EP2678835B1 - Système de surveillance et procédé de détection de corps étranger, de débris ou d'endommagement dans un terrain d'aviation - Google Patents
Système de surveillance et procédé de détection de corps étranger, de débris ou d'endommagement dans un terrain d'aviation Download PDFInfo
- Publication number
- EP2678835B1 EP2678835B1 EP12748886.4A EP12748886A EP2678835B1 EP 2678835 B1 EP2678835 B1 EP 2678835B1 EP 12748886 A EP12748886 A EP 12748886A EP 2678835 B1 EP2678835 B1 EP 2678835B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- runway
- airfield
- damage
- image
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/02—Mechanical actuation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/06—Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
- G08G5/065—Navigation or guidance aids, e.g. for taxiing or rolling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
Definitions
- the present invention relates broadly to a surveillance system and method for detecting a foreign object, debris, or damage in an airfield, in particular, for airfield surveillance (including surveillance of a runway and/or taxiway and/or access routes and/or infield/grass fields and/or apron and/or pavements in the airfield), foreign object, debris (FOD) and damage (cracks, crater, spall, UXO, camouflet) detection/measurement/classification and airfield damage assessment.
- airfield surveillance including surveillance of a runway and/or taxiway and/or access routes and/or infield/grass fields and/or apron and/or pavements in the airfield
- FOD foreign object, debris
- damage damage
- Runway surveillance is very important for airport operation. Runways are continuously subjected to damages, such as potholes created as a result of wear and tear of aircraft or other vehicles using the runways. Occasionally, debris or foreign objects may occur on runways, which can be due to jet blast, aircraft take-off / landing, natural causes etc. On an active runway involving the movement of aircrafts, the presence of Foreign Object, Debris or Damage (FOD) may lead to an air crash and consequential loss of life resulting in significant losses to airline companies.
- FOD Foreign Object, Debris or Damage
- Some airports use automated systems employing radar to detect damages, debris and other hazards on an airport runway and its adjacent areas.
- a microwave signal is usually transmitted over a runway and reflected signals from any foreign object are detected and analyzed. Since the microwave signals are pulsed or structured, the time taken for the signal to reach the receiver is calculated from which the distance to the foreign object is derived.
- radar sensors having smaller wavelengths and higher pulse repetition frequencies, it is possible to achieve higher resolution in range, which in turn, may reduce the background clutter.
- radar is an excellent means to detect metal objects, it is less sensitive in detecting non-metallic objects, such as rubber. Objects made of materials having poor radar signature (e.g. rubber) can cause major problems for such radar-based systems. Further, radar may not be relied upon for detecting smaller non-metallic objects. Further limitations include radar blind spots or shadows due to blockages caused by other objects or infrastructure. In addition, radar may trigger a false alarm by indicating a strong signal for signals reflected from even small metal objects that may not be so hazardous. A radar based surveillance system thus lacks "intelligence" and suffers from inability to provide visual image of the object for verification and characterization by the operator.
- infrared or thermal-imaging systems to detect objects, cracks voids etc. on a runway.
- systems employing infrared or thermal-imaging systems can only sense the infrared radiation (emitted from objects), which is outside the thermal equilibrium of the surroundings i.e. a infrared or a thermal imaging system can only detect objects (e.g. a piece of warm metal debris on a cool runway) which have sufficient thermal contrast.
- objects e.g. a piece of warm metal debris on a cool runway
- Small objects which have poor thermal contrast may pose significant challenges for infrared / thermal imaging system.
- the performance of such systems is unpredictable under adverse weather (e.g. cold weather) conditions.
- infrared / thermal imaging systems also lack the resolution needed for object detection, characterization and classification.
- Video signals obtained from the cameras are visually monitored by an operator on the console of an airport control room.
- FOD or airfield runway damage detection using background subtraction has a number of problems. Firstly, the pixel properties are not always sufficient to discriminate correctly between the background and the foreground pixel. Furthermore, background is subjected to changes such as due to noise, clutter, extraneous events, variations in illumination conditions and weather conditions.
- Video cameras used in existing surveillance systems require additional assisted illumination such as a laser light or infrared light for night surveillance. This, in turn, requires significant infrastructure in an airport using such a system, which increases cost. Also, the presence of an optical light such as a laser light or infrared light can interfere with other systems used in the airport, and may pose safety problems for navigation of aircrafts at the airport, and may pose a hazard to pilots etc.
- Battle Damage Assessment on a target (e.g. military airfield runway) is very important during war.
- a reconnaissance team is sent to scout the full length of the runway and chart out the damage in terms of diameter, depth, and the positions of craters with reference to the runway.
- a typical charting requires about 60 to 120 minutes.
- Such lengthy manual-based activity is inefficient in combat scenario and it inevitably exposes the men at risk of further bombardments.
- WO 20097029051 A1 discloses a surveillance system and method for detecting a foreign object, debris, or damage (FOD) on a runway.
- the system comprises one or more cameras for capturing images of the runway; and an image processing system for detecting the FOD on the runway based on adaptive image processing of the images captured by the cameras; wherein the surveillance system is adaptively operable for FOD detection under both day and night ambient light conditions without assisted illumination such as infrared or laser illuminators.
- WO 20097029051 A1 discloses reference to detection of different environmental conditions (e.g. day/night, rain, smoke etc) by one or more sensors, it is clear that these relate to environmental conditions that occur naturally as opposed to weapon impact, which is man-made.
- a surveillance system for detecting a foreign object, debris, or damage in an airfield
- the surveillance system comprising: one or more cameras for capturing images or video of the airfield; a processing unit for detecting the foreign object, debris or damage in the airfield from the images captured by the one or more cameras; and a weapons impact surveillance system for detecting weapon impact in the airfield and directing the one or more cameras to capture images in an area of the detected weapon impact.
- the one or more cameras may comprise a combination of static and non-static cameras.
- the one or more cameras may zoom in or focus on the area of the detected weapon impact to obtain images with details for detecting type of damage.
- the weapon impact is detected by images of explosion, smoke, dust or flash or sound caused by the weapon impact.
- the surveillance system may comprise a computation module for deriving a Minimum Operating Strip (MOS) for aircraft landing based on location of the foreign object, debris, or damage detected in the airfield.
- MOS Minimum Operating Strip
- the surveillance system may detect cracks, crater, camouflet, spall, UXO, or an animal in the airfield.
- the processing unit may determine size of a crater, camouflet or spall by detecting amount of debris around the crater, camouflet or spall respectively.
- the one or more cameras may be equipped with wide angle lens to provide wide area image capture of the airfield.
- the one or more cameras may be mounted on an aircraft arranged to fly over the airfield to capture images of the airfield.
- the surveillance system may comprise one or more infrared or visible spectrum illuminators for providing artificial illumination under low visibility or low ambient illumination conditions.
- the processing unit may be configured for measuring size or physical attributes of the foreign object, debris, or damage.
- the damage detected in the airfield may be mapped onto an airfield map.
- the surveillance system may comprise a region based detector for detecting a region in the images captured that can be a foreign object, debris or damage; and an edge based detector for detecting edges of all objects in the images captured, wherein the region detected by the region based detector in the images that is overlapping with the edges detected by the edge based detector in the images are stored.
- the images captured by the one or more cameras may be stitched together and areas of differences between earlier captured stitched images and later captured stitched images are highlighted in the later captured stitched images.
- the weapons impact surveillance system may be configured to trigger a visual or audio alert upon detecting weapon impact.
- the surveillance system may comprise a repair estimation and planning module for estimating and planning repair work based on location of the weapon impact and information of the damage.
- the one or more cameras may be installed on opposite sides of a runway in the airfield and their views may be overlapped.
- Views of the one or more cameras may be overlapped.
- the surveillance system may comprise one or more mobile handheld devices for receiving remote alert and critical information to repair damage or remove foreign object in the airfield.
- the surveillance system may comprise an image offset compensator for correcting offset between a currently captured image and a reference image taken by a camera based on position of a common object located in the currently captured image and a reference image.
- the image offset compensator may use more than one common object in the currently captured image and the reference image to determine the offset to correct between the currently captured image and the reference image.
- Linear regression may be used to determine the offset to correct between the currently captured image and the reference image, and an offset value calculated based on a common object in the currently captured image and the reference image is considered for linear regression if a score determined by matching the common object in the currently captured image and the reference image is greater than a predetermined threshold value.
- the surveillance system may further comprise a computation module for deriving a Minimum Airfield Operating Surface (MAOS) for aircraft based on location of the foreign object, debris, or damage detected in the airfield.
- MAOS Minimum Airfield Operating Surface
- the surveillance system may comprise one or more visible spectrum illuminators for providing artificial illumination under low visibility or low ambient illumination conditions.
- the weapon impact may be detected by sound caused by the weapon impact.
- a method for detecting a foreign object, debris, or damage in an airfield comprising: capturing images of the airfield; detecting the foreign object, debris or damage in the airfield from the images captured; detecting weapon impact in the airfield; and directing one or more cameras to capture images in an area of the detected weapon impact.
- FIG. 1A is a schematic drawing illustrating an arrangement of surveillance cameras in an airfield runway surveillance system 100 to detect foreign objects, debris or damages (FOD) and runway damage on a runway 106 according to an example embodiment.
- the runway 106 is centrally located, adjacent to taxiways 103, 104 and grass fields 102.
- a plurality of surveillance cameras 108 facing the runway are deployed along one edge of the taxiway 104 such that the axis of each surveillance camera 108 is perpendicular to the length of the runway 106.
- Each surveillance camera 108 is operable to scan a field of view 110, having a horizontal angle of view 111.
- Each field of view 110 includes portions from the taxiways 103, 104, runway 106 and grass fields 102.
- Each field of view 110 also includes intersecting portions 112 from an adjacent camera 108, along the runway 106.
- the surveillance cameras 108 are positioned 150 m ⁇ 700 m away from the runway and create about 10 ⁇ 50% of overlapping among adjacent cameras.
- Video and/or image from each of the camera 108 is feed to an application computer system (not shown) in a control tower or control room 135 of an airport.
- the received video and/or image is processed by a video processing unit of the application computer system.
- the application computer system continuously processes the video and/or image from the surveillance cameras to detect FOD and runway damage and alert the operator when a FOD or runway damage is detected.
- An operator in the control tower or control room 135 will also able to visually monitor the real time runway video and/or images on a video display (not shown).
- any foreign object, debris or damage is detected when the application computer system is processing the video data, the operator is warned of it (visual and/or audible alarm and/or by remote wireless alert via mobile communication means such as GSM SMS or MMS).
- the operator zooms a surveillance camera 108 onto the detected object to visually verify the FOD or runway damage. If an FOD or airfield runway damage is confirmed, an alarm (audible and/or visual) is triggered in the control tower or control room 135.
- the detection of a FOD or airfield runway damage also triggers a remote alarm (audible and/or visual) located near the runway 106.
- a wireless alert (such as GSM SMS or MMS) would also be triggered to notify the runway recovery team or the airfield repair team.
- a runway recovery team dispatches a recovery vehicle to clear the detected FOD i.e. remove the foreign object, debris or repair the damage.
- the surveillance cameras used are passive and are not equipped with illuminators (such as laser or infrared illuminators).
- Each of the surveillance cameras 108 can be one of a high resolution day / night vision camera, a low lux high sensitivity colour camera, a camera with light intensifier CCDs (ICCD camera), a camera with electron-multiplier CCD (EM-CCD camera), a night vision camera, a static camera, a high resolution mega-pixel camera, a non-static camera (such as panning camera, pan tilt zoom (PTZ) camera or zoom camera), a Short Wave Infrared (SWIR) camera, a Medium Wave Infrared (MWIR) camera or a thermal imager.
- the surveillance system is thus able to operate using only passive cameras and without the need to install additional assisted illumination (such as infrared illuminators or laser illuminators).
- the surveillance cameras 108 used in the system 100 are capable of generating video images or digital pictures of the runway for image processing. However, still picture digital cameras may also be used to generate digital still images of the runway for image processing.
- a zoom camera or Pan Tilt Zoom (PTZ) camera can be used to automatically zoom into any area on the runway to obtain a detailed view of a FOD or airfield runway damage.
- the PTZ camera or zoom camera can be remotely controlled by the application computer system to zoom into the area of interest on the runway whenever the application computer system detects a FOD or runway damage, in the example embodiment.
- the PTZ camera or zoom camera can also be controlled manually by the operator to zoom into a specific area in the airfield to obtain zoomed-in video or images.
- Figure 1 B is a schematic drawing illustrating an alternative arrangement of surveillance cameras in a runway surveillance system 500 to detect FOD or runway damage on a runway 106.
- a plurality of surveillance cameras 508 facing the runway is deployed along an edge of the taxiway 104.
- Another plurality of surveillance cameras 509 facing the runway is deployed along the other far end edge of the taxiway 103.
- the axis of each surveillance camera 508, 509 is perpendicular to the length of the runway 106.
- Each surveillance camera 508 is operable to surveillance a field of view 510, having a horizontal angle of view 511.
- Each surveillance camera 509 is operable to surveillance a field of view 515, having an horizontal angle of view 521.
- Each field of view 510, 515 includes portions from the taxiways 103, 104, runway 106 and the grass fields 102.
- the cameras 508, 509 are arranged alternatingly such that the field of view 510 and 515 of adjacent cameras alternate each other and have a clear line of demarcation or with some overlaps of coverage.
- the overlapping coverage (field of view) of adjacent surveillance cameras also provide some redundancy so in the event a surveillance camera fails, the adjacent surveillance cameras could also cover the field of view of the failed camera. It is also possible for the surveillance cameras to be positioned such that every sector of the runway will be covered by at least 2 surveillance cameras to provide field of view coverage redundancy.
- At least 2 surveillance cameras could be looking at the same runway sector and the same runway damage (crater, camouflet, spall, UXO) or FOD.
- This will also help overcome the problem of occlusion of the airfield runway damage/FOD which could occur when only using a single surveillance camera to cover a specific runway sector or area of the airfield.
- it is possible to capture 2 different views of the same runway damage (crater, camouflet, spall, UXO) or FOD as seen by 2 different cameras. This would help to improve the runway damage or FOD detection, measurement and classification rate.
- FIG 1C is a schematic drawing showing yet another alternative embodiment of surveillance cameras in a runway surveillance system 550 to detect runway damage or FOD on a runway105 .
- a plurality of surveillance cameras 551 facing the runway is deployed along an edge of the taxiway 104.
- Another plurality of surveillance cameras 552 facing the runway is deployed along the other far end edge of the taxiway 103.
- the axis of each surveillance camera 551, 552 is perpendicular to the length of the runway 105.
- Each surveillance camera 551 is operable to surveillance a field of view 555, having a horizontal angle of view 553.
- Each surveillance camera 552 is operable to surveillance a field of view 556, having a horizontal angle of view 554.
- Each field of view 555, 556 includes portions from the taxiways 103, 104, runway 105 and the grass fields (including the infields) 102.
- This arrangement will enable each sector of the runway and/or taxiway to be covered by at least 2 surveillance cameras, one from each side of the runway. This will provide surveillance coverage redundancy. Besides it also help overcome the problem of occlusion due to blockage of surveillance camera view for the airfield runway damage (crater, camouflet, spall, UXO) or FOD. Such occlusion could be caused by other FOD objects or runway damages lying in the camera view of a surveillance camera and could occur when only a single camera is used to cover a particular area of the airfield.
- the field of view of the surveillance cameras on the opposite sides of the runway will have some overlap to provide redundancy of coverage for the runway and/or taxiway.
- the installation of surveillance cameras on opposite side of the runway also help overcome the problem due to occlusion for the accurate detection/measurement/classification of the crater/camouflet/spall/UXO and FOD on the runway and/or taxiway.
- the present specification also discloses apparatus for performing the operations of the methods.
- Such apparatus may be specially constructed for the required purposes, or may comprise a general purpose computer or other device selectively activated or reconfigured by a computer program stored in the computer.
- the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus.
- Various general purpose machines may be used with programs in accordance with the teachings herein.
- the construction of more specialized apparatus to perform the required method steps may be appropriate.
- the structure of a conventional general purpose computer will appear from the description below.
- the present specification also implicitly discloses a computer program, in that it would be apparent to the person skilled in the art that the individual steps of the method described herein may be put into effect by computer code.
- the computer program is not intended to be limited to any particular programming language and implementation thereof. It will be appreciated that a variety of programming languages and coding thereof may be used to implement the teachings of the disclosure contained herein.
- the computer program is not intended to be limited to any particular control flow. There are many other variants of the computer program, which can use different control flows without departing from the spirit or scope of the invention.
- Such a computer program may be stored on any computer readable medium.
- the computer readable medium may include storage devices such as magnetic or optical disks, memory chips, or other storage devices suitable for interfacing with a general purpose computer.
- the computer readable medium may also include a hardwired medium such as exemplified in the Internet system, or wireless medium such as exemplified in the GSM mobile telephone system.
- the computer program when loaded and executed on such a general-purpose computer effectively results in an apparatus that implements the steps of the preferred method.
- the invention may also be implemented as hardware modules. More particular, in the hardware sense, a module is a functional hardware unit designed for use with other components or modules. For example, a module may be implemented using discrete electronic components, or it can form a portion of an entire electronic circuit such as an Application Specific Integrated Circuit (ASIC). Numerous other possibilities exist. Those skilled in the art will appreciate that the system can also be implemented as a combination of hardware and software modules.
- ASIC Application Specific Integrated Circuit
- the application computer system in the control tower or control room 135 ( Figure 1A ) has the following functions:
- Figure 2 is a basic flow chart of FOD or airfield runway damage detection according to one embodiment.
- surveillance cameras capture respective images of a portion on a runway.
- the steps involved in processing the captured images are explained in the following paragraphs.
- image enhancement is performed to pre-process the captured image.
- the gradual grey scale change in X direction (parallel to the runway direction) and the highly contrasted runway white lines are eliminated to enhance the features that have high gradient change in the direction parallel to the runway (almost all real 3D foreign object, damages, or debris (FOD) have those properties).
- high pass filters such as Sobel X from left_to_right plus right_to_left or Scharr X are used.
- abnormal light detection is applied for detection at night.
- a sudden bright light or bright spot on the runway scene can bloom the surveillance camera 108. This may happen when aircrafts land, take off or when ground vehicles move at night.
- the detection algorithm determines such situations. If abnormal light is detected, the images are ignored.
- the algorithm does a global histogram and statistical analysis (e.g. average grey scale) to compare the captured images with the progressively updated image.
- the algorithm also makes use of the parameters of the bright spots (such as size, area ...etc) to determine if abnormal light condition exists.
- optimal detection parameters are estimated and adaptive pixel level edge map is extracted.
- an image of an airfield or runway 106 may look very different.
- the image can be smooth or rough or with lots of reflection.
- This step is to adaptively estimate the optimal FOD or damage edge extraction threshold to extract real FOD or damage edges with minimum noise.
- the algorithm uses statistical method (e.g. mean, deviation) based on original (excluding motion area) or progressively learned background image to determine the grayscale lookup table (LUT) to be used for generating pixel level threshold map.
- temporal filtering is applied to a stack of edge maps to retain robust edges with reduced noise.
- Temporal filtering is applied to pixel level. Only those pixels that have accumulated to pass a certain threshold are considered as robust edge pixels (to be used in the robust edge map). Those pixels that flicker are not able to accumulate to pass the threshold and thus be deleted (not used in robust edge map).
- adaptive background learning is performed using a principle of infinite impulse response (IIR) for background learning.
- IIR infinite impulse response
- the system primarily uses edge map for background learning.
- the learned features include mainly the center lights and some edge lights falling slightly inside the runway region due to low camera angle.
- the main objectives of the adaptive background learning is to capture a slow feature changing process on the runway in order to blend into the background, without generating false alarms, and to save the learned background edge map into file or data base on a daily basis for use as background edge map for the next day. This allows the system to adapt to runway marking changes as quickly as possible.
- Composite background edge map represents the airfield runway/taxiway markings.
- Composite background edge map consists of adaptive background edge map, saved background edge map of the previous day and optionally seasonal markings (seasonal markings are generated during a particular season or weather condition such as snow). They can simply be added up or further processed to form the final background edges.
- suspected edges are extracted by comparing the edge map and the composite background edge map.
- the runway/taxiway marking edges from the processed image (composite background edge map) at step 213 are removed.
- the remaining edges are possibly FOD or airfield damages.
- edge filtering is performed to filter some of the edges that are not part of FOD or runway taxiway damage but may due to other weather conditions, such as snowing, raining or morning glare.
- Weather condition is detected through sensors and/or image processing methods. This step involves using one or more selectable algorithms to detect those weather conditions e.g. when the runway lights are switched on because of rain, reflection can arise on a runway.
- a specific filtering algorithm locates the light and filters the reflection edges.
- Object Classification is performed at step 219 to determine if detected object from Step 217 is indeed FOD or airfield runway/taxiway damage (crater, camouflet, spall, UXO).
- object classification methods are pattern matching, Bayes classifier, Linear Discriminant classifier, neural network classifier, fuzzy classifier and neural fuzzy classifier., nearest neighbor classifier. It is also possible to determine whether the airfield runway/taxiway damage is a crater or camouflet or spall and measure its size by detecting and measuring the amount of debris around the crater or camouflet or spall.
- the system uses filtered edges from step 217 to extract the relevant object attributes for example length, height, perimeter, area, texture, chromatic properties (hue and saturation), luminous intensity (grey level). These object attributes forms the input vector for the object classification to determine if the detected object is indeed FOD or airfield damage.
- an operator in the control tower or control room is warned of it either by visual and/or audible alarm and/or wireless alert (such as GSM SMS or MMS).
- the operator zooms a surveillance camera on to the detected FOD or airfield runway/taxiway damage. If an FOD or airfield runway/taxiway damage is confirmed, another alarm (audible and/or visual) is triggered in the control tower or control room. FOD confirmation also triggers a remote alarm (audible and/or visual) located near the runways or taxiways.
- a wireless alert (such as GSM SMS or MMS) could also be triggered to notify the runway recovery team.
- a airfield recovery team dispatches a recovery vehicle to clear the detected FOD i.e. remove the foreign object or debris or repair the airfield runway/taxiway damage.
- FIGS 3A and 3B are detailed flow charts of one embodiment of the present invention.
- the system is initialized at step 302.
- a surveillance camera captures an initial mage of a portion of the airfield runway or taxiway.
- the images are analyzed to detect any motion. Only images devoid of any motion are used for background learning and eventually stored as reference background images in a database in this example embodiment.
- the captured image is subjected to image enhancement to pre-process the captured image.
- image enhancement to pre-process the captured image.
- all the pixels in the image become zero (including pixels corresponding to white runway lines and regions that have a change in the grey scale gradient due to a moving cloud or rain) except some prominent runway lights.
- a check is made to find if there is a day to night, or night to day transition . For example, this can be achieved by monitoring a difference in light intensity of a sensor or a camera. Light intensity changes for day to night or night to day transition is normally much greater than due to weather changes.
- an abnormal light detection check is performed. In case an abnormal light is detected at step 311, the previously captured image is ignored and the next image is captured from step 303. In case no abnormal light is detected, the estimated optimal foreign object, debris or damage (FOD) detection parameters are derived at step 313, for different environmental conditions (e.g. day/night, rain, snow, smoke etc) that are sensed at step 315.
- FOD foreign object, debris or damage
- different environmental conditions e.g. day/night, rain, smoke etc
- the camera iris based system having a built-in one or more thresholds to make a change could also be used.
- the threshold can be set to 50 for day and can be raised to 70 for a night.
- a time filter can also be used, whereby a certain value is sustained over period of time to confirm whether it is day or night.
- the application computer system could also use other date and time inputs including inputs from its real time clock (RTC) and electronic calendar for the confirmation of day or night condition.
- RTC real time clock
- the markings of an airfield runway or taxiway are different during the day and night time. Usually, there are more markings during the night. The night markings supersede the day markings.
- Step 317 provides adaptive pixel level edge map extraction (refer to Figure 4 ), wherein an optimum FOD or airfield runway/taxiway damage edge extraction threshold is derived, from a look up table (LUT), for extracting real FOD or damage edges with minimum noise.
- LUT look up table
- motion edge filtering is performed to generate a static edge map.
- temporal filtering is performed to extract a robust edge map. Only those pixels that are accumulated to pass a certain threshold are considered as robust edge pixels (to be used in robust edge map). Those pixels that flicker will not be able to accumulate to pass the threshold and thus will be deleted (not used in robust edge map).
- a check is made to determine if an adaptive background is learned.
- the system uses edge map for background learning. If the adaptive background 323 is not learned, an adaptive background edge map is initialized/updated at step 325.
- a check is made to determine if the adaptive background map reaches a predefined condition. If it has reached, at step 329, an indication is flagged to notify that the adaptive background is learned. If it has not reached, the process returns to step 303 ( Figure 3A ) to continue to capture images.
- a composite background edge map is generated.
- the composite background map consists of adaptive background map generated/updated at step 325, previously saved day/night background map and seasonal marking map that are provided at step 333 once the processing is initialized at step 302 ( Figure 3A ).
- Seasonal markings are associated with runway markings under a particular season or weather condition (e.g. snow or rain). By processing the images or using external sensors, the system can identify those season or weather conditions to reduce false alarms.
- the composite background map includes the markings of the runway.
- a suspected edge map is extracted by comparing the composite background map and the edge map.
- an edge filter is applied to filter any unwanted edges related to sudden environmental changes such as reflections due to rain. For example, under rainy conditions, an image of a runway light could be detected as a bright spot that may resemble a FOD or airfield runway/taxiway damage. The system is able to detect such potential false alarms by comparing with previously stored images.
- the adaptive background map is updated at step 339 and a check is made to find if there is a day to night transition, or night to day transition at step 341. If there is a day to night transition, or night to day transition, the last day or night background map is loaded for immediate use at step 343 and the adaptive background map is stored as day/night background edge map at step 345 for next day use. If there is no day to night transition, or night to day transition at step 341, the process returns to step 303 ( Figure 3A ) to continue to capture images.
- the edge parameters (such as size, area etc) from the filtered suspected edge map from step 337 are computed.
- a check is done to determine if the edge parameters exceed the threshold. If it is so, at step 351, the suspected region on the runway is overlaid on a video display and an operator in the control tower or control room is alerted of it either by an audible signal and/or visually and/or via wireless alert (such as GSM SMS or MMS or 3G).
- the operator upon being alerted, the operator performs pan and/or tilt and/or zoom operations using the surveillance cameras for visual verification.
- the airfield runway recovery team is informed immediately through wireless means (such as GSM SMS or MMS or 3G) at 357.
- the image of the FOD or airfield runway/taxiway damage continues to appear on the video display and the alert signal persists until the recovery team recovers or clears the FOD (i.e. remove the foreign object or debris or repair the airfield runway/taxiway damage) from the airfield runway at step 359.
- Figure 4 is a graph showing a lookup table (LUT) used to extract adaptive pixel level edge map at step 207 ( Figure 2 ) and step 317 ( Figure 3A ) as indicated above.
- LUT lookup table
- P1, P2... Pn and T1, T2..Tn are estimates based on statistical analysis of the captured image, the progressively learned image and external sensor input so that the optimal piecewise look up table (LUT) can be computed for generating pixel level threshold, which is used to extract FOD or damage edge map with minimum noise.
- LUT piecewise look up table
- the pixel value in the captured image or the progressively learned background image is mapped into a threshold value in the threshold image through the above LUT. After that, the captured image subtracts this threshold image. Any pixel value above 0 is be set to 255.
- This resultant image corresponds to the adaptive pixel level edge map (step 207 in Figure 2 and Step 317 in Figure 3A ).
- Runway scene calibration and airfield runway/taxiway damage, and FOD and damage positioning, measurement and/or classification may be performed in embodiments of the present invention.
- Embodiments of the present invention also use color surveillance cameras and provide for color imaging processing.
- the runway surveillance system can use either monochrome cameras (including visible spectrum cameras, infrared cameras and thermal imagers) or color cameras.
- the airfield runway/taxiway scene images acquired by the surveillance cameras in example embodiments are pre-calibrated such that the physical position and range corresponding to each pixel on the scene image is computed either using a mathematical formulae or a pre-computed lookup table which maps each pixel in the runway scene image to a specific precise co-ordinate in the 2D or 3D physical real-world co-ordinate frame (x, y, z) of the reference datum (such as WGS 84 or Airport Grid) defined on the area of surveillance such as a runway.
- a mathematical formulae or a pre-computed lookup table which maps each pixel in the runway scene image to a specific precise co-ordinate in the 2D or 3D physical real-world co-ordinate frame (x, y, z) of the reference datum (such as WGS 84 or Airport Grid) defined on the area of surveillance such as a runway.
- the system makes use of static airfield runway/taxiway features for runway scene calibration.
- the position and range of these static runway features with respect to some fixed real-world reference location can be pre-determined from ground survey, physical measurement or from the runway map.
- one such useful feature is to place markers or use runway edge light on the runway along the longitudinal direction of the runway and the same vertical (y axis) distance from the side of the runway. Since these markers are along the longitudinal (horizontal) direction of the runway and on the same vertical distance from the side of the runway, the horizontal (x axis) distance separation of these markers can also be mapped to pixel count in the runway scene image.
- the horizontal (x axis) pixel mapping ratio (meter/pixel) can be derived by dividing the physical ground horizontal distance between the 2 markers by the horizontal pixel width (number of pixels between the 2 markers on the runway image).
- a minimum of two static runway features with known positions can be used to calibrate each scene image.
- a number of pairs of runway markers are preferably placed along the longitudinal direction of the runway (with the same vertical distance from the side of the runway) to mark a series of virtual horizontal lines on the runway.
- the ground physical distance of these horizontal virtual lines (between each pair of markers) can be measured using a measuring tape or measuring wheel or GPS receiver.
- the number of pixels on this horizontal virtual line for a specific camera setting is measured from the runway section image.
- the surveillance camera's field of view on a runway has a trapezoidal shape. Therefore, the pixel mapping ratio (meter/pixel) of the runway image is different across a vertical direction (Y axis) of the runway.
- the far side of the runway is narrower and has a larger pixel mapping ratio (meter/pixel) while the near side is wider and has a smaller pixel mapping ratio (meter/pixel).
- the system makes use of two parallel horizontal runway lines on each side of the middle line and the middle line to determine the correct pixel mapping ratio (for the vertical y axis) for mapping the image pixels to the precise co-ordinates onto the real-world reference co-ordinate frame based on the datum used (which could be WGS 84, Airport Grid or Cartesian coordinate system).
- the vertical pixel mapping ratio (meter/pixel) can be derived by dividing the physical vertical distance between these lines (measured on ground) by the number of pixels between these lines (derived from the vertical pixel width on the runway image).
- Figure 7 is a schematic drawing illustrating example runway lines according to an example embodiment.
- 802 could also be the runway edge line at the far side
- 803 could also be the runway edge line at the near side of the runway.
- Both these lines 802, 803 are parallel to the middle line 801 and all these lines are along the horizontal direction (x axis) of the runway.
- the physical vertical distance between the near side horizontal line 803 and the middle line 801 is 805 and the vertical pixel width (no of pixels) between these 2 lines on the runway image is y1 pixels.
- the vertical pixel mapping ratio for the near side is obtained by dividing 805 by y1 (meter/pixel).
- the physical vertical distance between the far side horizontal line 802 and the middle line 801 is 804 while the vertical pixel width (no of pixels) between these 2 lines on the runway image is y2 pixels.
- the vertical pixel mapping ratio for the far side of the runway is obtained by dividing 804 by y2 (meter/pixel).
- 2 different vertical (y axis) pixel mapping ratios (805/y1 and 804/y2) are used for mapping the pixels on the runway image to precise co-ordinates on the real-world reference co-ordinate frame depending on whether the pixel lies in the near side or far side of the runway using the middle line as reference.
- Calibration can be based on different real-world co-ordinate datum e.g. WGS84, Airport Grid or Cartesian coordinate system.
- the runway edge/middle/horizontal lines can be of any color. Calibration can be done as long as a contrast exists between the runway edge/horizontal/middle lines and a runway surface. Furthermore, the runway edge and middle lines need not be continuous. Continuous lines can be derived by interpolating adjacent lines.
- Alternative embodiments of the present invention can optionally or additionally make use of stereo vision using a pair of surveillance cameras to cover the same segment of the runway.
- stereo vision airfield runway/taxiway damage or FOD range and position can also be computed from the difference image obtained by comparing the two images as captured by the two cameras covering the same area on the area of surveillance (field of view) on the runway.
- the pixel correspondence techniques employed include using cross correlation operator, symbolic matching with relational constraints and combinations of these techniques.
- An alternative embodiment makes use of one or more static surveillance cameras equipped with wide angle lens to provide wide area coverage of the airfield runway and/or taxiway and/or infield.
- the static surveillance camera will be able to detect any airfield incursion, raid or bombardment and direct the one or more pan tilt zoom (PTZ) cameras to the specific area(s) of detected damage or FOD on the airfield runway/taxiway to enable the rapid detection/measurement/classification of the runway damage (crater, camouflet, spall, UXO) and FOD.
- PTZ pan tilt zoom
- Alternative embodiments of the present invention can also make use of an aircraft such as an unmanned aircraft or unmanned aerial vehicle (UAV) which will fly over the airfield runway/taxiway to capture aerial digital pictures or video of the airfield runway/taxiway.
- UAV unmanned aircraft or unmanned aerial vehicle
- a Vertical Take-Off and Landing Aircraft (VTOL) could also be used which will fly over the runway and/or taxiway to capture aerial digital pictures or video of the airfield runway/taxiway.
- the digital pictures or video will be captured by making use of the onboard Electro-Optic Sensors (EO sensors) mounted on the UAV or VTOL.
- the EO Sensors can be passive and does not require the use of artificial illumination.
- the captured digital pictures and video captured by the EO sensors will be analysed/processed in real-time to enable detection/measurement/classification of runway damage (crater/camouflet/spall and UXO) and FOD.
- runway damage crater/camouflet/spall and UXO
- FOD Frequency-Domain
- IR infrared
- An alternative embodiment of the present invention will also make use of infrared (IR) illuminator or visible spectrum illuminator to provide artificial illumination under low visibility and low ambient illumination conditions (such as night time).
- IR infrared
- the IR or visible spectrum illuminator would provide narrow focus beam of IR or visible spectrum light to the sector of the airfield runway/taxiway/infield being scanned by the surveillance camera(s).
- the IR or visible spectrum illuminator could also have pan, tilt, zoom (PTZ) capabilities.
- the control of the IR illuminator or visible spectrum illuminator (on/off, illumination power, PTZ) could be controlled by the Video Processor Unit (VPU) or the Central Computer System (CCS) for optimum artificial illumination under low visibility conditions.
- VPU Video Processor Unit
- CCS Central Computer System
- FIG. 5 is a schematic drawing illustrating redundant coverage of surveillance cameras in a surveillance system 600 to detect FOD or damage on a runway.
- the surveillance cameras 601, 603, 605, 607, 609 are positioned on one edge of a taxiway 104.
- the angle of coverage (angle of view) 611 of each surveillance camera 601, 603, 605, 607, 609 usually remain equal.
- the usual angle of coverage (angle of view) 611 of each of the surveillance cameras 601 and 605 that are adjacent to the redundant camera 603 extends to 613, towards the field of view of the redundant camera 603.
- the airfield runway/taxiway surveillance system comprising of surveillance cameras 601, 603, 605, 607, 609 is operable to work to provide the complete coverage of the airfield runway even if one or more surveillance cameras fail to function.
- the coverage field of view (angle of view) of a camera can be manually adjusted or performed by an operator, remotely, using the application computer system which remotely controls the camera's zoom or PTZ function. The adjustment can also be automatically performed by the application computer system.
- a camera having a zoom function or a pan tilt zoom (PTZ) camera may be used to alter the coverage field of view (angle of view).
- Figure 6 is a schematic drawing illustrating a runway surface scanning according to an alternative embodiment.
- the runway surface area 700 under surveillance is divided into numerous segments 702 that cover small areas on the runway surface 700.
- the entire runway surface 700 area is scanned, segment-by-segment, using one or more non-static camera 708 that can cover a field of view having a horizontal angle of view 711.
- Example of non-static camera is a Pan Tilt Zoom (PTZ) camera or a zoom camera.
- the pan tilt zoom function of the PTZ camera or the zoom function of the zoom camera is controlled remotely by the application computer system or a camera controller.
- the runway surface area 700 is scanned sequentially from one end 710 to another end 720 along the longitudinal direction 703 by the use of one or more non-static camera.
- Airfield Runway surface scanning is controlled by the application computer system or a camera controller.
- the challenge of this method of runway scanning is the long FOD or runway damage detection time especially when the FOD or runway damage happens to be located at the segment nearing the end of the scanning cycle.
- an alternative method is to skip one or even two segments i.e. scan one segment for every two or even three segments. During the next scanning cycle, the previously unscanned segments are scanned, while those scanned during the previous cycle are not scanned in this cycle.
- the trade-off in runway scanning method is the long detection time to detect FOD that happen to lie at the unscanned segments on the runway surface.
- Another method to reduce the FOD detection time in alternative embodiment is to make use of a combination of non-static or static surveillance cameras.
- the static camera preferably has adequately wide field of view (wide angle of view) to cover a significant section of the runway and/or taxiway.
- the application computer system can detect the occurrence and location of air craft take off and landing on the runway.
- the non-static surveillance camera can be directed by the application computer system to first scan those segments covering specific locations on the runway where the aircraft landing or take-off has just occurred. This method can help in reducing FOD detection time.
- the application computer system in a control tower or control room determines the position and range of the detected FOD or runway damage on the runway based on scene images captured by the static camera.
- the determination of the position and range of the detected FOD or airfield runway/taxiway damage on the airfield runway/taxiway surface is achieved by using monoscopic vision with calibrated scene image of the runway. For example in the calibrated runway scene image each pixel is mapped onto precise co-ordinate on the real-world co-ordinate frame (which could be based on WGS 84 or Airport Grid datum). Alternatively stereoscopic vision based object positioning and ranging techniques could also be used.
- the information regarding the range and location of FOD or airfield runway/taxiway damage as detected by the static surveillance camera is utilized by the system to automatically control the non-static cameras (for example, a panning camera or a pan tilt zoom (PTZ) camera or a zoom camera) to pan and/or tilt and/or zoom and/or focus on to an FOD or airfield runway/taxiway damage or area of interest on the airfield runway/taxiway and to obtain telephoto images on a video display of the FOD or area of interest or airfield runway/taxiway damage with sufficient details to confirm the presence of detected FOD or airfield runway/taxiway damage or to filter a false alarm.
- the non-static cameras for example, a panning camera or a pan tilt zoom (PTZ) camera or a zoom camera
- telephoto images are also utilized for accurate measurement, characterization and classification of the detected FOD or airfield runway/taxiway damage.
- Accurate object features including object length, height, area, curvature, perimeter, texture, chromatic properties can extracted from these telephoto images, which can be used as inputs to a pre-trained object classifier.
- Embodiments of the present invention can also be extended to be used as an integrated airfield and runway taxiway damage assessment system comprising the system 100 ( Figure 9 ) to detect/measure/classify foreign objects, debris or damages (FOD), taxiway or runway damages and a Weapons Impact Surveillance System.
- Figure 9 is a schematic drawing illustrating an integrated airfield damage assessment system 952 comprising a system 100 to detect foreign objects, debris or damages (FOD), airfield runway/taxiway damages and a weapons impact surveillance system 950 according to an example embodiment.
- FOD foreign objects, debris or damages
- FIG. 10 is a schematic drawing illustrating impact detection system using a weapons impact surveillance system of Figure 9
- a Minimum Airfield Operating Surface (MAOS) and/or a Minimum Operating Strip (MOS) 1007 is then derived depending on the type of aircraft, payload and ambient conditions, and the least amount of initial repair work needed to restart flying operations.
- MAOS Minimum Airfield Operating Surface
- MOS Minimum Operating Strip
- Embodiments of the present invention utilise intelligent video/image processing which can advantageously provide:
- the collective information derived from an intelligent video/image processing-based system preferably offers an effective decision support system.
- the computer vision based weapons impact surveillance system 950 automatically detects and scores the impact of rockets and bombs to facilitate realistic weapons training and defense exercises for air, sea and land forces.
- the surveillance system 950 is capable of scoring single or multiple hits over land and on water in both day and night operations.
- the weapons impact surveillance system 950 can be integrated with Air Combat Maneuvering Instrumentation (ACMI) to become one of the subsystems of Electronic Warfare Training System (EWTS).
- ACMI Air Combat Maneuvering Instrumentation
- Embodiments of the advanced battle damage assessment (BDA) system 950 are preferably implemented based on:
- Embodiments of the present invention provide an advanced automated BDA System 950 through the integration of the weapons impact surveillance system 950 ( Figure 9 ) and the airfield runway/taxiway damage and FOD detection system 100 ( Figure 9 ).
- the weapons impact surveillance system 1000 ( Figure 10 ) has the ability to automatically and accurately detect and plot single or multiple visible weapons impact(s) from a wide or normal or narrow angle view of the airfield area.
- the types of weapons impact signature include those from air-to-ground and ground-to-ground missiles, rockets, bombs and artillery rounds that usually generate visible impact such as explosion, smoke, dust or some form of flash (at night). It is possible that the weapons impact surveillance system 1000 may also make use of sound created by the weapon impacts to locate the location of the weapon impact. This could be achieved by having microphones placed at strategic locations and using audio source tracking techniques.
- the airfield runway/taxiway damage and FOD detection system 100 ( Figure 9 ) is advantageously designed with a zoom-in view preprogrammed to scan, search and detect very small objects (e.g. 4cm size FOD), UXO, airfield runway/taxiway damages (crater, camouflet, spall) and pavement condition (e.g. cracks) in the airfield runway/taxiway/apron environment.
- very small objects e.g. 4cm size FOD
- UXO airfield runway/taxiway damages
- pavement condition e.g. cracks
- the FOD detection system 100 with the specialized electro-optic (EO) sensors integrates with image processing and enhancing software technology to enable the system to "see” and detect very small objects even during night operations.
- the airfield runway/taxiway damage and FOD detection system 100 ( Figure 9 ) monitors and inspects the airfield's designated pavements remotely from a safe distance and pin-points the location of the detected target.
- Figure 11 shows a layout showing the software modules used in the integrated airfield damage assessment system 952 of Figure 9 .
- the BDA software is able to self-learn and adapt to the changing scene to distinguish the signature of a bombardment (crater. camouflet, spall) or UXO or FOD from possible false alerts.
- the detection algorithm extracts relevant attributes of the target, such as length, height, depth, perimeter, area, texture, curvature, chromatic properties (hue and saturation), luminous intensity (grey level), etc. to determine and measure the target.
- relevant attributes of the target such as length, height, depth, perimeter, area, texture, curvature, chromatic properties (hue and saturation), luminous intensity (grey level), etc.
- the BDA software is capable of locating the crater, camouflet, spall or UXO or FOD with a position accuracy of preferably ⁇ 1m (3.28ft), and of measuring the crater/camouflet/spall/UXO/FOD size/dimensions.
- the software can capture a snapshot of the detected crater, camouflet, spall or UXO or FOD 1003 ( Figure 10 ), indicate the date and time of the occurrence, the coordinates and size of the crater/camouflet/spall/UXO/FOD target 1003 ( Figure 10 ), and plot and display the detection on a 2-dimensional (2-D) Graphical Information System (GIS) map 1000 ( Figure 10 ).
- GIS Graphical Information System
- the BDA System module 1103 integrates the weapons impact surveillance system module and FOD detection module. This is possible because of open standard modular design in the example embodiments, which advantageously results in ease of scalability, maintainability, customization and troubleshooting.
- the major modules in an example embodiment are:
- FIG 12 shows a layout showing the interaction of the software modules of Figure 11 during war time.
- Embodiments of the BDA system 952 ( Figure 9 ) of the present invention can provide the following advantages during war time:
- the BDA System 952 ( Figure 9 ) provides a 24 hour detection of the airfield bombardment, and locates and measures the craters, camouflet, spall, UXO and FOD during war time.
- the timely and accurate assessment of damage on the airfield/runway inflicted during military operation is critical during war time.
- By providing information on the extent of physical damage done to the airfield it advantageously facilitates the re-planning of aircraft takeoff and landing, and prioritization of airfield runway/taxiway repair.
- the BDA System 952 ( Figure 9 ) automatically detects the bombardment, locates the position, and measures the crater, camouflet, spall, UXO, FOD size accurately. Based on this information, the user (such as airfield commander) can assess and decide on the amount of resources, time and materials required to repair the airfield runway/taxiway damages in the fastest manner.
- the BDA System 952 ( Figure 9 ) can provide mapping on the extent of airfield damages.
- the system 952 maps the extent of the airfield damages on the 2D airfield map, and intelligently supports the user in determining the operating conditions of the entire airfield runway/taxiway including:
- the BDA System 952 ( Figure 9 ) is a "passive" system that is safe to operate in all airfield environments without any hazard/interference to both ground and air systems. It is totally non-intrusive, has zero active emission, and is not supported by any active light source. It poses no health hazard to human or operational interference to any existing equipment or future system implementation on ground and in aircrafts. Unlike an “active” system, the proposed "passive technology” is especially crucial for military air bases during war because it avoids attacks from High-speed Anti-Radiation Missile (HARM).
- HARM High-speed Anti-Radiation Missile
- Embodiments of the BDA system can be designed and built to operate under all weather conditions, 24 hours to protect the airfield, runway and taxiway.
- Embodiments of the BDA system 950 ( Figure 9 ) have been field-proven to "see” and detect very small objects (FOD) and runway taxiway damages (crater, camouflet, spall, UXO) during both day and night operations.
- Embodiments of the BDA system advantageously perform under extreme weather conditions of haze (air pollution index 120; visibility 200 meters) and heavy rainfall (28mm/hr).
- Embodiments of the BDA system can be designed for redundancy with partial or comprehensive overlapping coverage to increase the survivability of the system during war time.
- the FOD or damage detection sensors 508 and 509 are installed a few hundred meters apart and on opposite sides of the runway; and in the event of any sensor failure, the adjacent and/or opposite sensors continue to provide coverage for the "lost" sector that is supposed to be monitored by the failed sensor.
- the backend system includes redundant server(s) to reduce the unplanned down time to the minimal.
- Critical spares are proposed to enable timely replacement of faulty components.
- FIG 13 shows a layout showing the interaction of the software modules of Figure 11 during peace time.
- Embodiments of the BDA system of the present invention can provide the following advantages during peace time:
- the FOD EO sensors 108 are also capable of detecting other FODs and runway/taxiway damages (such as camouflets and spalls). This helps to automate FOD and runway damage detection on a real-time basis to enhance situational awareness and operational readiness of the airbase.
- the built-in artificial intelligence technologies ensures objective, positive identification of FODs and runway/taxiway damage so that human-related error or complacency is avoided.
- runways and taxiways are subjected to ageing due to environmental factors over the years. Areas of stone loss are commonly found during the infrequent and time-consuming manual inspection. Certain parts of the runway or taxiway, especially the aircraft takeoff and landing areas, are commonly distressed with significant stripping of chunks of asphalt/concrete.
- the FOD EO sensors continuously inspect the runway and/or taxiway and capture very high resolution, zoomed-in images of the runway and/or taxiway surface and, as such, advantageously provide capability of scrutinizing the surface condition to detect debris, significant cracks or damages of the runway or taxiway.
- Embodiments of the present invention can be effective in detecting the presence of birds on the runway and/or taxiway, providing an effective decision support system to help the airfield operator in preventing bird strike incidents on ground.
- Runway safety in example embodiments preferably also takes into account issues such as animals straying on the runway.
- example embodiments are preferably capable of spotting snakes, tortoises, monitor lizards and other wildlife on the runways and/or taxiway.
- the ability to detect wildlife on the runway and/or taxiway can prompt the airfield operator to close the runway and/or taxiway and dispatch ground crews to catch and remove the wildlife hazard from the runway.
- Figure 14 shows a schematic drawing illustrating the hardware system 1400 layout of the integrated airfield damage assessment system according to an example embodiment.
- the hardware system 1400 ( Figure 14 ) of the integrated BDA comprises an electro-optic (EO) system 1401 and a central computer system (CCS) which comprise of 1403 and 1409.
- EO electro-optic
- CCS central computer system
- the EO System 1401 ( Figure 14 ) consists of a series of EO Sensor units (cameras) 1405 a - d and their respective dedicated video processing units (VPU) 1407.
- the EO Sensor (camera) 1405a are mounted on a tower or building structure to inspect and capture live video or images of the target area of the airfield.
- the automatic surveillance system in one embodiment uses a mega-pixel static EO sensors with a wide field of view to cover up to 700m (2,297ft) length of the runway/taxiway.
- the FOD system (EO sensor units 1405 b - d) in one embodiment apply pan/tilt/zoom (PTZ) ultra-low-lux EO sensors with high clarity zoom lens to survey/scrutinize the runway/taxiway sector subsector by subsector. Every subsector is about 5.5m (18ft), and each of the PTZ EO sensor pans to cover up to 350m (1,148ft) length of the runway/taxiway.
- Each VPU 1407 is dedicated to process video images from an EO Sensor unit. Through an optical transceiver, this video is streamed to the VPU for image processing. The output of the VPU 1407 transmits both image or video and data to the Central Computer System (CCS) Management Servers 1409.
- CCS Central Computer System
- the BDA system 1400 ( Figure 14 ) provides two levels of redundancy design mechanism, front-end and backend built-in redundancy, to ensure high availability of system operations.
- FOD and damage detection EO sensors 108 ( Figure 9 ) and weapon impact surveillance EO 951 ( Figure 9 ) are installed on one side of the runway, and all of them are at least 300m (984ft) away from the runway centerline.
- the FOD and damage detection sensors 108 can continue to function to search, detect and measure the FOD or damage (such as crater/UXO).
- the weapons impact detection 951 are also capable of detecting and locating the airfield runway/taxiway damages.
- the system 1400 also takes into consideration any EO sensor malfunction and provide for redundancy, there is sufficient overlapping coverage of the EO sensors and so that the adjacent EO sensors will provide backup coverage for the defective EO sensor.
- the backend redundancy prevents management server failure. That is, the management servers are designed and deployed in (at least) a pair for redundancy. To ensure high availability, the redundancy server shall automatically take over in the event that the primary server fails.
- the central computer system consists of the management servers (with redundancy) 1409, digital video recorder (DVR) 1411, operator workstation 1413, administrator/maintainer workstation 1415, and mobile handheld device 1417 in one example embodiment.
- management servers with redundancy
- DVR digital video recorder
- the management server 1409 is the central database for system operations including user access control, system configuration, alert configuration, images and associated information management, data query, and report generation.
- the redundant server takes over this function in the event that the management server fails.
- DVR 1411 provides continuous real time digital video recording of the images from all the sensor units.
- DVD 1411 is sized for 30 days storage, and the video can be archived to DVD, if required. This facility enables video playback for analysis and investigation.
- the operator workstation 1413 serves as the main user interface to log-in, monitor and operate the system 1400.
- the administrator/maintainer workstation 1415 is primarily used for technical support to conduct health check and troubleshooting on the network and equipments. It can also function as a backup for operations in the event that the operator workstation 1413 is malfunctions.
- Mobile handheld devices 1417 are issued to the ground support crew to enable them to receive remote alert and critical information (date/time, location, size of damage, image, etc.) before and/or during the crew being mobilized to repair the crater or remove the debris from the runway/taxiway. This information prepares the ground crew to respond with sufficient resources and materials and rapidly locate the target.
- remote alert and critical information date/time, location, size of damage, image, etc.
- the Electro-Optics System 1401 at the front-end comprises of EO Sensors 1405 a - d and VPUs 1407. All the EO Sensors 1405 a - d along the runway/taxiway are powered for continuous operations, and connected to the backend equipment room via fiber optics link. Each sensor 1407 is connected by fiber link to its dedicated VPU 1407, and video-split to the DVR 1411 for recording.
- the backend equipment consists of management servers 1409, DVR 1411, switches 1419 and operator/administrator workstations 1413, 1415.
- the workstations 1413, 1415 are preferably located at the Ground Operations Control Center or Airfield Command Post.
- the system 1400 can also leverage on the existing LAN network using TCP/IP communication protocol, where available.
- the video will be processed by the VPU 1407 and, upon e.g. crater detection, transmit an image with the associated data to the management (redundant) servers 1409.
- the management server stores the alert status, locate and measure the crater size, and present the data on the operator workstation 1413.
- live live
- the user can download stored records from the DVR to playback the video for analysis for example one handheld mobile device 1417 per runway can be supplied to the ground crew.
- the handheld device 1417 Upon user confirmation of the target and initiating the airfield runway/taxiway repair, the handheld device 1417 will receive the critical information including image to prepare the ground crew for airfield runway/taxiway recovery or repair.
- Embodiments of BDA system of the present invention preferably comply with ICAO, FAA and other air force standards.
- Embodiments of the present invention as described herein before can also provide filtering out background clutter due to rain.
- rain clutter does not only occur only in localized area on the runway or taxiway, but also across the entire runway.
- Rain can also cause motion clutter in the runway scene image with specific characteristics such as splashes when the rain hits the runway surface.
- one method to filter away rain clutter is to detect and recognize motion clutter in the runway or taxiway scene with rain-like characteristics that occur across the entire runway. Since rain clutter is not static and varies between frames, temporal filtering could also be used to filter rain clutter. Thus motion clutter with rain like characteristics which occur across the entire runway or taxiway will be filtered out as rain clutter.
- the above principle can also be applied to filter background clutter due to snow in alternative embodiment.
- motion clutter with snow like characteristics which occur across the entire runway will be filtered out as snow clutter using temporal filtering.
- reference background images obtained from the surveillance cameras are pre-processed using edge detection techniques to make the system more resilient to illumination changes, clutter and to reduce false alarms
- Edge enhancement and detection techniques are used to identify edges of runway or taxiway features.
- An edge in an image is a contour across which the pixel properties change abruptly.
- Edge enhancement and detection is used to improve resilience to illumination changes for foreground pixel identification based on background subtraction and/or learning.
- the BDA System can be configured to operate as a Foreign Object, Debris (FOD) detection system during Normal State (Peace Time).
- FOD Foreign Object, Debris
- the BDA System may go into a Warning State and the BDA system switches to include airfield damage detection, measurement and classification in its operation.
- the airfield damage detection/measurement/classification results will lead to the computation of the MAOS and MOS required for safe aircraft takeoff and landing that avoids any damages due to weapon impact in the airfield.
- each Video Processing Unit 1407 is responsible for detecting, measuring and classifying airfield runway damage items from one camera view angle (based on video/image from a single EOS) and sending the detection, measurement and classification results to the Management Server 1409 for consolidation and optimisation.
- the Management Server 1409 can perform optimisation of the video/image and/or FOD or damage detection/measurement/classification results output by multiple Video Processing Units 1407 based on video/images captured by multiple camera views. Such optimisation includes fusing multiple input images of the same area to provide resultant images of the area that is more informative than any of the input images.
- the Management Server 1409 may also provide stitched airfield images with the airfield damage areas highlighted, which is useful for displaying on the Display Module 1157 ( Figure 11 ) and 1413 ( Figure 14 ).
- the Management Server 1409 may also be responsible for starting the whole BDA process of the BDA system, including the various processes running on the various Video Processing Units 1407 and the Management Server 1409.
- the Server processes (running on the Management Server 1409) will receive FOD and/or damage detection, measurement and classification results from the various Video Processing Units 1407.
- the Server processes executed will further process and optimise the detection, measurement and classification results pertaining to the same FOD or damage item (such as crater or UXO) as detected by multiple adjacent EOS (with different camera view angles) and output by multiple Video Processing Units 1407.
- the Server processes can perform processing based on certain criteria such as closest distance, similar size etc for each detected airfield damage item. Subsequently, the Server processes could even re-measure and/or re-classify the FOD or airfield damage items discovered and compute the damage item's dimension using at least two camera view angles (based on video/image from 2 adjacent EOS) for improved detection, measurement and classification accuracy.
- Using images of two camera view angles is an improvement as the Server process could optimally fuse the multiple input images of the same area from the two camera views to provide resultant images of the area that is more informative than any of the input images received from a single EOS. It also helps to overcome problem of occlusion of FOD or damage which could occur when using a single EOS to cover a particular area of the airfield
- the BDA System's Server process When in a Warning State, the BDA System's Server process will start the Weapon Impact Surveillance System (WISS) processes.
- the various processes of the Video Processing Units 1407 will process the videos/images from the various EOS simultaneously.
- the WISS processes may immediately start a weapon impact detection process so that any detected weapon impact will immediately trigger an alert to the Management Server 1409 and the impact location may be plotted on a digital airfield map on the Operator Workstation 1413.
- an Airfield Commander may decide to perform BDA damage detection, measurement and classification and MAOS and MOS computation.
- a manual trigger may be provided to the commander to allow the commander to activate the various BDA processes to start the detailed BDA FOD and/or airfield damage detection, measurement and classification.
- processors used in the BDA system complete single camera view BDA detection, measurement and classification, the results may be consolidated and further optimized by the Server process. Any duplicated BDA FOD and airfield damage detections/measurements/classifications could be re-classified and re-measured with higher accuracy and certainty by the Server processes.
- the final BDA FOD and/or damage detection, measurement and classification results may be sent to the MAOS/MOS computation application for MAOS/MOS computation.
- the BDA system may be configured to execute a baseline learning process to acquire a complete set of images of the airfield (also known as " airfield baseline images").
- Baseline images refer to images of the airfield when there are no unknown foreign objects, debris or damage, or no unknown changes to the camera views of the airfield at the point of capturing the baseline images.
- the BDA system scans one cycle of all the sectors/sub-sectors using the EOS to generate the airfield baseline images and then enters into a Quick Scan Stitching and Detection Loop.
- a sector refers to a designated area in the airfield.
- Sub-sectors are further partitions within a sector.
- the Quick Scan Stitching and Detection Loop continues to scan the airfield and stitch various sub-sector images together. It also detects the major differences on the airfield image after comparing it with the baseline images. The areas with significant differences on the airfield are highlighted, for instance, by colour, to allow the airfield commander to zoom-in onto these areas on a display for initial rapid damage assessment during or after the Hence, images captured by the EOS (i.e. one or more cameras) are stitched together and areas of differences between earlier captured stitched images and later captured stitched images are highlighted in the later captured stitched images of the airfield runway or taxiway.
- Figure 15 illustrates a stitched runway image 1502 with a damaged portion 1506 highlighted.
- the stitched image is generated by the Quick Scan Stitching and Detection Loop.
- a zoomed-in view 1504 of the damaged portion is also shown in Figure 15 .
- the stitched airfield runway image 1502 shows that a portion 1506 of the runway is badly damaged during the air raid.
- the zoomed-in view 1504 is a clear indication of the damaged items on the runway and is useful for early airfield damage assessment by the Airfield Commander.
- the Quick Scan Stitching and Detection Loop may be configured to continue running in an endless loop to provide updated stitched airfield runway images until for instance an air raid is over and the BDA system goes into "Post Attack". When that happens, the Airfield Commander will trigger the BDA System to start BDA airfield damage detection measurement and classification process.
- the BDA System may then perform a full-cycle detection to extract all potential damage items in the airfield. After that it starts to classify and measure the individual damage items (such as craters or UXOs).
- the final detection, measurement and classification result (output from the various Video Processing Units 1407) will be sent to the Server for consolidation and optimisation (i.e. fusing of multiple images and/or detection/measurement/classification results to get more informative images).
- Two image processing based detectors may be used concurrently in the BDA system to detect a foreign object, debris or damage in the airfield.
- One of the detectors could be a region based detector, which includes comparing grayscale views of the captured images of an area to identify regions that have changed in the area that could suggest presence of a foreign object, debris or damage in the airfield.
- region based detectors alone may not be reliable. They tend to generate excessive false detection when the light changes cause the grayscale view of the regions to change.
- an edge based detector which is used to detect edges (i.e. border or outline) of objects in images is less sensitive to lighting changes and could still be able to detect edges of the object even when the weather conditions changes.
- the primary detector used is the edge based detector and the secondary detector is the region based detector.
- the regions in the captured images identified as possibly having a foreign object, debris or damage is first determined by the region based detector.
- the processed output image of the region based detector is then compared with the processed output image of the edge based detector, which outlines all detected edges. Identified regions in the processed output image of the region based detector that do not show strong edge components (i.e. good outlines) in the output image of the edge based detector are discarded and regarded as unreliable.
- the identified regions having strong edge components would be sent for further processing by, for instance, the BDA Location Extraction Module 1147 in Figure 11 to extract the location information of the region having the strong edge components that was detected and the BDA Size Measurement Module 1149 in Figure 11 to measure the region having the strong edge components in the images by pixel level and translate the measurements into physical dimensions.
- the physical dimensions could then be classified to determine, for instance, what type of damage (crater, camouflet, spall, UXO) or FOD the identified regions in the images actually are.
- Figure 16 shows a flowchart of a detection algorithm for the instance where the two detectors, region based detector and edge based detector are used.
- images are retrieved from the one or more cameras (i.e. EOS) configured to capture images of the airfield.
- EOS cameras
- noise reduction is performed to reduce noise present in the images retrieved at step 1602.
- edge detection is performed by the edge based detector to detect presence of edges of all objects in the images subjected to step 1604.
- step 1608 information relating to the edges or outlines detected at step 1606 are extracted.
- the edge components need to be regarded as strong before they are extracted.
- a threshold could be predetermined to be compared against to determine what is regarded as strong.
- step 1614 is carried out by the region based detector on the images subjected to step 1604 to extract information relating to the regions in the images where there could possibly be a foreign object, debris or damage.
- step 1610 the information of the extracted regions at step 1614 and the extracted information of the edges detected at step 1608 are compared. Only the regions overlapping with the edges extracted are retained as output of step 1610 and stored.
- step 1612 full object segmentation is carried on the output of step 1610. This involves analysing the images of the output of step 1610 and classifying the detected regions to determine what type of damage (crater, camouflet, spall, UXO) or FOD they actually are.
- an EOS node tower i.e. a tower in the airfield having one or more mounted cameras
- an EOS node tower becomes twisted, offset or damaged.
- the BDA System starts to capture airfield images in the sectors/sub-sectors of the airfield and compares them with baseline (or reference) images of the airfield before the tower became twisted, offset or damaged
- baseline (or reference) images of the airfield before the tower became twisted, offset or damaged many undesirable artifacts may be generated due to the misalignment in the affected camera views caused by the tower that is twisted, offset or damaged. This will generate false alerts and cause detection errors.
- the BDA system includes an image offset compensator for performing an automatic calibration compensation method that is used to correct the effect of position offsets of the common EOS node tower that is captured in current images and baseline images (i.e. reference images) so that a corrected image could be produced for accurate damage detection, measurement and classification.
- a technique used for EOS node alignment correction is to make use of highly visible markers from the nearby landmarks or from landmarks within each airfield sub-sector, such as runway edge lights, signage and EOS tower structures. These markers are captured as references during the calibration process.
- the EOS starts a detection cycle, it first checks all marker positions at various sub-sectors with confidence scores exceeding a pre-set threshold level. An appropriate offset is then computed. After that it starts to detect the airfield damages with the computed offset applied to each sub-sector images accordingly.
- Figure 17 illustrates the markers used for the automatic calibration correction.
- Four markers 1702, 1704, 1706 and 1708 in four sub-sectors 1710, 1712, 1714 and 1716 are selected out of an area with 9 sub-sectors in the airfield for calibration correction.
- Figure 18 shows two images 1802 and 1804.
- the image 1802 (baseline image) shows a baseline image of the sub-sector 3 1712 ( Figure 17 ) during the calibration process.
- the region around an m2 marker 1806 (in this case an edge light of a runway), marked by a box 1808, is selected as the reference target region for matching purposes.
- the image 1804 (current image) shows the current position of the m2 marker 1806 in a current image captured by a camera mounted to capture sub-sector 3 1712 ( Figure 17 ).
- a box 1810 indicates the position of the m2 marker 1806 found in the current image and it is clearly offset from the m2 marker 1806 region marked out by box 1808 in the baseline image 1802.
- the BDA System will use a target finding technique such as pattern matching or blob detection, or a combination of both techniques to find the exact position of the m2 marker 1806 in the current image 1804.
- the offset in X-coordinates and Y-coordinates ( ⁇ x 1904, ⁇ y 1906) ( Figure 19 ) can be used to locate the corrected region 1908 in both the baseline image 1802 and the current image 1804 for foreign object, debris or damage detection and location.
- the region marked by the box 1908 in each image 1802 and 1804 would be taken to be the corrected region 1908.
- a confidence score of matching between a baseline image e.g. 1802 and a current image e.g. 1804 may be taken into consideration. Only when the confidence score is above a certain threshold will the correction start.
- the actual offset can be the average drifting of valid markers that pass the threshold T c : ( A x , ⁇ y ) or could be obtained by using linear regression.
- Figure 20 illustrates use of linear regression to determine the actual offset between a baseline (reference) image and a current image. It is assumed that there are multiple n marker positions already identified. Marker matching begins from a first marker to a last marker. Marker i refers to one of the markers from the first to the last. All markers which achieve high confidence scores are added to a list with X/Y (i.e. X-coordinates and Y coordinates) offset represented in terms of pixel values. T c is a predetermined minimum matching score that positively confirms a correct matching with high confidence when the actual matching score calculated exceeds it.
- the list is linearly fitted as the offset is supposed to be linear in the image.
- the fitting error is evaluated. If the fitting error is small, it means that the offset is consistent among those multiple markers and thus can be used to offset the current image and baseline image. If the fitting error is not small, the offset cannot be compensated.
- T f is the maximum offset error, measured in pixels.
- a marker i position is inspected, where marker i is one of the markers in the n number of marker positions.
- the marker i position is checked to see if it is the last marker.
- marker i is the last marker, at step 2006, linear regression is performed based on an offset list containing all the offset values corresponding to the respective markers. It is noted that each marker will be able to generate its own set offset values after comparing the baseline image and the current image.
- a check is performed to see if regression error is greater than the T f value.
- step 2008 If the check at step 2008 indicates that regression error is greater than the T f value, compensation is performed to offset the current image to acquire the corrected region at step 2010. Otherwise, the procedure ends.
- marker i is not the last marker at step 2004, marker matching for marker i takes place between the baseline image and the current image at step 2012.
- the offset value based on marker i is also determined.
- a check is performed to see if a matching score determined by matching the marker i in the current image and the baseline image is greater than the threshold T c value.
- step 2014 If the threshold T c value is exceeded at step 2014, the offset values for marker i will be added into the offset list at step 2016. Otherwise, the procedure will go to step 2002.
- the method and system of the example embodiments described herein can be implemented on a computer system 900, schematically shown in Figure 8 . It may be implemented as software, such as a computer program being executed within the computer system 900, and instructing the computer system 900 to conduct the method of the example embodiment.
- the computer system 900 comprises a computer module 902, input modules such as a keyboard 904 and mouse 906 and a plurality of output devices such as a display 908, and printer 910.
- the computer module 902 is connected to a computer network 912 via a suitable transceiver device 914, to enable access to e.g. network systems such as Local Area Network (LAN) or Wide Area Network (WAN).
- network systems such as Local Area Network (LAN) or Wide Area Network (WAN).
- the computer module 902 in the example includes a processor 918, a Random Access Memory (RAM) 920 and a Read Only Memory (ROM) 922.
- the computer module 902 also includes a number of Input/Output (I/O) interfaces, for example I/O interface 924 to the display 908, and I/O interface 926 to the keyboard 904.
- I/O Input/Output
- the components of the computer module 902 typically communicate via an interconnected bus 928 and in a manner known to the person skilled in the relevant art.
- the application program is typically supplied to the user of the computer system 900 encoded on a data storage medium such as a CD-ROM or flash memory carrier and read utilizing a corresponding data storage medium drive of a data storage device 930.
- the application program is read and controlled in its execution by the processor 918.
- Intermediate storage of program data maybe accomplished using RAM 920.
- references to an airfield herein covers all areas in the airfield, including runway and/or taxiway and/or access routes and/or infield/grass fields and/or apron and/or pavements. It is appreciated that any reference to surveillance for foreign object, debris or any type of damage and surveillance for weapon impact in an airfield runway or taxiway or airfield runway/taxiway could also be applied to other areas of the airfield such as access routes and/or infield/grass fields and/or apron and/or pavements.
- references to damage herein include cracks, crater, UXO, spall, camouflet.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
- Alarm Systems (AREA)
- Image Processing (AREA)
Claims (14)
- Système de surveillance (100, 500, 550) pour détecter un corps étranger, des débris ou un endommagement dans un terrain d'aviation, le système de surveillance (100, 500) comprenant :une ou plusieurs caméras (108, 508, 551) configurées pour capturer des images du terrain d'aviation ;une unité de traitement (1407) configurée pour détecter un corps étranger, des débris ou un endommagement dans le terrain d'aviation à partir des images capturées par la ou les plusieurs caméras ; etun module de transmission d'image (133) configuré pour transmettre des images depuis l'une ou les plusieurs caméras vers l'unité de traitement, caractérisé en ce que le système de surveillance (100, 500, 550) comprend :un système de surveillance d'impact d'arme (950) configuré pour détecter un impact d'arme dans le terrain d'aviation et orienter l'une ou les plusieurs caméras (108, 508, 551) pour capturer des images dans une zone de l'impact d'arme détecté, dans lequel l'impact d'arme est détecté par la détermination de présence d'explosion, de fumée, de poussière ou d'éclair provoqué par l'impact d'arme dans les images.
- Système de surveillance (100, 500, 550) selon la revendication 1, dans lequel l'une ou plusieurs les caméras (108, 508, 551) configurées pour faire un zoom ou se focaliser sur la zone de l'impact d'arme détecté pour obtenir des images avec des détails pour détecter le type d'endommagement.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance (100, 500, 550) comprend un module de calcul configuré pour déduire une piste d'atterrissage minimale (MOS) pour l'atterrissage d'avion sur la base de la quantité, de la taille et de l'emplacement du corps étranger, des débris ou de l'endommagement détecté dans le terrain d'aviation.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement est configurée pour détecter des fissures, un cratère, un camouflet, un écaillage, une UXO ou un animal dans le terrain d'aviation.
- Système de surveillance (100, 500, 550) selon la revendication 4, dans lequel l'unité de traitement (1407) est configurée pour déterminer la taille d'un cratère, d'un camouflet ou d'un écaillage en détectant la quantité de débris autour du cratère, du camouflet ou de l'écaillage respectivement.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement (1407) est configurée pour mesurer la taille ou les attributs physiques du corps étranger, des débris ou de l'endommagement.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance (100, 500, 550) comprend un détecteur basé sur des régions configuré pour détecter une région dans les images capturées qui peut être un corps étranger, des débris ou un endommagement ; et un détecteur basé sur les bords configuré pour détecter des bords de tous les objets dans les images capturées, dans lequel la région détectée par le détecteur basé sur les régions dans les images, qui chevauche les bords détectés par le détecteur basé sur les bords dans les images, est enregistrée.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel les images capturées par l'une ou les plusieurs caméras (108, 508, 551) sont assemblées ensemble et des zones de différences entre des images assemblées précédemment capturées et des images assemblées ultérieurement capturées sont mises en évidence dans les images assemblées ultérieurement capturées.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance (100, 500, 550) comprend un module d'estimation et de planification de réparation (153) configuré pour estimer et planifier une opération de réparation sur la base de la quantité, de la taille et de l'emplacement de l'impact d'arme ou d'informations sur l'endommagement du terrain d'aviation.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance comprend un ou plusieurs dispositifs portatifs mobiles (1417) configurés pour recevoir une alerte et des informations critiques à distance pour réparer un endommagement ou retirer un corps étranger dans le terrain d'aviation.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance (100, 500, 550) comprend un compensateur de décalage d'image configuré pour corriger un décalage entre une image actuellement capturée et une image de référence prise par une caméra sur la base d'une position d'un corps commun localisé dans l'image actuellement capturée et dans une image de référence.
- Système de surveillance (100, 500, 550) selon la revendication 11, dans lequel le compensateur de décalage d'image utilise plusieurs corps communs dans l'image actuellement capturée et l'image de référence pour déterminer le décalage à corriger entre l'image actuellement capturée et l'image de référence.
- Système de surveillance (100, 500, 550) selon la revendication 12, dans lequel une régression linéaire est utilisée pour déterminer le décalage à corriger entre l'image actuellement capturée et l'image de référence, et une valeur de décalage calculée sur la base d'un corps commun dans l'image actuellement capturée et l'image de référence est prise en compte pour la régression linéaire si une valeur déterminée en faisant correspondre le corps commun dans l'image actuellement capturée et l'image de référence est supérieur à une valeur seuil prédéterminée.
- Système de surveillance (100, 500, 550) selon l'une quelconque des revendications précédentes, dans lequel le système de surveillance (100, 500, 550) comprend en outre un module de calcul (151) configuré pour déduire une aire d'atterrissage minimale sur terrain d'atterrissage (MAOS) pour un avion sur la base de la quantité, de la taille et de l'emplacement du corps étranger, des débris ou de l'endommagement détecté dans le terrain d'aviation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2011012234 | 2011-02-21 | ||
PCT/SG2012/000052 WO2012115594A1 (fr) | 2011-02-21 | 2012-02-21 | Système de surveillance et procédé de détection de corps étranger, de débris ou d'endommagement dans un terrain d'aviation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2678835A1 EP2678835A1 (fr) | 2014-01-01 |
EP2678835A4 EP2678835A4 (fr) | 2014-11-05 |
EP2678835B1 true EP2678835B1 (fr) | 2017-08-09 |
Family
ID=46721131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12748886.4A Not-in-force EP2678835B1 (fr) | 2011-02-21 | 2012-02-21 | Système de surveillance et procédé de détection de corps étranger, de débris ou d'endommagement dans un terrain d'aviation |
Country Status (10)
Country | Link |
---|---|
US (1) | US20130329052A1 (fr) |
EP (1) | EP2678835B1 (fr) |
JP (1) | JP6110316B2 (fr) |
KR (1) | KR101533905B1 (fr) |
CN (1) | CN103733234B (fr) |
AU (1) | AU2012221159B2 (fr) |
IL (1) | IL228067A (fr) |
RU (1) | RU2596246C2 (fr) |
SG (1) | SG192881A1 (fr) |
WO (1) | WO2012115594A1 (fr) |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9518830B1 (en) | 2011-12-28 | 2016-12-13 | Intelligent Technologies International, Inc. | Vehicular navigation system updating based on object presence |
US10387960B2 (en) * | 2012-05-24 | 2019-08-20 | State Farm Mutual Automobile Insurance Company | System and method for real-time accident documentation and claim submission |
US9474265B2 (en) * | 2012-11-27 | 2016-10-25 | Elwha Llc | Methods and systems for directing birds away from equipment |
US9304042B2 (en) * | 2013-01-18 | 2016-04-05 | Delphi Technologies, Inc. | Foreign object detection system and method suitable for source resonator of wireless energy transfer system |
US9253375B2 (en) * | 2013-04-02 | 2016-02-02 | Google Inc. | Camera obstruction detection |
US20150161540A1 (en) * | 2013-12-06 | 2015-06-11 | International Business Machines Corporation | Automatic Road Condition Detection |
CN103729830B (zh) * | 2013-12-31 | 2016-06-22 | 北京交通大学 | 一种机场跑道雷达图像背景抑制方法 |
JP6293552B2 (ja) * | 2014-03-31 | 2018-03-14 | 株式会社日立製作所 | 監視管理システム |
JP6555255B2 (ja) * | 2014-04-25 | 2019-08-07 | ソニー株式会社 | 情報処理装置、情報処理方法及びコンピュータプログラム |
US20150326796A1 (en) * | 2014-05-09 | 2015-11-12 | Tobias Oggenfuss | Binal synchronized lens system |
US10127448B2 (en) * | 2014-08-27 | 2018-11-13 | Bae Systems Information And Electronic Systems Integration Inc. | Method and system for dismount detection in low-resolution UAV imagery |
EP3026652A1 (fr) * | 2014-11-27 | 2016-06-01 | Kapsch TrafficCom AB | Capteur stéréoscopique double |
FR3030091B1 (fr) * | 2014-12-12 | 2018-01-26 | Airbus Operations | Procede et systeme de detection automatique d'un desalignement en operation d'un capteur de surveillance d'un aeronef. |
US9715009B1 (en) | 2014-12-19 | 2017-07-25 | Xidrone Systems, Inc. | Deterent for unmanned aerial systems |
US9689976B2 (en) | 2014-12-19 | 2017-06-27 | Xidrone Systems, Inc. | Deterent for unmanned aerial systems |
JP6500428B2 (ja) * | 2014-12-22 | 2019-04-17 | 日本電気株式会社 | 動体検知装置、動体検知方法および動体検知プログラム |
RU2601402C2 (ru) * | 2015-01-12 | 2016-11-10 | Анна Евгеньевна Авдюшина | Устройство для измерения координат и распознавания объектов в распределенной системе акустического и видеонаблюдения |
US10395496B2 (en) * | 2015-06-18 | 2019-08-27 | Ryan L Nuhfer | Alarm and surveillance system and method |
EP3301913A4 (fr) * | 2015-06-23 | 2018-05-23 | Huawei Technologies Co., Ltd. | Dispositif de photographie et procédé d'acquisition d'informations de profondeur |
JP6326009B2 (ja) * | 2015-06-29 | 2018-05-16 | 株式会社オプティム | 無線航空機、位置情報出力方法及び無線航空機用プログラム。 |
US10498955B2 (en) * | 2015-08-03 | 2019-12-03 | Disney Enterprises, Inc. | Commercial drone detection |
AU2016315938B2 (en) | 2015-08-31 | 2022-02-24 | Cape Analytics, Inc. | Systems and methods for analyzing remote sensing imagery |
JP6450852B2 (ja) * | 2015-09-17 | 2019-01-09 | 株式会社日立国際電気 | 落下物検知追跡システム |
US10318819B2 (en) * | 2016-01-05 | 2019-06-11 | The Mitre Corporation | Camera surveillance planning and tracking system |
US10140872B2 (en) | 2016-01-05 | 2018-11-27 | The Mitre Corporation | Camera surveillance planning and tracking system |
US10190269B2 (en) | 2016-01-15 | 2019-01-29 | Fugro Roadware Inc. | High speed stereoscopic pavement surface scanning system and method |
US20170314918A1 (en) | 2016-01-15 | 2017-11-02 | Fugro Roadware Inc. | High speed stereoscopic pavement surface scanning system and method |
US9953239B2 (en) * | 2016-01-21 | 2018-04-24 | Gary L Viviani | Atomatic monitoring systems |
FR3049744B1 (fr) * | 2016-04-01 | 2018-03-30 | Thales | Procede de representation synthetique d'elements d'interet dans un systeme de visualisation pour aeronef |
CN106056957A (zh) * | 2016-06-16 | 2016-10-26 | 招商局重庆交通科研设计院有限公司 | 一种全桥面随机车流的精确同步定位方法 |
EP3293672A1 (fr) * | 2016-09-07 | 2018-03-14 | Malvern Panalytical Limited | Identification de limite de particules |
CN109792508B (zh) * | 2016-09-29 | 2021-07-13 | 菲力尔系统公司 | 使用热成像分析法的故障安全检测 |
US10511762B2 (en) | 2016-10-24 | 2019-12-17 | Rosemount Aerospace Inc. | System and method for aircraft camera image alignment |
DE102016223171A1 (de) * | 2016-11-23 | 2018-05-24 | Robert Bosch Gmbh | Verfahren und System zum Detektieren eines sich innerhalb eines Parkplatzes befindenden erhabenen Objekts |
DE102016223185A1 (de) * | 2016-11-23 | 2018-05-24 | Robert Bosch Gmbh | Verfahren und System zum Detektieren eines sich innerhalb eines Parkplatzes befindenden erhabenen Objekts |
EP3151164A3 (fr) | 2016-12-26 | 2017-04-12 | Argosai Teknoloji Anonim Sirketi | Procédé de détection de débris d'objets étrangers |
US10198655B2 (en) * | 2017-01-24 | 2019-02-05 | Ford Global Technologies, Llc | Object detection using recurrent neural network and concatenated feature map |
JP2018132865A (ja) * | 2017-02-14 | 2018-08-23 | ソニーセミコンダクタソリューションズ株式会社 | 電子機器、電子機器の処理代行依頼方法および情報処理システム |
JP6791365B2 (ja) * | 2017-03-31 | 2020-11-25 | 日本電気株式会社 | 情報処理装置、情報処理方法、および情報処理プログラム |
EP3410688B1 (fr) | 2017-06-01 | 2019-03-06 | Axis AB | Procédé pour améliorer la qualité d'image acquérée d'images par une caméra vidéo sensible à l'infrarouge et une telle caméra |
RU2661531C1 (ru) * | 2017-07-27 | 2018-07-17 | Акционерное общество "Научно-производственный комплекс "Дедал" | Мобильный быстроустанавливаемый автономный пост технического наблюдения для контроля обстановки на охраняемой территории |
US10816354B2 (en) | 2017-08-22 | 2020-10-27 | Tusimple, Inc. | Verification module system and method for motion-based lane detection with multiple sensors |
US10762673B2 (en) | 2017-08-23 | 2020-09-01 | Tusimple, Inc. | 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US10565457B2 (en) | 2017-08-23 | 2020-02-18 | Tusimple, Inc. | Feature matching and correspondence refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US10953881B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US10649458B2 (en) | 2017-09-07 | 2020-05-12 | Tusimple, Inc. | Data-driven prediction-based system and method for trajectory planning of autonomous vehicles |
US10953880B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US11012683B1 (en) | 2017-09-28 | 2021-05-18 | Alarm.Com Incorporated | Dynamic calibration of surveillance devices |
US10636173B1 (en) | 2017-09-28 | 2020-04-28 | Alarm.Com Incorporated | Dynamic calibration of surveillance devices |
US10410055B2 (en) * | 2017-10-05 | 2019-09-10 | TuSimple | System and method for aerial video traffic analysis |
EP3483802A1 (fr) * | 2017-11-13 | 2019-05-15 | The Boeing Company | Système et procédé de détermination de la configuration de piste d'un aéroport |
CN107728136A (zh) * | 2017-11-29 | 2018-02-23 | 航科院(北京)科技发展有限公司 | 一种机场跑道异物监测和清除引导系统及方法 |
US10907940B1 (en) | 2017-12-12 | 2021-02-02 | Xidrone Systems, Inc. | Deterrent for unmanned aerial systems using data mining and/or machine learning for improved target detection and classification |
CN110402421A (zh) * | 2017-12-26 | 2019-11-01 | 深圳市道通智能航空技术有限公司 | 一种飞行器降落保护方法、装置及飞行器 |
CN112004729B (zh) | 2018-01-09 | 2023-12-01 | 图森有限公司 | 具有高冗余的车辆的实时远程控制 |
CN111989716B (zh) | 2018-01-11 | 2022-11-15 | 图森有限公司 | 用于自主车辆操作的监视系统 |
KR102049433B1 (ko) * | 2018-01-19 | 2020-01-22 | 주식회사유넷컨버전스 | Gps 좌표의 활주로 내 이물질 위치를 공항 그리드 맵에 표시하는 방법 |
CN108460091A (zh) * | 2018-01-29 | 2018-08-28 | 合肥齐天科技有限公司 | 一种信鸽入笼在线拍照合成系统 |
JP7143444B2 (ja) * | 2018-02-09 | 2022-09-28 | スカイディオ,インコーポレイテッド | 航空機のスマート着陸 |
US10996683B2 (en) | 2018-02-09 | 2021-05-04 | Skydio, Inc. | Aerial vehicle touchdown detection |
US11009356B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization and fusion |
US11009365B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization |
US10685244B2 (en) | 2018-02-27 | 2020-06-16 | Tusimple, Inc. | System and method for online real-time multi-object tracking |
US11861871B2 (en) | 2018-03-28 | 2024-01-02 | Sika Technology Ag | Crack evaluation of roofing membrane by artificial neural networks |
CN110378185A (zh) | 2018-04-12 | 2019-10-25 | 北京图森未来科技有限公司 | 一种应用于自动驾驶车辆的图像处理方法、装置 |
CN110458854B (zh) | 2018-05-02 | 2022-11-15 | 北京图森未来科技有限公司 | 一种道路边缘检测方法和装置 |
US10974392B2 (en) * | 2018-06-08 | 2021-04-13 | International Business Machines Corporation | Automated robotic security system |
CN109724152A (zh) * | 2018-07-24 | 2019-05-07 | 永康市蜂蚁科技有限公司 | 供暖设备散热管道流速切换系统 |
CN109085539B (zh) * | 2018-08-10 | 2021-04-02 | 湖南航天环宇通信科技股份有限公司 | 一种双反射面雷达成像天线 |
RU2704107C1 (ru) * | 2018-09-10 | 2019-10-24 | Акционерное общество "Опытный завод "Интеграл" | Комплекс защиты объектов на основе осветительного устройства |
EP3849868A4 (fr) | 2018-09-13 | 2022-10-12 | Tusimple, Inc. | Procédés et systèmes de conduite sans danger à distance |
CN110927811A (zh) * | 2018-09-19 | 2020-03-27 | 长春奥普光电技术股份有限公司 | 一种机场道面异物检测系统 |
EP3629226B1 (fr) * | 2018-09-26 | 2020-11-25 | Axis AB | Procédé pour convertir des alertes |
EP3643235A1 (fr) * | 2018-10-22 | 2020-04-29 | Koninklijke Philips N.V. | Dispositif, système et procédé de surveillance d'un sujet |
CN109409282B (zh) * | 2018-10-24 | 2022-07-08 | 珠海瑞天安科技发展有限公司 | 一种机场跑道外来物检测方法及系统 |
US10942271B2 (en) | 2018-10-30 | 2021-03-09 | Tusimple, Inc. | Determining an angle between a tow vehicle and a trailer |
EP3881161A1 (fr) | 2018-11-14 | 2021-09-22 | Cape Analytics, Inc. | Systèmes, procédés et supports lisibles par ordinateur pour analyse prédictive et détection de changements à partir d'une imagerie de télédétection |
CN116184417A (zh) | 2018-12-10 | 2023-05-30 | 北京图森智途科技有限公司 | 一种挂车夹角的测量方法、装置及车辆 |
CN111319629B (zh) | 2018-12-14 | 2021-07-16 | 北京图森智途科技有限公司 | 一种自动驾驶车队的组队方法、装置及系统 |
US11245875B2 (en) * | 2019-01-15 | 2022-02-08 | Microsoft Technology Licensing, Llc | Monitoring activity with depth and multi-spectral camera |
WO2020194650A1 (fr) * | 2019-03-28 | 2020-10-01 | 日本電気株式会社 | Dispositif de détection de matière étrangère, procédé de détection de matière étrangère, et programme |
CN110135296A (zh) * | 2019-04-30 | 2019-08-16 | 上海交通大学 | 基于卷积神经网络的机场跑道fod检测方法 |
US10885625B2 (en) | 2019-05-10 | 2021-01-05 | Advanced New Technologies Co., Ltd. | Recognizing damage through image analysis |
CN110569703B (zh) * | 2019-05-10 | 2020-09-01 | 阿里巴巴集团控股有限公司 | 计算机执行的从图片中识别损伤的方法及装置 |
US11823460B2 (en) | 2019-06-14 | 2023-11-21 | Tusimple, Inc. | Image fusion for autonomous vehicle operation |
TWI716009B (zh) * | 2019-06-21 | 2021-01-11 | 晶睿通訊股份有限公司 | 影像校正方法及其相關監控攝影系統 |
US11748991B1 (en) * | 2019-07-24 | 2023-09-05 | Ambarella International Lp | IP security camera combining both infrared and visible light illumination plus sensor fusion to achieve color imaging in zero and low light situations |
US20210065374A1 (en) * | 2019-08-26 | 2021-03-04 | Organize Everything Inc. | System and method for extracting outlines of physical objects |
AU2020331567B2 (en) * | 2019-09-12 | 2022-02-03 | Commonwealth Scientific And Industrial Research Organisation | Object moving system |
CN110781757B (zh) * | 2019-09-29 | 2023-05-09 | 中国航空无线电电子研究所 | 一种机场道面异物识别定位方法及系统 |
US20240127614A1 (en) * | 2019-10-16 | 2024-04-18 | Purdue Research Foundation | Image processing and authentication of unclonable functions |
IL270559A (en) | 2019-11-11 | 2021-05-31 | Israel Weapon Ind I W I Ltd | Firearms with automatic target acquisition and firing system |
US11361543B2 (en) | 2019-12-10 | 2022-06-14 | Caterpillar Inc. | System and method for detecting objects |
CN111123261A (zh) * | 2019-12-31 | 2020-05-08 | 上海微波技术研究所(中国电子科技集团公司第五十研究所) | 基于背景学习的机场跑道fod检测方法和系统 |
CN111368732B (zh) * | 2020-03-04 | 2023-09-01 | 阿波罗智联(北京)科技有限公司 | 用于检测车道线的方法和装置 |
EP3893150A1 (fr) | 2020-04-09 | 2021-10-13 | Tusimple, Inc. | Techniques d'estimation de pose de caméra |
CN111652071B (zh) * | 2020-05-08 | 2023-08-29 | 中国工程物理研究院总体工程研究所 | 一种快速的跑道截断分析方法 |
CN111613176B (zh) * | 2020-05-18 | 2021-07-13 | 维沃移动通信有限公司 | 环境光检测方法及电子设备 |
CN111562576A (zh) * | 2020-05-20 | 2020-08-21 | 北京望远四象科技有限公司 | 一种机场跑道异物检测系统及方法 |
KR102418751B1 (ko) * | 2020-05-29 | 2022-07-08 | (주)웨이브텍 | 공항 활주로 고정형 이물질 자동 탐지 시스템 |
CN111652252B (zh) * | 2020-06-11 | 2022-11-11 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种基于集成学习的超高速撞击损伤的定量识别方法 |
AU2021203567A1 (en) | 2020-06-18 | 2022-01-20 | Tusimple, Inc. | Angle and orientation measurements for vehicles with multiple drivable sections |
KR102232681B1 (ko) * | 2020-07-08 | 2021-03-29 | 공간정보기술 주식회사 | 활주로 피해 분석 시스템 및 방법 |
CN111950456A (zh) * | 2020-08-12 | 2020-11-17 | 成都成设航空科技股份公司 | 一种基于无人机的智能化fod探测方法及系统 |
KR102369170B1 (ko) * | 2020-08-31 | 2022-03-03 | 한국항공우주산업 주식회사 | 기체 내부의 이물질 검출 방법 및 기체 내부의 이물질 검출 시스템 |
CN118264891A (zh) * | 2020-09-15 | 2024-06-28 | 上海传英信息技术有限公司 | 图像处理方法、终端及计算机存储介质 |
WO2022071894A1 (fr) * | 2020-10-01 | 2022-04-07 | Chew Rong Jie David | Système de détection d'un objet étranger sur une piste et procédé associé |
WO2022082007A1 (fr) * | 2020-10-15 | 2022-04-21 | Cape Analytics, Inc. | Procédé et système de détection automatique de débris |
CN112505050A (zh) * | 2020-11-12 | 2021-03-16 | 中科蓝卓(北京)信息科技有限公司 | 一种机场跑道异物检测系统及方法 |
CN112668461B (zh) * | 2020-12-25 | 2023-05-23 | 浙江弄潮儿智慧科技有限公司 | 一种具有野生动物识别的智能监管系统 |
CN112733744B (zh) * | 2021-01-14 | 2022-05-24 | 北京航空航天大学 | 一种基于边缘协同监督与多级约束的伪装物体检测模型 |
US11479365B2 (en) * | 2021-01-22 | 2022-10-25 | Honeywell International Inc. | Computer vision systems and methods for aiding landing decision |
CN113106903B (zh) * | 2021-02-24 | 2022-05-27 | 林强 | 一种机场跑道等离子除胶装备 |
CN112950565A (zh) * | 2021-02-25 | 2021-06-11 | 山东英信计算机技术有限公司 | 一种数据中心漏水检测与定位的方法、设备和数据中心 |
CN113111703B (zh) * | 2021-03-02 | 2023-07-28 | 郑州大学 | 基于多种卷积神经网络融合的机场道面病害异物检测方法 |
CN113295164B (zh) * | 2021-04-23 | 2022-11-04 | 四川腾盾科技有限公司 | 一种基于机场跑道的无人机视觉定位方法及装置 |
US12002371B2 (en) * | 2021-05-14 | 2024-06-04 | Rockwell Collins, Inc. | Neuromorphic cameras for aircraft |
US12045059B1 (en) * | 2021-06-11 | 2024-07-23 | Essential Aero, Inc. | Method and system for autonomous collection of airfield FOD |
CN113378741B (zh) * | 2021-06-21 | 2023-03-24 | 中新国际联合研究院 | 一种基于多源传感器的飞机牵引车辅助感知方法及其系统 |
US20240221140A1 (en) | 2021-07-06 | 2024-07-04 | Cape Analytics, Inc. | System and method for property condition analysis |
CN113359155B (zh) * | 2021-07-09 | 2024-07-02 | 王龙林 | 一种基于激光的机场跑道fod旋转识别装置 |
KR102443435B1 (ko) * | 2021-09-07 | 2022-09-15 | 경남도립거창대학산학협력단 | 구조물의 크랙 두께 계측을 위한 라이다 센서가 적용된 무인 비행체 |
US11742962B2 (en) * | 2021-09-13 | 2023-08-29 | Quanta Computer Inc. | Systems and methods for monitoring antenna arrays |
JP7191178B1 (ja) | 2021-10-27 | 2022-12-16 | 三菱電機株式会社 | 路面劣化検出装置および路面劣化検出方法 |
CN118501163A (zh) * | 2021-12-06 | 2024-08-16 | 浙江大学台州研究院 | 一种具备灰度值动态调节功能的卷材检测系统 |
WO2023114027A1 (fr) | 2021-12-16 | 2023-06-22 | Cape Analytics, Inc. | Système et procédé d'analyse de changement |
CN114399498B (zh) * | 2022-01-19 | 2022-08-30 | 浙大网新系统工程有限公司 | 一种机场跑道表面状况评估方法及系统 |
US11594141B1 (en) | 2022-01-19 | 2023-02-28 | King Abdulaziz University | System and methods to neutralize an attacking UAV based on acoustic features |
AU2023208758A1 (en) | 2022-01-19 | 2024-06-20 | Cape Analytics, Inc. | System and method for object analysis |
FR3134629B1 (fr) * | 2022-04-14 | 2024-08-30 | Comin Sas | Procédé de détermination d’un niveau de salissure d’une chaussée |
CN114879275A (zh) * | 2022-05-09 | 2022-08-09 | 成都航天凯特机电科技有限公司 | 一种移动式fod光学探测系统 |
CN114879209A (zh) * | 2022-05-20 | 2022-08-09 | 合肥富煌君达高科信息技术有限公司 | 一种用于机场跑道低成本异物检测分类的系统和方法 |
CN114821484B (zh) * | 2022-06-27 | 2022-10-28 | 广州辰创科技发展有限公司 | 机场跑道fod图像检测方法、系统和存储介质 |
CN115311428B (zh) * | 2022-10-12 | 2023-02-28 | 珠海翔翼航空技术有限公司 | 数字化机场滑行道模型生成方法、系统及设备 |
DE102022134631A1 (de) | 2022-12-22 | 2024-06-27 | Rheinmetall Air Defence Ag | Verfahren zur Überwachung eines Flughafens mittels mehrerer Kameras |
CN116456058A (zh) * | 2023-04-28 | 2023-07-18 | 南京派拉斯曼工程技术有限公司 | 一种基于改进的视频捕捉检测方法 |
KR102621722B1 (ko) * | 2023-06-29 | 2024-01-05 | (주)위플로 | 구동 시스템의 점검이 가능한 비행체용 스테이션 장치 |
CN116573366B (zh) * | 2023-07-07 | 2023-11-21 | 江西小马机器人有限公司 | 基于视觉的皮带跑偏检测方法、系统、设备及存储介质 |
CN116596922B (zh) * | 2023-07-17 | 2023-09-12 | 山东龙普太阳能股份有限公司 | 一种太阳能热水器生产质量检测方法 |
CN116704446B (zh) * | 2023-08-04 | 2023-10-24 | 武汉工程大学 | 机场跑道路面异物实时检测方法及系统 |
CN118072260B (zh) * | 2024-04-18 | 2024-08-16 | 山东双百电子有限公司 | 一种基于图像的车辆偏移分析方法及系统 |
CN118658284A (zh) * | 2024-08-16 | 2024-09-17 | 民航成都电子技术有限责任公司 | 一种机场联动报警通信方法、系统、设备及介质 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111734B2 (ja) * | 1989-03-30 | 1995-11-29 | 本田技研工業株式会社 | 走行路判別方法 |
FR2683356A1 (fr) * | 1991-10-31 | 1993-05-07 | France Etat Armement | Procede et dispositif de detection et de determination de la position de formes. |
JPH1132322A (ja) * | 1997-07-11 | 1999-02-02 | Hitachi Eng & Services Co Ltd | 凶器所持者自動追尾装置 |
US6064429A (en) * | 1997-08-18 | 2000-05-16 | Mcdonnell Douglas Corporation | Foreign object video detection and alert system and method |
JP2000207693A (ja) * | 1999-01-08 | 2000-07-28 | Nissan Motor Co Ltd | 車載用障害物検出装置 |
JP3272694B2 (ja) * | 1999-07-14 | 2002-04-08 | 富士重工業株式会社 | フェールセーフ機能を有する車外監視装置 |
FR2820867A1 (fr) * | 2001-02-09 | 2002-08-16 | Philippe Gouvary | Procede automatise de suivi et d'organisation de deplacement de vehicules au sol et d'identification de corps etrangers sur les pistes dans une zone aeroportuaire |
JP3850674B2 (ja) * | 2001-03-21 | 2006-11-29 | 株式会社東芝 | 空港滑走路監視装置 |
JP2004009993A (ja) * | 2002-06-11 | 2004-01-15 | Toshiba Eng Co Ltd | 列車事故回避システム |
US8111289B2 (en) * | 2002-07-15 | 2012-02-07 | Magna B.S.P. Ltd. | Method and apparatus for implementing multipurpose monitoring system |
US6917309B2 (en) * | 2002-10-28 | 2005-07-12 | Integritech System Engineering Ltd. | Foreign object detection system and method |
US6878939B2 (en) * | 2003-01-31 | 2005-04-12 | Millivision Technologies | Offset drift compensating flat fielding method and camera used in millimeter wave imaging |
US6977598B2 (en) * | 2003-03-07 | 2005-12-20 | Lockheed Martin Corporation | Aircraft protection system and method |
JP4230395B2 (ja) * | 2004-03-24 | 2009-02-25 | 三菱電機株式会社 | 監視移動体 |
WO2005120924A1 (fr) * | 2004-06-11 | 2005-12-22 | Stratech Systems Limited | Procede et systeme de balayage de voie ferree et de detection d'objet etranger |
JP4506308B2 (ja) * | 2004-07-02 | 2010-07-21 | 三菱電機株式会社 | 画像処理装置及び該画像処理装置を用いた画像監視システム |
EP1712931A1 (fr) * | 2005-04-14 | 2006-10-18 | Qinetiq Limited | Méthode et appareil pour détecter une cible dans une scène |
WO2008060257A2 (fr) * | 2005-05-25 | 2008-05-22 | Lau Daniel L | Système de repérage de projectile |
RU61913U1 (ru) * | 2005-11-22 | 2007-03-10 | Аркадий Владимирович Хохлов | Активный инфракрасный рельсовый детектор посторонних предметов на взлетно-посадочной полосе аэропортов |
BRPI0817039A2 (pt) * | 2007-08-24 | 2015-07-21 | Stratech Systems Ltd | Sistema e método de vigilância de pista de pouso e decolagem |
US8537222B2 (en) * | 2008-02-28 | 2013-09-17 | Bae Systems Information And Electronic Systems Integration Inc. | Method and system for finding a manpads launcher position |
CN101753831A (zh) * | 2008-11-28 | 2010-06-23 | 新奥特硅谷视频技术有限责任公司 | 基于三维定位追踪技术的自动摄录方法及系统 |
JP5487381B2 (ja) * | 2009-02-10 | 2014-05-07 | 国土交通省国土技術政策総合研究所長 | 被覆層異常検出方法 |
WO2010141119A2 (fr) * | 2009-02-25 | 2010-12-09 | Light Prescriptions Innovators, Llc | Dispositif de suivi électro-optique passif |
FR2949220B1 (fr) * | 2009-08-21 | 2011-09-09 | Snecma | Procede et systeme de detection de l'ingestion d'un objet par un turboreacteur d'avion au cours d'une mission |
KR100997497B1 (ko) * | 2010-04-29 | 2010-11-30 | (주)동아이앤씨 | 자동감지/촬영기능을 구비한 감시시스템 및 감시방법 |
CN101852869A (zh) * | 2010-05-18 | 2010-10-06 | 中国民航大学 | 机场跑道外来物检测系统 |
CN101968848B (zh) * | 2010-09-27 | 2013-01-16 | 哈尔滨工业大学深圳研究生院 | 一种视频监测方法、系统及视频监测报警系统 |
-
2012
- 2012-02-21 WO PCT/SG2012/000052 patent/WO2012115594A1/fr active Application Filing
- 2012-02-21 RU RU2013142167/28A patent/RU2596246C2/ru not_active IP Right Cessation
- 2012-02-21 US US14/000,843 patent/US20130329052A1/en not_active Abandoned
- 2012-02-21 CN CN201280019415.2A patent/CN103733234B/zh not_active Expired - Fee Related
- 2012-02-21 EP EP12748886.4A patent/EP2678835B1/fr not_active Not-in-force
- 2012-02-21 AU AU2012221159A patent/AU2012221159B2/en not_active Ceased
- 2012-02-21 SG SG2013063417A patent/SG192881A1/en unknown
- 2012-02-21 JP JP2013554422A patent/JP6110316B2/ja not_active Expired - Fee Related
- 2012-02-21 KR KR1020137024843A patent/KR101533905B1/ko not_active IP Right Cessation
-
2013
- 2013-08-21 IL IL228067A patent/IL228067A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU2012221159B2 (en) | 2015-11-26 |
EP2678835A4 (fr) | 2014-11-05 |
RU2596246C2 (ru) | 2016-09-10 |
RU2013142167A (ru) | 2015-03-27 |
CN103733234A (zh) | 2014-04-16 |
AU2012221159A1 (en) | 2013-10-10 |
CN103733234B (zh) | 2017-05-10 |
WO2012115594A1 (fr) | 2012-08-30 |
JP2014513642A (ja) | 2014-06-05 |
SG192881A1 (en) | 2013-09-30 |
IL228067A (en) | 2017-03-30 |
KR101533905B1 (ko) | 2015-07-03 |
JP6110316B2 (ja) | 2017-04-05 |
KR20140029394A (ko) | 2014-03-10 |
EP2678835A1 (fr) | 2014-01-01 |
IL228067A0 (en) | 2013-09-30 |
US20130329052A1 (en) | 2013-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2678835B1 (fr) | Système de surveillance et procédé de détection de corps étranger, de débris ou d'endommagement dans un terrain d'aviation | |
RU2523167C2 (ru) | Способ наблюдения за взлетно-посадочной полосой и система для реализации способа | |
CN108710126B (zh) | 自动化探测驱逐目标方法及其系统 | |
US9465987B1 (en) | Monitoring and detecting weather conditions based on images acquired from image sensor aboard mobile platforms | |
EP2883209B1 (fr) | Détection d'impact au moyen d'images vidéo | |
EP3537875B1 (fr) | Système et procédé de détection d' animaux volants | |
US20080314234A1 (en) | Distributed ground-based threat detection system | |
US20230419845A1 (en) | A system for detecting a foreign object on a runway and a method thereof | |
US20230048101A1 (en) | Aircraft door camera system for jet bridge alignment monitoring | |
CN113219454A (zh) | 基于毫米波雷达的防车辆和人员侵入跑道的系统及方法 | |
KR20240021672A (ko) | 우선순위에 따라 미확인 객체를 감시하는 객체 모니터링 장치 | |
US10718613B2 (en) | Ground-based system for geolocation of perpetrators of aircraft laser strikes | |
KR20200058954A (ko) | 탐지제외영역 설정에 의한 이물질 탐지정확도 향상방법 | |
CN107943101B (zh) | 一种无人机选择干扰背景进行飞行的方法 | |
AU2008293060B2 (en) | Runway surveillance system and method | |
Piccione et al. | Electro-optic sensors to aid tower air traffic controllers | |
CA3088752A1 (fr) | Poursuite angulaire par camera d'essaims pour evitement de collision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130923 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20141006 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G08G 5/06 20060101ALI20140929BHEP Ipc: G06K 9/00 20060101ALI20140929BHEP Ipc: G08B 13/00 20060101AFI20140929BHEP Ipc: G06T 7/00 20060101ALI20140929BHEP Ipc: H04N 7/18 20060101ALI20140929BHEP |
|
17Q | First examination report despatched |
Effective date: 20151109 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160921 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 917604 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012035673 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 917604 Country of ref document: AT Kind code of ref document: T Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012035673 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012035673 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120221 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |