EP2683933B1 - Centrale hydroélectrique à accumulation par pompage - Google Patents

Centrale hydroélectrique à accumulation par pompage Download PDF

Info

Publication number
EP2683933B1
EP2683933B1 EP12707985.3A EP12707985A EP2683933B1 EP 2683933 B1 EP2683933 B1 EP 2683933B1 EP 12707985 A EP12707985 A EP 12707985A EP 2683933 B1 EP2683933 B1 EP 2683933B1
Authority
EP
European Patent Office
Prior art keywords
water
power plant
pressure tank
pressure
storage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12707985.3A
Other languages
German (de)
English (en)
Other versions
EP2683933A2 (fr
Inventor
Horst Schmidt-Böcking
Gerhard Luther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roentdek Handels GmbH
Original Assignee
Roentdek Handels GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roentdek Handels GmbH filed Critical Roentdek Handels GmbH
Publication of EP2683933A2 publication Critical patent/EP2683933A2/fr
Application granted granted Critical
Publication of EP2683933B1 publication Critical patent/EP2683933B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/003Systems for storing electric energy in the form of hydraulic energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the invention relates to a pumped storage power plant for the temporary reversible storage of energy, in particular temporally fluctuating available energy from wind turbines and / or photovoltaic systems.
  • From the document DE 28 43 675 is a device for generating electricity by means of the hydrostatic pressure in a body of water.
  • the invention uses the basic idea to use the sea as the upper reservoir or water reservoir of a pumped storage power plant.
  • a lower reservoir or water reservoir is a lowered to the seabed pressure vessel.
  • the lower water reservoir (the one with the lower potential energy) is therefore an artificially created cavity formed by the pressure vessel.
  • an underwater pumped storage power plant for the temporary reversible caching of electrical energy from other power plants, in particular temporally fluctuating power-generating power plants, such as wind turbines or photovoltaic systems, provided.
  • this pumped storage power plant also uses a first and a second water reservoir, wherein the water in the second water reservoir has a higher potential energy than in the first water reservoir.
  • water is pumped from the first water reservoir into the second water reservoir, and to recover the electrical energy, the water from the second water reservoir is returned to the first water reservoir, with a generator recovering the potential energy deposited during "pump up" transformed into electrical energy.
  • a generator recovering the potential energy deposited during "pump up" transformed into electrical energy.
  • all that matters is the difference in the potential energy of a quantity of water between the two water reservoirs. In a conventional pumped storage power plant this is defined by the height difference between the two basins.
  • the first water reservoir with the lower potential energy is now formed by an artificial water-filled pressure vessel, which is sunk at great depth to the seabed.
  • the pressure vessel is constructed so pressure resistant that it is dimensionally stable in the desired depth of the sea against the hydrostatic water pressure when it is pumped empty.
  • the second water reservoir with the higher potential energy is formed by the sea itself, which surrounds the pressure vessel. Now, if you let water flow into the submerged in a water depth T pressure vessel, that potential energy is released, which corresponds to the height difference to the sea surface, so the water depth T.
  • the atmospheric pressure has to be added to the hydrostatic pressure of the water column. Quantitatively, however, this no longer plays a role in the large sea depths that are primarily aimed at here; however, for use in a shallow lake, the additional bar of atmospheric pressure, which corresponds to an additional depth of 10 m, should be included in the calculation.
  • the pressure vessel has a water outlet with a pump arranged directly on the pressure vessel.
  • the pump With the pump, the water is pumped from the pressure vessel directly into the surrounding sea against the hydrostatic pressure corresponding to the water depth P T , the pump converts electrical energy into the potential energy corresponding to the displaced water column.
  • the pressure vessel further has a water inlet with a generator arranged directly on the pressure vessel.
  • the generator converts the potential energy of the previously displaced water column back into corresponding electrical energy.
  • the pressure vessel further has valves at the inlet and outlet to close them when not just stored energy, or recovered. The pumping and inflow of the water is therefore carried out only over a short path through the container wall of the closed up to the water inlet and water outlet pressure vessel.
  • one of the two storage tanks or defined water reservoirs is completely “saved", since the surrounding sea itself forms the second water reservoir (with the higher potential energy).
  • the first water reservoir is formed by the inner cavity of the pressure vessel or pressure tank.
  • the pressure tank forms a sealed water storage volume, namely that water storage volume or water reservoir with the lower potential energy relative to the surrounding sea.
  • the water inlet and / or the water outlet or a combined water inlet / outlet are arranged in particular directly on the pressure vessel, ie without long hoses or pipes, for example to the water surface.
  • pressure vessels can be sunk in large numbers on the seabed in order to achieve a sufficiently large water storage volume and thus the desired energy storage capacity without occupying the above-ground landscape.
  • each of the pressure vessels is preferably itself provided with pump (s) and generator (s), so that the pressure vessels need only be electrically connected to each other.
  • such a network of underwater pumped storage power plants comprises a plurality of pressure vessels located on the seabed, which are electrically connected to each other on the seabed with a network of electrical lines. Networking with water pipes between each equipped with its own pump and generator pressure vessels is not necessary.
  • the pressure vessel is a lying on the seabed structure with considerable weight in the filled state
  • structurally optimal pressure vessel for the performance of suitable pump and turbine units is too small.
  • several pressure vessels can be hydraulically interconnected by pressure lines to a group and the filling and emptying takes place only at a single point in the group.
  • the hydraulic connections must be such as to allow unimpeded inflow and outflow of the water.
  • the pressure vessel in the preferred case or the group of hydraulically combined pressure vessel in an alternative case should have a volume which allows significant energy storage, the volume should therefore be at least 100 or 1000 cubic meters, but may be many times, possibly several orders of magnitude larger. Even volumes in the range of one million cubic meters or more are conceivable. The larger the individual pressure vessels, the lower the required number.
  • large industrially manufactured spherical tanks can be used as pressure vessels.
  • a spherical tank with a diameter of 100 meters has a volume of about 500,000 cubic meters. With 50 cubic meters of water flowing through the turbines per second, this pumped-storage power plant delivers approximately 1 gigawatt of power for about 3 hours at 2000 meters of water. By using several such spherical tanks this power can be increased accordingly and an even larger storage capacity can be achieved.
  • the storage of regeneratively generated energy is hereby possible in large quantities.
  • the pressure vessels made of steel and / or concrete, in particular reinforced concrete, i. have a corresponding three-dimensionally closed outer wall, e.g. made of reinforced concrete. This makes it possible to build a sufficiently pressure-resistant pressure vessel or hollow body.
  • the pressure vessel is built so massive or weighted that it has a mass in the pumped state in normal operation, which is slightly larger than the mass of displaced from the pressure vessel water, so that the pressure vessel in the pumped state in normal operation in the sea sinks down, so that the anchoring effort on the seabed is limited. Possibly.
  • the pressure vessel can even lie on the seabed even without substantial anchorage, if it is heavy enough in any state of filling in normal operation. Nevertheless, it should not be ruled out that the pressure vessel is slightly lighter than the displaced water and the pressure vessel is anchored to the seabed.
  • the pressure vessel has separate cavities, e.g. in the container wall, wherein bulk material can be filled as a weighting material in the cavities.
  • the mass of the pressure vessel can be adjusted later in order to complain the pressure vessel so that it sinks to the seabed.
  • the weighting material may be inexpensively natural bulk material, e.g. Sand, gravel, silt or the like, the mass of which can be additionally increased locally with water introduced into the bulk material in order to even more accurately balance out the mass of the pressure vessel on site.
  • ballast water By introducing ballast water into the bulk material, the mass can be increased so far that the pumped storage power plant sinks, but it can also separate cavities are filled with ballast water, so that the ballast water can be pumped out again easier to catch up the pumped storage power again.
  • the total ballast is in any case so dimensioned that it holds the pressure vessel in normal operation on the seabed.
  • the weight distribution, e.g. the arrangement of the ballast should be asymmetrical, in particular for a ball, so that the pressure vessel under water has a defined orientation with bottom and top, which facilitates the arrangement of the pumps and generators.
  • the pressure vessel has an additional used in energy storage not in normal operation Water storage area, which can be pumped down to reduce the mass of the storage reservoir so that it can be made up from the seabed to the sea surface.
  • This additional water storage area can either be created by the fact that the main cavity is not completely emptied during normal operation, but it can also be one or more separate cavities, possibly in the container wall, for this purpose be present.
  • the pressure vessel which forms the water storage volume with the lower potential energy, can therefore be lowered to the seabed and brought back to the surface of the water.
  • maintenance or repair work can be performed on the surface regularly.
  • the pressure vessel has the shape of a sphere.
  • the pressure vessel may also be in the form of a torus of a self-contained ring of pressure-resistant tubes or cylindrical, possibly formed with curved end surfaces.
  • a torus has the advantage that it can not roll on the seabed.
  • An egg shape may also be advantageous in this regard.
  • the water inlet and outlet may be separate or combined.
  • the pump and generator are preferably designed as a common pump turbine.
  • a common valve on the combined water inlet and outlet may be sufficient. This will reduce the number of breakthroughs in the Outside wall of the pressure vessel and reduces the number of valves, nonetheless, a plurality of pump turbines may be present.
  • Electric energy is generated symbolically by means of a specific electric power plant, in this example, a wind power plant 2.
  • the wind power plant 2 is connected to the pumped storage power plant 6 by a power line 4 in order to supply the electric power from the primary power plant to the power plant Pump storage power 6 to conduct.
  • the pumped storage power plant 6 is located in a water depth T, which may be several hundred to several thousand meters, depending on the existing geographical conditions, on the seabed 8.
  • the pumped storage power plant 6 is further connected to a power line 12 to a consumer 14 to the electrical energy lead the pumped storage power plant 8 to the consumer.
  • the illustrated wind power station 2 can represent a large number of wind power plants and other regenerative fluctuating power plants such as photovoltaic systems, etc. can be used.
  • the consumer 14 is representative of a plurality of consumers connected to the existing part of the general power supply network into which the recovered electrical energy from the pumped storage power plant 6 is fed when the demand exceeds the power provided by the primary power plants.
  • the drawn power lines 6 and 12 are representative of the connection to the general power grid with its integration of power sources and power sinks.
  • FIG. 2 is pumped in storage operation by means of a pump 16 water from the inner cavity 18 of the pressure vessel or pressure tank 20 into the surrounding sea 22.
  • the pump 16 sucks the water from the pump sump 24 and pumps the water through a water outlet 26 directly into the surrounding sea.
  • the inner cavity 18 of the artificial pressure vessel 20 thus forms one of the two water reservoirs of the pumped storage power plant (namely the one with the lower potential energy).
  • the water outlet comprises in this example a water pipe 27 which extends upwardly within the reinforced concrete wall 28 of the pressure vessel 20.
  • the water outlet 26 is arranged directly on the pressure tank 20, ie the water pipe 27 terminates immediately outside the pressure tank 20 and does not lead to the sea surface, for example.
  • the water outlet 26 and the water pipe 27 can be closed with a shut-off valve 30. This ensures that the pump 16 must pump the water to the pressure prevailing in the water depth T hydrostatic pressure P T, a large amount of consumed electric energy and is converted into potential energy, as will be illustrated by the following examples.
  • an inlet valve 32 For recovering the energy stored in the empty pumped pressure vessel 20 of the pumped storage power plant 6 an inlet valve 32 is opened and the water flows through a water inlet 34 from the surrounding sea with the hydrostatic pressure P T corresponding to the water depth T through a turbine 36 into the inner cavity 18 of the Pressure vessel 20, wherein the stored energy during pumping less the usual power losses can be recovered.
  • the water inlet 34 is arranged directly on the pressure tank 20, that is, for example, no pipe leads to the sea surface.
  • the recovered electrical energy is fed through the power line 12 in the general power grid.
  • multiple water inlets 34 with valves 32 and turbines 36 may be present, in this example two each.
  • the inner cavity 18 may be interspersed with struts (not shown).
  • the transverse struts can fulfill a dual function, namely on the one hand to stabilize the pressure vessel and on the other hand to generate turbulence in the flowing through the generator 36 in the inner cavity 18 water to prevent resonance vibrations in the pressure vessel 20.
  • the pressure vessel 20 consists of a spherical Stahlbetonwandung 28.
  • the wall thickness is chosen as a function of the depth of water T, in which the pumped storage power plant 6 is sunk and depending on the necessary mass so that it can still be sunk.
  • the turbines 36 and the pumps 16 are arranged directly on the pressure vessel 20, for example within the wall 28 or directly on the wall 28.
  • the water is only over a short distance, namely only by the input or Outlet openings 34, 26, ie openings in the wall 28 of the pressure vessel 20 passed.
  • the pumped storage power plant 6 therefore requires only electrical lines 4, 12 from the sea surface to the seabed 8, but not tubes or pipes for the transport of water. Possibly. can even meet an electrical line as power supply and -abtechnisch. It is also advantageous that the pressure difference is not greatly dependent on the level within the pressure vessel 20 due to the large water depth, so that the standing power is independent of the level is substantially constant.
  • the pressure vessel 20 has in its wall 28 cavities 38 which are filled with bulk material, e.g. Sand are filled to balance the mass of the pumped storage power plant 6.
  • the sand may optionally be mounted in a ring coaxially around the pressure-resistant casing or in other weighting areas.
  • the pumped storage power plant 6 is preferably first balanced so that it just floats when it is completely empty, so it can be transported by ship to the point where it is to be sunk. Subsequently, the pressure vessel 20 is weighted with ballast water at the sinking point so far that the pumped storage power plant 6 sinks.
  • the amount of water used as ballast water is only for weighting and is in normal operation, i.
  • the corresponding memory area is marked in the illustrated example with the dashed line 40.
  • the storage area 40 for the ballast water can also be formed by separate cavities (not shown).
  • the additional ballast water not provided for energy storage in normal operation can, however, be pumped out so that the pumped storage power plant 6 reappears or at least becomes so light that it can be used e.g. with the rope 52, which is marked on the sea surface with a buoy 54, can be recovered.
  • the weight distribution of the pressure vessel 20, for example by arranging the cavities 38 is asymmetrical, so that the pressure vessel has a defined orientation with a top 42 and a bottom 44 due to the weight distribution.
  • the upper cavities 46 are empty to create buoyancy and the lower cavities 38 are filled.
  • the water inlets 34 and the turbines 36 are arranged on the upper side 44, so that the water flows in from the upper side.
  • the pump sump 24 is arranged on the bottom 42 and the pump 16 is either arranged directly on the sump 24 at the bottom 42 of the pressure vessel 20 or connected to a pipe with the pump sump (not shown).
  • the unfinished pressure vessel should protrude so far out of the water during production that even in a storm, a full running of its inner cavity 18 is not possible.
  • the thickness of the wall 28 of the pressure vessel 20 must once withstand the extremely large hydrostatic water pressure and also give the pressure vessel 20 such a high weight that the pumped storage power plant 6 sinks with at least almost empty inner cavity 18 on the seabed 8.
  • reinforced concrete can be considered as wall material. The static is carried out so that the pressure vessel 20 can withstand without damage much higher pressures than on the seabed 8 are available.
  • valves 30, 32 In the wall 28, all system-relevant components such as valves 30, 32, turbines 36, 16 pumps, pipes 27 and / or electrical lines, etc. are integrated, so that they can fulfill their function for many decades later.
  • the control and Control electronics is also located directly on the pressure vessel 20 and is sunk with.
  • Fig. 4 shows an alternative embodiment of the pumped storage power plant 6, in which the pump 16 is arranged on the upper side 42 of the pressure vessel 20 and by means of a suction tube 17 within the cavity 18 sucks the water from the sump 24.
  • the outer wall 28 is constructed of two shells, the inner shell 28a forms the pressure-resistant shell of the pressure vessel 20 and the outer shell 28b acts substantially only as ballast mass.
  • FIG. 6 shows an alternative embodiment of the pressure vessel 20 in torus shape.
  • a toroidal pressure vessel 20 is also pressure stable if it consists of a self-contained ring of pressure-resistant pipe sections 56, but can not roll on the seabed 8 when it is lying.
  • These pipe sections can be optimized by structural engineering, eg by stiffening with spokes so that the shape of a "wheel” results. As building material of the spokes are also concrete and steel into consideration.
  • Fig. 7 10 shows a symbolic structure 60 with radial struts 62 for receiving the radial forces and circumferential connections 64 between the struts 62 for receiving lateral forces and preventing the struts 62 from buckling.
  • the peripheral connections 64 can also be thought of as shells or pipe shells which allow the use of short struts 62 between radial planes.
  • the struts 62 are captured internally by an inner cylinder 66.
  • the knowledge gained in the construction of a wheel to optimize the arrangement and structure of spokes can be transferred to the structure of the structure for the storage hollow body. Due to the large dimensions of the hollow body, it would also be possible to connect several coaxial planes with one another by means of spoke constructions.
  • Another possible shaping of the hollow body can be that the pressure vessel 20 is filled with packing whose top layer is composed of smooth elements, on which a waterproof and tear-resistant but still some elastic coating layer is placed (similar to a vacuum packaging).
  • the packing of the packing must have a high porosity and the waterways must be such that the hydraulic resistance is small enough to allow sufficient flow velocity without excessive friction losses as the water flows in and out.
  • the temporary hollow body breaks at least a part of the predetermined breaking lines, whereby a frictional connection between the smooth elements of the shell and the packing is formed.
  • the elastic envelope seals but the resulting break lines. It has thus formed a storage body, which consists of a frictional arrangement of mechanically stable packing and shell elements that allow gentle pressing of the shell consists.
  • Porosity and water permeability are important influencing factors of a water reservoir with packing.
  • an aquifer which also consists of "packing” and is characterized by its permeability to water, there may be fissures and fissures that facilitate the water supply.
  • fissures and fissures that facilitate the water supply.
  • Even in a technical memory can be such "clefts" and columns "provide, for example by in particular areas coarse-grained filler used to channel the flow of water.
  • Fig. 8 is a power grid 48 having a plurality of interconnected consumers 14 and a plurality of interconnected Windkraftanmaschine 2 and photovoltaic systems 3 shown, which form the primary power plants.
  • the primary electric power generated by the primary power plants 2, 3 is by means of a plurality of pumped storage power plants 6 according to Fig. 2 to 4 cached.
  • the many pumped storage power plants 6 are networked on the seabed 8 only by means of electric underwater lines 50 and provide, if necessary, the recovered electrical energy via the existing part 45 of the power supply network 48 to the consumer 14th

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Claims (14)

  1. Centrale sous-marine à accumulation par pompage (6) destinée au stockage temporaire provisoire réversible d'énergie électrique provenant d'autres centrales électriques (2, 3), comprenant un réservoir sous pression (20) susceptible d'être rempli d'eau et destiné à être immergé sur les fonds marins (8), le réservoir sous pression (20) ayant une résistance à la pression telle qu'il puisse être vidé par pompage en conservant une forme stable vis-à-vis de la pression d'eau hydrostatique (PT) sur les fonds marins (8),
    le réservoir sous pression (20) présentant une sortie d'eau (26) dotée d'une pompe (16) disposée sur le réservoir sous pression (20) et destinée à évacuer l'eau du réservoir sous pression (20) par pompage dans la mer environnante (22), avec la pression d'eau hydrostatique (PT) correspondant à la profondeur d'eau (T), sachant que la pompe (16), lors de l'évacuation de l'eau par pompage à l'encontre de la pression d'eau hydrostatique (PT) de la mer environnante (22), transforme de l'énergie électrique en énergie potentielle correspondante de la colonne d'eau déplacée,
    le réservoir sous pression (20) présentant une admission d'eau (34) dotée d'un générateur (36) disposé sur le réservoir sous pression (20) et destiné à laisser entrer l'eau dans le réservoir sous pression (20) directement depuis la mer environnante (22), avec la pression d'eau hydrostatique (PT) correspondant à la profondeur d'eau, sachant que le générateur (36), lors de l'admission de l'eau à la pression d'eau hydrostatique (PT) à la profondeur d'eau (T), transforme l'énergie potentielle de la colonne d'eau précédemment déplacée de nouveau en énergie électrique. caractérisée en ce qu'elle comporte
    des lignes électriques (4, 12) destinées au transport de l'énergie électrique depuis la surface de la mer au réservoir sous pression (20) et inversement,
    une zone de stockage d'eau du réservoir sous pression qui n'est pas destinée au stockage d'énergie en service normal mais est destinée à l'eau de lestage et est vidée par pompage afin de réduire la masse de la centrale à accumulation par pompage, de manière à ce qu'elle puisse être ramenée depuis les fonds marins à la surface de la mer, et/ou
    des cavités dans le réservoir sous pression, destinées à être remplies avec un matériau de lestage en vrac, afin de lester le réservoir sous pression.
  2. Centrale sous-marine à accumulation par pompage (6) selon la revendication 1, comprenant un câble (52) avec une bouée (54) pour indiquer la position de la centrale à accumulation par pompage (6) à la surface de la mer et pour immerger et remonter la centrale à accumulation par pompage (6) en vue de travaux d'entretien ou de réparation, lorsque la zone de stockage d'eau (40) supplémentaire est vidée par pompage.
  3. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le réservoir sous pression (20) a un volume d'au moins 100 mètres cubes.
  4. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le réservoir sous pression (20) est réalisé à partir d'acier et/ou de béton, avec une paroi extérieure (28) fermée de façon tridimensionnelle.
  5. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle la centrale à accumulation par pompage (6), à l'état vidé par pompage, présente en service normal une masse qui n'est pour le moins pas sensiblement inférieure à la masse de l'eau déplacée par le réservoir sous pression (20), de sorte que la centrale à accumulation par pompage (6) reste posée sur les fonds marins (8) également à l'état vidé par pompage, sans opérations d'ancrage importantes.
  6. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le matériau de lestage est un matériau naturel en vrac dont la masse peut encore être augmentée sur place avec de l'eau introduite dans le matériau en vrac, afin de lester davantage le réservoir sous pression (20).
  7. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le réservoir sous pression (20) est réalisé comme sphère ou comme ovoïde résistant à la pression.
  8. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le réservoir sous pression (20) est réalisé sous la forme d'un tore à partir d'un anneau fermé sur lui-même, constitué de tronçons de tube (56) résistant à la pression.
  9. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle le réservoir sous pression (20) est stabilisé par une structure porteuse (60) interne constituée d'étais (62), afin d'augmenter sa résistance à la pression.
  10. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle la cavité (18) interne du réservoir sous pression (20) est remplie de corps de remplissage qui confèrent au réservoir sous pression (20) sa résistance à la pression, lorsqu'il est à l'état vide, et laissent subsister dans des interstices un volume de stockage pour l'eau.
  11. Centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes, dans laquelle la pompe (16) et le générateur (36) sont réalisés comme une pompe-turbine commune sur une admission et une sortie d'eau combinée.
  12. Réseau d'alimentation électrique (48) comprenant :
    une pluralité de centrales primaires qui produisent de l'énergie électrique de façon fluctuante dans le temps, en particulier des éoliennes (2) et/ou des panneaux photovoltaïques (3),
    au moins une centrale sous-marine à accumulation par pompage (6) selon l'une des revendications précédentes,
    une pluralité de points de consommation (14) d'énergie électrique,
    un réseau de lignes électriques (4, 12) qui relie entre eux les points de consommation, la centrale sous-marine à accumulation par pompage, au nombre d'au moins une, et les centrales primaires, de sorte que lors de périodes d'excédents d'énergie provenant des centrales primaires (2, 3), l'énergie électrique produite par les centrales primaires (2, 3) peut être stockée temporairement de façon réversible par la centrale sous-marine à accumulation par pompage (6), au nombre d'au moins une, et peut être récupérée pendant des périodes de demande forte d'énergie électrique, et l'énergie électrique récupérée peut être transmise aux points de consommation (14).
  13. Procédé de stockage temporaire provisoire réversible d'énergie électrique provenant de centrales primaires (2, 3), comprenant une centrale sous-marine à accumulation par pompage (6) dotée d'un réservoir sous pression (20) artificiel, immergé sur les fonds marins (8) et pouvant être rempli avec de l'eau, le réservoir sous pression (20) présentant une résistance à la pression telle qu'il puisse être vidé par pompage en conservant une forme stable vis-à-vis de la pression d'eau hydrostatique (PT) sur les fonds marins (8),
    sachant que pour le stockage de l'énergie électrique, l'eau est pompée hors du réservoir sous pression (20), directement dans la mer environnante (22), avec la pression d'eau hydrostatique (PT) correspondant à la profondeur d'eau, l'énergie électrique étant transformée en énergie potentielle correspondant à la colonne d'eau à la profondeur d'eau (T),
    sachant que pour la récupération de l'énergie électrique, l'eau s'écoule directement de la mer environnante (22) dans le réservoir sous pression (20), avec la pression d'eau hydrostatique (PT) correspondant à la profondeur d'eau (T), l'énergie potentielle, correspondant à la pression d'eau hydrostatique (PT) de la colonne d'eau à la profondeur d'eau, étant transformée en énergie électrique au moyen d'un générateur (36),
    caractérisé en ce que
    l'énergie électrique est transmise au moyen de lignes électriques (4, 12) depuis la surface de la mer vers le fond, jusqu'au réservoir sous pression (20), en vue du stockage temporaire provisoire réversible, et, pour la consommation, est retransmise du réservoir sous pression (20) à la surface de la mer,
    le réservoir sous pression présente une zone de stockage d'eau pour de l'eau de lestage, qui n'est pas utilisée pour le stockage d'énergie en service normal et qui peut être vidée par pompage afin de réduire la masse de la centrale à accumulation par pompage de manière à ce qu'elle puisse être ramenée depuis les fonds marins à la surface de la mer, et/ou
    en ce que le réservoir sous pression présente des cavités destinées à être remplies avec un matériau de lestage en vrac, afin de lester le réservoir sous pression.
  14. Procédé selon la revendication précédente, selon lequel la centrale à accumulation par pompage (6) est d'abord équilibrée de manière à ce que sa masse soit plus faible que la masse de l'eau déplacée, de sorte que la centrale à accumulation par pompage (6) flotte d'abord, et la masse de la centrale à accumulation par pompage (6) est augmentée, sur le lieu d'immersion, par remplissage du réservoir sous pression (20) avec des matériaux en vrac et/ou de l'eau de lestage, de manière telle que la masse de la centrale à accumulation par pompage (6) devienne supérieure à la masse de l'eau déplacée et la centrale à accumulation par pompage (6) soit immergée et vienne se poser sur les fonds marins (8).
EP12707985.3A 2011-03-08 2012-03-06 Centrale hydroélectrique à accumulation par pompage Active EP2683933B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011013329A DE102011013329A1 (de) 2011-03-08 2011-03-08 Pumpspeicherkraftwerk
PCT/EP2012/000986 WO2012119758A2 (fr) 2011-03-07 2012-03-06 Centrale hydroélectrique à accumulation par pompage

Publications (2)

Publication Number Publication Date
EP2683933A2 EP2683933A2 (fr) 2014-01-15
EP2683933B1 true EP2683933B1 (fr) 2015-10-14

Family

ID=45812753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707985.3A Active EP2683933B1 (fr) 2011-03-08 2012-03-06 Centrale hydroélectrique à accumulation par pompage

Country Status (5)

Country Link
US (1) US9617970B2 (fr)
EP (1) EP2683933B1 (fr)
JP (1) JP6108401B2 (fr)
DE (1) DE102011013329A1 (fr)
WO (1) WO2012119758A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005016A1 (fr) 2019-07-10 2021-01-14 Schmidt Boecking Horst Procédé pour la construction d'une centrale de pompage-turbinage dans une fosse, en particulier dans une mine à ciel ouvert
WO2021004650A1 (fr) 2019-07-10 2021-01-14 Schmidt Boecking Horst Procédé pour l'utilisation temporaire d'un réservoir inférieur au moins partiellement construit pour une centrale de pompage-turbinage immergée

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105307A1 (de) 2011-06-18 2012-12-20 Gerhard Luther Schacht Pumpspeicherkraftwerk
DE102011118206A1 (de) 2011-11-11 2013-05-16 Roentdek-Handels Gmbh Pumpspeicherkraftwerk
DE102011118486B4 (de) 2011-11-12 2013-08-22 Gerhard Luther Druckluft-Speicherkraftwerk
DE102012100981A1 (de) * 2012-02-07 2013-08-08 Rainer Schramm Unterwasserspeicher zum Speichern von vorzugsweise elektrischer Energie
DE102012110662A1 (de) 2012-11-07 2014-05-08 Alexander Eyhorn Pumpspeicher-Wasserkraftwerk und Energieerzeugungs- und Speichersystem mit einem solchen Kraftwerk
CN103206349B (zh) * 2013-03-29 2015-05-27 房学义 压缩气体蓄能电站装置
CN103490437B (zh) * 2013-06-20 2016-08-10 华北水利水电大学 一种分布式风光抽蓄互补发电控制系统及方法
DE102013019776B3 (de) * 2013-11-21 2015-01-29 Gerhard Luther Tiefschacht-Pumpspeicherkraftwerk (TS.PSKW)
WO2016032360A1 (fr) * 2014-08-29 2016-03-03 Андрей Геннадиевич БОГОРОДСКИЙ Système d'accumulation hydraulique
WO2016040731A1 (fr) * 2014-09-11 2016-03-17 Peter Materna Stockage d'énergie par stockage pompé se basant sur des liquides ayant des densités différentes
CN105932722A (zh) * 2016-05-20 2016-09-07 国家电网公司 计及风电出力不确定性的抽水蓄能-风电联合调度方法
US20180100480A1 (en) * 2016-10-07 2018-04-12 Littoral Power Systems Inc. Pumped storage hydropower system
GB2566037B (en) 2017-08-30 2020-07-01 Subsea 7 Norway As Subsea energy storage
CN107559129A (zh) * 2017-09-13 2018-01-09 衢州学院 一种基于水介质的稳定蓄能发电装置
WO2019182458A1 (fr) 2018-03-23 2019-09-26 Hans Gude Gudesen Système de stockage d'énergie sous marine
CA3100042A1 (fr) 2018-05-11 2019-11-14 Innovator Energy, LLC Systemes servant a deplacer un fluide
GB2578451A (en) 2018-10-26 2020-05-13 Subsea 7 Norway As Generating electrical power underwater
NO344751B1 (en) * 2018-12-18 2020-04-06 Subsea 7 Norway As Long-distance transmission of power underwater
CN110261696B (zh) * 2019-06-19 2024-04-16 浙江中新电力工程建设有限公司自动化分公司 电网电能质量的监测分析系统
EP4133172A4 (fr) 2020-04-09 2023-10-04 Rcam Technologies, Inc. Stockage d'énergie hydroélectrique à pompage maritime
DE102020111844A1 (de) 2020-04-30 2021-11-04 Horst Schmidt-Böcking Modulares Unterwasser-Pumpspeicherkraftwerk-Reservoir
DE102020002609A1 (de) 2020-04-30 2021-11-04 Gerhard Luther Unterwasser-PSKW im Tagebau-Restsee
DE102020005091B4 (de) 2020-08-19 2022-07-28 Michael T. Witt Hochdruck-Pumpspeicherkaftwerk-System
CN113964866B (zh) * 2021-10-27 2024-02-20 黄河勘测规划设计研究院有限公司 一种单元式多能互补清洁能源基地构建方法
CN116733665A (zh) * 2022-03-03 2023-09-12 上海勘测设计研究院有限公司 一种集海中蓄能和海上风电于一体的储能发电装置
DE102022131342A1 (de) 2022-11-28 2024-05-29 Roentdek - Handels GmbH Maschineneinheit für ein Unterwasser-Pumpspeicherkraftwerk-Reservoir
CN116667395B (zh) * 2023-05-31 2023-11-21 河海大学 基于梯级水电改造的水风光蓄互补泵站容量配置方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163904A (en) * 1976-03-04 1979-08-07 Lawrence Skendrovic Understream turbine plant
GB2032009B (en) * 1978-10-06 1983-03-02 Grueb R Apparatus for generating power from hydrostatic pressure
DE2843675C3 (de) 1978-10-06 1982-02-25 Grüb, Rainer, Ing.(grad.), 7800 Freiburg Vorrichtung zur Stromerzeugung mittels eines Windrades
US4364891A (en) * 1979-10-31 1982-12-21 Saggese Vincent A Slotted concrete pipe
JPS58178878A (ja) * 1982-04-14 1983-10-19 Mitsui Eng & Shipbuild Co Ltd 揚水発電装置
NO151404C (no) * 1982-12-01 1985-04-10 Kaare Haahjem Toemme- og trimmeanordning for styrtgods
US4711601A (en) * 1985-06-03 1987-12-08 Isaac Grosman Method of installing offshore constructions
JP3084039B2 (ja) 1990-04-12 2000-09-04 東京電力株式会社 発電装置
JPH03294663A (ja) * 1990-04-12 1991-12-25 Kentaro Ueda 連続空気室を用いる波力発電方法及びその装置
US5592816A (en) * 1995-02-03 1997-01-14 Williams; Herbert L. Hydroelectric powerplant
US7373892B2 (en) * 2001-02-05 2008-05-20 Veazey Sidney E Production, transport and use of prefabricated components in shoreline and floating structures
US6672054B2 (en) * 2001-04-10 2004-01-06 New World Generation Inc. Wind powered hydroelectric power plant and method of operation thereof
JP2004108357A (ja) 2003-05-08 2004-04-08 Mitsuo Kuwano 海流力発電機飛行機型座イス
US7188471B2 (en) 2004-05-07 2007-03-13 William Don Walters Submersible power plant
US7654279B2 (en) * 2006-08-19 2010-02-02 Agr Deepwater Development Systems, Inc. Deep water gas storage system
DK176721B1 (da) 2007-03-06 2009-04-27 I/S Boewind V/Chr. I S Boewind V Chr Fremgangsmode til akkumulering og udnyttelse af vedvarende energi
US7804182B2 (en) * 2007-11-30 2010-09-28 Deangeles Steven J System and process for generating hydroelectric power
US7743609B1 (en) 2008-02-06 2010-06-29 Florida Turbine Technologies, Inc. Power plant with energy storage deep water tank
JP2010180528A (ja) * 2009-02-03 2010-08-19 M Hikari Energy Kaihatsu Kenkyusho:Kk 深海資源採掘・回収統合洋上工場

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005016A1 (fr) 2019-07-10 2021-01-14 Schmidt Boecking Horst Procédé pour la construction d'une centrale de pompage-turbinage dans une fosse, en particulier dans une mine à ciel ouvert
WO2021004650A1 (fr) 2019-07-10 2021-01-14 Schmidt Boecking Horst Procédé pour l'utilisation temporaire d'un réservoir inférieur au moins partiellement construit pour une centrale de pompage-turbinage immergée

Also Published As

Publication number Publication date
JP6108401B2 (ja) 2017-04-05
US9617970B2 (en) 2017-04-11
WO2012119758A3 (fr) 2013-03-07
WO2012119758A2 (fr) 2012-09-13
EP2683933A2 (fr) 2014-01-15
DE102011013329A1 (de) 2012-09-13
US20140060028A1 (en) 2014-03-06
JP2014507598A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
EP2683933B1 (fr) Centrale hydroélectrique à accumulation par pompage
EP2776705B1 (fr) Installation de stockage d'énergie par pompage
EP3997329B1 (fr) Procédé pour la construction d'une centrale de pompage-turbinage dans une fosse, en particulier dans une mine à ciel ouvert
DE112018006006T5 (de) Selbst zum Wind ausrichtende Schwimmplattform, die mehrere Windturbinen trägt und Solar für Wind und Solarenergieerzeugung und Verfahren zur Konstruktion davon
EP2681445B1 (fr) Réservoir d'énergie hydraulique
DE3115491A1 (de) Kombinierte wind- und wellen-nutzungsanlage
DE112013002285B4 (de) Off-Shore-Pumpspeicher-Kraftwerk
DE602004007006T2 (de) Durch gezeitenströmungen angetriebener energieerzeuger
DE102019118726B4 (de) Verfahren zur vorläufigen Nutzung eines zumindest teilweise errichteten unteren Reservoirs für ein Unterwasser-Pumpspeicherkraftwerk
EP2612099A2 (fr) Accumulateur de chaleur
DE102013019776B3 (de) Tiefschacht-Pumpspeicherkraftwerk (TS.PSKW)
EP2003332A1 (fr) Centrale hydroélectrique
EP3683438B1 (fr) Centrale d'accumulation par pompage dans un plan d'eau et procédé de fonctionnement
DE102014000811A1 (de) Hochleistungs-Pumpspeicherkraftwerk
WO2014072415A1 (fr) Centrale hydraulique à accumulation par pompage et système de production et stockage d'énergie équipé d'une telle centrale
DE102012011491A1 (de) Unterwasser-Druckluft-Energiespeicher mit volumenvariablem Druckspeichergefäß
EP2725143B1 (fr) Centrale de pompage accumulation pour l'accumulation d'énergie
DE102009005360A1 (de) Künstliche Landschaft für Pumpspeicherkraftwerk
DE102020002609A1 (de) Unterwasser-PSKW im Tagebau-Restsee
DE102010054277A1 (de) Pumpspeicherkraftwerk mit Solar- und Windkraftwerk, Grundwasserstausee und Hochbehälter
Pikl et al. Large‐scale, economic and efficient underground energy storage
WO1987005078A1 (fr) Dispositif pour exploiter l'energie de la houle de l'eau de surface, et centrale houlomotrice contenant au moins un tel dispositif
DE202019001000U1 (de) Autarkes Land und Ufern Schutz-System gegen Tsunami und Sturm-Überflutung; als Vorrichtung mit flexiblen Höhen - Einstellung des Schutz-System um das Land- und Menschen gegen Sturm-Fluten, sowie dadurch verursachten Schäden am Land und sehr starke Ufern Erosion zu minimieren / vermeiden
AT17687U1 (de) Verfahren zur Energiegewinnung und Speicherung
WO2023174549A1 (fr) Centrale de stockage d'énergie par pompage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130829

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004912

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20151014

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160306

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502012004912

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20210316

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240325

Year of fee payment: 13

Ref country code: GB

Payment date: 20240322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240227

Year of fee payment: 13

Ref country code: FR

Payment date: 20240320

Year of fee payment: 13

Ref country code: BE

Payment date: 20240320

Year of fee payment: 13