbon solvent (such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; preferably where aromatics are present in the solvent at less than 1 wt%, preferably less than 0.5 wt%, preferably at 0
- the scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1); and 8) optionally hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa) (preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa)).
- the catalyst system used in the polymerization comprises no more than one catalyst compound.
- reaction zone also referred to as a "polymerization zone” is a vessel where polymerization takes place, for example a batch reactor.
- each reactor is considered as a separate polymerization zone.
- each polymerization stage is considered as a separate polymerization zone.
- the polymerization occurs in one reaction zone. Room temperature is 23°C unless otherwise noted.
- the homogenous process produces a vinyl terminated propylene polymer.
- the vinyl terminated propylene polymer is a copolymer, for example of propylene and ethylene.
- the vinyl terminated propylene polymer is a terpolymer, for example, of propylene, ethylene, and a C 4 to C 4 o olefin.
- Useful vinyl terminated polymers produced herein include propylene homopolymers comprising propylene and less than 0.5 wt% comonomer, preferably 0 wt% comonomer, wherein the polymer has: (i) at least 93% allyl chain ends (preferably at least 95%, preferably at least 97%, preferably at least 98%); (ii) a number average molecular weight (Mn, as measured by NMR) 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/mol, preferably 250 to 25,000 g/mol, preferably 300 to 10,000 g/mol, preferably 400 to 9,500 g/mol, preferably 500 to 9,000 g/mol, preferably 750 to 9,000 g/mol); (iii) an isobutyl chain end to allylic vinyl group ratio of 0.8: 1 to 1.3 : 1.0; and (iv) less than 1400 ppm aluminum
- Useful vinyl terminated polymers produced herein also include propylene copolymers having an Mn (as measured by NMR) of 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/mol, preferably 250 to 25,000 g/mol, preferably 300 to 10,000 g/mol, preferably 400 to 9,500 g/mol, preferably 500 to 9,000 g/mol, preferably 750 to 9,000 g/mol), comprising (i) 10 to 90 mol% propylene (preferably 15 to 85 mol%, preferably 20 to 80 mol%, preferably 30 to 75 mol%, preferably 50 to 90 mol%); and (ii) 10 to 90 mol% (preferably 85 to 15 mol%, preferably 20 to 80 mol%, preferably 25 to 70 mol%, preferably 10 to 50 mol%) of one or more alpha-olefin comonomers (preferably ethylene, butene, hexene, or
- the vinyl terminated polymer has at least 80% isobutyl chain ends (based upon the sum of isobutyl and n-propyl saturated chain ends), preferably at least 85% isobutyl chain ends, preferably at least 90% isobutyl chain ends.
- the polymer has an isobutyl chain end to allylic vinyl group ratio of 0.8: 1 to 1.35: 1.0, preferably 0.9: 1 to 1.20: 1.0, preferably 0.9: 1.0 to 1.1 : 1.0.
- Useful vinyl terminated polymers produced herein further include propylene polymers comprising more than 90 mol% propylene (preferably 95 to 99 mol%, preferably 98 to 99 mol%) and less than 10 mol% ethylene (preferably 1 to 4 mol% or preferably 1 to 2 mol%),wherein the polymer has: (i) at least 93% allyl chain ends (preferably at least 95%, preferably at least 97%, preferably at least 98%); (ii) an Mn (measured by l R NMR) of 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/mol, preferably 250 to 25,000 g/mol, preferably 300 to 10,000 g/mol, preferably 400 to 9,500 g/mol, preferably 500 to 9,000 g/mol, or preferably 750 to 9,000 g/mol); and (iii) an isobutyl chain end to allylic vinyl group ratio of 0.8: 1 to 1.
- Useful vinyl terminated polymers produced herein also include propylene polymers comprising: (i) at least 50 (preferably at least 60, preferably 70 to 99.5, preferably 80 to 99, preferably 90 to 98.5) mol% propylene; (ii) from 0.1 to 45 (preferably at least 35, preferably 0.5 to 30, preferably 1 to 20, preferably 1.5 to 10) mol% ethylene; and (iii) from 0.1 to 5 (preferably 0.5 to 3, preferably 0.5 to 1) mol% C 4 to olefin (such as butene, hexene or octene, preferably butene), wherein the polymer has: (a) at least 90% allyl chain ends (preferably at least 91%, preferably at least 93%, preferably at least 95%, preferably at least 98%); (b) an Mn (measured by NMR) of 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/
- Useful vinyl terminated polymers produced herein also include propylene polymers comprising: (i) at least 50 (preferably at least 60, preferably 70 to 99.5, preferably 80 to 99, preferably 90 to 98.5) mol% propylene; (ii) from 0.1 to 45 (preferably at least 35, preferably 0.5 to 30, preferably 1 to 20, preferably 1.5 to 10) mol% ethylene; and (iii) from 0.1 to 5 (preferably 0.5 to 3, preferably 0.5 to 1) mol% diene (such as C 4 to alpha-omega dienes (such as butadiene, hexadiene, octadiene), norbornene, ethylidene norbornene, vinylnorbornene, norbornadiene, and dicyclopentadiene), wherein the polymer has: (a) at least 90% allyl chain ends (preferably at least 91%, preferably at least 93%, preferably at least 95%o, preferably at least 98%>);
- Useful vinyl terminated polymers that may be produced using the catalyst system described herein include polymers having an Mn (measured by NMR) of 200 g/mol or more, (preferably 300 to 60,000 g/mol, 400 to 50,000 g/mol, preferably 500 to 35,000 g/mol, preferably 300 to 15,000 g/mol, preferably 400 to 12,000 g/mol, or preferably 750 to 10,000 g/mol); and comprising: (i) from about 20 to 99.9 mol% (preferably from about 25 to about 90 mol%, from about 30 to about 85 mol%, from about 35 to about 80 mol%, from about 40 to about 75 mol%, or from about 50 to about 95 mol%) of at least one C5 to C 4 Q olefin (preferably C5 to C30 a-olefins, more preferably C5 to C20 a-olefins, preferably, C5 to (3 ⁇ 4 a- olefins, preferably pentene, hex
- Useful vinyl terminated polymers that may be produced using the catalyst system described herein also include polymers having an Mn (measured by NMR) of 200 g/mol or more (preferably 300 to 60,000 g/mol, 400 to 50,000 g/mol, preferably 500 to 35,000 g/mol, preferably 300 to 15,000 g/mol, preferably 400 to 12,000 g/mol, or preferably 750 to 10,000 g/mol) and comprises: (i) from about 80 to 99.9 mol% (preferably 85 to 99.9 mol%, more preferably 90 to 99.9 mol%) of at least one C 4 olefin (preferably 1-butene); and (ii) from about 0.1 to 20 mol% of propylene, preferably 0.1 to 15 mol%, more preferably 0.1 to 10 mol%; wherein the vinyl terminated polymer has at least 40% allyl chain ends, preferably at least 50%, at least 60%, at least 70%, or at least 80%; and, optionally, an isobutyl
- Useful vinyl terminated polymers that may be produced using the catalyst system described herein also include polymers having an Mn of at least 200 g/mol, (preferably 200 to 100,000 g/mol, preferably 200 to 75,000 g/mol, preferably 200 to 60,000 g/mol, preferably 300 to 60,000 g/mol, or preferably 750 to 30,000 g/mol) (measured by ⁇ NMR) comprising of one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to ( 3 ⁇ 4, preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene,
- these vinyl terminated polymers may comprise ethylene derived units, preferably at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene).
- ethylene derived units preferably at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene).
- the vinyl terminated propylene polymer produced herein preferably has an Mn (measured by NMR) of 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/mol, preferably 250 to 25,000 g/mol, preferably 300 to 10,000 g/mol, preferably 400 to 9,500 g/mol, preferably 500 to 9,000 g/mol, preferably 750 to 9,000 g/mol).
- Mn measured by NMR
- a desirable molecular weight range can be any combination of any upper molecular weight limit with any lower molecular weight limit described above.
- the vinyl terminated propylene polymers produced herein have a Mw (measured using a GPC-DRI method) in the range of from about 1 ,000 to about 60,000 g/mol, preferably from about 2000 to 50,000 g/mol, preferably from about 3,000 to 35,000 g/mol and/or a Mz (measured using a GPC-DRI method, as described below) in the range of from about 1700 to about 150,000 g/mol, or preferably from about 800 to 100,000 g/mol.
- Mw measured using a GPC-DRI method
- Mw/Mn Molecular weight distribution
- the copolymers of this invention have an Mw/Mn (both determined by GPC-DRI) in the range of from greater than 1.0 to 20 (alternately from about 1.2 to 20, alternately from about 1.5 to 10, or alternately from about 1.7 to 5.5).
- the vinyl terminated propylene polymer produced herein has an Mn (measured by NMR) of 100 g/mol or greater (preferably in the range of from about 150 to about 60,000 g/mol, preferably 200 to 45,000 g/mol, preferably 250 to 25,000 g/mol, preferably 300 to 10,000 g/mol, preferably 400 to 9,500 g/mol, preferably 500 to 9,000 g/mol, preferably 750 to 9,000 g/mol), a Mw in the range of from about 1,000 to about 60,000 g/mol (preferably from about 2000 to 50,000 g/mol, preferably from about 3,000 to 35,000 g/mol), and a Mz of from about 1700 to about 150,000 g/mol (or preferably from about 800 to 100,000 g/mol).
- Mn measured by NMR
- Mn is number average molecular weight (measured by l R NMR, unless stated otherwise)
- Mw is weight average molecular weight (measured by Gel Permeation Chromatography, GPC)
- Mz is z average molecular weight (measured by GPC).
- Mn, Mw, and Mz are measured by using a GPC method using a High Temperature Size Exclusion Chromatograph (SEC, either from Waters Corporation or Polymer Laboratories), equipped with a differential refractive index detector (DRI). Experimental details, are described in: T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 19, pp.
- the TCB is then degassed with an online degasser before entering the SEC.
- Polymer solutions are prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160°C with continuous agitation for about 2 hours. All quantities are measured gravimetrically.
- the TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/mL at room temperature and 1.324 g/mL at 135°C.
- the injection concentration is from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples. Prior to running each sample the DRI detector and the injector are purged.
- Flow rate in the apparatus is then increased to 0.5 mL/minute, and the DRI is allowed to stabilize for 8 to 9 hours before injecting the first sample.
- concentration, c, at each point in the chromatogram is calculated from the baseline-subtracted DRI signal, I DR[ , using the following equation:
- K D RJ is a constant determined by calibrating the DRI
- (dn/dc) is the refractive index increment for the system.
- (dn/dc) 0.104 for propylene polymers and 0.1 otherwise.
- concentration is expressed in g/cm 3
- molecular weight is expressed in g/mol
- intrinsic viscosity is expressed in dL/g.
- Vinyl terminated polymers preferably vinyl terminated propylene polymers have a saturated chain end (or terminus) and/or an unsaturated chain end (or terminus).
- the unsaturated chain end comprises the "allyl chain end.”
- An “allyl chain end” is represented by CH2CH-CH2-, as shown in formula:
- the percentage of allyl chain ends is reported as the molar percentage of allylic vinyl groups, relative to total moles of unsaturated chain ends.
- the vinyl terminated propylene polymer has at least 35% allyl chain ends, at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends, at least 80% allyl chain ends, at least 90% allyl chain ends, or at least 95% allyl chain ends.
- the number of allyl chain ends is determined using NMR at 120°C using deuterated tetrachloroethane as the solvent on a 250 MHz NMR spectrometer, and in selected cases, confirmed by 13 C NMR.
- Vinyl terminated polymers such as vinyl terminated propylene polymers also have a saturated chain end which may comprise an isobutyl chain end.
- An "isobutyl chain end” is defined to be an end or terminus of a polymer, represented as shown in the formula below:
- the structure of the polymer near the saturated chain end may differ, depending on the types and amounts of monomer(s) used, and method of insertion during the polymerization process.
- the structure of the polymer within four carbons of the isobutyl chain end is represented by one of the following formulae:
- the "isobutyl chain end to allyl chain end ratio" is defined to be the ratio of the percentage of isobutyl chain ends to the percentage of allyl chain ends.
- the isobutyl chain end to allyl chain end ratio is in the range of from about 0.8: 1 to about 1.35: 1.
- the isobutyl chain end to allyl chain end ratio is in the range of from about 1 : 1 to about 1.2: 1.
- the isobutyl chain end to allyl chain end ratio is a representation of the number of vinyl groups present per polymer chain. For example, an isobutyl chain end to allylic vinyl group ratio of about 1 : 1 indicates that there is, on average, about one allylic vinyl group present per polymer chain.
- the propylene polymer produced herein is atactic.
- the inventors have surprisingly found that the catalyst systems of the present invention produce atactic vinyl terminated propylene polymers.
- the metallocene compounds of the present invention are racemic isomers and, in theory, are capable of producing isotactic polypropylene, the inventors have found that inventive catalyst systems disclosed herein produce atactic propylene polymers with surprisingly high levels of vinyl chain ends.
- the atactic nature of the propylene polymer may be determined from 13 C NMR by the absence of regularity in the chiral structures of the repeat units, where regularity is characterized by mm, mr, rm, and rr triads as described by Zambelli et al. in Macromolecules, 8, pp. 687-689 (1975) (1975) and Macromolecules, 13, pp. 267-270 (1980).
- any of the polymers prepared herein preferably have less than 1400 ppm aluminum, preferably less than 1000 ppm aluminum, preferably less than 500 ppm aluminum, preferably less than 100 ppm aluminum, preferably less than 50 ppm aluminum, preferably less than 20 ppm aluminum, preferably less than 5 ppm aluminum.
- ICPES Inductively Coupled Plasma Emission Spectrometry
- ICPES Inductively Coupled Plasma Emission Spectrometry
- the vinyl terminated propylene polymer comprises less than 3 wt% of functional groups selected from hydroxide, aryls and substituted aryls, halogens, alkoxys, carboxylates, esters, acrylates, oxygen, nitrogen, and carboxyl, preferably less than 2 wt%, more preferably less than 1 wt%, more preferably less than 0.5 wt%, more preferably less than 0.1 wt%, more preferably 0 wt%, based upon the weight of the polymer.
- functional groups selected from hydroxide, aryls and substituted aryls, halogens, alkoxys, carboxylates, esters, acrylates, oxygen, nitrogen, and carboxyl, preferably less than 2 wt%, more preferably less than 1 wt%, more preferably less than 0.5 wt%, more preferably less than 0.1 wt%, more preferably 0 wt%, based upon the weight of the polymer.
- the vinyl terminated propylene polymer comprises at least 50 wt% (preferably at least 75 wt%, preferably at least 90 wt%, based upon the weight of the copolymer composition) olefins having at least 36 carbon atoms (preferably at least 51 carbon atoms, preferably at least 102 carbon atoms) as measured by NMR, assuming one unsaturation per chain.
- the vinyl terminated propylene polymer comprises less than 20 wt% dimer and trimer (preferably less than 10 wt%, preferably less than 5 wt%, more preferably less than 2 wt%, based upon the weight of the copolymer composition), as measured by gas chromatograph (GC). Products are analyzed by gas chromatography (Agilent 6890N with auto-injector) using helium as a carrier gas at 38 cm/sec.
- GC gas chromatograph
- a column having a length of 60 m (J & W Scientific DB-1, 60 m x 0.25 mm I.D.x 1.0 ⁇ film thickness) packed with a flame ionization detector (FID), an Injector temperature of 250°C, and a Detector temperature of 250°C are used.
- the sample was injected into the column in an oven at 70°C, then heated to 275°C over 22 minutes (ramp rate 10°C/min to 100°C, 30°C/min to 275°C, hold).
- An internal standard usually the monomer, is used to derive the amount of dimer or trimer product that is obtained. Yields of dimer and trimer product are calculated from the data recorded on the spectrometer. The amount of dimer or trimer product is calculated from the area under the relevant peak on the GC trace, relative to the internal standard.
- any of the vinyl terminated polyolefins described or useful herein have 3-alkyl vinyl end groups (where the alkyl is a Q to C38 alkyl), also referred to as a "3-alkyl chain ends” or a "3-alkyl vinyl termination", represented by the formula:
- R b is a to C38 alkyl group, preferably a Ci to C20 alkyl group, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, docecyl, and the like.
- the amount of 3-alkyl chain ends is determined using 13 C NMR as set out below.
- any of the vinyl terminated polyolefins described or useful herein have at least 5% 3-alkyl chain ends (preferably at least 10%, at least 20%, at least 30%; at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%; at least 95%), relative to total unsaturation.
- any of the vinyl terminated polyolefins described or useful herein have at least 5% of 3-alkyl + allyl chain ends (e.g., all 3-alkyl chain ends plus all allyl chain ends), preferably at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%; at least 95%), relative to total unsaturation.
- the vinyl terminated propylene polymer contains less than 25 ppm hafnium or zirconium, preferably less than 10 ppm hafnium or zirconium, preferably less than 5 ppm hafnium or zirconium, based on the yield of polymer produced and the mass of catalyst employed, as determined by ICPES.
- the vinyl terminated propylene polymer is a liquid at 25°C.
- the vinyl terminated propylene polymers described herein have a melting temperature (T m , DSC first melt) in the range of from 60°C to 130°C, alternately 50°C to 100°C.
- T m melting temperature
- the vinyl terminated propylene polymers described herein have no detectable melting temperature by DSC following storage at ambient temperature (23 °C) for at least 48 hours.
- the vinyl terminated propylene polymer preferably has a glass transition temperature (Tg) of less than 0°C or less (as determined by differential scanning calorimetry as described below), preferably -10°C or less, more preferably -20°C or less, more preferably -30°C or less, more preferably -50°C or less.
- Tg glass transition temperature
- T m and Tg are measured using Differential Scanning Calorimetry (DSC) using commercially available equipment such as a TA Instruments 2920 DSC.
- DSC Differential Scanning Calorimetry
- the sample is equilibrated at 25°C, then it is cooled at a cooling rate of 10°C/min to -80°C.
- the sample is held at -80°C for 5 min and then heated at a heating rate of 10°C/min to 25°C.
- the glass transition temperature is measured from the heating cycle.
- the sample is equilibrated at 25°C, then heated at a heating rate of 10°C/min to 150°C.
- the endothermic melting transition if present, is analyzed for onset of transition and peak temperature.
- the melting temperatures reported are the peak melting temperatures from the first heat unless otherwise specified.
- the melting point is defined to be the peak melting temperature (i.e., associated with the largest endothermic calorimetric response in that range of temperatures) from the DSC melting trace.
- the vinyl terminated polymers described herein have a viscosity at 60°C of greater than 1000 cP, greater than 12,000 cP, or greater than 100,000 cP. In other embodiments, the vinyl terminated polymers have a viscosity of less than 200,000 cP, less than 150,000 cP, or less than 100,000 cP. Viscosity is measured using a Brookfield Digital Viscometer. Uses of Vinyl Terminated Polymers
- the vinyl terminated polymers prepared herein may be functionalized by reacting a heteroatom containing group with the allyl group of the polymer, with or without a catalyst.
- a heteroatom containing group with the allyl group of the polymer, with or without a catalyst.
- Examples include catalytic hydrosilylation, hydroformylation, hydroboration, epoxidation, hydration, dihydroxylation, hydroamination, or maleation with or without activators such as free radical generators (e.g., peroxides).
- the vinyl terminated polymers produced herein are functionalized as described in U.S. Patent No. 6,022,929; A. Toyota, T. Tsutsui, and N. Kashiwa, Polymer Bulletin 48, pp. 213-219, 2002; J. Am. Chem. Soc, 1990, 112, pp. 7433- 7434; and USSN 12/487,739 filed on June 19, 2009 (Published as WO 2009/155472).
- the functionalized polymers can be used in oil additivation and many other applications.
- Preferred uses include additives for lubricants and/or fuels.
- Preferred heteroatom containing groups include, amines, aldehydes, alcohols, acids, succinic acid, maleic acid, and maleic anhydride.
- the vinyl terminated polymers disclosed herein, or functionalized analogs thereof are useful as additives.
- the vinyl terminated polymers disclosed herein, or functionalized analogs thereof are useful as additives to a lubricant.
- Particular embodiments relate to a lubricant comprising the vinyl terminated polymers disclosed herein, or functionalized analogs thereof.
- the vinyl terminated polymers disclosed herein may be used as monomers for the preparation of polymer products. Processes that may be used for the preparation of these polymer products include coordinative polymerization and acid- catalyzed polymerization.
- the polymeric products may be homopolymers. For example, if a vinyl terminated polymer (A) were used as a monomer, it is possible to form a homopolymer product with the formulation (A) n , where n is the degree of polymerization.
- the polymer products formed from mixtures of monomer vinyl terminated polymers may be mixed polymers, comprising two or more repeating units that are different from each.
- a vinyl terminated polymer (A) and a different vinyl terminated polymer (B) were copolymerized, it is possible to form a mixed polymer product with the formulation (A) n (B) m , where n is the number of molar equivalents of vinyl terminated polymer (A) and m is the number of molar equivalents of vinyl terminated polymer (B) that are present in the mixed polymer product.
- polymer products may be formed from mixtures of the vinyl terminated polymer with another alkene.
- a vinyl terminated polymer (A) and alkene (B) were copolymerized, it is possible to form a mixed polymer product with the formulation (A) n (B) m , where n is the number of molar equivalents of vinyl terminated polymer and m is the number of molar equivalents of alkene that are present in the mixed polymer product.
- Preferred heteroatom containing group comprise one or more of sulfonates, amines, aldehydes, alcohols, or acids, preferably the heteroatom containing group comprises an epoxide, succinic acid, maleic acid, or maleic anhydride, alternately the heteroatom containing group comprises one or more of acids, esters, anhydrides, acid-esters, oxycarbonyls, carbonyls, formyls, formylcarbonyls, hydroxyls, and acetyl halides.
- Percent functionalization of the polyolefin (F * 100)/(F+VI +VE).
- the number of vinyl groups/1000 carbons (VI*) and number of vinylidene groups/1000 carbons (VE*) for the functionalized polyolefin are determined from the NMR spectra of the functionalized polyolefin in the same manner as VI and VE for the unfunctionalized polymer.
- the percent functionalization of the polyolefin is 75% or more, preferably 80% or more, preferably 90% or more, preferably 95% or more.
- the functionalized polyolefins described herein have the same Mn, and/or Mw, and/or Mz, or up to 15% greater than (preferably up to 10% greater than), as the starting vinyl terminated polyolefins, "same" is defined to mean within 5%.
- the vinyl terminated polyolefins described herein can be use in any process, blend or product disclosed in WO 2009/155472, which is incorporated by reference herein.
- this invention relates to:
- a process for making a vinyl terminated propylene polymer comprising contacting:
- an activator comprising an anion and a cation (preferably a non- coordinating anion, preferably a boron compound, preferably a bulky activator represented by the formula:
- each Ri is, independently, a halide, preferably a fluoride
- each R 2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group, or a siloxy group of the formula -0-Si-R a , where R a is a C to C20 hydrocarbyl or hydrocarbylsilyl group, preferably a fluoride or a perfluorinated aromatic hydrocarbyl group;
- each R 3 is a halide, to C20 substituted aromatic hydrocarbyl group, or a siloxy group of the formula -0-Si-R a , where R a is a C to C20 hydrocarbyl or hydrocarbylsilyl group, preferably a fluoride or a perfluorinated aromatic hydrocarbyl group;
- L is an neutral Lewis base
- H is hydrogen
- B is boron
- the bulky activator is one or more of: trimethylammonium tetrakis(perfluoronaphthyl)borate, triethylammonium tetrakis(perfluoronaphthyl)borate, tripropylammonium tetrakis(perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis(perfluoronaphthyl)borate, tri(t-butyl)ammonium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium
- M is hafnium or zirconium
- each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system);
- each R 1 is, independently, a Ci to alkyl group; (preferably methyl, ethyl, propyl, and butyl, and isomers thereof);
- each R 2 is, independently, a to CIQ alkyl group; (preferably methyl, ethyl, propyl, and butyl, and isomers thereof);
- each R 3 is hydrogen
- each R 4 , R 5 , and R ⁇ is, independently, hydrogen or a substituted hydrocarbyl or unsubstituted hydrocarbyl group, or a heteroatom;
- T is a bridging group, preferably comprising silicon or germanium
- any of adjacent R 4 , R 5 , and R ⁇ groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated; (preferably, the metallocene compound is at least one of:
- the chemical shift regions for the olefin types are defined to be between the following spectral regions.
- 13 C NMR data was collected at 120°C using a spectrometer with a 13 C frequency of at least 100 MHz.
- the spectra were acquired with time averaging to provide a signal to noise level adequate to measure the signals of interest.
- Samples were dissolved in tetrachloroethane-d2 (TCE) at concentrations between 10 to 15 wt% prior to being inserted into the spectrometer magnet.
- TCE tetrachloroethane-d2
- Mn, Mw, and Mz were measured by using a GPC method using a High Temperature Size Exclusion Chromatograph (SEC, either from Waters Corporation or Polymer Laboratories), equipped with a differential refractive index detector (DRI).
- SEC High Temperature Size Exclusion Chromatograph
- DRI differential refractive index detector
- Solvent for the SEC experiment was prepared by dissolving 6 grams of butylated hydroxy toluene as an antioxidant in 4 liters of Aldrich reagent grade 1, 2, 4 trichlorobenzene (TCB). The TCB mixture was then filtered through a 0.7 ⁇ glass pre-filter and subsequently through a 0.1 ⁇ Teflon filter. The TCB was then degassed with an online degasser before entering the SEC. Polymer solutions were prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160°C with continuous agitation for about 2 hours.
- the TCB densities used to express the polymer concentration in mass/volume units were 1.463 g/mL at room temperature and 1.324 g/mL at 135°C.
- the injection concentration was from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples.
- the DRI detector and the injector Prior to running each sample the DRI detector and the injector were purged. Flow rate in the apparatus was then increased to 0.5 mL/minute, and the DRI was allowed to stabilize for 8 to 9 hours before injecting the first sample.
- K D RJ is a constant determined by calibrating the DRI
- (dn/dc) is the refractive index increment for the system.
- (dn/dc) 0.104 for propylene polymers and 0.1 otherwise.
- concentration is expressed in g/cm 3
- molecular weight is expressed in g/mol
- intrinsic viscosity is expressed in dL/g.
- Metallocenes E and F were synthesized from precursor Compound 5 (See Scheme 1). The synthesis of the precursor Compound 5 was achieved by three different synthetic routes as shown in Scheme 1, below: Route A (A ⁇ la + lb ⁇ 4 + lb ⁇ 5), Route B (A ⁇ la + lb ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5), and Route C (B ⁇ 8 ⁇ 5).
- nBu n-butyl
- Me methyl
- equiv equivalent(s)
- THF tetrahydrofuran
- nBu n-butyl
- Me methyl
- equiv equivalent(s).
- nBu n-butyl
- Me methyl
- equiv equivalent(s).
- nBu n-butyl
- Me methyl
- equiv equivalent(s).
- Metallocene E (rac-dimethylsilylbis(2-methyl,3-propylindenyl hafnium dimethyl), was collected as a first crop of crystals (pure rac-E, 0.6 g, 16%) and as a second crop (5% meso-E and 95% rac-E, 0.7 g, 19%).
- the reducing agent in Scheme 7 may be any known in the art, such as lithium aluminum hydride or a selectride, such as L-selectride, K-selectride or N-selectride. Selectrides have the formula:
- Triisobutyl aluminum (TIBAL) was obtained from Akzo Chemicals, Inc. (Chicago, IL) and used without further purification.
- Tri n-octyl aluminum (TNOAL) was obtained from Akzo Chemicals, Inc. and used without further purification.
- Catalyst solutions were prepared in a dry nitrogen purged Vacuum AtmospheresTM dry box by adding nearly equimolar (typically 1.00: 1.05) quantities of metallocene and activator to 4 mL dry toluene in a 10 mL glass vial. The mixture was stirred for several minutes and then transferred to a clean, oven dried catalyst tube.
- An example of the basic polymerization procedure follows: 2 mL of 25 wt% TNOAL (0.037 g Al) in hexanes as scavenger and 100 mL propylene were added to the reactor.
- the reactor was heated to the selected polymerization temperature and catalyst/activator was flushed from the catalyst tube into the reactor with 100 mL propylene. Additional propylene was optionally added for a total of up to 1000 mL. Polymerization was carried out for 10 to 60 minutes, and then the reactor was cooled, depressurized, and opened. At this point the collected product typically contained some residual monomer. The residual monomer concentration in the product was initially reduced by "weathering.” In many cases the sample was heated in the oven under nitrogen purge or for a short time with applied vacuum. Some of the lowest molecular weight polymer product may be lost along with the residual monomer. In some cases, residual monomer is still detected in the product in l R NMR spectra recorded at 30°C (but is not detected when spectra are recorded at 120°C).
- Metallocenes E and F (at a concentration of 1.6 x 10 ⁇ 6 M) were screened using Activator III (at a concentration of 1.6 x 10" 6 M) in a 2 liter batch reactor under solution propylene conditions.
- Activator III at a concentration of 1.6 x 10" 6 M
- TIBAL 2.5 x 10 "4 M
- the temperature of the reactor was varied among the polymerization runs 1 to 12 as shown in Table 1A, below.
- the hafnocene E produced vinyl terminated atactic propylene polymers with consistently higher vinyl levels (> 90% vinyls) than the zirconocene F (71-88% vinyls), even under high propylene conversion conditions. Surprisingly, the hafnocene E also demonstrated both higher thermal stability and unusually higher activity, when compared to the zirconocene analogue F. The polymerizations using the hafnocene E investigated under continuous solution conditions, as shown in Example 2.
- Figure 1 represents trends observed in Mn and % vinyls as a function of temperature (Runs 13-18 of the Examples). The inventors observed a trend towards higher vinyls at higher reactor temperatures. The inventors also observed a decrease in Mn with increasing reactor temperature.
- Ethylene/Propylene Copolymerization Conditions Continuous polymerization of the polymer was conducted in a 1 liter internal volume continuous flow stirred tank reactor using isohexane as the solvent. The liquid full reactor had a variable residence time of approximately 15 to 45 minutes and the pressure was maintained at 320 psig (2,206 KPa). A mixed feed of isohexane, ethylene and propylene was pre-chilled to approximately -30°C, before entering the reactor. The pre-chilling temperature was adjusted to maintain the indicated solution polymerization temperature. The solution of catalyst/activator in toluene and the scavenger in isohexane were separately and continuously admitted into the reactor to initiate the polymerization.
- Polymerization grade hexanes was further purified by passing it through a series of columns: two 500 cc Oxyclear cylinders from Labclear followed by two 500 cc columns packed with dried 3A mole sieves purchased from Aldrich Chemical Company, and two 500 cc columns packed with dried 5A mole sieves purchased from Aldrich Chemical Company, and used.
- PPR Cell Parallel Pressure Reactors
- the PPRs were prepared for polymerization by purging with dry nitrogen at 150°C for 5 hours and then at 25°C for 5 hours.
- the inventors have surprisingly found that bulky activators, where the molecular volume of at least three of the substituents on the boron atom each have a molecular volume of greater than 250 cubic A, such as Activators V and II, produced vinyl terminated propylene polymers with higher vinyls than with activators where the molecular volume of at least three of the substituents on the boron atom each have a molecular volume of less than 250 cubic A, such as Activators I, II, IV, VI, and VII.
- the inventors have also surprisingly found that catalyst systems comprising zirconocene catalysts (such as Metallocene F) and bulky activators produced higher % vinyls as comparative catalysts systems comprising the zirconocene catalyst and less bulky activators.
- catalyst systems comprising zirconocene catalysts of the present invention such as Metallocene F
- bulky activators produce comparatively similar % vinyls as catalyst systems comprising the hafnocene analogs (such as Metallocene E) and a bulky activator.
- Metallocene H produced very high % allyl chain ends, here 96% and greater.
- compositions, an element or a group of elements are preceded with the transitional phrase "comprising,” it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of,” “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12763666.0A EP2688916A4 (de) | 2011-03-25 | 2012-03-05 | Neuartige katalysatoren und verwendungsverfahren dafür zur herstellung von vinylterminierten polymeren |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/072,280 US8455597B2 (en) | 2011-03-25 | 2011-03-25 | Catalysts and methods of use thereof to produce vinyl terminated polymers |
EP11167019 | 2011-05-23 | ||
EP12763666.0A EP2688916A4 (de) | 2011-03-25 | 2012-03-05 | Neuartige katalysatoren und verwendungsverfahren dafür zur herstellung von vinylterminierten polymeren |
PCT/US2012/027685 WO2012134719A2 (en) | 2011-03-25 | 2012-03-05 | Novel catalysts and methods of use thereof to produce vinyl terminated polymers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2688916A2 true EP2688916A2 (de) | 2014-01-29 |
EP2688916A4 EP2688916A4 (de) | 2014-10-22 |
Family
ID=49773114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12763666.0A Withdrawn EP2688916A4 (de) | 2011-03-25 | 2012-03-05 | Neuartige katalysatoren und verwendungsverfahren dafür zur herstellung von vinylterminierten polymeren |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2688916A4 (de) |
JP (1) | JP5848815B2 (de) |
CN (1) | CN103502281A (de) |
WO (1) | WO2012134719A2 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102964371B (zh) * | 2012-12-17 | 2015-08-12 | 上海化工研究院 | 一种硅桥连位阻型环戊二烯类化合物的制备方法 |
EP3848401A1 (de) | 2013-07-17 | 2021-07-14 | ExxonMobil Chemical Patents Inc. | Isotaktische propylenpolymere |
WO2020184421A1 (ja) | 2019-03-12 | 2020-09-17 | 三井化学株式会社 | オレフィン系樹脂、その架橋物およびそれらの製造方法 |
CN115485311A (zh) * | 2020-02-24 | 2022-12-16 | 埃克森美孚化学专利公司 | 用于生产乙烯叉基封端的聚α-烯烃的柄型-双(茚-2-基)催化剂 |
KR20220017200A (ko) * | 2020-08-04 | 2022-02-11 | 주식회사 엘지화학 | 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법 |
KR20220046892A (ko) * | 2020-10-08 | 2022-04-15 | 주식회사 엘지화학 | 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법 |
US20240191068A1 (en) | 2021-03-31 | 2024-06-13 | Mitsui Chemicals, Inc. | Ethylene resin composition and shaped article |
JPWO2022210844A1 (de) | 2021-03-31 | 2022-10-06 | ||
WO2022210843A1 (ja) | 2021-03-31 | 2022-10-06 | 三井化学株式会社 | エチレン-α-オレフィン共重合体、熱可塑性樹脂組成物、フィルムおよび積層体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046270A1 (en) * | 1998-03-11 | 1999-09-16 | The Dow Chemical Company | Integrated process for preparation of diene complexes |
US6268518B1 (en) * | 1997-03-29 | 2001-07-31 | Montell Technology Company B.V. | Metallocene compounds and their use in catalysts for the polymerization of olefins |
EP1849757A1 (de) * | 2005-02-18 | 2007-10-31 | Idemitsu Kosan Co., Ltd. | Verfahren zur herstellung einer ungesättigten kohlenwasserstoffverbindung |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143686A (en) * | 1994-08-03 | 2000-11-07 | Exxon Chemical Patents, Inc. | Supported ionic catalyst compositions |
JP2000038411A (ja) * | 1998-07-24 | 2000-02-08 | Idemitsu Petrochem Co Ltd | オレフィン重合用触媒及びポリオレフィンの製造方法 |
JP2000038420A (ja) * | 1998-07-24 | 2000-02-08 | Idemitsu Petrochem Co Ltd | プロピレン系共重合体及びその製造方法 |
US7589160B2 (en) * | 2002-12-04 | 2009-09-15 | Basell Polyolefine Gmbh | Process for preparing 1-butene polymers |
US7943711B2 (en) * | 2007-05-14 | 2011-05-17 | Exxonmobil Chemical Patents Inc. | Ethylene elastomer compositions |
-
2012
- 2012-03-05 JP JP2014501092A patent/JP5848815B2/ja not_active Expired - Fee Related
- 2012-03-05 CN CN201280016041.9A patent/CN103502281A/zh active Pending
- 2012-03-05 EP EP12763666.0A patent/EP2688916A4/de not_active Withdrawn
- 2012-03-05 WO PCT/US2012/027685 patent/WO2012134719A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268518B1 (en) * | 1997-03-29 | 2001-07-31 | Montell Technology Company B.V. | Metallocene compounds and their use in catalysts for the polymerization of olefins |
WO1999046270A1 (en) * | 1998-03-11 | 1999-09-16 | The Dow Chemical Company | Integrated process for preparation of diene complexes |
EP1849757A1 (de) * | 2005-02-18 | 2007-10-31 | Idemitsu Kosan Co., Ltd. | Verfahren zur herstellung einer ungesättigten kohlenwasserstoffverbindung |
Non-Patent Citations (2)
Title |
---|
BALBONI D ET AL: "C2-SYMMETRIC ZIRCONOCENES FOR HIGH MOLECULAR WEIGHT AMORPHOUS POLY(PROPYLENE)", MACROMOLECULAR CHEMISTRY AND PHYSICS, WILEY-VCH VERLAG, WEINHEIM, DE, vol. 202, no. 10, 1 January 2001 (2001-01-01), pages 2010-2028, XP001124377, ISSN: 1022-1352, DOI: 10.1002/1521-3935(20010601)202:10<2010::AI D-MACP2010>3.0.CO;2-8 * |
See also references of WO2012134719A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2012134719A2 (en) | 2012-10-04 |
WO2012134719A8 (en) | 2014-03-27 |
EP2688916A4 (de) | 2014-10-22 |
JP5848815B2 (ja) | 2016-01-27 |
CN103502281A (zh) | 2014-01-08 |
JP2014513735A (ja) | 2014-06-05 |
WO2012134719A3 (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8455597B2 (en) | Catalysts and methods of use thereof to produce vinyl terminated polymers | |
US11492425B2 (en) | Metallocene catalyst compositions and polymerization process therewith | |
US8399724B2 (en) | Vinyl terminated higher olefin copolymers and methods to produce thereof | |
US8426659B2 (en) | Vinyl terminated higher olefin polymers and methods to produce thereof | |
US8841397B2 (en) | Vinyl terminated higher olefin polymers and methods to produce thereof | |
US8981029B2 (en) | Branched vinyl terminated polymers and methods for production thereof | |
EP3022235B1 (de) | Metallocene und katalysatorzusammensetzungen daraus | |
US9951155B2 (en) | Process using substituted metallocene catalysts and products therefrom | |
JP5793820B2 (ja) | 分枝ビニル末端ポリマー及びその製造方法 | |
JP5848815B2 (ja) | ビニル末端型ポリマーを製造するための新規な触媒およびその使用方法 | |
WO2014052200A1 (en) | Vinyl terminated polymers and methods to produce thereof | |
EP2688924A2 (de) | Vinylterminierte höhere olefinpolymere und herstellungsverfahren dafür | |
WO2012134720A2 (en) | Enhanced catalyst performance for production of vinyl terminated propylene and ethylene/propylene macromers | |
WO2012170202A2 (en) | Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith | |
US20140213745A1 (en) | Branched Propylene Oligomers | |
JP5739054B2 (ja) | ビニル末端高級オレフィンコポリマーおよびその生成方法 | |
WO2014120482A1 (en) | Branched propylene oligomers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131022 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20140919 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 2/34 20060101ALN20140915BHEP Ipc: C08F 4/6592 20060101ALI20140915BHEP Ipc: C08F 10/06 20060101AFI20140915BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 10/06 20060101AFI20160425BHEP Ipc: C08F 4/6592 20060101ALI20160425BHEP Ipc: C07C 2/34 20060101ALN20160425BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160530 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20161001 |