EP2687797B1 - Transport- und Lagerbehälter für temperaturempfindliche Güter - Google Patents

Transport- und Lagerbehälter für temperaturempfindliche Güter Download PDF

Info

Publication number
EP2687797B1
EP2687797B1 EP12176555.6A EP12176555A EP2687797B1 EP 2687797 B1 EP2687797 B1 EP 2687797B1 EP 12176555 A EP12176555 A EP 12176555A EP 2687797 B1 EP2687797 B1 EP 2687797B1
Authority
EP
European Patent Office
Prior art keywords
chamber
air
transport
heating
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12176555.6A
Other languages
English (en)
French (fr)
Other versions
EP2687797A1 (de
Inventor
Dirk Losco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermosecure medical equipment GmbH
Original Assignee
Thermosecure medical equipment GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermosecure medical equipment GmbH filed Critical Thermosecure medical equipment GmbH
Priority to EP12176555.6A priority Critical patent/EP2687797B1/de
Publication of EP2687797A1 publication Critical patent/EP2687797A1/de
Application granted granted Critical
Publication of EP2687797B1 publication Critical patent/EP2687797B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Definitions

  • the invention relates to a transport and storage container for temperature-sensitive goods according to the preamble of the main claim.
  • the invention further relates to a method for operating such a container.
  • Temperature-sensitive goods such as blood, blood plasma, platelets, human organs intended for transplantation, tissue samples, biological samples, vaccines, drugs or food require transport and storage of a container having a temperature in a hold for holding the product in a predetermined temperature range a period of at least a few hours or at least a few days.
  • known transport and storage containers for temperature-sensitive goods to a heater and / or a cooling device, by means of which the temperature is at least in the loading space of the container to a predetermined value or within a predetermined temperature range adjustable.
  • the temperature of the container typically additionally comprises at least one temperature measuring unit arranged in the loading space and a control and regulating unit connected to the temperature measuring unit, the heating device and / or the cooling device.
  • known containers also have ventilation means with which air to be tempered can be mixed at least in the loading space of the container.
  • known containers of the type described can each be used only for a limited temperature range or target temperature range and are therefore only suitable for transporting and storing certain goods.
  • US2007289976A1 relates to a container with disclosed a container according to the preamble of claim 1, the container has a cargo space for transporting a temperature-sensitive cargo.
  • An air passage in fluid communication with the cargo space is a heating element and an evaporator.
  • a fan may produce an airflow cooled by the evaporator or heated by the heating element that circulates through the duct and the cargo hold.
  • US2004226309A1 relates to a container for transporting temperature-sensitive materials with a cargo space and with a cooling unit and a heating unit for regulating a temperature in the cargo hold.
  • the cooling unit and the heating unit are arranged in a shaft which is in fluid communication with the cargo space.
  • a fan may produce an airflow cooled by the cooling unit or heated by the heating element that circulates through the duct and the cargo compartment.
  • US2009212047A1 concerns a freight container.
  • the freight container has a loading space and a housing standing in fluid communication with the loading space, in the interior of which an evaporator and a heating element are arranged.
  • a fan may generate an airflow cooled by the evaporator or heated by the heating element that circulates through the cargo compartment and the housing.
  • the present invention is therefore an object of the invention to provide a transport and storage container which is adapted to a temperature in a hold for receiving temperature-sensitive goods within a maximum target temperature range, as independent as possible from an outside temperature and over the longest possible period as accurately as possible as reliable as possible.
  • a transport and storage container for temperature-sensitive goods comprising a cargo space for receiving the goods, a refrigerator with a cooling device for cooling air, a heating room with a heater for heating air and ventilation means for circulating air in the container.
  • the loading space, the cooling space and the heating space are separate spaces, which are each connected to the other two spaces via at least one opening and / or via at least one air duct, and the ventilation means are arranged, in the container an air flow to generate, which flows through the cargo space, the boiler room and the refrigerator in series.
  • the ventilation means are adapted to generate an air flow in the container, which flows through the cargo space, the heating chamber and the cooling chamber in series, the flow behavior of this temperature to be tempered air flow inside the container and in particular in the cargo compartment is largely independent of a respective temperature of the airflow.
  • the temperature in the interior of the container and in particular in the cargo space can be set within a large target temperature range with great accuracy.
  • the cargo space, the refrigerator and the boiler room are separate, d. H. separate rooms.
  • the heating device and the cooling device are each arranged outside the cargo space, the temperature in the cargo space over the entire cargo hold with particularly good accuracy in the predetermined temperature range can be maintained.
  • the ventilation means may, for. B. be designed as fans and / or as nozzles.
  • the z. B. is given in each case in the form of a battery and / or a fuel cell and / or a solar module.
  • the power supply unit is typically arranged in or on the container.
  • the statement that the air flow flows through the cargo space, the boiler room and the cold room in series, should include that the air flow flows through the said spaces in each case one after the other.
  • the loading space, the boiler room and the refrigerator are thus connected to each other in the manner of a "series connection" via the openings and / or the channels.
  • the air flow flows through the cargo compartment, the boiler room and the refrigerator compartment in succession, or the air flow flows through the cargo compartment, the refrigerator compartment and the boiler room one after the other.
  • the said spaces are each separate rooms should preferably include that an area of the opening, via which a first of the three rooms is connected to a second of the three rooms, is less than 20%, less than 10 %, less than 5%, less than 2% or less than 1% of an area of an inner wall of the first room enclosing the first space.
  • the surface of the opening is intended to be determined at the point at which the opening opens into the first space.
  • the container is approximately cuboidal or has an approximately cylindrical shape.
  • a height and / or a width and / or a depth of the container is typically a few decimeters. The dimensions mentioned can also be a few meters each.
  • a volume of the cargo space may be greater than 100 liters, preferably greater than 300 liters, more preferably greater than 500 liters. Additionally or alternatively, the volume of the hold may be less than 5 m 3 , preferably less than 2 m 3 , more preferably less than 1 m 3 .
  • the container is wholly or partly made of metal or wholly or partly made of plastic.
  • outer walls of the container may be wholly or partially formed of aluminum. Preferably, the outer walls of the container to a single or a double vacuum insulation.
  • the cargo space is normally accessible via at least one door or at least one lid.
  • a special embodiment, in which a particularly homogeneous air flow can be generated in the cargo compartment, is characterized in that the cargo space is separated from the boiler room or the cold room by an at least partially perforated wall, wherein the ventilation means are arranged to the air through perforation holes in to feed the wall.
  • the air flow from the boiler room or from the refrigerator through the perforations in the hold occurs.
  • An area of the perforated wall including the area of the perforation holes can in this case amount to at least 5%, at least 10%, at least 20% or at least 30% of an area of an inner wall of the cargo space enclosing the cargo space.
  • a current density distribution caused in the cargo compartment usually depends sensitively in this embodiment on a size, a shape, an area and an arrangement of the perforation holes in the partially perforated wall. It has been found that it is particularly advantageous if one surface of all perforation holes wipe and amounts to 5% and 20%, preferably between 8% and 15%, of an area of the wall.
  • the area of the individual perforation holes is preferably between 0.005% and 0.05%, but more preferably between 0.01% and 0.03% of the area of the wall. It has been shown that a particularly homogeneous current density distribution in the cargo space can be achieved with the values mentioned in a particularly large temperature range.
  • the perforation holes have a round shape.
  • all perforation holes in the perforated wall have a round shape.
  • the area, arrangement, shape and number of perforation holes can be chosen such that they inhibit the flow of air that the ventilation means the loading space through the perforation holes, partially, so that the air accumulates in front of the cargo space. This allows a particularly controlled and uniform inflow of air through the perforation holes in the hold.
  • the area of the individual perforation holes and / or the total area of all perforation holes can thus be selected and / or the ventilation means or some of the ventilation means can be operated depending on the area of the perforation holes such that on the side facing away from the loading space side of the partially perforated wall Air congestion forms.
  • a particularly homogeneous spatial temperature distribution in the hold can be achieved.
  • Goods stored in the hold can be changed in their temperature uniformly and in a controlled way. An undesirable uneven temperature distribution within the goods can be largely minimized or completely prevented.
  • a particularly homogeneous and stable current density distribution in the loading space can be achieved by feeding openings in a loading space inner wall, which are set up for supplying air into the loading space, from discharge openings in the loading space inner wall, which are set up for discharging air from the loading space, along a vertical path are spaced to a container bottom aligned vertical direction.
  • all feed openings are each spaced from all discharge openings along the vertical direction. But good flow conditions in the hold can still be produced even if not all supply openings are spaced from all discharge openings along the vertical direction.
  • the vertical positions of some of the feed openings may overlap in whole or in part with the vertical positions of some of the discharge openings.
  • a feed opening overlaps, for example, with a discharge opening along the vertical direction, when both are arranged at the same height in the loading space inner wall, ie at the same distance from the load compartment floor.
  • an area of the feed openings which completely or partially overlap with the discharge openings along the vertical direction is less than 20%, particularly preferably less than 10%, of an area of all feed openings in the loading space inner wall.
  • an area of the discharge openings that completely or partially overlap with the supply openings along the vertical direction is preferably less than 20%, particularly preferably less than 10%, of an area of all discharge openings in the loading space inner wall.
  • the feed openings and the discharge openings can also be arranged in a load compartment ceiling or in the load compartment floor.
  • lateral positions of the feed openings are each spaced from lateral positions of the discharge openings.
  • the lateral positions denote positions in a plane which is aligned parallel to the container bottom or to the load compartment floor.
  • a further embodiment in which a particularly homogeneous and stable current density distribution in the cargo space can be achieved is characterized in that the cargo space for receiving the goods has baskets which can preferably be inserted into the cargo space and removed from the cargo space and which are designed in this way and, when inserted into the hold, are arranged such that, to reduce flow resistance, air gaps are formed between adjacent baskets and / or between the baskets and an inner wall of the cargo space, the air gaps extending along at least one direction over the entire cargo space ,
  • the inner wall may be a side wall, a door, a front wall, a rear wall, a ceiling or a floor of the cargo space.
  • a width and / or a height of the air gaps may each amount to at least 1% or at least 5% of a width and / or a height and / or a depth of the cargo space.
  • the air gaps guarantee that the baskets and the goods arranged in the baskets are respectively circulated as evenly as possible and completely.
  • An embodiment which ensures a particularly accurate and reliable control of the temperature of the air flow and thus the goods stored in the cargo space characterized in that the ventilation means are adapted to be operated so that the air flow in relation to a net volume of the cargo space, the is equal to a volume of the hold in the unloaded state minus a volume of goods stored in the hold and / or baskets arranged in the hold, having a value at least equal to 100 times or at least equal to 200 times the net volume per hour. This ensures that the air flow used for controlling the temperature of the goods stored in the cargo space circulates at a sufficiently high rate in the vessel.
  • a special embodiment is characterized in that the coolant and / or the heating means are adapted to set a temperature of the air flow in a temperature range between -30 ° C and + 40 ° C.
  • a large number of temperature-sensitive goods can be stored or transported over a long period of time.
  • Noteworthy examples include blood, vaccines, biological samples and food.
  • the heating device has at least one heating mat for converting electrical current into heat, wherein a conductive layer of the heating mat has a thickness of less than 0 , 5 cm or less than 0.3 cm.
  • the conductive layer of the heating mat which usually serves to generate the heat, may be formed of graphite, Teflon, copper or other conductive material, for example. Electrical connections of the heating mat can be designed as gold conductors.
  • a single heating mat has a rectangular shape with a length of about 30 cm and a width of about 20 cm.
  • a plurality of heating mats of the type mentioned are arranged uniformly on an inner wall of the boiler room.
  • the heating mats can be glued to the inner wall of the boiler room.
  • a heating capacity of the heating mat is typically between 100 and 500 W / m 2 .
  • the cooling device may comprise at least one fin evaporator. Typically, several finned evaporator are arranged in the refrigerator. A power of a compressor for operating the cooling device or the finned evaporator may be more than 50 W or more than 100 W. With finned evaporators, cooling temperatures of up to -30 ° C can be conveniently achieved. They are also very durable and inexpensive to produce.
  • the at least one cargo space comprises a first cargo space and a second cargo space, wherein the first and the second cargo space with the heating space or with the cooling space arranged on one between the first and the second cargo space common discharge channel for discharging the air flow from the first and the second cargo space are connected.
  • the ventilation means are preferably at least partially disposed in the discharge channel.
  • the discharge channel may, for example, each open at a discharge opening in the inner wall of the first cargo space and / or the second cargo space in the first cargo space or in the second cargo space.
  • a fan immediately before the respective discharge opening in the interior of the Be disposed discharge channel.
  • At least two of the three spaces each adjoin one another directly.
  • the container may be designed to be particularly compact.
  • the boiler room and the cold room adjoin one another directly, it is advantageous to thermally insulate the boiler room and the cold room from each other.
  • thermal insulation can be realized, for example, by metal-coated plastic plates, also called dibond plates.
  • a dividing wall between the heating space and the cooling space may, for example, be completely or at least partly misted or coated with such Dibond plates on a side of the dividing wall facing the heating space and / or on a side of the dividing wall facing the cooling space.
  • the volume V L of the cargo space is preferably between 60% and 90% of the total volume V G.
  • the volume V K of the cooling space is preferably between 5% and 20% of the total volume.
  • the volume V H of the boiler room is preferably between 2% and 10% of the total volume.
  • a method for operating the aforementioned transport and storage container is characterized in that the ventilation means comprise first ventilation means, the air with a first power in the cargo space and / or suck, and that the ventilation means of the first ventilation means comprise different second ventilation means, the air with a second power from the cargo space Press and / or suck, wherein the second power is greater than the first power, preferably by a factor of 1.1 to 1.5. If the first and the second ventilation means are operated in the manner described, a particularly homogeneous and stable air flow can be generated in the hold. The fact that the second power is greater than the first power, so creates a constant train or suction inside the hold.
  • FIG. 1 shows a transport and storage container 1 for transporting and storing temperature-sensitive goods.
  • the example shown here is in particular a container for transporting and storing blood products, blood plasma and platelets.
  • the container 1 is also suitable for other temperature-sensitive goods, for example for biological samples, for vaccines or for food.
  • a housing 2 of the container 1 is made of aluminum.
  • the container includes in its interior a cargo space 3, which comprises a first subspace 3a and a second subspace 3b.
  • the first subspace 3a and the second subspace 3b are separated from each other by a middle wall 4.
  • the subspaces 3a and 3b are accessible respectively via doors 5a and 5b, wherein in Fig. 1 For the sake of clarity, only the door 5a is shown.
  • a right-handed Cartesian coordinate system having an x-direction 6, a y-direction 7 and a z-direction 8. It has a positive x-direction in Fig. 1 to the right, a positive y-direction points into the plane of the drawing, and a positive z-direction points from the bottom to the top.
  • the z-direction 8 is also called vertical direction below.
  • the z-direction 8 is perpendicular to a bottom 9 of the container 1, which runs parallel to the xy plane.
  • the container 1 has a cuboid shape.
  • a length 10 of the container 1 measured along the x-direction 6 is 110 cm
  • a depth 11 of the container 1 measured along the y-direction 7 is 100 cm
  • a height 12 of the container 1 measured along the z-direction 8 is 116 cm.
  • the housing 2 and the doors 5a and 5b are each double-walled and have a double-layered vacuum insulation with a thickness of 40 mm, wherein used for the insulation plates are each arranged overlapping.
  • a temperature in the interior of the container 1 can be maintained largely independently of an ambient temperature with great accuracy.
  • the subspaces 3a and 3b are each shown in an empty, unloaded state.
  • the cuboid subspaces 3 a and 3 b are bounded in each case by partially perforated partitions 13 a and 13 b, by means of which the subspaces 3 a and 3 b are each separated by an underlying cooling space. Perforation holes in the partition walls 13a and 13b form supply openings, via which the partial spaces 3a and 3b are connected to the cooling space behind.
  • Fig. 1 a compressor 14 arranged on an outside of the housing 2 for operating a cooling device which will be described later.
  • FIG. 2 again shows the transport and storage container 1, wherein each of the subspaces 3a and 3b is loaded in each case with extendable baskets 15, which are inserted into the subspaces 3a and 3b and which can be removed from the subspaces 3a and 3b.
  • extendable baskets 15 are each provided with identical reference numerals.
  • nine of the baskets 15 are stacked in the vertical direction, respectively.
  • the baskets 15 each have a height of 10 cm, a length of 40 cm and a depth of 60 cm.
  • the trough-shaped baskets 15 are each open.
  • each made of plastic baskets 15 are each designed to hold blood bags.
  • the baskets 15 are shaped such that between the baskets 15 and side walls 16a and 16b of the subspaces 3a and 3b each air gaps 17 form, each along the y-direction 7 over the entire subspace 3a or over the entire subspace 3b extend.
  • a width of the air gaps 17 measured along the x-direction 6 and a height of the air gaps 17 measured along the z-direction 8 are each a few centimeters.
  • Further air gaps 18 and 19 are each formed directly above a cargo floor 20 and immediately below a load compartment ceiling 21. In a slightly modified, not shown embodiment, 15 air gaps can also form between each of the baskets.
  • the air gaps 17-19 are highlighted for clarity only for the first subspace 3a.
  • the air gaps 17-19 make it possible for a flow of air flowing through the cargo space 3 to flow around the baskets 15 on all sides in each case. In this way, heat exchange between the air stream and the temperature-sensitive goods stored in the cargo space 3 is advantageously facilitated, so that a temperature of the goods stored in the cargo space 3 can be maintained with good accuracy within a predetermined target temperature range.
  • FIG. 3 schematically shows a section through the container 1 parallel to the xy plane viewed from above, the z-direction 8 is perpendicular to the plane of the drawing and out of this.
  • FIG. 4 shows a section through the container 1 parallel to the yz plane from the side. In Fig. 4 the x-direction 6 is perpendicular to the plane of the drawing and points out of it.
  • the widths 34a and 34b of 44 cm measured along the x-direction 6 and one along the y-direction 7, respectively measured depth 24 by 64 cm shows Fig. 3 an approximately cuboid heating chamber 25 and an approximately cuboid cooling chamber 26.
  • the cooling chamber 26 connects in the y-direction 7 directly to the cargo space 3 and is of the sub-rooms 3a and 3b respectively by already in Fig. 1 shown partially perforated partitions 13a and 13b separated.
  • the cooling space 26 extends over a length 27 of about 92 cm.
  • a depth 28 of the cooling space 26 measured along the y-direction 7 and extending from the partitions 13a and 13b to a chamber wall 29 is 20 cm.
  • the heating chamber 25 is located directly between a rear wall 31 of the housing 2 and the cooling space 26.
  • the heating chamber 25 extends over a length 32 of slightly less than 90 cm.
  • a measured along the y-direction 7 depth 33 of the heating chamber 25 is about 3 cm.
  • the loading space 3, the heating space 25 and the cooling space 26 each have the same height 22 of 105 cm, as in FIG Fig. 4 can be seen.
  • a volume of the subspaces 3a and 3b is thus each about 300 liters, so that the volume of the entire load compartment comprises 3 600 liters.
  • a volume of the heating space 25 includes about 30 L and a volume of the refrigerating space 26 about 240 liters.
  • the choice of the relative volumes of cargo space 3, cooling chamber 26 and heating chamber 25 has a considerable influence on the flow behavior of the air circulating in the container.
  • the heating chamber 25 is bounded by baffles 35; the baffles 35 extend along the z-direction 8 over the entire height 22. Between the baffles 35 and the chamber wall 29 each gap-shaped openings 36 are formed, which also extend along the z-direction 8 over the entire height 22. A width of the gap-shaped openings 36 measured along the x-direction 6 is in each case a few centimeters, for example 2 cm. The gap-shaped openings 36 thus form a connection between the heating chamber 25 and the cooling space 26. About the baffles 35 circulating in the container 1 is Air flow from the boiler room 25 into the refrigerator 26 passed.
  • a cross section of the heating chamber 25 perpendicular to the flow direction of the air in the heating chamber 25 is significantly smaller than a cross section of the cooling chamber 26 perpendicular to the flow direction of the air in the cooling space 25, z. B. at least by a factor of 3 or at least by a factor of 5.
  • the chamber wall 29 is formed of aluminum and has a thickness of a few millimeters. It extends along the z-direction 8 over the entire height.
  • the chamber wall 29 is completely fogged on a side facing the heating chamber 25 with Dibondplatten.
  • These are plastic plates with a thickness of a few millimeters, each on one side with metal, z. B. with aluminum coated.
  • the dibond plates are arranged to receive heat generated by the heater with the metal-coated side and distributed parallel to the chamber wall 29.
  • the heating chamber 25 and the cooling space 26 are thus thermally insulated from one another by an insulating layer containing metal and plastic. A heat transfer between the heating chamber 25 and the cooling chamber 26 via the chamber wall 29 is thereby minimized in an advantageous manner.
  • the container 1 In order to cool or heat stored in the hold 3 temperature-sensitive goods to a predetermined target temperature, the container 1, a arranged in the heating chamber 25 heater for heating air, arranged in the cooling chamber 26 cooling device for cooling air and ventilation means, by means of which air in Container 1 can be circulated.
  • the heating device is given by a plurality of heating mats 37 which are glued on the side of the chamber wall 29 facing the heating chamber 25.
  • the chamber wall 29 with the heating mats 37 arranged thereon is in FIG. 5 shown.
  • the heating mats 37 each comprise a conductive graphite layer with a thickness of about 2 mm and have an approximately rectangular shape with a length of about 30 cm and a width of about 20 cm. About Goldleiter the heating mats 37 are each z. B. connected to a 12V power source (not shown), so that an electric current can flow through the heating mats and can be converted into heat in the heating mats. A heating capacity of the heating mats 37 can be up to 40 W for each of the mats. In the present example, eight such heating mats 37 are glued to the chamber wall 29. So that air in the heating chamber 25 can be heated as homogeneously as possible by the heating mats 37, the heating mats 37 are evenly distributed on the chamber wall 29.
  • the air in the boiler room 25 can be heated particularly effectively by means of the heating mats 37.
  • the heating mats 37 about 25% of the boiler room 25 enclosing wall surface of the heating chamber 25 are covered with the heating mats 37.
  • the heating mats 37 With the heating mats 37 a total of a heating power of up to 300 W can be achieved.
  • the circulating in the container 1 air can be kept constant if necessary over a period of many days at a temperature of up to 40 ° C or up to 50 ° C.
  • an opening 53 is shown in the chamber wall 29, can enter through the air in the heating chamber 25. This will be explained later.
  • the cooling device arranged in the cooling chamber 26 comprises two finned evaporators 38 which are arranged on a side facing the cooling chamber 26 of the chamber wall 29.
  • the finned evaporators are mounted at a distance of 10 mm to 20 mm from the chamber wall 29 on the chamber wall 29 (not explicitly shown here).
  • the finned evaporator 38 are additionally thermally separated from the heating mats 37.
  • the cooling device and the heating device can therefore be thermally separated by an air layer.
  • the finned evaporator 38 are only in Fig. 4 shown.
  • the finned evaporator 38 can be operated via the previously described compressor 14.
  • a cooling capacity of the finned evaporator 38 can be up to 200 W.
  • the circulating in the container 1 air can be maintained if necessary over a period of several days at a temperature of -30 ° C or up to -40 ° C.
  • the hold 3 temperature measuring units each of which serves to detect the temperature in the hold 3 at different measuring points.
  • at least six such temperature measuring units are arranged at different measuring points in each of the subspaces 3a and 3b.
  • the measuring points are ideally distributed as evenly as possible over the respective subspace and each arranged at a distance of at least 20 cm from each other.
  • the measuring points can be z. B. in an xz plane, in an xy plane or in a yz plane and from the partitions 13a and 13b and / or from the doors 5a and 5b, a distance of less than 20 cm or less than Have 10 cm.
  • temperature values are detected at the measuring points at the same time and forwarded to a control and regulating unit (not shown here).
  • the detection of the temperature values can, for. B. every 5 seconds or every 10 seconds.
  • the control unit is set up to control both the heating mats 37 and the finned evaporators 38 as a function of the temperature values recorded at the various measuring points and to regulate the temperature in the loading space 3 in this way.
  • the regulation of the temperature can z. B. be made such that deviations of the detected at the various measuring points in the hold 3 temperatures with each other and / or from a predetermined target temperature not more than 2 ° C or at most 1 ° C. This ensures a particularly homogeneous temperature distribution in the hold 3.
  • a power supply unit for supplying the container 1 with electrical energy, for. B. in the form of a battery.
  • the power supply unit can be arranged in or on the container 1. It can have a power of several hundred watts and a load capacity of a few hundred ampere hours.
  • the heating mats 37 and the finned evaporator 38 can be controlled independently of each other. Typically, depending on a target temperature to which the temperature inside the container 1 is to be controlled, either only the heating mats 37 or only the finned evaporators 38 are activated.
  • a special Compactness of the container 1 is achieved in that both the here given in the form of heating mats 37 heater in the boiler room 25 and the realized here by the finned evaporator 38 cooling device in the cooling chamber 26 are arranged on opposite sides of the chamber wall 29, the boiler room 25 from the refrigerator 26 separates and thermally insulated against each other.
  • fans 39a-h are furthermore arranged, whose active surfaces comprising the rotor blades each have a diameter of approximately 6 cm.
  • the fans 39a-h are fixed to the chamber wall 29 via spacers, respectively.
  • the fans 39e and 39f are mounted on the cooling space 26 facing side of the first partially perforated partition 13a and the fans 39g and 39h are mounted on the cooling space 26 facing side of the second partially perforated partition wall 13b.
  • the fans 39a-h are each arranged to push air from the refrigerated space 26 in the negative y direction 7 through the partially perforated dividing walls 13a and 13b into the compartments 3a and 3b of the cargo space. This is in Fig. 3 indicated by arrows 40, each representing the flow direction of the air flow generated by the fans 39a-h.
  • the fans 39a-h are thus adapted to generate an air flow which is aligned substantially parallel to the bottom 9 of the container 1 or parallel to the load compartment floor 20 of the cargo space 3.
  • FIG. 6 shows the partially perforated partition wall 13a, which separates the cooling space 26 from the subspace 3a of the hold 3.
  • the partition wall 13b is formed identically to the partition wall 13a and therefore will not be described separately.
  • Fig. 6 also serves to illustrate the spatial arrangement of the fans 39a-h in the cooling space 26.
  • the partition wall 13a extends along the x-direction 6 over a length 42 of about 42 cm.
  • the partition wall 13a extends over the entire height 22 of the cargo space 3 and the cooling space 26, which is 105 cm.
  • the partition wall 13a can be subdivided into sections 44a-f, which are alternately partly perforated and not perforated.
  • the portion 44b disposed in the upper half of the partition wall 13a has a regular square grid of sixteen rows and twenty columns arranged perforation holes 45, which are each round and have a diameter of 6 mm.
  • the section 44b thus has a number of 320 of the perforation holes 45.
  • the perforation holes 45 are each arranged at a distance of 10 mm from each other.
  • the portion 44d disposed in the lower half of the partition wall 13a also has perforation holes 45 which are also arranged in a regular square grid of here fourteen rows and twenty columns.
  • the perforation holes 45 in the section 44d are again round, have a diameter of 6 mm and are arranged relative to each other at a distance of 10 mm.
  • the portion 44d has a number of 280 of the perforation holes 45.
  • the portion 44c in which the partition wall 13a is not perforated.
  • the non-perforated portion 44e which extends along the z-direction 8 over a length of about 5 cm.
  • the portion 44f in the lower tenth of the partition wall 13a is in turn partially perforated.
  • the perforation holes 45 in the lower portion 44f form two separate pitches of three rows and four columns, respectively. A lattice constant of these separate pitches in section 44f is again 10 mm.
  • the perforation holes 45 in section 44f are again round and have a diameter of 6 mm.
  • the separate holes in the section 44f are arranged symmetrically with respect to an axis of symmetry along the z-direction 8 of the partition wall 13a.
  • FIG. 6 The arrangement of the fans 39a, 39b, 39e and 39f disposed between the partition wall 13a and the chamber wall 29 relative to the hole patterns in the sections 44b, 44d and 44f of the partition wall 13a is also shown in Figs Fig. 6 shown.
  • each of the four mentioned fans 39a, 39b, 39e and 39f is arranged in a plane extending parallel to the xz plane symmetrical to one of the four holes in the partition wall 13a.
  • the perforation holes 45 in the partitions 13a and 13b respectively represent supply openings, through which air can flow from the cooling space 26 into the loading space 3.
  • the Figures 3 and 4 also show discharge openings 46a and 46b in the side walls 16a and 16b of the compartments 3a and 3b.
  • the discharge openings 46a and 46b are each embedded in the side wall of the partial spaces 3a and 3b facing the center wall 4.
  • a discharge channel 47 which is formed from a folded sheet metal and embedded in the middle wall 4 between the sub-spaces 3a and 3b.
  • the Figures 3 and 4 can be removed that the discharge channel 47 connects the subspaces 3a and 3b respectively with the heating chamber 25. In this case, the discharge channel 47 engages through the cooling space 26 arranged between the heating space 25 and the loading space 3. There is therefore no direct connection between the discharge channel 47 and the cooling space 26.
  • the discharge channel 47 extends along the x-direction 6 over a width 48 of 5 cm (FIG. Fig. 3 ).
  • the discharge channel 47 has a conical shape (FIG. Fig. 4 ), wherein it tapers from a first end 49, at which the discharge openings 46a and 46b open into the discharge channel 47, to a second end 50 of the discharge channel 47, at which the discharge channel 47 opens into the heating chamber 25.
  • the discharge channel 47 has at its first end 49 a measured along the z-direction 8 height of 15 cm and at its second end 50 a measured along the z-direction 8 height of 5 cm.
  • the discharge channel 47 extends from the first end 49 to the second end 50 over a length of about 60 cm.
  • the discharge channel 47 is embedded centrally in the middle wall 4 ( Fig. 4 ). Along the vertical direction of the discharge channel 47 is thus arranged about 50 cm above the load compartment floor 20.
  • the discharge openings 46a and 46b each have a round shape with a diameter of 8 cm. The area of the discharge openings 46a and 46b is therefore each significantly larger than the area of the individual perforation holes 45, whose diameter is only 6 mm in each case.
  • the discharge openings 46a and 46b are each arranged in a middle third, preferably in a middle fifth, of the side walls 16a and 16b of the compartments 3a and 3b.
  • the feed openings and the discharge openings of the loading space 3 are respectively inserted at opposite or opposite ends of the loading space 3 in the partitions 13a and 13b and in the side walls 16a and 16b. This ensures that the airflow generated in the cargo space 3 flows through the cargo space 3 as completely and uniformly as possible.
  • the feed openings in the form of the perforation holes 45 enclose an angle with respect to the discharge openings 46a and 46b, which is 90 ° here.
  • the partition walls 13a and 13b, into which the feed openings are respectively inserted each include an angle with the side walls 16a and 16b, in which the discharge openings are embedded, which is 90 ° here.
  • two further fans 52a and 52b are arranged in the interior of the discharge channel. These are arranged to suck air from the compartments 3a and 3b through the discharge openings 46a and 46b and to guide them into the common discharge channel 47. This is in Fig. 3 represented by the arrows 57. It is particularly advantageous if a suction power generated by the fans 52a and 52b, with which air is sucked out of the loading space 3, is approximately a factor of 1.3 greater than a thrust power generated by the fans 39a-h, with the air from the cooling space 26 through the perforation holes 45 in the partitions 13a and 13b is pressed into the hold 3.
  • the fans 39a-h in the cooling space 26 and the fans 52a and 52b in the discharge channel 47 can be operated such that the air flow generated by these fans in the cargo space 3 relative to a volume V equal to a volume of the cargo space 3 minus a volume of in the hold 3 stored goods and / or minus a volume of the arranged in the hold 3 baskets 15, has a value of at least 100 volumes V per hour or at least 200 volumes V per hour.
  • the temperature in the hold 3 or the temperature of the goods stored therein can be regulated particularly well and precisely in this way.
  • the air sucked out of the loading space 3 through the discharge openings 46a and 46b is in turn directed into the heating space 25, wherein a flow direction of the air in the discharge channel 47 in the FIGS. 3 and 4 each represented by an arrow 56.
  • a connection between the discharge channel 47 and the heating chamber 25 is realized through the opening 53 in the chamber wall 29.
  • the opening 53 is embedded centrally in the chamber wall 29 both along the z-direction 8 and along the x-direction 6. This ensures a uniform distribution of the incoming from the discharge channel 47 into the heating chamber 25 air.
  • a conically shaped further deflecting plate 55 is fixed to a rear wall 54 of the heating chamber 25, the top of the is directed in the boiler room 25 incoming airflow.
  • the airflow generated by the fans 39a-h and the fans 52a and 52b in the container 1 flows through the loading space 3, the heating space 25 and the cooling space 26 one after the other.
  • the suction described above which is due to the working with different suction or thrust fans 39a-h in the cooling chamber 26 on the one hand and the fans 52a and 52b in the discharge channel 47 on the other hand forms in the cargo space 3, due to the closed flow circuit (the air flow generated in the container 1 circulates in a circle through the heating chamber 25, the refrigerator compartment 26 and the cargo compartment 3) simultaneously to the fact that the air in the refrigerator compartment 26, ie in front of the load compartment. 3 is jammed.
  • This effect is further caused by the size, number, shape and arrangement of the perforation 45 in the partitions 13 a and 13 b, which prevent too rapid inflow of air into the cargo space 3.
  • the size, arrangement and area of the individual perforation holes 45 and the total area of all perforation holes 45 are thus chosen in conjunction with the thrust of the fans 39a-h such that the air is jammed on the side facing away from the cargo compartment 3 side of the partitions 13a and 13b before she enters the hold 3. Due to the air accumulation in the cooling space 26 produced in this way, the air can flow into the cargo space 3 in a particularly uniform and controlled manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • Die Erfindung betrifft einen Transport- und Lagerbehälter für temperaturempfindliche Güter nach dem Oberbegriff des Hauptanspruchs. Die Erfindung betrifft ferner ein Verfahren zum Betreiben eines derartigen Behälters.
  • Temperaturempfindliche Güter, wie beispielsweise Blut, Blutplasma, Thrombozyten, zur Transplantation bestimmte menschliche Organe, Gewebeproben, biologische Proben, Impfstoffe, Arzneimittel oder Lebensmittel bedürfen für Transport und Lagerung eines Behälters, der eine Temperatur in einem Laderaum zur Aufnahme des Gutes in einem vorgegebenen Temperaturbereich über einen Zeitraum von wenigstens einigen Stunden oder von wenigstens einigen Tagen aufrecht erhalten kann. Zu diesem Zweck weisen bekannte Transport- und Lagerbehälter für temperaturempfindliche Güter eine Heizvorrichtung und/oder eine Kühlvorrichtung auf, mittels derer die Temperatur wenigstens im Laderaum des Behälters auf einen vorgegebenen Wert oder innerhalb eines vorgegebenen Temperaturbereiches regelbar ist. Zum Regeln der Temperatur weist der BehäTter typischerweise zusätzlich wenigstens eine im Laderaum angeordnete Temperaturmesseinheit sowie eine mit der Temperaturmesseinheit, der Heizvorrichtung und/oder der Kühlvorrichtung verbundene Steuer- und Regeleinheit auf. Diese ist gewöhnlich eingerichtet, die Heizvorrichtung und/oder die Kühlvorrichtung abhängig von einem mittels der Temperaturmesseinheit im Laderaum gemessenen Temperaturwert und abhängig von einem vorgegebenen Temperaturwert oder einem vorgegebenen Temperaturbereich anzusteuern. Bevorzugt weisen bekannte Behälter außerdem Ventilationsmittel auf, mit denen zu temperierende Luft wenigstens im Laderaum des Behälters durchmischt werden kann.
  • Bekannte Behälter der beschriebenen Art sind jedoch jeweils nur für einen eingeschränkten Temperaturbereich bzw. Zieltemperaturbereich einsetzbar und damit nur für Transport und Lagerung bestimmter Güter geeignet.
  • US2007289976A1 betrifft einen Container mit offenbart ein Container gemäß dem Oberbegriff von Anspruch 1, der Container hat einem Frachtraum zum Transportieren einer temperaturempfindlichen Fracht. Ein Luftkanal, der mit dem Frachtraum in Fluidverbindung ist, sind ein Heizelement und ein Verdampfer angeordnet. Ein Gebläse kann einen durch den Verdampfer gekühlten oder durch das Heizelement geheizten Luftstrom erzeugen, der durch den Kanal und den Frachtraum zirkuliert.
  • US2004226309A1 betrifft einen Container zum Transportieren von temperaturempfindlichen Materialien mit einem Frachtraum sowie mit einer Kühleinheit und einer Heizeinheit zum Regulieren einer Temperatur im Frachtraum. Die Kühleinheit und die Heizeinheit sind in einem Schacht angeordnet, der in Fluidverbindung mit dem Frachtraum ist. Ein Gebläse kann einen durch die Kühleinheit gekühlten oder durch das Heizelement geheizten Luftstrom erzeugen, der durch den Kanal und den Frachtraum zirkuliert.
  • US2009212047A1 betrifft einen Frachtcontainer. Der Frachtcontainer weist einen Laderaum und ein mit dem Laderaum in Fluidverbindung stehendes Gehäuse auf, in dessen Innenraum ein Verdampfer und ein Heizelement angeordnet sind. Ein Gebläse kann einen durch den Verdampfer gekühlten oder durch das Heizelement geheizten Luftstrom erzeugen, der durch den Frachtraum und das Gehäuse zirkuliert.
  • Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Transport- und Lagerbehälter zu schaffen, der eingerichtet ist, eine Temperatur in einem Laderaum zum Aufnehmen temperaturempfindlicher Güter innerhalb eines möglichst großen Zieltemperaturbereichs, möglichst unabhängig von einer Außentemperatur und über einen möglichst langen Zeitraum möglichst genau und möglichst zuverlässig zu regeln.
  • Diese Aufgabe wird gelöst durch einen Transport- und Lagerbehälter gemäß Anspruch 1 sowie durch ein Verfahren zum Betreiben dieses Behälters. Spezielle Ausführungsformen des vorgeschlagenen Behälters sind in den Unteransprüchen beschrieben.
  • Vorgeschlagen wird also ein Transport- und Lagerbehälter für temperaturempfindliche Güter, umfassend einen Laderaum zum Aufnehmen der Güter, einen Kühlraum mit einer Kühlvorrichtung zum Kühlen von Luft, einen Heizraum mit einer Heizvorrichtung zum Heizen von Luft und Ventilationsmittel zum Zirkulieren von Luft in dem Behälter. Der Laderaum, der Kühlraum und der Heizraum sind voneinander getrennte Räume, die jeweils mit den beiden anderen Räumen über jeweils mindestens eine Öffnung und/oder über jeweils mindestens einen Luftkanal verbunden sind, und die Ventilationsmittel sind eingerichtet, im Behälter einen Luftstrom zu erzeugen, der den Laderaum, den Heizraum und den Kühlraum in Reihe durchströmt.
  • Dadurch, dass die Ventilationsmittel eingerichtet sind, im Behälter einen Luftstrom zu erzeugen, der den Laderaum, den Heizraum und den Kühlraum in Reihe durchströmt, ist das Strömungsverhalten dieses zu temperierenden Luftstroms im Inneren des Behälters und insbesondere im Laderaum weitgehend unabhängig von einer jeweiligen Temperatur des Luftstroms. Damit kann die Temperatur im Inneren des Behälters und insbesondere im Laderaum innerhalb eines großen Zieltemperaturbereichs mit großer Genauigkeit eingestellt werden. Bei dem Laderaum, dem Kühlraum und dem Heizraum handelt es sich um separate, d. h. voneinander getrennte Räume. Dadurch, dass die Heizvorrichtung und die Kühlvorrichtung jeweils außerhalb des Laderaums angeordnet sind, kann die Temperatur im Laderaum über den gesamten Laderaum mit besonders guter Genauigkeit im vorgegebenen Temperaturbereich gehalten werden. Dann nämlich, wenn eine Temperatur der Heizvorrichtung oder eine Temperatur der Kühlvorrichtung von der Temperatur des Luftstroms verschieden ist, kann in einer unmittelbaren Umgebung der Heizvorrichtung bzw. der Kühlvorrichtung ein starker Temperaturgradient auftreten. Insbesondere im Laderaum jedoch, wo eine räumliche Temperaturverteilung gewöhnlich möglichst homogen sein soll, ist dies normalerweise nicht wünschenswert. Dadurch, dass auch die Heizvorrichtung und die Kühlvorrichtung in getrennten Räumen angeordnet sind, können sie auf besonders einfache Weise thermisch gegeneinander isoliert werden. Dies ist besonders dann vorteilhaft, wenn die Heizvorrichtung oder die Kühlvorrichtung Komponenten oder Substanzen aufweisen, die selber temperaturempfindlich sind. Die Ventilationsmittel können z. B. als Ventilatoren und/oder als Düsen ausgebildet sein. Zur autonomen Versorgung des Behälters mit elektrischer Energie kann dieser mindestens eine Energieversorgungseinheit aufweisen, die z. B. jeweils in Form einer Batterie und/oder einer Brennstoffzelle und/oder eines Solarmoduls gegeben ist. Die Energieversorgungseinheit ist typischerweise in oder am Behälter angeordnet.
  • Die Aussage, dass der Luftstrom den Laderaum, den Heizraum und den Kühlraum in Reihe durchströmt, soll beinhalten, dass der Luftstrom die genannten Räume jeweils nacheinander durchströmt. Der Laderaum, der Heizraum und der Kühlraum sind also in der Art einer "Reihenschaltung" über die Öffnungen und/oder die Kanäle miteinander verbunden. Zum Beispiel durchströmt der Luftstrom nacheinander den Laderaum, den Heizraum und den Kühlraum, oder der Luftstrom durchströmt nacheinander den Laderaum, den Kühlraum und den Heizraum. Die Aussage, dass es sich bei den genannten Räumen jeweils um separate Räume handelt, soll vorzugsweise beinhalten, dass eine Fläche der Öffnung, über die ein erster der drei Räume mit einem zweiten der drei Räume verbunden ist, weniger als 20%, weniger als 10%, weniger als 5%, weniger als 2% oder weniger als 1% einer Fläche einer den ersten Raum einschließenden Innenwand des ersten Raumes beträgt. Bevorzugt soll die Fläche der Öffnung dabei an der Stelle bestimmt werden, an der die Öffnung in den ersten Raum mündet.
  • Typischerweise ist der Behälter in etwa quaderförmig oder hat eine in etwa zylindrische Form. Eine Höhe und/oder eine Breite und/oder eine Tiefe des Behälters beträgt typischerweise einige Dezimeter. Die genannten Abmessungen können aber jeweils auch einige Meter betragen. Ein Volumen des Laderaums kann größer sein als 100 Liter, vorzugsweise größer als 300 Liter, besonders vorzugsweise größer als 500 Liter. Zusätzlich oder alternativ kann das Volumen des Laderaums kleiner sein als 5 m3, vorzugsweise kleiner als 2 m3, besonders vorzugweise kleiner als 1 m3. Gewöhnlich ist der Behälter ganz oder teilweise aus Metall oder ganz oder teilweise aus Kunststoff gefertigt. Zum Beispiel können Außenwände des Behälters ganz oder teilweise aus Aluminium gebildet sein. Bevorzugt weisen die Außenwände des Behälters eine einfache oder eine doppelte Vakuumisolierung auf. Der Laderaum ist normalerweise über wenigstens eine Tür oder über wenigstens einen Deckel zugänglich.
  • Eine spezielle Ausführungsform, bei der im Laderaum ein besonders homogener Luftstrom erzeugt werden kann, zeichnet sich dadurch aus, dass der Laderaum vom Heizraum oder vom Kühlraum durch eine wenigstens bereichsweise perforierte Wand getrennt ist, wobei die Ventilationsmittel eingerichtet sind, dem Laderaum Luft durch Perforationslöcher in der Wand zuzuführen. Bei dieser Ausführungsform tritt also der Luftstrom aus dem Heizraum oder aus dem Kühlraum durch die Perforationslöcher in den Laderaum. Eine Fläche der perforierten Wand inklusive der Fläche der Perforationslöcher kann dabei wenigstens 5%, wenigstens 10%, wenigstens 20% oder wenigstens 30% einer Fläche einer den Laderaum einschließenden Innenwand des Laderaums betragen.
  • Eine im Laderaum hervorgerufene Stromdichteverteilung hängt bei dieser Ausführungsform gewöhnlich empfindlich von einer Größe, einer Form, einer Fläche und einer Anordnung der Perforationslöcher in der teilweise perforierten Wand ab. Es hat sich herausgestellt, dass es besonders vorteilhaft ist, wenn eine Fläche aller Perforationslöcher wischen und 5% und 20%, vorzugsweise zwischen 8% und 15% einer Fläche der Wand beträgt. Die Fläche der einzelnen Perforationslöcher beträgt bevorzugt zwischen 0,005% und 0,05%, besonders vorzugsweise jedoch zwischen 0,01% und 0,03% der Fläche der Wand. Es hat sich gezeigt, dass mit den genannten Werten in einem besonders großen Temperaturbereich eine besonders homogene Stromdichteverteilung im Laderaum erzielt werden kann. Ebenso hat es sich gezeigt, dass es besonders vorteilhaft ist, wenn wenigstens 80%, vorzugsweise jedoch wenigstens 90% der Perforationslöcher eine runde Form haben. Idealerweise haben alle Perforationslöcher in der perforierten Wand eine runde Form. Insbesondere können Fläche, Anordnung, Form und Anzahl der Perforationslöcher derart gewählt werden, dass sie den Luftstrom, den die Ventilationsmittel dem Laderaum durch die Perforationslöcher zuführen, teilweise hemmen, so dass sich die Luft vor dem Laderaum staut. Dies ermöglicht ein besonders kontrolliertes und gleichmäßiges Einströmen der Luft durch die Perforationslöcher in den Laderaum. Die Fläche der einzelnen Perforationslöcher und/oder die Gesamtfläche aller Perforationslöcher kann also derart gewählt werden und/oder die Ventilationsmittel oder einige der Ventilationsmittel können abhängig von der Fläche der Perforationslöcher derart betrieben werden, dass sich auf der vom Laderaum abgewandten Seite der teilweise perforierten Wand ein Luftstau ausbildet. Auf diese Weise kann eine besonders homogene räumliche Temperaturverteilung im Laderaum erzielt werden. Im Laderaum verstaute Güter können so gleichmäßig und kontrolliert in ihrer Temperatur verändert werden. Eine unerwünschte ungleichmäßige Temperaturverteilung innerhalb der Güter kann dadurch weitgehend minimiert oder vollständig verhindert werden.
  • Eine besonders homogene und stabile Stromdichteverteilung im Laderaum kann dadurch erzielt werden, dass Zuführöffnungen in einer Laderauminnenwand, die zum Zuführen von Luft in den Laderaum eingerichtet sind, von Abführöffnungen in der Laderauminnenwand, die zum Abführen von Luft aus dem Laderaum eingerichtet sind, entlang einer senkrecht zu einem Behälterboden ausgerichteten vertikalen Richtung beabstandet sind. Dies beinhaltet zum Beispiel, dass die Zuführöffnungen und die Abführöffnungen jeweils an unterschiedlichen vertikalen Positionen in der Laderauminnenwand angeordnet sind. Idealerweise sind dabei alle Zuführöffnungen jeweils von allen Abführöffnungen entlang der vertikalen Richtung beabstandet. Gute Strömungsverhältnisse im Laderaum lassen sich aber auch noch dann herstellen, wenn nicht alle Zuführöffnungen jeweils von allen Abführöffnungen entlang der vertikalen Richtung beabstandet sind. So können die vertikalen Positionen einiger der Zuführöffnungen mit den vertikalen Positionen einiger der Abführöffnungen ganz oder teilweise überlappen. Eine Zuführöffnung überlappt zum Beispiel dann mit einer Abführöffnung entlang der vertikalen Richtung, wenn beide in derselben Höhe in der Laderauminnenwand angeordnet sind, also im selben Abstand vom Laderaumboden. Vorzugsweise beträgt eine Fläche der Zuführöffnungen, die mit den Abführöffnungen entlang der vertikalen Richtung ganz oder teilweise überlappen, weniger als 20%, besonders vorzugsweise weniger als 10% einer Fläche aller Zuführöffnungen in der Laderauminnenwand. Ebenso beträgt eine Fläche der Abführöffnungen, die mit den Zuführöffnungen entlang der vertikalen Richtung ganz oder teilweise überlappen, vorzugsweise weniger als 20%, besonders vorzugsweise weniger als 10% einer Fläche aller Abführöffnungen in der Laderauminnenwand.
  • Die Zuführöffnungen und die Abführöffnungen können natürlich auch in einer Laderaumdecke oder im Laderaumboden angeordnet sein. Dann ist es vorteilhaft, wenn laterale Positionen der Zuführöffnungen jeweils von lateralen Positionen der Abführöffnungen beabstandet sind. Die lateralen Positionen bezeichnen dabei Positionen in einer Ebene, die parallel zum Behälterboden oder zum Laderaumboden ausgerichtet ist. Bezüglich eines teilweisen Überlapps der lateralen Positionen der Zuführöffnungen und der Abführöffnungen kann das oben in Bezug auf den teilweisen Überlapp entlang der vertikalen Richtung Gesagte gelten.
  • Eine weitere Ausführungsform, bei der eine besonders homogene und stabile Stromdichteverteilung im Laderaum erzielt werden kann, zeichnet sich dadurch aus, dass der Laderaum zum Aufnehmen der Güter Körbe aufweist, die vorzugsweise in den Laderaum einsetzbar und aus dem Laderaum entnehmbar sind und die derart ausgebildet sind und, wenn sie in den Laderaum eingesetzt sind, derart angeordnet sind, dass zur Verringerung eines Strömungswiderstandes Luftspalte zwischen benachbarten Körben und/oder zwischen den Körben und einer Innenwand des Laderaums ausgebildet sind, wobei die Luftspalte sich entlang wenigstens einer Richtung über den gesamten Laderaum erstrecken. Die Innenwand kann eine Seitenwand, eine Tür, eine Vorderwand, eine Rückwand, eine Decke oder ein Boden des Laderaums sein. Eine Breite und/oder eine Höhe der Luftspalte kann zum Beispiel jeweils wenigstens 1% oder wenigstens 5 % einer Breite und/oder einer Höhe und/oder einer Tiefe des Laderaums betragen. Die Luftspalte garantieren, dass die Körbe und die in den Körben jeweils angeordneten Güter jeweils möglichst gleichmäßig und vollständig umströmt werden.
  • Eine Ausführungsform, die eine besonders genaue und zuverlässige Regelung der Temperatur des Luftstroms und damit der im Laderaum gelagerten Güter gewährleistet, zeichnet sich dadurch aus, dass die Ventilationsmittel eingerichtet sind, derart betrieben zu werden, dass der Luftstrom bezogen auf ein Nettovolumen des Laderaumes, das gleich einem Volumen des Laderaums im nicht beladenen Zustand abzüglich eines Volumens von im Laderaum gelagerten Gütern und/oder von im Laderaum angeordneten Körben ist, einen Wert hat, der wenigstens gleich dem 100-fachen oder wenigstens gleich dem 200-fachen Nettovolumen pro Stunde ist. Dadurch wird gewährleistet, dass der zur Temperierung der im Laderaum gelagerten Güter eingesetzte Luftstrom mit einer genügend großen Rate im Behälter zirkuliert.
  • Eine spezielle Ausführungsform zeichnet sich dadurch aus, dass die Kühlmittel und/oder die Heizmittel eingerichtet sind, eine Temperatur des Luftstroms in einem Temperaturbereich zwischen -30°C und +40°C einzustellen. Im genannten Temperaturbereich lässt sich eine Vielzahl temperaturempfindlicher Güter über einen langen Zeitraum lagern bzw. transportieren. Hervorzuheben sind zum Beispiel Blut, Impfstoffe, biologische Proben und Lebensmittel.
  • Eine Ausführungsform, bei der die Heizvorrichtung und damit auch der Heizraum besonders platzsparend ausgebildet sein können, zeichnet sich dadurch aus, dass die Heizvorrichtung mindestens eine Heizmatte zum Umwandeln von elektrischem Strom in Wärme aufweist, wobei eine leitende Schichte der Heizmatte eine Dicke von weniger als 0,5 cm oder von weniger als 0,3 cm hat. Die leitende Schicht der Heizmatte, die gewöhnlich dem Erzeugen der Wärme dient, kann zum Beispiel aus Graphit, aus Teflon, aus Kupfer oder aus einem anderen leitenden Material gebildet sein. Elektrische Anschlüsse der Heizmatte können als Goldleiter ausgebildet sein. Typischerweise hat eine einzelne Heizmatte eine rechteckige Form mit einer Länge von etwa 30 cm und mit einer Breite von etwa 20 cm. Bevorzugt werden mehrere Heizmatten der genannten Art gleichmäßig auf einer Innenwand des Heizraums angeordnet. Zum Beispiel können die Heizmatten auf der Innenwand des Heizraums verklebt werden. Eine Heizleistung der Heizmatte beträgt typischerweise zwischen 100 und 500 W/m2.
  • Die Kühlvorrichtung kann mindestens einen Lamellenverdampfer umfassen. Typischerweise sind mehrere Lamellenverdampfer im Kühlraum angeordnet. Eine Leistung eines Kompressors zum Betreiben der Kühlvorrichtung bzw. des Lamellenverdampfers kann mehr als 50 W oder mehr als 100 W betragen. Mit Lamellenverdampfern können Kühltemperaturen von bis zu -30°C bequem erreicht werden. Sie sind zudem besonders langlebig und kostengünstig herstellbar.
  • Eine weitere besonders raumsparende Ausführungsform des Behälters zeichnet sich dadurch aus, dass der mindestens eine Laderaum einen ersten Laderaum und einen zweiten Laderaum umfasst, wobei der erste und der zweite Laderaum mit dem Heizraum oder mit dem Kühlraum über einen zwischen dem ersten und dem zweiten Laderaum angeordneten gemeinsamen Abführkanal zum Abführen des Luftstroms aus dem ersten und dem zweiten Laderaum verbunden sind. Bei dieser Ausführungsform sind die Ventilationsmittel bevorzugt wenigstens teilweise im Abführkanal angeordnet. Der Abführkanal kann zum Beispiel jeweils an einer Abführöffnung in der Innenwand des ersten Laderaums und/oder des zweiten Laderaums in den ersten Laderaum bzw. in den zweiten Laderaum münden. In diesem Fall kann zum Beispiel jeweils ein Ventilator unmittelbar vor der jeweiligen Abführöffnung im Inneren des Abführkanals angeordnet sein. Damit kann der Luftstrom besonders effektiv aus dem ersten Laderaum und aus dem zweiten Laderaum abgeführt werden.
  • Vorzugsweise grenzen jeweils wenigstens zwei der drei Räume (Laderaum, Heizraum, Kühlraum) unmittelbar aneinander. Auf diese Weise kann der Behälter besonders kompakt ausgebildet sein. Sofern der Heizraum und der Kühlraum unmittelbar aneinandergrenzen, ist es vorteilhaft, den Heizraum und den Kühlraum thermisch gegeneinander zu isolieren. Eine solche thermische Isolierung kann zum Beispiel durch metallbeschlagene Kunststoffplatten, auch Dibondplatten genannt, realisiert sein. Eine Trennwand zwischen dem Heizraum und dem Kühlraum kann zum Beispiel auf einer dem Heizraum zugewandten Seite der Trennwand und/oder auf einer dem Kühlraum zugewandten Seite der Trennwand vollständig oder wenigstens teilweise mit derartigen Dibondplatten beschlagen oder beschichtet sein.
  • Der Wahl der relativen Volumina des Laderaums, des Heizraums und des Kühlraums können auf das Strömungsverhalten der im Behälter zirkulierenden Luft einen entscheidenden Einfluss haben, insbesondere auf eine Strömungsgeschwindigkeit im Laderaum, im Heizraum und im Kühlraum. Eine Ausführungsform, bei der ein besonders homogener und stabiler Luftstrom erzeugt werden kann, zeichnet sich dadurch aus, dass ein Volumen VL des mindestens einen Laderaums, ein Volumen VK des Kühlraums, ein Volumen VH des Heizraums und ein Gesamtvolumen VG=VL+VK+VH eine oder mehrere der folgenden Bedingungen erfüllen: a) 0,6 ≤ VL/ VG ≤ 0,9, b) 0,1 ≤ VK/ VG ≤ 0,2, c) 0,02 ≤ VH/ VG ≤ 0,1. Mit anderen Worten beträgt das Volumen VL des Laderaums vorzugsweise zwischen 60% und 90% des Gesamtvolumens VG. Das Volumen VK des Kühlraums beträgt vorzugsweise zwischen 5% und 20% des Gesamtvolumens. Das Volumen VH des Heizraums beträgt vorzugsweise zwischen 2% und 10% des Gesamtvolumens.
  • Vorgeschlagen wird ferner ein Verfahren zum Betreiben des zuvor genannten Transport- und Lagerbehälters, Dieses Verfahren zeichnet sich dadurch aus, dass die Ventilationsmittel erste Ventilationsmittel umfassen, die Luft mit einer ersten Leistung in den Laderaum drücken und/oder saugen, und dass die Ventilationsmittel von den ersten Ventilationsmitteln verschiedene zweite Ventilationsmittel umfassen, die Luft mit einer zweiten Leistung aus dem Laderaum drücken und/oder saugen, wobei die zweite Leistung größer ist als die erste Leistung, vorzugsweise um einen Faktor 1,1 bis 1,5. Werden die erste und die zweiten Ventilationsmittel in der beschriebenen Weise betrieben, so kann im Laderaum ein besonders homogener und stabiler Luftstrom erzeugt werden. Dadurch, dass die zweite Leistung größer ist als die erste Leistung, entsteht im Inneren des Laderaums also ein konstanter Zug oder Sog.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird anhand der folgenden Beschreibung näher erläutert. Es zeigt:
  • Fig. 1
    eine perspektivische Ansicht eines Transport- und Lagerbehälters von vorne,
    Fig. 2
    den Transport- und Lagerbehälter aus Fig. 1, wobei ein erster ein zweiter Teilraum eines Laderaumes des Behälters jeweils mit Körben beladen sind,
    Fig. 3
    schematisch einen Schnitt durch den Behälter aus Fig. 1 von oben, wobei der Laderaum, ein Heizraum und ein Kühlraum gezeigt sind, die nacheinander von Luft durchströmt werden,
    Fig. 4
    schematisch einen Schnitt durch den Behälter aus Fig. 1 von der Seite,
    Fig. 5
    eine Innenwand des Heizraums mit auf der Innenwand angeordneten Heizmatten und mit einer zentralen Öffnung zum Zuleiten von Luft in den Heizraum und
    Fig. 6
    eine teilweise perforierte Trennwand, die zwischen dem Kühlraum und dem Laderaum des Behälters angeordnet ist.
  • Figur 1 zeigt einen Transport- und Lagerbehälter 1 zum Transportieren und Lagern temperaturempfindlicher Güter. Bei dem hier gezeigten Beispiel handelt es sich insbesondere um einen Behälter zum Transportieren und Lagern von Blutkonserven, Blutplasma und Thrombozyten. Selbstverständlich ist der Behälter 1 auch für andere temperaturempfindliche Güter geeignet, zum Beispiel für biologische Proben, für Impfstoffe oder für Lebensmittel. Ein Gehäuse 2 des Behälters 1 ist aus Aluminium gefertigt. Der Behälter schließt in seinem Inneren einen Laderaum 3 ein, der einen ersten Teilraum 3a und einen zweiten Teilraum 3b umfasst. Der erste Teilraum 3a und der zweite Teilraum 3b sind durch eine Mittelwand 4 voneinander getrennt. Die Teilräume 3a und 3b sind jeweils über Türen 5a und 5b zugänglich, wobei in Fig. 1 der Übersichtlichkeit halber nur die Tür 5a dargestellt ist. In den Teilräumen 3a und 3b können temperaturempfindliche Güter gelagert werden. Zur Beschreibung des Behälters 1 wird hier und im Folgenden auf ein rechtshändiges kartesisches Koordinatensystem mit einer x-Richtung 6, einer y-Richtung 7 und einer z-Richtung 8 Bezug genommen. Dabei weist eine positive x-Richtung in Fig. 1 nach rechts, eine positive y-Richtung weist in die Zeichenebene hinein, und eine positive z-Richtung weist von unten nach oben. Die z-Richtung 8 wird im Weiteren auch vertikale Richtung genannt. Die z-Richtung 8 steht senkrecht auf einem Boden 9 des Behälters 1, der parallel zur x-y-Ebene verläuft.
  • Der Behälter 1 hat Quaderform. Eine entlang der x-Richtung 6 gemessene Länge 10 des Behälters 1 beträgt 110 cm, eine entlang der y-Richtung 7 gemessene Tiefe 11 des Behälters 1 beträgt 100 cm, und eine entlang der z-Richtung 8 gemessene Höhe 12 des Behälters 1 beträgt 116 cm. Zur thermischen Isolierung des Behälters 1 von der Umgebung sind das Gehäuse 2 sowie die Türen 5a und 5b jeweils doppelwandig ausgebildet und weisen eine doppellagige Vakuumisolierung mit einer Dicke von 40 mm auf, wobei zur Isolierung verwendete Platten jeweils überlappend angeordnet werden. Damit kann eine Temperatur im Inneren des Behälters 1 weitgehend unabhängig von einer Umgebungstemperatur mit großer Genauigkeit aufrechterhalten werden. In Fig. 1 sind die Teilräume 3a und 3b jeweils in einem leeren, nicht beladenen Zustand gezeigt. In der positiven y-Richtung 7 werden die quaderförmigen Teilräume 3a und 3b jeweils durch teilweise perforierte Trennwände 13a und 13b begrenzt, durch die die Teilräume 3a und 3b jeweils von einem dahinterliegenden Kühlraum getrennt sind. Perforationslöcher in den Trennwänden 13a und 13b bilden Zuführöffnungen, über die die Teilräume 3a und 3b mit dem dahinterliegenden Kühlraum verbunden sind. Ebenso zeigt Fig. 1 einen an einer Außenseite des Gehäuses 2 angeordneten Kompressor 14 zum Betreiben einer Kühlvorrichtung, die an späterer Stelle beschrieben wird.
  • Figur 2 zeigt wiederum den Transport- und Lagerbehälter 1, wobei jeder der Teilräume 3a und 3b jeweils mit ausziehbaren Körben 15 beladen ist, die in die Teilräume 3a und 3b eingesetzt und die aus den Teilräumen 3a und 3b entnommen werden können. Hier und im Folgenden sind wiederkehrende Merkmale jeweils mit identischen Bezugszeichen versehen. In jedem der Teilräume 3a und 3b sind jeweils neun der Körbe 15 in der vertikalen Richtung übereinander angeordnet. Die Körbe 15 haben jeweils eine Höhe von 10 cm, eine Länge von 40 cm und eine Tiefe von 60 cm. Nach oben hin, also entlang der positiven z-Richtung 8, sind die wannenförmigen Körbe 15 jeweils offen. Im hier beschriebenen Beispiel sind die jeweils aus Plastik gefertigten Körbe 15 jeweils zur Aufnahme von Blutbeuteln ausgelegt. Die Körbe 15 sind dabei derart geformt, dass sich zwischen den Körben 15 und Seitenwänden 16a und 16b der Teilräume 3a und 3b jeweils Luftspalte 17 ausbilden, die sich jeweils entlang der y-Richtung 7 über den gesamten Teilraum 3a bzw. über den gesamten Teilraum 3b erstrecken. Eine entlang der x-Richtung 6 gemessene Breite der Luftspalte 17 und eine entlang der z-Richtung 8 gemessene Höhe der Luftspalte 17 betragen jeweils einige Zentimeter. Weitere Luftspalte 18 und 19 sind jeweils unmittelbar oberhalb eines Laderaumbodens 20 und unmittelbar unterhalb einer Laderaumdecke 21 ausgebildet. Bei einer leicht abgewandelten, hier nicht dargestellten Ausführungsform können sich auch jeweils zwischen den Körben 15 Luftspalte bilden. Die Luftspalte 17-19 sind der Übersichtlichkeit halber nur für den ersten Teilraum 3a hervorgehoben. Die Luftspalte 17-19 ermöglichen es, dass ein den Laderaum 3 durchströmender Luftstrom die Körbe 15 jeweils an allen Seiten umströmen kann. Auf diese Weise wird ein Wärmeaustausch zwischen dem Luftstrom und den im Laderaum 3 gelagerten temperaturempfindlichen Gütern in vorteilhafter Weise erleichtert, so dass eine Temperatur der im Laderaum 3 gelagerten Güter mit guter Genauigkeit innerhalb eines vorgegebenen Zieltemperaturbereichs gehalten werden kann.
  • Figur 3 zeigt schematisch einen Schnitt durch den Behälter 1 parallel zur x-y-Ebene von oben betrachtet, wobei die z-Richtung 8 senkrecht auf der Zeichenebene steht und aus dieser heraus weist. Figur 4 zeigt einen Schnitt durch den Behälter 1 parallel zur y-z-Ebene von der Seite. In Fig. 4 steht die x-Richtung 6 senkrecht auf der Zeichenebene und weist aus dieser heraus.
  • Neben dem Gehäuse 2, den Türen 5a und 5b, dem Laderaum 3 mit den durch die Mittelwand 4 getrennten Teilräumen 3a und 3b, die jeweils entlang der x-Richtung 6 gemessene Breiten 34a und 34b von 44 cm und eine entlang der y-Richtung 7 gemessene Tiefe 24 von 64 cm haben, zeigt Fig. 3 einen in etwa quaderförmigen Heizraum 25 sowie einen in etwa quaderförmigen Kühlraum 26. Der Kühlraum 26 schließt sich in der y-Richtung 7 unmittelbar an den Laderaum 3 an und ist von den Teilräumen 3a und 3b jeweils durch die bereits in Fig. 1 gezeigten teilweise perforierten Trennwände 13a und 13b getrennt. Entlang der x-Richtung 6 erstreckt sich der Kühlraum 26 über eine Länge 27 von etwa 92 cm. Eine entlang der y-Richtung 7 gemessene Tiefe 28 des Kühlraums 26, die sich jeweils von den Trennwänden 13a und 13b bis zu einer Kammerwand 29 erstreckt, beträgt 20 cm.
  • Durch die Kammerwand 29 ist der Kühlraum 26 vom Heizraum 25 getrennt. Der Heizraum 25 liegt unmittelbar zwischen einer Rückwand 31 des Gehäuses 2 und dem Kühlraum 26. Entlang der x-Richtung 6 erstreckt sich der Heizraum 25 über eine Länge 32 von etwas weniger als 90 cm. Eine entlang der y-Richtung 7 gemessene Tiefe 33 des Heizraums 25 beträgt etwa 3 cm. Entlang der z-Richtung 8 weisen der Laderaum 3, der Heizraum 25 und der Kühlraum 26 jeweils dieselbe Höhe 22 von 105 cm auf, wie in Fig. 4 zu erkennen ist. Ein Volumen der Teilräume 3a und 3b beträgt damit jeweils etwa 300 Liter, so dass das Volumen des gesamten Laderaumes 3 600 Liter umfasst. Ein Volumen des Heizraumes 25 umfasst etwa 30 L und ein Volumen des Kühlraumes 26 in etwa 240 Liter. Die Wahl der relativen Volumina von Laderaum 3, Kühlraum 26 und Heizraum 25 hat einen erheblichen Einfluss auf das Strömungsverhalten der im Behälter zirkulierenden Luft.
  • Seitlich, also entlang der x-Richtung 6, wird der Heizraum 25 jeweils durch Umlenkbleche 35 begrenzt; die Umlenkbleche 35 erstrecken sich entlang der z-Richtung 8 über die gesamte Höhe 22. Zwischen den Umlenkblechen 35 und der Kammerwand 29 sind jeweils spaltförmige Öffnungen 36 ausgebildet, die sich entlang der z-Richtung 8 ebenfalls über die gesamte Höhe 22 erstrecken. Eine entlang der x-Richtung 6 gemessene Breite der spaltförmigen Öffnungen 36 beträgt jeweils wenige Zentimeter, zum Beispiel 2 cm. Die spaltförmigen Öffnungen 36 bilden also eine Verbindung zwischen dem Heizraum 25 und dem Kühlraum 26. Über die Umlenkbleche 35 wird der im Behälter 1 zirkulierende Luftstrom aus dem Heizraum 25 in den Kühlraum 26 geleitet. Es ist deutlich zu erkennen, dass ein Querschnitt des Heizraums 25 senkrecht zur Strömungsrichtung der Luft im Heizraum 25 deutlich kleiner ist als ein Querschnitt des Kühlraums 26 senkrecht zur Strömungsrichtung der Luft im Kühlraum 25, z. B. wenigstens um einen Faktor 3 oder wenigstens um einen Faktor 5. Beim Eintritt der Luft in den Kühlraum 26, der ein unmittelbar vor dem Laderaum 3 angeordneter Raum ist, nimmt die Strömungsgeschwindigkeit der Luft daher merklich ab. Dies fördert die Ausbildung eines Luftstaus unmittelbar vor dem Laderaum 3. Dadurch wird ein besonders kontrolliertes Einleiten der Luft in den Laderaum 3 ermöglicht.
  • Die Kammerwand 29 ist aus Aluminium gebildet und hat eine Dicke von wenigen Millimetern. Sie erstreckt sich entlang der z-Richtung 8 über die gesamte Höhe. Zur thermischen Isolierung des Heizraums 25 vom Kühlraum 26 ist die Kammerwand 29 auf einer dem Heizraum 25 zugewandten Seite vollständig mit Dibondplatten beschlagen. Dabei handelt es sich um Kunststoffplatten mit einer Dicke von wenigen Millimetern, die jeweils an einer Seite mit Metall, z. B. mit Aluminium, beschichtet sind. Die Dibondplatten sind derart angeordnet, dass sie mit der mit Metall beschichtete Seite von der Heizvorrichtung erzeugte Wärme aufnehmen und parallel zur Kammerwand 29 verteilen. Die Kunststoffseite der Dibondplatten sind dem Kühlraum 26 zugewandt. Der Heizraum 25 und der Kühlraum 26 sind also durch eine Metall und Kunststoff enthaltende Isolationsschicht thermisch gegeneinander isoliert. Ein Wärmeübertrag zwischen dem Heizraum 25 und dem Kühlraum 26 über die Kammerwand 29 wird dadurch in vorteilhafter Weise minimiert.
  • Um im Laderaum 3 verstaute temperaturempfindliche Güter auf eine vorgegebene Zieltemperatur zu kühlen oder zu erwärmen, weist der Behälter 1 eine im Heizraum 25 angeordnete Heizvorrichtung zum Heizen von Luft, eine im Kühlraum 26 angeordnete Kühlvorrichtung zum Kühlen von Luft sowie Ventilationsmittel auf, mittels derer Luft im Behälter 1 zirkuliert werden kann. Im vorliegenden Ausführungsbeispiel ist die Heizvorrichtung dabei durch eine Vielzahl von Heizmatten 37 gegeben, die auf der dem Heizraum 25 zugewandten Seite der Kammerwand 29 verklebt sind. Die Kammerwand 29 mit den darauf angeordneten Heizmatten 37 ist in Figur 5 gezeigt.
  • Die Heizmatten 37 umfassen jeweils eine leitende Graphitschicht mit einer Dicke von etwa 2 mm und haben eine in etwa rechteckige Form mit einer Länge von ca. 30 cm und einer Breite von ca. 20 cm. Über Goldleiter sind die Heizmatten 37 jeweils z. B. mit einer 12V-Spannungsquelle verbunden (nicht gezeigt), so dass ein elektrischer Strom durch die Heizmatten fließen und in den Heizmatten in Wärme umgewandelt werden kann. Eine Heizleistung der Heizmatten 37 kann dabei für jede der Matten bis zu 40 W betragen. Im vorliegenden Beispiel sind auf der Kammerwand 29 acht derartige Heizmatten 37 verklebt. Damit Luft im Heizraum 25 durch die Heizmatten 37 möglichst homogen erwärmt werden kann, sind die Heizmatten 37 gleichmäßig auf der Kammerwand 29 verteilt. Dadurch, dass der Heizraum 25 mit seiner Tiefe 33 von nur wenigen Zentimetern besonders schmal ausgebildet ist, kann die Luft im Heizraum 25 mittels der Heizmatten 37 besonders effektiv erwärmt werden. Im vorliegenden Beispiel sind etwa 25% einer den Heizraum 25 einschließenden Wandfläche des Heizraums 25 mit den Heizmatten 37 verkleidet. Mit den Heizmatten 37 kann insgesamt eine Heizleistung von bis zu 300 W erzielt werden. Damit kann die im Behälter 1 zirkulierende Luft bei Bedarf über einen Zeitraum von vielen Tagen konstant auf einer Temperatur von bis zu 40 °C oder von bis zu 50 °C gehalten werden. In Fig. 5 ist ferner eine Öffnung 53 in der Kammerwand 29 gezeigt, durch die Luft in den Heizraum 25 eintreten kann. Dies wird an späterer Stelle näher erläutert.
  • Die im Kühlraum 26 angeordnete Kühlvorrichtung umfasst zwei Lamellenverdampfer 38, die auf einer dem Kühlraum 26 zugewandten Seite der Kammerwand 29 angeordnet sind. Die Lamellenverdampfer sind in einem Abstand von 10 mm bis 20 mm von der Kammerwand 29 an der Kammerwand 29 montiert (hier nicht explizit gezeigt). Dadurch werden die Lamellenverdampfer 38 zusätzlich thermisch von den Heizmatten 37 getrennt. Die Kühlvorrichtung und die Heizvorrichtung können also durch eine Luftschicht thermisch getrennt sein. Der Übersichtlichkeit halber sind die Lamellenverdampfer 38 nur in Fig. 4 dargestellt. Die Lamellenverdampfer 38 können über den zuvor beschriebenen Kompressor 14 betrieben werden. Eine Kühlleistung der Lamellenverdampfer 38 kann dabei bis zu 200 W betragen. Damit kann die im Behälter 1 zirkulierende Luft bei Bedarf über einen Zeitraum von mehreren Tagen auf einer Temperatur von bis zu -30 °C oder von bis zu -40 °C gehalten werden.
  • Hier nicht explizit dargestellt sind im Laderaum 3 angeordnete Temperaturmesseinheiten, die jeweils der Erfassung der Temperatur im Laderaum 3 an verschiedenen Messpunkten dienen. Z. B. sind in jedem der Teilräume 3a und 3b jeweils wenigstens sechs derartige Temperaturmesseinheiten an unterschiedlichen Messpunkten angeordnet. Die Messpunkte sind idealerweise möglichst gleichmäßig über den jeweiligen Teilraum verteilt und jeweils in einem Abstand von wenigstens 20 cm voneinander angeordnet. Die Messpunkte können z. B. in einer x-z-Ebene, in einer x-y-Ebene oder in einer y-z-Ebene angeordnet sein und von den Trennwänden 13a bzw. 13b und/oder von den Türen 5a bzw. 5b einen Abstand von weniger als 20 cm oder von weniger als 10 cm haben. Mittels der Temperaturmesseinheiten werden an den Messpunkten jeweils zeitgleich Temperaturwerte erfasst und an eine hier nicht dargestellte Steuer- und Regeleinheit weitergegeben. Das Erfassen der Temperaturwerte kann z. B. alle 5 Sekunden oder alle 10 Sekunden vorgenommen werden.
  • Die Steuer- und Regeleinheit ist eingerichtet, sowohl die Heizmatten 37 als auch die Lamellenverdampfer 38 abhängig von den an den verschiedenen Messpunkten erfassten Temperaturwerten anzusteuern und die Temperatur im Laderaum 3 auf diese Weise zu regeln. Die Regelung der Temperatur kann z. B. derart vorgenommen werden, dass Abweichungen der an den verschiedenen Messpunkten im Laderaum 3 erfassten Temperaturen untereinander und/oder von einer vorgegebenen Solltemperatur höchstens 2 °C oder höchstens 1 °C betragen. Damit ist eine besonders homogene Temperaturverteilung im Laderaum 3 gewährleistet.
  • Ebenfalls nicht explizit gezeigt ist eine Energieversorgungseinheit zur Versorgung des Behälters 1 mit elektrischer Energie, z. B. in Form einer Batterie. Die Energieversorgungseinheit kann in oder am Behälter 1 angeordnet sein. Sie kann eine Leistung von einigen Hundert Watt und eine Ladekapazität von einigen Hundert Amperestunden haben. Die Heizmatten 37 und die Lamellenverdampfer 38 können unabhängig voneinander angesteuert werden. Typischerweise werden abhängig von einer Zieltemperatur, auf welche die Temperatur im Inneren des Behälters 1 geregelt werden soll, entweder nur die Heizmatten 37 oder nur die Lamellenverdampfer 38 angesteuert. Eine besondere Kompaktheit des Behälters 1 wird dadurch erzielt, das sowohl die hier in Form der Heizmatten 37 gegebene Heizvorrichtung im Heizraum 25 als auch die hier durch die Lamellenverdampfer 38 realisierte Kühlvorrichtung im Kühlraum 26 auf entgegengesetzten Seiten der Kammerwand 29 angeordnet sind, die den Heizraum 25 vom Kühlraum 26 trennt und diese thermisch gegeneinander isoliert.
  • Im Kühlraum 26 sind weiterhin acht Ventilatoren 39a-h angeordnet, deren die Rotorblätter umfassende aktive Flächen jeweils einen Durchmesser von ca. 6 cm haben. In den Figuren 3 und 4 sind jeweils nicht alle Ventilatoren 39a-h sichtbar, da diese einander jeweils teilweise verdecken. Vier der Ventilatoren 39a-h, nämlich die Ventilatoren 39a bis 39d, sind jeweils über Abstandshalter an der Kammerwand 29 befestigt. Die Ventilatoren 39e und 39f sind an der dem Kühlraum 26 zugewandten Seite der ersten teilweise perforierten Trennwand 13a angebracht und die Ventilatoren 39g und 39h sind an der dem Kühlraum 26 zugewandten Seite der zweiten teilweise perforierten Trennwand 13b montiert. Die Ventilatoren 39a-h sind jeweils eingerichtet, Luft aus dem Kühlraum 26 in der negativen y-Richtung 7 durch die teilweise perforierten Trennwände 13a und 13b in die Teilräume 3a und 3b des Laderaums zu drücken. Dies ist in Fig. 3 durch Pfeile 40 angedeutet, die jeweils die Strömungsrichtung des von den Ventilatoren 39a-h erzeugten Luftstroms wiedergeben. Die Ventilatoren 39a-h sind demnach eingerichtet, einen Luftstrom zu erzeugen, der im Wesentlichen parallel zum Boden 9 des Behälters 1 bzw. parallel zum Laderaumboden 20 des Laderaums 3 ausgerichtet ist.
  • Figur 6 zeigt die teilweise perforierte Trennwand 13a, die den Kühlraum 26 vom Teilraum 3a des Laderaums 3 trennt. Die Trennwand 13b ist identisch zur Trennwand 13a ausgebildet und wird daher nicht gesondert beschrieben. Fig. 6 dient auch der Illustration der räumlichen Anordnung der Ventilatoren 39a-h im Kühlraum 26. Die Trennwand 13a erstreckt sich entlang der x-Richtung 6 über eine Länge 42 von etwa 42 cm. Entlang der z-Richtung 8 erstreckt sich die Trennwand 13a über die gesamte Höhe 22 des Laderaums 3 und des Kühlraumes 26, die 105 cm beträgt. Entlang der z-Richtung 8 lässt sich die Trennwand 13a in Abschnitte 44a-f unterteilen, die abwechselnd teilweise perforiert und nicht perforiert sind. So weist der in der oberen Hälfte der Trennwand 13a angeordnete Abschnitt 44b in einem regelmäßigen Quadratgitter aus sechzehn Zeilen und zwanzig Spalten angeordnete Perforationslöcher 45 auf, die jeweils rund sind und einen Durchmesser von 6 mm haben. Der Abschnitt 44b weist also eine Anzahl von 320 der Perforationslöcher 45 auf. Der Übersichtlichkeit halber sind nur einige der Perforationslöcher explizit bezeichnet. Entlang der z-Richtung 8 und entlang der x-Richtung 6 sind die Perforationslöcher 45 jeweils in einem Abstand von 10 mm voneinander angeordnet. Der in der unteren Hälfte der Trennwand 13a angeordnete Abschnitt 44d weist ebenso Perforationslöcher 45 auf, die ebenfalls in einem regelmäßigen Quadratgitter aus hier vierzehn Zeilen und zwanzig Spalten angeordnet sind. Die Perforationslöcher 45 im Abschnitt 44d sind wiederum rund, haben einen Durchmesser von 6 mm und sind relativ zueinander in einem Abstand von 10 mm angeordnet. Der Abschnitt 44d weist eine Anzahl von 280 der Perforationslöcher 45 auf.
  • Zwischen dem Abschnitt 44b und dem Abschnitt 44d erstreckt sich entlang der z-Richtung 8 über etwa 20 cm der Abschnitt 44c, in dem die Trennwand 13a nicht perforiert ist. An einem unteren Ende des teilweise perforierten Abschnitts 44d schließt sich der nicht perforierte Abschnitt 44e an, der sich entlang der z-Richtung 8 über eine Länge von ca. 5 cm erstreckt. Der Abschnitt 44f im unteren Zehntel der Trennwand 13a ist wiederum teilweise perforiert. Die Perforationslöcher 45 im unteren Abschnitt 44f bilden zwei getrennte Lochraster aus jeweils drei Zeilen und vier Spalten. Eine Gitterkonstante dieser getrennten Lochraster im Abschnitt 44f beträgt wiederum 10 mm. Die Perforationslöcher 45 im Abschnitt 44f sind wiederum rund und haben einen Durchmesser von 6 mm. Die getrennten Lochraster im Abschnitt 44f sind symmetrisch bezüglich einer entlang der z-Richtung 8 verlaufenden Symmetrieachse der Trennwand 13a angeordnet.
  • Die Anordnung der zwischen der Trennwand 13a und der Kammerwand 29 angeordneten Ventilatoren 39a, 39b, 39e und 39f relativ zu den Lochrastern in den Abschnitten 44b, 44d und 44f der Trennwand 13a ist ebenfalls in Fig. 6 dargestellt. Dort sind die in der Darstellung der Fig. 6 hinter der Trennwand 13a angeordneten Ventilatoren 39a, 39b, 39e und 39f jeweils durch gestrichelte Kreise angedeutet. So ist jeder der vier genannten Ventilatoren 39a, 39b, 39e und 39f jeweils in einer parallel zur x-z-Ebene verlaufenden Ebene symmetrisch zu einem der vier Lochraster in der Trennwand 13a angeordnet. Dasselbe gilt für die hier nicht explizit dargestellte Anordnung der übrigen Ventilatoren 39c, 39d, 39g und 39h relativ zur zweiten Trennwand 13b.
  • Die Perforationslöcher 45 in den Trennwänden 13a und 13b stellen jeweils Zuführöffnungen dar, durch die hindurch Luft aus dem Kühlraum 26 in den Laderaum 3 strömen kann. Die Figuren 3 und 4 zeigen ebenfalls Abführöffnungen 46a und 46b in den Seitenwänden 16a und 16b der Teilräume 3a und 3b. Dabei sind die Abführöffnungen 46a und 46b jeweils in der der Mittelwand 4 zugewandten Seitenwand der Teilräume 3a und 3b eingelassen. Durch die Abführöffnungen 46a und 46b wird die Luft aus den Teilräumen 3a und 3b in einen Abführkanal 47 geleitet, der aus einem gefalteten Blech gebildet und in die Mittelwand 4 zwischen den Teilräumen 3a und 3b eingelassen ist. Den Figuren 3 und 4 ist entnehmbar, dass der Abführkanal 47 die Teilräume 3a und 3b jeweils mit dem Heizraum 25 verbindet. Dabei greift der Abführkanal 47 durch den zwischen dem Heizraum 25 und dem Laderaum 3 angeordneten Kühlraum 26 hindurch. Es besteht also keine unmittelbare Verbindung zwischen dem Abführkanal 47 und dem Kühlraum 26.
  • Der Abführkanal 47 erstreckt sich entlang der x-Richtung 6 über eine Breite 48 von 5 cm (Fig. 3). Entlang der y-Richtung 7 hat der Abführkanal 47 eine konische Form (Fig. 4), wobei er sich von einem ersten Ende 49, an dem die Abführöffnungen 46a und 46b in den Abführkanal 47 münden, hin zu einem zweiten Ende 50 des Abführkanals 47, an dem der Abführkanal 47 in den Heizraum 25 mündet, verjüngt. So hat der Abführkanal 47 an seinem ersten Ende 49 eine entlang der z-Richtung 8 gemessene Höhe von 15 cm und an seinem zweiten Ende 50 eine entlang der z-Richtung 8 gemessene Höhe von 5 cm. Entlang der y-Richtung 7 erstreckt sich der Abführkanal 47 vom ersten Ende 49 bis zum zweiten Ende 50 über eine Länge von etwa 60 cm.
  • Entlang der z-Richtung 8 ist der Abführkanal 47 mittig in die Mittelwand 4 eingelassen (Fig. 4). Entlang der vertikalen Richtung ist der Abführkanal 47 also etwa 50 cm über dem Laderaumboden 20 angeordnet. Die Abführöffnungen 46a und 46b haben jeweils eine runde Form mit einem Durchmesser von 8 cm. Die Fläche der Abführöffnungen 46a und 46b ist also jeweils deutlich größer als die Fläche der einzelnen Perforationslöcher 45, deren Durchmesser jeweils nur 6 mm beträgt. Entlang der z-Richtung 8, also in der vertikalen Richtung, sind die Abführöffnungen 46a und 46b jeweils in einem mittleren Drittel, vorzugsweise in einem mittleren Fünftel, der Seitenwände 16a und 16b der Teilräume 3a und 3b angeordnet. Entlang der z-Richtung 8 sind die Abführöffnungen 46a und 46b damit gegenüber den durch die Perforationslöcher 45 gegebenen Zuführöffnungen in den Abschnitten 44b, 44d und 44f der Trennwände 13a und 13b versetzt angeordnet und jeweils beabstandet. Dies ist in Fig. 4 jeweils durch horizontal verlaufende gestrichelte Linien wiedergegeben, die die Begrenzungen der perforierten Abschnitte 44b und 44d der Trennwände 13a und 13b entlang der z-Richtung 8 wiedergeben. In der vertikalen Richtung besteht also kein Überlapp der Abführöffnungen 46a und 46b mit den Perforationslöchern 45. Es hat sich gezeigt, dass eine derartige relative Anordnung der Zuführöffnungen und der Abführöffnungen einer Stabilität und einer Homogenität des den Laderaum 3 durchströmenden Luftstroms in besonderem Maße förderlich ist.
  • Die Zuführöffnungen und die Abführöffnungen des Laderaums 3 sind jeweils an gegenüberliegenden oder entgegengesetzten Enden des Laderaums 3 in die Trennwände 13a und 13b bzw. in die Seitenwände 16a und 16b eingelassen. Damit ist sichergestellt, dass der im Laderaum 3 erzeugte Luftstrom den Laderaum 3 möglichst vollständig und gleichmäßig durchströmt. Der Fig. 3 kann zusätzlich entnommen werden, dass die Zuführöffnungen in Gestalt der Perforationslöcher 45 gegenüber den Abführöffnungen 46a und 46b einen Winkel einschließen, der hier 90° beträgt. Mit anderen Worten schließen die Trennwände 13a und 13b, in die die Zuführöffnungen jeweils eingelassen sind, mit den Seitenwänden 16a und 16b, in die die Abführöffnungen eingelassen sind, jeweils einen Winkel ein, der hier 90° beträgt.
  • Unmittelbar am Ausgang der Abführöffnungen 46a und 46b sind im Inneren des Abführkanals 47 zwei weitere Ventilatoren 52a und 52b angeordnet. Diese sind eingerichtet, Luft aus den Teilräumen 3a und 3b durch die Abführöffnungen 46a und 46b zu saugen und in den gemeinsamen Abführkanal 47 zu leiten. Dies ist in Fig. 3 durch die Pfeile 57 dargestellt. Es ist besonders vorteilhaft, wenn eine durch die Ventilatoren 52a und 52b erzeugte Saugleistung, mit der Luft aus dem Laderaum 3 abgesaugt wird, in etwa um einen Faktor 1,3 größer ist als eine von den Ventilatoren 39a-h erzeugte Schubleistung, mit der Luft aus dem Kühlraum 26 durch die Perforationslöcher 45 in den Trennwänden 13a und 13b in den Laderaum 3 gedrückt wird. Auf diese Weise bildet sich im Laderaum 3 bzw. jeweils in den Teilräumen 3a und 3b zwischen den Abführöffnungen 46a und 46b und den Zuführöffnungen in den Trennwänden 13a und 13b ein Sog aus, der für besonders stabile Strömungsverhältnisse im Laderaum 3 sorgt. Insbesondere können die Ventilatoren 39a-h im Kühlraum 26 und die Ventilatoren 52a und 52b im Abführkanal 47 derart betrieben werden, dass der von diesen Ventilatoren im Laderaum 3 erzeugte Luftstrom bezogen auf ein Volumen V, das gleich einem Volumen des Laderaums 3 abzüglich eines Volumens von im Laderaum 3 gelagerten Gütern und/oder abzüglich eines Volumens der im Laderaum 3 angeordneten Körbe 15 ist, einen Wert von wenigstens 100 Volumina V pro Stunde oder von wenigstens 200 Volumina V pro Stunde hat. Die Temperatur im Laderaum 3 bzw. die Temperatur der darin gelagerten Güter lässt sich auf diese Weise besonders gut und genau regeln.
  • Durch den Abführkanal 47 wird die durch die Abführöffnungen 46a und 46b aus dem Laderaum 3 abgesaugte Luft wiederum in den Heizraum 25 geleitet, wobei eine Strömungsrichtung der Luft im Abführkanal 47 in den Fign. 3 und 4 jeweils durch einen Pfeil 56 wiedergegeben ist. Eine Verbindung zwischen dem Abführkanal 47 und dem Heizraum 25 ist durch die Öffnung 53 in der Kammerwand 29 realisiert. Die Öffnung 53 ist sowohl entlang der z-Richtung 8 als auch entlang der x-Richtung 6 mittig in die Kammerwand 29 eingelassen. Damit wird eine möglichst gleichmäßige Verteilung der aus dem Abführkanal 47 in den Heizraum 25 eintretenden Luft gewährleistet. Um die durch die Öffnung 53 in den Heizraum 25 eintretende Luft jeweils zu gleichen Teilen den beiden spaltartigen Öffnungen 36 zwischen dem Heizraum 25 und dem Kühlraum 26 zuzuleiten, ist an einer Rückwand 54 des Heizraums 25 ein konisch geformtes weiteres Umlenkblech 55 befestigt, dessen Spitze dem in den Heizraum 25 eintretenden Luftstrom entgegengerichtet ist.
  • Insbesondere der Fig. 3 ist deutlich entnehmbar, dass der von den Ventilatoren 39a-h und den Ventilatoren 52a und 52b im Behälter 1 erzeugte Luftstrom den Laderaum 3, den Heizraum 25 und den Kühlraum 26 jeweils nacheinander durchströmt. Der zuvor beschriebene Sog, der sich aufgrund der mit unterschiedlichen Saug- bzw. Schubleistungen arbeitenden Ventilatoren 39a-h im Kühlraum 26 einerseits und der Ventilatoren 52a und 52b im Abführkanal 47 andererseits im Laderaum 3 ausbildet, führt infolge des geschlossenen Strömungskreislaufs (der im Behälter 1 erzeugte Luftstrom zirkuliert im Kreis durch den Heizraum 25, den Kühlraum 26 und den Laderaum 3) gleichzeitig dazu, dass die Luft im Kühlraum 26, d. h. vor dem Laderaum 3 gestaut wird. Dieser Effekt wird darüber hinaus durch die Größe, Anzahl, Form und Anordnung der Perforationslöcher 45 in den Trennwänden 13a und 13b hervorgerufen, die ein zu schnelles Einströmen der Luft in den Laderaum 3 verhindern. Die Größe, Anordnung und Fläche der einzelnen Perforationslöcher 45 sowie die Gesamtfläche aller Perforationslöcher 45 werden also in Verbindung mit der Schubleistung der Ventilatoren 39a-h derart gewählt, dass die Luft auf der vom Laderaum 3 abgewandten Seite der Trennwände 13a und 13b gestaut wird, bevor sie in den Laderaum 3 eintritt. Durch den auf diese Weise hergestellten Luftstau im Kühlraum 26 kann die Luft besonders gleichmäßig und kontrolliert in den Laderaum 3 einströmen.

Claims (14)

  1. Transport- und Lagerbehälter (1) für temperaturempfindliche Güter, umfassend einen Laderaum (3) zum Aufnehmen der Güter, einen Kühlraum (26) mit einer Kühlvorrichtung zum Kühlen von Luft, einen Heizraum (25) mit einer Heizvorrichtung zum Heizen von Luft und Ventilationsmittel zum Zirkulieren von Luft in dem Behälter,
    dadurch gekennzeichnet,
    dass der Laderaum (3), der Kühlraum (26) und der Heizraum (25) voneinander getrennte Räume sind, die jeweils mit den beiden anderen Räumen über jeweils mindestens eine Öffnung (53, 36, 46a, 46b) und/oder über jeweils mindestens einen Luftkanal verbunden sind und dass die Ventilationsmittel eingerichtet sind, im Behälter (1) einen Luftstrom zu erzeugen, der den Laderaum (3), den Heizraum (25) und den Kühlraum (26) in Reihe durchströmt.
  2. Transport- und Lagerbehälter (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Laderaum (3) vom Heizraum (25) oder vom Kühlraum (26) durch eine wenigstens bereichsweise perforierte Wand getrennt ist, wobei die Ventilationsmittel eingerichtet sind, dem Laderaum (3) Luft durch Perforationslöcher (45) in der Wand zuzuführen.
  3. Transport- und Lagerbehälter (1) nach Anspruch 2, dadurch gekennzeichnet, dass eine Fläche aller Perforationslöcher (45) zwischen 5 und 20 Prozent, vorzugsweise zwischen 8 und 15 Prozent einer Fläche der Wand beträgt und dass die Fläche der einzelnen Perforationslöcher (45) jeweils zwischen 0,005 und 0,05 Prozent, vorzugsweise zwischen 0,01 und 0,03 Prozent der Fläche der Wand beträgt.
  4. Transport- und Lagerbehälter (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass wenigstens 80 Prozent, vorzugsweise wenigstens 90 Prozent der Perforationslöcher (45) rund sind.
  5. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Zuführöffnungen in einer Laderauminnenwand, die zum Zuführen von Luft in den Laderaum (3) eingerichtet sind, von Abführöffnungen (46a, 46b) in der Laderauminnenwand, die zum Abführen von Luft aus dem Laderaum (3) eingerichtet sind, entlang einer senkrecht zu einem Behälterboden ausgerichteten vertikalen Richtung beabstandet sind.
  6. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Laderaum (3) zum Aufnehmen der Güter Schubladen (15) aufweist, die derart ausgebildet und angeordnet sind, dass zur Verringerung eines Strömungswiderstandes Luftspalte (17, 18, 19) zwischen benachbarten Schubladen (15) und/oder zwischen den Schubladen (15) und einer Innenwand (16a, 16b) des Laderaums (3) ausgebildet sind, wobei die Luftspalte (17,18,19) sich entlang wenigstens einer Richtung über den gesamten Laderaum (3) erstrecken.
  7. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventilationsmittel eingerichtet sind, derart betrieben zu werden, dass der Luftstrom bezogen auf ein Volumen V, das gleich einem Volumen des Laderaums (3) abzüglich eines Volumens von im Laderaum (3) gelagerten Gütern und/oder im Laderaum (3) angeordneten Schubladen (15) ist, einen Wert hat, der wenigstens das 100-fache oder wenigstens das 200-fache des Volumens V pro Stunde beträgt.
  8. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlvorrichtung und/oder die Heizvorrichtung eingerichtet sind oder eingerichtet ist, eine Temperatur des Luftstroms in einem Temperaturbereich zwischen -30°C und +40°C einzustellen.
  9. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizvorrichtung mindestens eine Heizmatte (37) zum Umwandeln von elektrischem Strom in Wärme aufweist, wobei eine leitende Schichte der Heizmatte (37) eine Dicke von weniger als 0,5 cm oder von weniger als 0,3 cm hat.
  10. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlvorrichtung mindestens einen Lamellenverdampfer (38) aufweist.
  11. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Laderaum (3) einen ersten Teilraum (3a) und einen zweiten Teilraum (3b) umfasst, wobei der erste und der zweite Teilraum (3b) mit dem Heizraum (25) oder mit dem Kühlraum (26) über einen zwischen dem ersten und dem zweiten Teilraum (3b) angeordneten gemeinsamen Abführkanal (47) zum Abführen des Luftstroms aus dem ersten und dem zweiten Teilraum (3b) verbunden sind.
  12. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Volumen des Laderaums (3) größer ist als 100 Liter, vorzugsweise größer als 300 Liter, besonders vorzugsweise größer als 500 Liter und/oder dass das Volumen des Laderaums (3) kleiner ist als 5 m3, vorzugsweise kleiner als 2 m3, besonders vorzugsweise kleiner als 1 m3.
  13. Transport- und Lagerbehälter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Volumen VL des mindestens einen Laderaums (3), ein Volumen VK des Kühlraums (26), ein Volumen VH des Heizraums (25) und ein Gesamtvolumen VG=VL+VK+VH eine oder mehrere der folgenden Bedingungen erfüllen: a) 0,6 ≤ VL/ VG ≤ 0,9, b) 0,1 ≤ VK/ VG ≤ 0,2, c) 0,02 ≤ VH/ VG ≤ 0,1.
  14. Verfahren zum Betreiben eines Transport- und Lagerbehälters (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventilationsmittel erste Ventilationsmittel umfassen, die Luft mit einer ersten Leistung in den Laderaum (3) drücken und/oder saugen, und dass die Ventilationsmittel von den ersten Ventilationsmitteln verschiedene zweite Ventilationsmittel umfassen, die Luft mit einer zweiten Leistung aus dem Laderaum (3) drücken und/oder saugen, wobei die zweite Leistung größer ist als die erste Leistung, vorzugsweise um einen Faktor 1,1 bis 1,5.
EP12176555.6A 2012-07-16 2012-07-16 Transport- und Lagerbehälter für temperaturempfindliche Güter Not-in-force EP2687797B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12176555.6A EP2687797B1 (de) 2012-07-16 2012-07-16 Transport- und Lagerbehälter für temperaturempfindliche Güter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12176555.6A EP2687797B1 (de) 2012-07-16 2012-07-16 Transport- und Lagerbehälter für temperaturempfindliche Güter

Publications (2)

Publication Number Publication Date
EP2687797A1 EP2687797A1 (de) 2014-01-22
EP2687797B1 true EP2687797B1 (de) 2017-09-06

Family

ID=46514212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12176555.6A Not-in-force EP2687797B1 (de) 2012-07-16 2012-07-16 Transport- und Lagerbehälter für temperaturempfindliche Güter

Country Status (1)

Country Link
EP (1) EP2687797B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296498B (zh) * 2014-10-13 2016-08-31 武汉佰美斯医疗科技有限公司 一种浮动式密封翻盖血浆速冻机
CN105698461B (zh) * 2016-03-14 2018-05-11 合肥华凌股份有限公司 风冷冰箱

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135316A (en) * 1960-09-02 1964-06-02 Foster Refrigerator Corp Convertible heating and cooling food storage cabinet
GB2228989B (en) * 1989-03-11 1992-11-25 Leec Limited Apparatus for maintaining a desired temperature in a chamber
FR2747377B1 (fr) * 1996-04-12 1998-06-26 Pacault Jean Rene Lucien Conteneur refrigere et tropicalise pour le stockage et le transport de produits thermo-sensibles
US20040226309A1 (en) * 2003-02-17 2004-11-18 Broussard Kenneth W. Temperature controlled, pallet-sized shipping container
US7913511B2 (en) * 2005-06-08 2011-03-29 Doubleday Acquisitions, Llc Cargo container for transporting temperature sensitive items
US8162542B2 (en) * 2008-02-25 2012-04-24 Tednologies, Inc. Environment controlled cargo container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2687797A1 (de) 2014-01-22

Similar Documents

Publication Publication Date Title
EP0109543B1 (de) Hochtemperatur-Speicherbatterie
DE2402340A1 (de) Gekuehlter ausstellkasten
EP2874880B1 (de) Kühlkonzept rückpaneel
DE60315738T2 (de) Behälter zum Kühlen leicht verderblicher Waren
DE102012217868A1 (de) Wärmeübertrager
DE602004010886T2 (de) Kühleinheit
DE2807352A1 (de) Kuehlgeraet
EP1634945A1 (de) Lufterwärmungsvorrichtung für Proben
EP2687797B1 (de) Transport- und Lagerbehälter für temperaturempfindliche Güter
DE102011117988A1 (de) Klimaschrank
EP3713738A1 (de) Belüftungsmodul für eine folienreckanlage und eine solche folienreckanlage
DE102012217872A1 (de) Wärmeübertrager
DE102006052503B4 (de) Wärmedistanzwand für Transportbehälter
DE102010050829B4 (de) Gefriervorrichtung für Tiersamen
DE19532728B4 (de) Warenautomat mit unterteilbarem Warenraum
EP3149817B1 (de) Klimatisierungsanordnung
EP3604988B1 (de) Kühlgerät mit mehreren temperaturzonen
DE102014100321B4 (de) Gekühltes Aufbewahrungssystem
DE202011005395U1 (de) Vorrichtung zum Bilden eines Luftschleiers zum Abschirmen des Eingangs eines akklimatisierten Raumes, akklimatisierter Raum und Transportfahrzeug
DE10228431A1 (de) Laborprobentemperiervorrichtung mit Aufnahmen
DE102009045149A1 (de) Kühltunnel zum Kühlen von Gütern
EP2821739B1 (de) Transportabler kühlraum
DE1946787C3 (de) Kühltheke mit Umwälzung der Kühlluft
EP0338343A2 (de) Kühleinschubeinheit für Schalt- und Steuerschränke
EP3786552A1 (de) Kühlgerät mit entgegengesetzter luftführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140401

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 926329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011174

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170906

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011174

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

26N No opposition filed

Effective date: 20180607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 926329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200109

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120716

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012011174

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202