CN103490437B - 一种分布式风光抽蓄互补发电控制系统及方法 - Google Patents

一种分布式风光抽蓄互补发电控制系统及方法 Download PDF

Info

Publication number
CN103490437B
CN103490437B CN201310247426.2A CN201310247426A CN103490437B CN 103490437 B CN103490437 B CN 103490437B CN 201310247426 A CN201310247426 A CN 201310247426A CN 103490437 B CN103490437 B CN 103490437B
Authority
CN
China
Prior art keywords
power
storage
pump
data
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310247426.2A
Other languages
English (en)
Other versions
CN103490437A (zh
Inventor
任岩
陈德新
李延频
任林茂
张汉敏
张兰金
李君�
曹永梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN201310247426.2A priority Critical patent/CN103490437B/zh
Publication of CN103490437A publication Critical patent/CN103490437A/zh
Application granted granted Critical
Publication of CN103490437B publication Critical patent/CN103490437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明涉及一种分布式风光抽蓄互补发电控制系统及方法,属于新能源互补发电控制领域。本发明通过对分布式风光抽蓄互补发电系统的数据进行实时采集,对系统的运行状态进行实时监测,并通过对实时数据的处理,控制抽水蓄能机组运行在相应的工况,使风力发电和光伏发电直接用于系统负载,多余电能用于抽水蓄能,不足电能由抽水蓄能发电供给,并根据检测到的数据和分析结果,对分布式风光抽蓄互补发电系统进行智能控制,从而实现对系统的智能调度。

Description

一种分布式风光抽蓄互补发电控制系统及方法
技术领域
本发明涉及一种分布式风光抽蓄互补发电控制系统及方法,属于新能源互补发电控制领域。
背景技术
分布式风光抽蓄复合发电系统一般用于孤岛、高原等电网达不到的地方,可以解决当地的用电问题;或者用于有风、光、水等条件的企业、学校、商务楼宇等地方,可以缓解城市用电高峰。专利《风光互补发电储能装置》(申请号:201110048421.8,授权号:CN102116244B)公开了一种风光互补发电储能装置,该装置利用抽水蓄能对风光互补发电系统进行储能,即为风光抽蓄互补发电系统,但该系统并没有给出这三种能量之间的控制过程。
发明内容
本发明的目的是提供一种分布式风光抽蓄互补发电控制系统及方法,以解决目前分布式风光抽蓄互补发电系统缺乏智能控制的问题。
本发明为解决上述技术问题而提供一种分布式风光抽蓄互补发电控制系统,该互补发电控制系统包括主控计算机和数据采集单元,采集单元包括用于设置在风力发电机组、光伏阵列、抽水蓄能机组和负荷处各个测点的功率采集器,采集单元的输出端与主控计算机的输入端相连,主控计算机用于根据采集到数据控制抽水蓄能机组运行在相应的工况。
所述的测点包括各个风力发电机组测点、光伏阵列的各个光伏板测点、各个抽水蓄能机组测点和每种负荷处测点,每个测点处均设置有功率采集器。
所述的主控计算机包括用于自动巡回监测各监测点数据的数据自动巡回检测模块,用于对采集单元采集到的数据进行分析、比较以及判断风光抽蓄互补发电系统各部件运行状态的数据分析模块和用于根据数据检测和分析结果控制风光抽蓄互补发电系统运行状态的控制模块。
主控计算机和采集单元之间还设置有数据转换单元,该数据转换单元的输入端与采集单元的输出端相连,数据转换单元的输出端与主控计算机的输入端相连。
所述的主控计算机还包括数据后处理模块,该数据后处理模块用于对不间断采集的历史数据按照一定的规律进行处理,以确定系统的最优控制策略,并将处理结果以图表和文字的方式供用户查询,或以报表的形式打印出来。
本发明为解决上述技术问题还提供了一种分布式风光抽蓄互补发电控制方法,该控制方法的步骤如下:
1)采集风光抽蓄互补发电系统中风力发电机的功率Pw、光伏阵列的功率Ppv、抽水蓄能机组的发电功率Pt和抽水功率Pp以及负荷值Pl
2)判断风力发电机的功率Pw和光伏阵列的功率Ppv之和是否大于负荷值Pl,如果大于,即(Pw+Ppv)>Pl,则控制抽水蓄能机组运行在水泵工况抽水蓄能,否则控制抽水蓄能机组运行在水轮机工况,并将其所发的电供给负荷。
所述步骤2)中抽水蓄能机组运行在水泵工况抽水蓄能时,判断风力发电机的功率Pw和光伏阵列的功率Ppv之和减去负荷值Pl后是否大于抽水蓄能机组运行在水泵工况的额定功率为Pp,如果大于,即(Pw+Ppv-Pl)≥Pp,则控制抽水蓄能机组运行在水泵工况额定功率Pp,并将多余电能卸掉;如果Pmin<(Pw+Ppv-Pl)<Pp,则控制抽水蓄能机组按功率(Pw+Ppv-Pl)运行在水泵工况;如果0<(Pw+Ppv-Pl)<Pmin,则控制抽水蓄能机组停机,其中Pmin为抽水蓄能机组允许运行在水泵工况的最小功率。
所述步骤2)中抽水蓄能机组运行在水轮机工况时,判断负荷值Pl与风力发电机的功率Pw和光伏阵列的功率Ppv之和的差值是否大于抽水蓄能机组运行在水轮机工况的额定功率Pt,如果大于,即Pl-(Pw+Ppv)≥Pt,则控制抽水蓄能机组运行在水轮机工况额定功率Pt;如果Pl-(Pw+Ppv)<Pt,则控制抽水蓄能机组按功率Pl-(Pw+Ppv)运行在水轮机工况。
本发明的有益效果是:本发明通过对分布式风光抽蓄互补发电系统的数据进行实时采集,对系统的运行状态进行实时监测,并通过对实时数据的处理,控制抽水蓄能机组运行在相应的工况,使风力发电和光伏发电直接用于系统负载,多余电能用于抽水蓄能,不足电能由抽水蓄能发电供给,并根据检测到的数据和分析结果,对分布式风光抽蓄互补发电系统进行智能控制从而实现对系统的智能调度。
附图说明
图1是本发明分布式风光抽蓄互补发电控制系统框图;
图2是本发明分布式风光抽蓄互补发电控制控制方法流程图;
图3是本发明分布式风光抽蓄互补发电控制系统的主控平台示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。
本发明的一种分布式风光抽蓄互补发电控制系统的实施例
该互补发电控制系统包括主控计算机和数据采集单元,采集单元包括用于设置在风力发电机组、光伏阵列、抽水蓄能机组和负荷处各个测点的功率采集器,采集单元的输出端与主控计算机的输入端相连,主控计算机用于根据采集到数据控制抽水蓄能机组运行在相应的工况。如图1所示,风力发电机组、光伏阵列、抽水蓄能机组、负荷处均设有测点,其中风力发电机有a台,则在测点1设置a个测点,即每台风力发电机均设置1个测点;光伏阵列由b*c块光伏组件组成,则在测点2处设置b*c个测点,即每个光伏组件均设置1个测点;抽水蓄能机组有d台,则在测点3处设置d个测点,即每台抽水蓄能机组均设置1个测点;负荷有e种,比如电视机、冰箱、空调、照明灯等,则在测点4处设置e个测点,即每种负荷设置1个测点。对应每个测点,相应设置一个开关K,用于控制对测点数据采集的通断。数据采集单元采用RS485总线结构,主控计算机采用RS232,主控计算机和数据采集单元之间采用DAM3212进行数据转换。采集单元输出端通过RS485总线与数据转换单元相连,经数据转换单元DAM3212转换后与通过总线RS232与主控计算机的输入端相连,主控计算机的输出端用于控制连接抽水蓄能机组,从而实现控制抽水蓄能机组的运行工况。
其中主控计算机包括数据自动巡回检测模块、数据分析模块、控制模块和数据后处理模块,数据自动巡回检测模块用于自动巡回监测各监测点数据;数据分析模块用于对采集的数据进行分析、比较,以判断系统各部件运行状态,使系统做出相应决策,确定系统下一步运行规则;控制模块用于根据数据检测和分析结果,向系统发出控制命令,从而控制系统运行状态;数据后处理模块,用于对系统24小时不间断采集的大量历史数据按照一定的规律进行处理,以确定系统的最优控制策略,并将处理结果以图表和文字的方式供用户查询,或以报表的形式打印出来。
为了使本发明的分布式风光抽蓄互补发电控制系统更加智能化,主控计算机利用VC#2008开发软件设计了一主控平台,将本系统的数据采集、数据检测、数据分析、控制和数据后处理集成,形成人机交互界面。具体包括分布式风光抽蓄互补发电系统状态实时监测,实时数据及曲线显示,历史数据及曲线显示,历史数据查询、统计,历史数据报表,如图3所示。
本发明的一种分布式风光抽蓄互补发电控制方法的实施例
本发明的分布式风光抽蓄互补发电控制控制方法,其中心思想是控制风力发电和光伏发电直接用于系统负载,多余电能用于抽水蓄能,不足电能由抽水蓄能发电供给。其中,风力发电采用最大风能捕获控制;光伏发电采用最大功率点跟踪控制;抽水蓄能机组采用按出力运行控制,按水泵工况和水轮机工况分别控制。具体控制策略流程如图2所示,具体过程如下:
1.采集风光抽蓄互补发电系统中风力发电机的功率Pw、光伏阵列的功率Ppv、抽水蓄能机组的发电功率Pt和抽水功率Pp以及负荷值Pl
2.判断风力发电机的功率Pw和光伏阵列的功率Ppv之和是否大于负荷值Pl,如果大于,即(Pw+Ppv)>Pl,则控制抽水蓄能机组运行在水泵工况抽水蓄能,判断风力发电机的功率Pw和光伏阵列的功率Ppv之和减去负荷值Pl后是否大于抽水蓄能机组运行在水泵工况的额定功率为Pp,如果大于,即(Pw+Ppv-Pl)≥Pp,则控制抽水蓄能机组运行在水泵工况额定功率Pp,并将多余能力卸掉,如果Pmin<(Pw+Ppv-Pl)<Pp,则控制抽水蓄能机组按功率(Pw+Ppv-Pl)运行在水泵工况;如果0<(Pw+Ppv-Pl)<Pmin,则控制抽水蓄能机组停机,其中Pmin为抽水蓄能机组允许运行在水泵工况的最小功率;否则控制抽水蓄能机组运行在水轮机工况,并将其所发的电供给负荷,判断负荷值Pl与风力发电机的功率Pw和光伏阵列的功率Ppv之和的差值是否大于抽水蓄能机组运行在水轮机工况的额定功率Pt,如果大于,即Pl-(Pw+Ppv)≥Pt,则控制抽水蓄能机组运行在水轮机工况额定功率Pt;如果Pl-(Pw+Ppv)<Pt,则控制抽水蓄能机组按功率Pl-(Pw+Ppv)运行在水轮机工况。
本发明通过对分布式风光抽蓄互补发电系统进行实时监测,每天24小时不间断采集数据,实时掌握系统的参数及运行状态;将每天采集的数据形成数据库,及时处理,以便系统做出相应决策,确定系统下一步运行规则;根据数据监测和分析结果,对分布式风光抽蓄互补发电系统进行智能控制,优化系统运行状态;建立智能控制系统的主控平台,形成友好的人机交互,查询、操作起来更方便。

Claims (2)

1.一种分布式风光抽蓄互补发电控制方法,该控制方法采用一种分布式风光抽蓄互补发电控制系统,该互补发电控制系统包括主控计算机和数据采集单元,采集单元包括用于设置在风力发电机组、光伏阵列、抽水蓄能机组和负荷处各个测点的功率采集器,采集单元的输出端与主控计算机的输入端相连,主控计算机用于根据采集到数据控制抽水蓄能机组运行在相应的工况;所述的主控计算机包括用于自动巡回监测各监测点数据的数据自动巡回检测模块,用于对采集单元采集到的数据进行分析、比较以及判断风光抽蓄互补发电系统各部件运行状态的数据分析模块和用于根据数据检测和分析结果控制风光抽蓄互补发电系统运行状态的控制模块;主控计算机和采集单元之间还设置有数据转换单元,该数据转换单元的输入端与采集单元的输出端相连,数据转换单元的输出端与主控计算机的输入端相连;所述的主控计算机还包括数据后处理模块,该数据后处理模块用于对不间断采集的历史数据按照一定的规律进行处理,以确定系统的最优控制策略,并将处理结果以图表和文字的方式供用户查询,或以报表的形式打印出来;在主控计算机中建立了智能控制系统的主控平台,将系统的数据采集、数据检测、数据分析、控制和数据后处理集成,形成人机交互界面,具体包括分布式风光抽蓄互补发电系统状态实时监测,实时数据及曲线显示,历史数据及曲线显示,历史数据查询、统计,历史数据报表;
所述的测点包括各个风力发电机组测点、光伏阵列的各个光伏板测点、各个抽水蓄能机组测点和每种负荷处测点,每个测点处均设置有功率采集器,
其特征在于,该控制方法的步骤如下:
1)采集风光抽蓄互补发电系统中风力发电机的功率Pw、光伏阵列的功率Ppv、抽水蓄能机组的发电功率Pt和抽水功率Pp以及负荷值Pl
2)判断风力发电机的功率Pw和光伏阵列的功率Ppv之和是否大于负荷值Pl,如果大于,即(Pw+Ppv)>Pl,则控制抽水蓄能机组运行在水泵工况抽水蓄能,否则控制抽水蓄能机组运行在水轮机工况,并将其所发的电供给负荷;
所述步骤2)中抽水蓄能机组运行在水泵工况抽水蓄能时,判断风力发电机的功率Pw和光伏阵列的功率Ppv之和减去负荷值Pl后是否大于抽水蓄能机组运行在水泵工况的额定功率为Pp,如果大于,即(Pw+Ppv-Pl)≥Pp,则控制抽水蓄能机组运行在水泵工况额定功率Pp,并将多余电能卸掉;如果Pmin<(Pw+Ppv-Pl)<Pp,则控制抽水蓄能机组按功率(Pw+Ppv-Pl)运行在水泵工况;如果0<(Pw+Ppv-Pl)<Pmin,则控制抽水蓄能机组停机,其中Pmin为抽水蓄能机组允许运行在水泵工况的最小功率。
2.根据权利要求1所述的分布式风光抽蓄互补发电控制方法,其特征在于,所述步骤2)中抽水蓄能机组运行在水轮机工况时,判断负荷值Pl与风力发电机的功率Pw和光伏阵列的功率Ppv之和的差值是否大于抽水蓄能机组运行在水轮机工况的额定功率Pt,如果大于,即Pl-(Pw+Ppv)≥Pt,则控制抽水蓄能机组运行在水轮机工况额定功率Pt;如果Pl-(Pw+Ppv)<Pt,则控制抽水蓄能机组按功率Pl-(Pw+Ppv)运行在水轮机工况。
CN201310247426.2A 2013-06-20 2013-06-20 一种分布式风光抽蓄互补发电控制系统及方法 Active CN103490437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310247426.2A CN103490437B (zh) 2013-06-20 2013-06-20 一种分布式风光抽蓄互补发电控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310247426.2A CN103490437B (zh) 2013-06-20 2013-06-20 一种分布式风光抽蓄互补发电控制系统及方法

Publications (2)

Publication Number Publication Date
CN103490437A CN103490437A (zh) 2014-01-01
CN103490437B true CN103490437B (zh) 2016-08-10

Family

ID=49830469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310247426.2A Active CN103490437B (zh) 2013-06-20 2013-06-20 一种分布式风光抽蓄互补发电控制系统及方法

Country Status (1)

Country Link
CN (1) CN103490437B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362671B (zh) * 2014-10-27 2018-03-16 国家电网公司 一种大规模风电和抽水蓄能联合送出多目标优化协调方法
CN104319796A (zh) * 2014-11-18 2015-01-28 李杰波 点对点电力调峰系统
CN104405610A (zh) * 2014-11-24 2015-03-11 广西高农机械有限公司 风能太阳能抽水机
CN107994615A (zh) * 2017-12-29 2018-05-04 华北水利水电大学 一种风光水互补的微电网系统及其运行控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437602A (zh) * 2011-10-21 2012-05-02 东北大学 一种风光水互补发电装置及控制方法
DE102011013329A1 (de) * 2011-03-08 2012-09-13 Roentdek-Handels Gmbh Pumpspeicherkraftwerk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011013329A1 (de) * 2011-03-08 2012-09-13 Roentdek-Handels Gmbh Pumpspeicherkraftwerk
CN102437602A (zh) * 2011-10-21 2012-05-02 东北大学 一种风光水互补发电装置及控制方法

Also Published As

Publication number Publication date
CN103490437A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN102638195B (zh) 一种太阳能发电系统控制方法
CN102148534B (zh) 电网系统及其管理方法
CN202772654U (zh) 一种光伏发电与市政电网无逆流互补应用的控制器
CN103269070A (zh) 一种自动需求响应系统和自动需求响应方法
CN102384039A (zh) 一种混合风光互补抽水蓄能系统及其控制方法
CN103490437B (zh) 一种分布式风光抽蓄互补发电控制系统及方法
CN104659849A (zh) 一种充电桩装置、系统及充电方法
CN204615404U (zh) 自动功率因数调节的乏风瓦斯/光伏发电系统
CN103547043A (zh) 一种led集中式直流微网供电系统及供电控制方法
CN205846742U (zh) 一种混合能源智能并网供电系统
CN114678891A (zh) 一种综合能源多节点协同控制系统与方法
CN204243785U (zh) 一种分布式光伏发电微网系统
CN107947234A (zh) 智能微电网
CN107465248A (zh) 一种光伏发电系统的控制方法及装置
CN203039963U (zh) 一种基于pic18f6720的风光互补路灯控制器
CN104124709B (zh) 一种基于功率预测的风电并网运行系统
CN203596618U (zh) 一种柜式直流供电系统
CN207424621U (zh) 家庭能源智能管理系统
CN105471039A (zh) 一种利用风能供电的雷电预警系统
Iqbal et al. Analysis and comparison of various control strategy of hybrid power generation a review
CN201997415U (zh) 基于动态组合太阳能供电的智能喷淋控制装置
CN112600242B (zh) 一种微电网数据采集与监控平台
CN205160470U (zh) 一种多角度光伏数据采集箱
CN204497753U (zh) 一种综合能源的发电系统
CN208689414U (zh) 高层小区内风光混合发电云后台远传监测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant