EP2669470A1 - Moteur à combustion interne - Google Patents

Moteur à combustion interne Download PDF

Info

Publication number
EP2669470A1
EP2669470A1 EP20130181010 EP13181010A EP2669470A1 EP 2669470 A1 EP2669470 A1 EP 2669470A1 EP 20130181010 EP20130181010 EP 20130181010 EP 13181010 A EP13181010 A EP 13181010A EP 2669470 A1 EP2669470 A1 EP 2669470A1
Authority
EP
European Patent Office
Prior art keywords
piston
output shaft
chamber
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20130181010
Other languages
German (de)
English (en)
Other versions
EP2669470B1 (fr
Inventor
Antar Daouk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2669470A1 publication Critical patent/EP2669470A1/fr
Application granted granted Critical
Publication of EP2669470B1 publication Critical patent/EP2669470B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/01Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with one single cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/30Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of positively opened and closed valves, i.e. desmodromic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L11/00Valve arrangements in working piston or piston-rod
    • F01L11/02Valve arrangements in working piston or piston-rod in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes

Definitions

  • the present invention relates to the general technical field of motors, and in particular of internal combustion engines (or " combustion engines ”) , transforming the thermal energy obtained by combustion, within the engine itself, of a fluid mechanical energy usable for example to propel vehicles (such as automobiles, motorcycles, aircraft or boats), to animate machines (industrial or agricultural), or to provide mechanical energy to devices energy conversion, like generators.
  • combustion engines internal combustion engines
  • the invention more specifically relates to an internal combustion engine comprising on the one hand a chamber designed to receive a working fluid intended to undergo combustion within said chamber and on the other hand a first piston which contributes to delimiting the volume of said chamber.
  • spark-ignition engines Internal combustion engines, usually referred to as “ spark-ignition engines ", have been known for a long time and are widely used, since they equip the vast majority of motor vehicles, just to mention this type of motorized equipment.
  • thermodynamic cycle corresponding substantially to the theoretical thermodynamic cycle called " de Beau de Rochas " , well known in the field.
  • the architecture of these known four-stroke engines is generally based on the implementation of a cylinder which is closed in its upper part by a cylinder head.
  • the cylinder and the cylinder head form a combustion chamber whose volume is regulated by the stroke of a piston sliding in the cylinder in a reciprocating movement imparted by the pressure variations resulting from the combustion cycles operated in the chamber. of combustion.
  • the piston is itself connected to a crankshaft, via a connecting rod, to transform the rectilinear translation movement of the piston into rotational movement of the crankshaft.
  • the cylinder head is intended to accommodate intake and exhaust valves which respectively allow the admission of the combustible fluid (air-fuel gas mixture) into the chamber and the evacuation out of the flue gas chamber resulting from the rapid combustion. (deflagration) of said fluid.
  • the movement of the valves relative to the cylinder head is controlled synchronously by one or more camshafts driven by the crankshaft, for example by means of a chain or gear system.
  • these known motors use a large number of moving parts, which corresponds to a large moving mass, again likely to cause problems of efficiency and reliability.
  • the architecture of these known engines is relatively restrictive from the point of view of the intake and exhaust sections, which are limited to relatively low values because of the implantation constraints of the valves in the cylinder head.
  • these known engines also prove to be relatively heavy and bulky, so that their location within a vehicle, and particularly within a car-type vehicle can be problematic.
  • the invention therefore aims to remedy the various disadvantages listed above and to propose a new engine whose architecture is particularly simple, efficient and reliable.
  • Another object of the invention is to propose a new motor which implements a minimum number of moving parts, which is particularly reliable and has a small footprint, especially in height and width.
  • Another object of the invention is to propose a new engine implementing a mechanical connection between the pistons and the output shaft which, while being particularly simple, efficient and reliable, also makes it possible to adjust performance easily and quickly. of the motor.
  • Another object of the invention is to propose a new motor implementing a minimum moving mass and likely to provide important intake and / or exhaust sections.
  • Another object of the invention is to propose a new engine that is particularly compact and avoids the use of force references and remote transmission parts.
  • Another object of the invention is to propose a new engine capable of operating the intake and exhaust in a particularly efficient manner.
  • Another object of the invention is to propose a new engine that implements a minimum of different parts.
  • the invention relates to an engine, that is to say a device capable of providing a mechanical work usable in particular for propelling a vehicle, and for example a motor vehicle, a motorcycle, an aircraft or a boat, or for operating a machine (machine tool, public works machine, agricultural machine, pump, compressor) or an energy conversion device, such as a generator.
  • the engine 1 according to the invention is an internal combustion engine (“internal combustion engine "), that is to say a motor capable of producing mechanical energy from the combustion within it of a working fluid containing a fuel, and for example a hydrocarbon-based fuel such as gasoline.
  • the engine 1 comprises a chamber 3, forming a combustion chamber, and designed for this purpose to accommodate a working fluid intended to undergo combustion within said chamber 3.
  • the fluid of Work is therefore a combustible fluid and it is preferably formed of a gas consisting of a mixture of air and vaporized fuel. This gas is intended to undergo rapid combustion, and more precisely an explosion (or even more precisely a deflagration), within the chamber 3.
  • the fuel may be constituted by a petroleum derivative, it being understood that the invention is absolutely not limited to a specific working fluid.
  • the motor 1 preferably comprises a cylinder 2, which is for example, as illustrated in the figures, in the form of a hollow tube, advantageously rectilinear, of longitudinal axis X-X extension .
  • the cylinder 2 has a substantially circular section. It is however quite possible that the cylinder 2 has a non-circular section, and for example a polygonal section, without departing from the scope of the invention.
  • the inner wall 20 of the cylinder 2 contributes to defining, in the embodiment illustrated in the figures, the chamber 3.
  • the cylinder 2 is preferably made of a material having a high mechanical and thermal strength, such as a metal material of the cast iron or aluminum alloy type.
  • the engine 1 further comprises at least a first piston 4 which contributes to defining the volume of the chamber 3.
  • the first piston 4 is designed to slide in the cylinder 2 according to a reciprocating (i.e., reciprocating) under the effect of the pressure variation within the chamber 3, said pressure variation being generated, as is well known as such, by the combustion cycles of the working fluid within the chamber 3.
  • the first piston 4 is threaded inside the cylinder 2 and is tightly fitted against the inner wall 20 of the cylinder 2, so as to be able to slide in the cylinder 2 according to the axis X-X ', while remaining permanently in sealing contact with the inner wall 20 of said cylinder 2.
  • the first piston 4 advantageously has a head 4A which contributes to defining the chamber 3.
  • the head 4A preferably has a cross section which is complementary to the internal cross section of the cylinder 2, this section preferably being a circular section as in the examples illustrated in the figures.
  • the first piston 4 further comprises a skirt 4B which extends from and to the periphery of the head 4A.
  • the first piston 4 has a longitudinal axis of extension Y-Y ', which corresponds to the axis of symmetry of the cross section of the head 4A of said piston.
  • the longitudinal axis YY 'of the first piston 4 is advantageously merged with the extension axis XX' of the cylinder 2 when the first piston 4 is installed in a functional position inside the cylinder 2, as illustrated in FIGS. Figures 1 to 10 .
  • the first piston 4 is designed to slide in the cylinder 2 in a pure axial translation movement, that is to say that said first piston 4 is guided relative to the cylinder 2 to to be able to move in longitudinal translation, parallel to the axis X-X ', without rotation of the first piston 4 on itself.
  • the first piston 4 is in this case mechanically linked to the cylinder 2 by a slide connection.
  • this slide connection which allows the first piston 4 to slide in the cylinder 2 in a substantially pure rectilinear translational movement, is achieved by the cooperation of at least one slide 4C mounted on the first piston 4 and a corresponding slide 2A formed in the cylinder 2 and extending substantially parallel to the axis XX 'of longitudinal extension of said cylinder 2.
  • the first piston 4 is provided with two sliders arranged so that diametrically opposite the piston relative to the axis YY 'of symmetry of the latter.
  • each slide advantageously comprises a roller 40C rotatably mounted on an axis 400C itself mounted in an orifice 40B formed through the skirt 4B, so that said axis 400C extends substantially radially with respect to the axis of extension XX 'of the piston 4.
  • the second slide has not been shown on the Figures where is visible only the mounting hole 41 B, formed in the skirt 4B, for mounting this second slide.
  • Each roller 40C is designed to roll in the corresponding slide 2A, which advantageously consists, as illustrated in the figures, in a rectilinear groove formed in the inner wall 20 of the cylinder 2, on the surface of said inner wall 20, facing the corresponding roller .
  • the invention is however not absolutely limited to the implementation of a first piston 4 mounted in a slide connection in the cylinder 2. It is for example quite possible, without departing from the scope of the invention, that the first piston 4 undergoes, during its movement of back and forth, a rotation on itself about its axis Y-Y ', so that the movement of the first piston 4 in the cylinder 2 is not in this case a pure axial translation movement but a helical translation movement.
  • the engine 1 comprises a first passage 5 formed through the first piston 4 for communicating the interior of the chamber with the outside, said first passage 5 being designed to feed the chamber 3 with fluid of working and / or evacuate out of the chamber the burned fluid resulting from the combustion of the working fluid in the chamber 3.
  • the first passage 5 thus makes it possible to pass fluid directly through the first piston 4 itself, from the outside to the chamber 3 and / or the chamber 3 to the outside.
  • the invention is therefore based in particular on the idea of making the admission and / or the exhaust through a passage in the piston itself, and not in a cylinder head reported on the cylinder as in the prior art.
  • the invention thus eliminates a bolt reported which simplifies the engine and contributes to increasing reliability while reducing the cost.
  • the head 4A of the first piston 4 has a front face 40A which constitutes the top of the head 4 and which is perpendicular to the Y-Y 'axis.
  • the front face 40A directly forms a wall of the chamber 3, and more specifically a movable wall which moves in the cylinder 2 under the effect of the movement of the first piston 4.
  • the first passage 5 is advantageously designed to allow a transfer of fluid through this front face 40A which contributes to delimit the chamber 3.
  • the piston head 4A has a substantially cylindrical shape with an annular side wall 4D which extends from and to the periphery of the front face 4C.
  • the front face 4C further has a crown shaped circular concavity 400A, said concavity having a bottom from which rises a circular lateral edge.
  • the first passage 5 consists of a plurality of orifices 5A formed in a regular angular distribution in the circular edge of the concavity and opening into corresponding elongated cups 5B formed on the surface of the sidewall 4D. of the head 4A.
  • Each cup 5B is preferably itself designed to be at the right moment with respect to a corresponding orifice 2B formed through the cylinder 2 and more precisely through the entire thickness of the tubular side wall of said cylinder 2.
  • port 2B is itself in communication with a fuel intake component (carburetor, injector or other), and / or with the exhaust system, depending on whether the first passage 5 is used for admission and / or 'exhaust.
  • the combination of the orifice 5A and its corresponding cup 5B with the complementary orifice 2B thus constitutes a sealed conduit for admission of fresh gas and / or the escape of burnt gases.
  • the engine 1 comprises a first valve 6 designed to control the opening and closing of the first passage 5.
  • the first valve 6 interacts with the first passage 5 to allow the communication of the interior of the chamber 3 with the outside through the first passage 5 or on the contrary close the first passage 5 so as to prohibit the placing in communication of the interior of the chamber 3 with the outside through the first passage 5.
  • the first valve 6 could for example be mounted on the cylinder 2, to cooperate directly with the orifices 2B formed in said cylinder 2. However, it is much more advantageous to provide, as in the embodiment illustrated in the figures, that the first valve 6 is mounted on the first piston 4 to control the opening and closing of the first passage 5.
  • first valve 6 directly on the first piston 4 allows to benefit a first passage 5 of significant useful section, which is interesting for the admission or exhaust efficiency, without complicating and weighing down the architecture of the word since the placement of the valve on the piston advantageously allows simultaneously controlling the opening / closing of all the orifices 5A contributing to form the first passage 5. It is therefore particularly advantageous to provide, as is illustrated in the figures, a unitary subassembly constituted by the first piston 4 and the first valve 6, the latter being on board the first piston 4.
  • the first valve 6 is slidably mounted on the first piston 4, between at least one position of closure (illustrated in particular in figure 11 ) in which it hermetically closes the first passage 5, and more precisely the orifices 5A, and on the other hand at least one open position (illustrated in particular in FIG. figure 16 ) in which it releases the first passage 5 so that the latter allows the communication through it, the chamber 3 with the outside.
  • the first valve 6 has an axis of symmetry SS 'and is mounted to slide axially on the piston 4, so as to slide relative to said first piston 4 substantially parallel to the axis YY 'of said piston, the axes YY' and SS 'being merged.
  • the first valve 6 comprises at least one guide pin 7 which extends substantially radially with respect to the axis S-S ', and preferably two guide pins positioned diametrically opposite to the axis S-S '.
  • each guiding pin 7 is designed to move in translation in a complementary guide oblong slot 70 formed in the skirt 4B of the piston 4.
  • the first valve 6 more precisely comprises a lining of 6A, which is in the form of a substantially flat circular ring intended to be inserted into the concave 400A of complementary shape formed on the front face 40A of the head 4A of the first piston 4.
  • the liner 6A is pressed to the bottom of the concavity to seal the orifices 5A.
  • the gasket 6A is at a distance from the bottom of the concavity, which releases the orifices 5A and allows a transit of fluid through them.
  • the lining 6A is advantageously secured, by means of arms 6B (for example three in number, angularly distributed in a regular manner), of a tubular valve skirt 6C on which each guiding pin 7 is mounted.
  • valve skirt 6C is designed to slide inside the skirt 4B of the first piston 4, against said piston skirt 4B, the arms 6B passing through the bottom of the concavity 400A through passage openings in said bottom . Said arms 6B slide in the passage apertures in question tightly and tightly, to prevent leakage through said passage openings.
  • the engine 1 comprises an output shaft 8 mounted coaxially with the first piston 4, the output shaft 8 and the first piston 4 cooperating to convert the movement of the first piston 4 into rotary motion of the shaft 8.
  • the cooperation between the output shaft 8 and the first piston 4 is reciprocal, that is to say that it makes it possible to convert the rotary movement of the output shaft 8 into motion.
  • the output shaft 8 preferably has a straight character and extends according to a longitudinal axis ZZ 'which is advantageously coincident with the axis XX' of the cylinder 2, and in this case with the axis YY 'of the first piston 4 and the axis SS' of the first valve 6.
  • the output shaft 8 passes through the first piston 4, that is to say that said first piston 4 is threaded on the output shaft 8.
  • the first piston 4 is provided with a central orifice 4E through which the output shaft 8 passes, the latter being fitted tightly into the orifice 4E so as to allow the first piston 4 slide along the output shaft 8 while remaining in sealing contact with said output shaft 8, and thus avoid any communication between the inside of the chamber 3 with the outside through of the interface between the output shaft 8 and the first piston 4.
  • a central portion of the output shaft 8, which passes through the chamber 3 has been omitted in the Figures 1 and 2 .
  • Such a design avoids the implementation of force transfer according to different working axes, as in the prior art, and allows on the contrary a direct transmission of the action of the first piston 4 on the output shaft 8.
  • the first piston 4 directly drives the output shaft 8 in rotation, which gives the engine 1 a particularly compact character, the latter can thus be easily integrated into the chassis of a vehicle.
  • Such a design is also likely to improve the center of gravity of the vehicle thanks to the essentially longitudinal nature of the vehicle.
  • motor 1 which allows the positioning of said motor 1 according to the axis of symmetry of said vehicle. Thanks to the direct and coaxial drive of the output shaft 8 by the first piston 4, the torsional effects to which the output shaft 8 is subjected are largely minimized with respect to those imparted to the crankshafts by the connecting rods of the engines. the prior art.
  • the motor 1 comprises a first guide path 9 integral with the output shaft 8, and preferably formed (that is directly formed or attached) on the output shaft 8, on the surface of the latter .
  • the engine 1 also comprises a first guide element 10 integral with the first piston 4, said first guide element 10 being mounted to move along the first guide path 9, to convert the movement of the first piston 4 into rotary motion of the output shaft 8.
  • the first guide path 9 has a substantially undulating shape, and even more preferably a substantially sinusoidal shape. More specifically, in the example illustrated in the figures, the first guide path 9 extends along an annular profile around the longitudinal extension axis ZZ 'of the output shaft 8.
  • the motor 1 comprises a first ring 8A mounted on the output shaft 8, said first ring 8A carrying said first guide path 9.
  • the first ring 8A may thus consist of an annular piece distinct from the output shaft 8 and threaded on the latter .
  • the first ring 8A is mounted on the output shaft 8 so as to be integral in rotation (about the axis X-X ') of the output shaft 8. It is also quite possible that the first ring 8A is made of material with the output shaft 8.
  • the first guide path 9 comprises a first groove 9A formed on the surface of the first ring 8A (that is to say of the output shaft 8 when the ring 8A merges with the output shaft 8) while the first guide member 10 comprises a first finger which protrudes from the first piston 4 and engages in said first groove 9A.
  • the first guide element 10 comprises two fingers arranged diametrically opposite relative to the axis YY 'and engaging the same first groove 9A.
  • the first finger advantageously comprises a roller 10A rotatably mounted on an axis itself mounted in an orifice formed through the skirt 4B, so as to that said axis extends substantially radially relative to the extension axis XX 'of the piston 4.
  • the axis in question corresponds to the axis 400C on which the roller 40C is mounted.
  • the roller 10A is mounted on the axis 400C, inside the skirt 4B, to engage the corresponding sinusoidal groove 9A, while the roller 40C is mounted on the same axis 400C , outside the skirt 4B, to engage the corresponding straight groove 2A.
  • the output shaft 8 and the first valve 6 cooperate to convert the rotary motion of the output shaft 8 into motion of the first valve 6 relative to the first piston 4.
  • the position of the first valve 6 relative to the first piston 4, and therefore the control of the opening and closing of the first passage 5, are controlled directly by the output shaft 8, which interacts, preferably directly with the first valve 6 to outsource to the latter a movement, and for example an alternating axial translation movement as in the embodiment illustrated in the figures.
  • the engine 1 advantageously comprises a second guide path 11 integral with the output shaft 8 and preferably formed (that is directly formed or attached) on the output shaft 8, on the surface of this last.
  • the motor 1 also comprises a second guide element 12 integral with the first valve 6, said second guide element 12 being mounted to move along the second guide path 11, to convert the rotary movement of the shaft output 8 in motion of the first valve 6 relative to the first piston 4, and more particularly in reciprocating (that is to say, back-and-forth) axial axial rectilinear.
  • the second guide path 11 has a substantially undulating shape, and even more preferably a substantially sinusoidal shape.
  • the second guide path does not have a purely sinusoidal profile, so as to allow at the appropriate time, the intake and exhaust, as explained in more detail below.
  • the profile of the second guide path 11 follows that of the first guide path 9 during the compression and expansion phases (the valve 6 to be closed), while during the intake and exhaust phases, the profile of the second guide path 11 is offset from that of the first guide path 9, so as to allow the opening and closing of the valve 6 in due time.
  • the second guide path 11 extends along an annular profile around the longitudinal axis of extension ZZ 'of the output shaft 8.
  • the motor 1 comprises a second ring 8B mounted on the output shaft 8, said second ring 8B carrying said second guide path 11.
  • the second ring 8B can thus consist of an annular piece distinct from the output shaft 8 and threaded on this latest.
  • the second ring 8B is mounted on the output shaft 8 so as to be integral in rotation (about the axis X-X ') of the output shaft 8. It is also quite conceivable that the second ring 8B comes from material with the output shaft 8.
  • the first guide path 9 comprises a first groove 9A formed on the surface of the first ring 8A (that is to say of the output shaft 8 when the ring 8A merges with the output shaft 8) while the first guide member 10 comprises a first finger which protrudes from the first piston 4 and engages in said first groove 9A.
  • the second guide path 11 comprises a second groove 13 formed on the surface of the second ring 8B (that is to say of the output shaft 8 when the ring 8B is confuses with the output shaft 8) while the second guide member 12 comprises a second finger which protrudes from the first valve 6 and engages in said second groove 13.
  • the second element 12 is formed by a cylindrical rod which extends through the skirt 6C of the first valve 6, the first end of said rod, located outside of said skirt 6C, forming the pin of 7, while the second opposite end, located inside said skirt 6C, forms the second guide element itself, which extends substantially radially relative to the axis S-S '.
  • the second guide element 12 is formed by two cylindrical rods positioned diametrically opposite to the axis SS '(only one of these rods is shown in the figures, for the sake of simplicity and clarity of the drawings. ).
  • the first and second 8A ring, 8B are formed by a single piece in one piece, which carries both the first guide path 9 and the second guide path 11. It is however possible, in an alternative embodiment, that the first and second rings 8A, 8B are formed by separate and independent parts.
  • the first ring 8A is fixedly mounted (or even mobile, in translation and / or rotation) on the output shaft 8, and that the second ring 8B is mounted movably on the shaft 8, and preferably is rotatable relative to the output shaft 8 and the first ring 8A, along the axis X-X '.
  • the angular position of the second ring 8B relative to the output shaft 8 can be advantageously adjusted by any appropriate means, which allows for example to adjust the intake according to the engine speed 1. It is thus sufficient to slightly rotate the second ring 8B relative to the shaft 8 to act on the speed and / or the opening moment of the first valve 6. It is also conceivable that the second ring 8B is mounted movably in translation relative to the output shaft 8, for adjusting the position of the first valve 6 as a function of the advance of the thermodynamic cycle of the engine 1.
  • the engine 1 comprises a second piston 14 which also contributes to defining the volume of the chamber 3.
  • the engine 1 thus comprises in this case a cylinder 2 in which the first and second piston 4, 14 are mounted to slide axially.
  • the chamber 3 is preferably formed by the interstitial space separating the first and the second piston 4, 14 in the cylinder 2.
  • the chamber 3 corresponds in this case to the free space of variable volume located inside the cylinder 2, between the pistons 4, 14.
  • the first and second pistons 4, 14 are mounted in opposition within the cylinder 2, that is to say in such a way that their respective heads 4A, 14A face each other.
  • the chamber 3 thus extends in the space delimited axially by the heads 4A, 14A of the first and second pistons 4, 14 and radially by the internal wall 20 of the cylinder 2 extending between said heads 4A, 14A of said pistons 4, 14.
  • the chamber 3 thus has a variable volume which depends on the relative position of the first and the second piston 4, 14.
  • first piston 4 and the second piston 14 are designed to move in opposite reciprocating movements, so that said pistons 4, 14 come closer and move away from each other substantially simultaneously.
  • first piston 4 and the second piston 14 move symmetrically with respect to the median plane of the chamber 3, perpendicular to the axis X-X '.
  • each piston 4, 14 is designed to move in the cylinder 2 individually, that is to say independently of the other piston.
  • the second piston 14 is identical to the first piston 4 and it is also mounted in the engine 1 identically to said first piston 4.
  • the output shaft 8 is therefore also mounted coaxially with the second piston 14, the output shaft 8 and the second piston 14 cooperating to convert the movement of the second piston 14 into rotary motion of the output shaft 8.
  • the engine 1 preferably comprises a third guide path 15 integral with the output shaft 8 and preferably formed (that is directly formed or reported) on the output shaft 8, on the surface of the latter.
  • the engine 1 further comprises a third element of guide 16 secured to the second piston 14, said third guide member 16 being mounted to move along the third guide path 15, to convert the movement of the second piston 14 into rotary motion of the output shaft 8, together with the first piston 4.
  • the third guide path 15 has a substantially undulating shape which is advantageously symmetrical with the shape of the first guide path 9 with respect to the median plane of the chamber 3 perpendicular to the axis X-X ' .
  • the structures of the third guide path 15 and the third guide element 16 are respectively identical to the structures of the first guide path 9 and the first guide element 10.
  • the engine 1 comprises a second passage 17 formed through the second piston 14 for communicating the interior of the chamber 3 with the outside.
  • the second passage 17 formed in the second piston 14 is designed to supply the chamber 3 with working fluid, that is to say in fresh mixture intended to undergo a combustion, while the first passage 5 of the first piston 4 is designed to discharge from the chamber 3 the burned fluid resulting from the combustion of the working fluid in the chamber 3.
  • the admission is through the second piston 14 while the exhaust is through the first piston 4.
  • Such a design is particularly advantageous for producing an engine operating in a four-cycle cycle, as will be described in more detail in the following.
  • the engine 1 comprises a second identical valve 18 at the first valve 6, said second valve 18 being mounted on the second piston 14 to control the opening and closing of the second passage 17 formed through the second piston 14.
  • the output shaft 8 and the second valve 18 cooperate to convert the rotary motion of the output shaft 8 into motion of the second valve 18 relatively to the second piston 14.
  • the engine 1 comprises on the one hand a fourth guide path 19 integral with the output shaft and preferably formed on the output shaft 8 and on the other hand a fourth element of guide 21 secured to the second valve 18, said fourth guide element 21 being mounted to move along the fourth guide path 19, to convert the rotary movement of the output shaft in motion of the second valve relative to the second piston .
  • the fourth guide path 21 has a substantially corrugated shape, even more preferably substantially sinusoidal.
  • the first stage of the engine's operating cycle corresponds to a step of admission of the working fluid, which is preferably constituted by a mixture of air and vaporized fuel, in the combustion chamber 3.
  • the second valve 18 is in the open position, in order to allow admission, through the second piston 14 via the second passage 17, fresh working fluid from the outside of the cylinder 2.
  • the first and the second piston 4, 14 undergo a movement of mutual separation which creates a depression in the combustion chamber 3, which promotes the aspiration of the working fluid through the second passage 17, the second valve 18 being open to allow the introduction of working fluid into the combustion chamber 3.
  • the first valve 6 which equips the first piston 4 is closed, which ensures an excellent suction effect under the effect of displacement of the first piston 4, this suction effect compensating for the weaker suction effect generated by the second piston 14, the valve 18 is open.
  • the pistons 4, 14 undergo an inverse movement of mutual approximation, that is to say that they come closer to each other ( figure 5 ) in order to compress the working fluid contained in the chamber 3.
  • the first and the second valve 6, 18 are closed so as to produce a compression effect of the working fluid between the pistons 4, 14.
  • the working fluid is thus strongly compressed, which causes its heating.
  • This explosion phase produces a relaxation and an expansion of the gases constituting the working fluid.
  • This expansion generates a high pressure in the chamber (for example between 40 and 100 bar) which is exerted on the pistons, whose valves 6, 18 are closed. This causes the pistons 4, 14 to move apart.
  • the first valve 6 of the first piston 4 is open, which allows, under the effect of compression performed by the mutual movement of the pistons 4, 14, to escape the burnt working fluid through the first passage 5.
  • the engine 1 is found in the configuration corresponding to the first time and is ready to start again the four-stroke cycle just described.
  • the invention also relates as such to a vehicle, of the motor vehicle type, equipped with a motor 1 according to the invention.
  • the invention also relates independently to a piston 4 designed to form the first piston 4 of a motor 1 according to the invention.
  • the invention also relates to a valve designed to form the first valve 6 of a motor 1 according to the invention.
  • the invention finds its industrial application in the design, manufacture and use of motors.

Abstract

- Moteur à combustion interne. - L'invention concerne un moteur à combustion interne comprenant : - une chambre conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre, - un premier piston (4) et un deuxième piston qui contribuent tous deux à délimiter le volume de ladite chambre, ledit moteur étant caractérisé en ce que : - un premier passage est ménagé à travers ledit premier piston (4) pour mettre en communication l'intérieur de la chambre avec l'extérieur, ledit premier passage étant conçu pour évacuer hors de la chambre le fluide brûlé résultant de la combustion du fluide de travail, un deuxième passage est ménagé à travers ledit deuxième piston pour mettre en communication l'intérieur de la chambre avec l'extérieur, ledit premier passage étant conçu pour alimenter la chambre en fluide de travail. - Moteurs.

Description

    DOMAINE TECHNIQUE
  • La présente invention se rapporte au domaine technique général des moteurs, et en particulier des moteurs à combustion interne (ou « moteurs à explosion »), transformant l'énergie thermique obtenue par combustion, à l'intérieur même du moteur, d'un fluide travail, en énergie mécanique utilisable par exemple pour propulser des véhicules (tels que des automobiles, des motocyclettes, des aéronefs ou des bateaux), pour animer des machines (industrielles ou agricoles), ou encore pour fournir de l'énergie mécanique à des dispositifs de conversion d'énergie, du genre groupes électrogènes.
  • L'invention concerne plus précisément un moteur à combustion interne comprenant d'une part une chambre conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre et d'autre part un premier piston qui contribue à délimiter le volume de ladite chambre.
  • TECHNIQUE ANTERIEURE
  • Les moteurs à combustion interne, habituellement désignés par l'appellation « moteurs à explosion », sont connus de longue date et largement répandus, puisqu'ils équipent l'immense majorité des voitures automobiles, pour ne citer que ce type d'engins motorisés.
  • Les moteurs à combustion interne les plus répandus sont les moteurs « à quatre temps », qui mettent en oeuvre un cycle thermodynamique correspondant sensiblement au cycle thermodynamique théorique dit « de Beau de Rochas », bien connu dans le domaine.
  • L'architecture de ces moteurs à quatre temps connus est généralement basée sur la mise en oeuvre d'un cylindre qui est fermé dans sa partie supérieure par une culasse.
  • Le cylindre et la culasse forment une chambre de combustion dont le volume est réglé par la course d'un piston coulissant dans le cylindre selon un mouvement de va-et-vient imparti par les variations de pression résultant des cycles de combustion opérés dans la chambre de combustion. Le piston est lui-même relié à un vilebrequin, par l'intermédiaire d'une bielle, pour transformer le mouvement de translation rectiligne du piston en mouvement de rotation du vilebrequin. La culasse est destinée à accueillir des soupapes d'admission et d'échappement qui permettent respectivement l'admission du fluide combustible (mélange gazeux air-carburant) dans la chambre et l'évacuation hors de la chambre des gaz brûlés résultant de la combustion rapide (déflagration) dudit fluide. Le mouvement des soupapes relativement à la culasse est commandé de façon synchronisée par un ou plusieurs arbre(s) à cames entraîné(s) par le vilebrequin, par exemple à l'aide d'un système de chaîne ou d'engrenage.
  • Cette architecture de moteur connue donne généralement satisfaction, mais n'en présente pas moins de sérieux inconvénients.
  • En premier lieu, la présence d'une culasse rapportée sur le cylindre est susceptible d'entraîner des problèmes de fiabilité, en particulier au niveau du joint de culasse interposé entre le cylindre et la culasse. La mise en oeuvre d'une culasse et du joint correspondant limite en outre nécessairement le taux de compression du moteur, puisqu'un taux de compression élevé ou très élevé serait bien entendu susceptible de générer une détérioration du joint de culasse. De plus, ces moteurs connus mettent en oeuvre une chaîne mécanique et cinématique relativement lourde et complexe de renvoi d'effort entre le vilebrequin, l'arbre à cames (lequel est généralement déporté) et les soupapes. Cela constitue bien entendu une source potentielle de défaillance et de perte de rendement énergétique, et ne va pas dans le sens d'une augmentation de la fiabilité ni d'une réduction du prix de revient.
  • De manière générale, ces moteurs connus mettent en oeuvre un grand nombre de pièces en mouvement, ce qui correspond à une masse en mouvement importante, susceptible là encore d'engendrer des problèmes d'efficacité et de fiabilité. Par ailleurs, l'architecture de ces moteurs connus est relativement contraignante du point de vue des sections d'admission et d'échappement, qui sont limitées à des valeurs relativement faibles en raison des contraintes d'implantation des soupapes dans la culasse. Enfin, ces moteurs connus s'avèrent être également relativement lourds et encombrants, de sorte que leur implantation au sein d'un véhicule, et notamment au sein d'un véhicule automobile du genre voiture particulière peut s'avérer problématique.
  • EXPOSE DE L'INVENTION
  • L'invention vise en conséquence à porter remèdes aux différents inconvénients énumérés précédemment et à proposer un nouveau moteur dont l'architecture est particulièrement simple, efficace et fiable.
  • Un autre objet de l'invention est de proposer un nouveau moteur qui mette en oeuvre un nombre minimal de pièces en mouvement, qui soit particulièrement fiable et qui présente un faible encombrement, en particulier en hauteur et en largeur.
  • Un autre objet de l'invention vise à proposer un nouveau moteur mettant en oeuvre une liaison mécanique entre les pistons et l'arbre de sortie qui tout en étant particulièrement simple, efficace et fiable, permet de surcroît d'ajuster facilement et rapidement les performances du moteur.
  • Un autre objet de l'invention vise à proposer un nouveau moteur mettant en oeuvre une masse en mouvement minimale et susceptible de procurer des sections d'admission et/ou d'échappement importantes.
  • Un autre objet de l'invention vise à proposer un nouveau moteur particulièrement compact et qui évite la mise en oeuvre de renvois d'effort et de pièces de transmission déportées.
  • Un autre objet de l'invention vise à proposer un nouveau moteur capable d'opérer l'admission et l'échappement de manière particulièrement efficace.
  • Un autre objet de l'invention vise à proposer un nouveau moteur qui mette en oeuvre un minimum de pièces différentes.
  • Les objets assignés à l'invention sont atteints à l'aide d'un moteur à combustion interne comprenant :
    • une chambre conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre,
    • un premier piston qui contribue à délimiter le volume de ladite chambre,
    • un premier passage ménagé à travers ledit premier piston pour mettre en communication l'intérieur de la chambre avec l'extérieur, ledit premier passage étant conçu pour alimenter la chambre en fluide de travail et/ou évacuer hors de la chambre le fluide brûlé résultant de la combustion du fluide de travail,
    • une première soupape montée sur le premier piston pour contrôler l'ouverture et la fermeture dudit premier passage,
    • un arbre de sortie monté coaxialement audit premier piston, l'arbre de sortie et le premier piston coopérant pour convertir le mouvement du premier piston en mouvement rotatif de l'arbre de sortie,
    caractérisé en ce que l'arbre de sortie et la première soupape coopèrent pour convertir le mouvement rotatif de l'arbre de sortie en mouvement de la première soupape relativement au premier piston. DESCRIPTIF SOMMAIRE DES DESSINS
  • D'autres objets et avantages de l'invention apparaîtront plus en détails à la lecture de la description qui suit, en référence aux dessins annexés, donnés à titre purement illustratif et non limitatif, dans lesquels :
    • La figure 1 illustre, selon une vue de côté en coupe partielle, un exemple de moteur à quatre temps conforme à l'invention.
    • La figure 2 illustre, selon une autre vue de côté en coupe partielle, le moteur de la figure 1.
    • La figure 3 illustre, selon une vue de côté en coupe, le moteur des figures 1 et 2 lors de la mise en oeuvre du premier temps (admission).
    • La figure 4 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la fin du premier temps.
    • La figure 5 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la mise en oeuvre du deuxième temps (compression).
    • La figure 6 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la mise en oeuvre d'une première phase (explosion) du troisième temps.
    • La figure 7 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la mise en oeuvre d'une deuxième phase (détente) du troisième temps.
    • La figure 8 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la fin de la détente, lorsque les pistons se trouvent dans une position dite de « point mort bas ».
    • La figure 9 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors du début du quatrième temps (échappement).
    • La figure 10 illustre, selon une vue de côté en coupe, le moteur des figures précédentes lors de la fin de l'échappement.
    • La figure 11 illustre, selon une vue de côté en coupe, la liaison mécanique entre l'arbre de sortie et un piston dans le moteur des figures précédentes.
    • La figure 12 illustre, selon une vue en perspective, un détail de l'arbre de sortie du moteur des figures précédentes.
    • Les figures 13 et 14 illustrent, selon des vues en perspective, un détail de réalisation d'un piston mis en oeuvre dans le moteur des figures précédentes.
    • La figure 15 illustre, selon une vue en perspective, une soupape mise en oeuvre dans le moteur des figures précédentes et destinée à être montée sur le piston des figures 13 et 14.
    • La figure 16 illustre, selon une vue en perspective, un sous-ensemble unitaire résultant du montage de la soupape de la figure 15 sur les pistons des figures 13 et 14.
    MEILLEURE MANIERE DE REALISER L'INVENTION
  • L'invention concerne un moteur, c'est-à-dire un dispositif capable de fournir un travail mécanique utilisable notamment pour propulser un véhicule, et par exemple un véhicule automobile, une motocyclette, un aéronef ou un bateau, ou encore pour faire fonctionner une machine (machine-outil, machine de travaux publics, machine agricole, pompe, compresseur) ou un dispositif de conversion énergétique, tel qu'un générateur. Le moteur 1 conforme à l'invention est un moteur à combustion interne (« moteur à explosion »), c'est-à-dire un moteur capable de produire de l'énergie mécanique à partir de la combustion en son sein d'un fluide travail contenant un carburant, et par exemple un carburant à base d'hydrocarbure tel que l'essence. De manière connue en soi, le moteur 1 conforme à l'invention comprend une chambre 3, formant chambre de combustion, et conçue à cet effet pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre 3. Le fluide de travail est donc un fluide combustible et il est de préférence formé d'un gaz constitué d'un mélange d'air et de carburant vaporisé. Ce gaz est destiné à subir une combustion rapide, et plus précisément une explosion (ou encore plus précisément une déflagration), au sein de la chambre 3. Comme envisagé dans ce qui précède, le carburant peut être constitué par un dérivé pétrolier, étant entendu que l'invention n'est absolument pas limitée à un fluide de travail spécifique. Afin de réaliser la chambre 3, le moteur 1 comprend de préférence un cylindre 2, qui se présente par exemple, comme illustré aux figures, sous la forme d'un tube creux, avantageusement rectiligne, d'axe longitudinal d'extension X-X'. Avantageusement, comme illustré aux figures, le cylindre 2 présente une section sensiblement circulaire. Il est cependant tout à fait envisageable que le cylindre 2 présente une section non circulaire, et par exemple une section polygonale, sans pour autant sortir du cadre de l'invention. La paroi intérieure 20 du cylindre 2 contribue à définir, dans le mode de réalisation illustré aux figures, la chambre 3. Afin de surmonter les contraintes thermiques et mécaniques résultant de la combustion du fluide de travail au sein de la chambre 3, le cylindre 2 est préférentiellement réalisé en un matériau présentant une haute tenue mécanique et thermique, comme par exemple un matériau métallique du genre fonte ou alliage aluminium.
  • Le moteur 1 conforme à l'invention comprend en outre au moins un premier piston 4 qui contribue à délimiter le volume de la chambre 3. Dans l'exemple illustré aux figures, le premier piston 4 est conçu pour coulisser dans le cylindre 2 selon un mouvement alternatif (c'est-à-dire un mouvement de va-et-vient) sous l'effet de la variation de pression au sein de la chambre 3, ladite variation de pression étant générée, comme cela est bien connu en tant que tel, par les cycles de combustion du fluide de travail au sein de la chambre 3. Ainsi, le premier piston 4 est enfilé à l'intérieur du cylindre 2 et est ajusté hermétiquement contre la paroi interne 20 du cylindre 2, de manière à pouvoir glisser au sein du cylindre 2 selon l'axe X-X', tout en restant en permanence en contact étanche avec la paroi interne 20 dudit cylindre 2. La réalisation du contact étanche entre le premier piston 4 et la paroi interne 20 du cylindre 2 peut être réalisée par tout moyen connu de l'homme du métier, en reprenant et adaptant par exemple les solutions techniques bien connues et éprouvées mises en oeuvre dans l'art antérieur. Le premier piston 4 présente avantageusement une tête 4A qui contribue à délimiter la chambre 3. La tête 4A présente de préférence une section transversale qui est complémentaire de la section transversale interne du cylindre 2, cette section étant de préférence une section circulaire comme dans les exemples illustrés aux figures. Le premier piston 4 comprend en outre une jupe 4B qui s'étend à partir et à la périphérie de la tête 4A. Avantageusement, le premier piston 4 présente un axe longitudinal d'extension Y-Y', qui correspond à l'axe de symétrie de la section transversale de la tête 4A dudit piston. L'axe longitudinal Y-Y' du premier piston 4 est avantageusement confondu avec l'axe d'extension X-X' du cylindre 2 lorsque le premier piston 4 est installé en position fonctionnelle à l'intérieur du cylindre 2, comme illustré aux figures 1 à 10. Selon le mode de réalisation préférentiel illustré aux figures, le premier piston 4 est conçu pour coulisser dans le cylindre 2 selon un mouvement de translation axiale pure, c'est-à-dire que ledit premier piston 4 est guidé relativement au cylindre 2 pour ne pouvoir se déplacer qu'en translation longitudinale, parallèlement à l'axe X-X', sans rotation du premier piston 4 sur lui-même. En d'autres termes, le premier piston 4 est dans ce cas lié mécaniquement au cylindre 2 par une liaison glissière. Un tel guidage axial du premier piston 4 en translation pure dans le cylindre 2 permet de limiter non seulement les problèmes de vibrations et d'usure prématurée du piston contre la chemise rencontrée dans les moteurs de l'art antérieur, mais également les problèmes de perte d'efforts rencontrés dans ces mêmes moteurs. Ces problèmes proviennent en effet essentiellement du fait que dans l'art antérieur, les pistons ne sont pas directement guidés dans le cylindre, mais le sont indirectement par l'embiellage qui travaille de manière désaxée lors des mouvements du piston sous charge. Il existe bien entendu une multitude de possibilités techniques, bien connues de l'homme du métier, pour réaliser une telle liaison glissière entre le premier piston 4 et le cylindre 2. Dans le mode de réalisation illustré aux figures, cette liaison glissière, qui permet au premier piston 4 de coulisser dans le cylindre 2 selon un mouvement de translation rectiligne sensiblement pure, est réalisée par la coopération d'au moins un coulisseau 4C monté sur le premier piston 4 et d'une glissière correspondante 2A ménagée dans le cylindre 2 et s'étendant sensiblement parallèlement à l'axe X-X' d'extension longitudinale dudit cylindre 2. De préférence, afin d'assurer un guidage équilibré du premier piston 4 relativement au cylindre 2, le premier piston 4 est pourvu de deux coulisseaux disposés de façon diamétralement opposée sur le piston par rapport à l'axe Y-Y' de symétrie de ce dernier. Afin d'améliorer le contact coulisseau/glissière, en vue notamment de limiter les frottements qui nuisent au rendement du moteur, chaque coulisseau comprend avantageusement un galet 40C monté à rotation sur un axe 400C lui-même monté dans un orifice 40B ménagé à travers la jupe 4B, de manière à ce que ledit axe 400C s'étende sensiblement radialement par rapport à l'axe d'extension X-X' du piston 4. Pour des raisons de clarté des figures, le deuxième coulisseau n'a pas été représenté sur les figures où n'est visible que l'orifice de montage 41 B, ménagé dans la jupe 4B, pour le montage de ce deuxième coulisseau. Chaque galet 40C est conçu pour rouler dans la glissière 2A correspondante, qui consiste avantageusement, comme illustré aux figures, en une rainure rectiligne ménagée dans la paroi interne 20 du cylindre 2, à la surface de ladite paroi interne 20, en regard du galet correspondant. L'invention n'est cependant absolument pas limitée à la mise en oeuvre d'un premier piston 4 monté selon une liaison glissière dans le cylindre 2. Il est par exemple tout à fait envisageable, sans pour autant que l'on sorte du cadre de l'invention, que le premier piston 4 subisse, au cours de son mouvement de va-et-vient, une rotation sur lui-même autour de son axe Y-Y', de telle sorte que le mouvement du premier piston 4 dans le cylindre 2 n'est dans ce cas pas un mouvement de translation axiale pure mais un mouvement de translation hélicoïdale.
  • Conformément à l'invention, le moteur 1 comprend un premier passage 5 ménagé à travers le premier piston 4 pour mettre en communication l'intérieur de la chambre avec l'extérieur, ledit premier passage 5 étant conçu pour alimenter la chambre 3 en fluide de travail et/ou évacuer hors de la chambre le fluide brûlé résultant de la combustion du fluide de travail dans la chambre 3. Le premier passage 5 permet ainsi de faire transiter du fluide directement à travers le premier piston 4 lui-même, de l'extérieur vers la chambre 3 et/ou de la chambre 3 vers l'extérieur. L'invention repose donc notamment sur l'idée de réaliser l'admission et/ou l'échappement à travers un passage ménagé dans le piston lui-même, et non dans une culasse rapportée sur le cylindre comme dans l'art antérieur. L'invention permet ainsi de s'affranchir d'une culasse rapportée ce qui simplifie le moteur et contribue à en augmenter la fiabilité tout en en réduisant le coût de revient. Cela permet également un meilleur rendement grâce à la possibilité de mettre en oeuvre des taux de compression très élevés, du fait de l'absence d'une culasse rapportée et du joint correspondant. La mise en oeuvre d'une culasse rapportée n'est cependant absolument pas exclue et il est tout à fait envisageable qu'un moteur conforme à l'invention comporte une telle culasse, même si cela ne correspond pas à un mode de réalisation préféré.
  • Dans l'exemple illustré aux figures, la tête 4A du premier piston 4 comporte une face avant 40A qui constitue le sommet de la tête 4 et qui est perpendiculaire à l'axe Y-Y'. La face avant 40A forme directement une paroi de la chambre 3, et plus précisément une paroi mobile qui se déplace dans le cylindre 2 sous l'effet du mouvement du premier piston 4. Le premier passage 5 est avantageusement conçu pour permettre un transfert de fluide à travers cette face avant 40A qui contribue à délimiter la chambre 3. Dans l'exemple illustré aux figures, la tête du piston 4A présente une forme sensiblement cylindrique avec une paroi latérale annulaire 4D qui s'étend à partir et à la périphérie de la face avant 4C. La face avant 4C présente en outre une concavité circulaire 400A en forme de couronne, ladite concavité présentant un fond à partir duquel s'élève un bord latéral circulaire. Dans cet exemple de réalisation, le premier passage 5 est constitué d'une pluralité d'orifices 5A ménagés selon une distribution angulaire régulière dans le bord circulaire de la concavité et débouchant dans des coupelles allongées 5B correspondantes ménagées à la surface de la paroi latérale 4D de la tête 4A. Chaque coupelle 5B est de préférence elle-même conçue pour se trouver au moment opportun en regard d'un orifice 2B correspondant ménagé à travers le cylindre 2 et plus précisément à travers toute l'épaisseur de la paroi latérale tubulaire dudit cylindre 2. L'orifice 2B est lui-même en communication avec un composant d'admission de carburant (carburateur, injecteur ou autre), et/ou avec le système d'échappement, selon que le premier passage 5 est utilisé pour l'admission et/ou l'échappement.
  • L'association de l'orifice 5A et de sa coupelle correspondante 5B avec l'orifice 2B complémentaire constitue ainsi un conduit étanche permettant l'admission de gaz frais et/ou l'échappement de gaz brûlés.
  • Comme illustré aux figures, le moteur 1 comprend une première soupape 6 conçue pour contrôler l'ouverture et la fermeture du premier passage 5. En d'autres termes, la première soupape 6 interagit avec le premier passage 5 pour autoriser la mise en communication de l'intérieur de la chambre 3 avec l'extérieur par l'intermédiaire du premier passage 5 ou au contraire fermer le premier passage 5 de façon à interdire la mise en communication de l'intérieur de la chambre 3 avec l'extérieur par l'intermédiaire du premier passage 5. La première soupape 6 pourrait par exemple être montée sur le cylindre 2, pour coopérer directement avec les orifices 2B ménagés dans ledit cylindre 2. Il est cependant beaucoup plus avantageux de prévoir, comme dans le mode de réalisation illustré aux figures, que la première soupape 6 est montée sur le premier piston 4 pour contrôler l'ouverture et la fermeture du premier passage 5. Le montage de la première soupape 6 directement sur le premier piston 4 permet de bénéficier d'un premier passage 5 de section utile importante, ce qui est intéressant pour l'efficacité d'admission ou d'échappement, sans pour autant compliquer et alourdir l'architecture du moteur puisque le placement de la soupape sur le piston permet avantageusement de commander de manière simultanée l'ouverture/fermeture de tous les orifices 5A contribuant à former le premier passage 5. Il est donc particulièrement avantageux de prévoir, comme cela est illustré aux figures, un sous-ensemble unitaire constitué par le premier piston 4 et la première soupape 6, cette dernière étant embarquée sur le premier piston 4. De préférence, la première soupape 6 est montée à coulissement sur le premier piston 4, entre au moins une position de fermeture (illustrée notamment à la figure 11) dans laquelle elle bouche hermétiquement le premier passage 5, et plus précisément les orifices 5A, et d'autre part au moins une position d'ouverture (illustrée notamment à la figure 16) dans laquelle elle libère le premier passage 5 de sorte que ce dernier autorise la mise en communication, par son intermédiaire, de la chambre 3 avec l'extérieur. Avantageusement, la première soupape 6 présente un axe de symétrie S-S' et est montée à coulissement axial sur le piston 4, de façon à pouvoir glisser relativement audit premier piston 4 sensiblement parallèlement à l'axe Y-Y' dudit piston, les axes Y-Y' et S-S' étant confondus. Le montage de la première soupape 6 à coulissement axial relativement au premier piston 4 peut être réalisé par tout moyen connu de l'homme du métier. De manière préférentielle, la première soupape 6 comprend au moins un pion de guidage 7 qui s'étend sensiblement radialement par rapport à l'axe S-S', et de préférence deux pions de guidage positionnés de façon diamétralement opposée relativement à l'axe S-S'. Avantageusement, chaque pion de guidage 7 est conçu pour se déplacer en translation dans une lumière oblongue de guidage 70 complémentaire ménagée dans la jupe 4B du piston 4. Dans l'exemple illustré aux figures, la première soupape 6 comporte plus précisément une garniture d'étanchéité 6A, qui se présente sous la forme d'une couronne circulaire sensiblement plate destinée à venir s'insérer dans la concavité 400A de forme complémentaire ménagée sur la face avant 40A de la tête 4A du premier piston 4. Lorsque la première soupape 6 se trouve dans sa position de fermeture, la garniture 6A est plaquée au fond de la concavité pour obturer de manière étanche les orifices 5A. Au contraire, lorsque la première soupape 6 se trouve dans sa position d'ouverture, la garniture 6A se trouve à distance du fond de la concavité, ce qui libère les orifices 5A et permet un transit de fluide par leur intermédiaire. La garniture 6A est avantageusement solidaire, par l'intermédiaire de bras 6B (par exemple au nombre de trois, répartis angulairement de manière régulière), d'une jupe de soupape 6C tubulaire sur laquelle est monté chaque pion de guidage 7.
  • Avantageusement, la jupe de soupape 6C est conçue pour glisser à l'intérieur de la jupe 4B du premier piston 4, contre ladite jupe de piston 4B, les bras 6B traversant le fond de la concavité 400A par des ouvertures de passage ménagées dans ledit fond. Lesdits bras 6B glissent dans les ouvertures de passage en question de manière ajustée et étanche, pour éviter toute fuite par lesdites ouvertures de passage.
  • Tel qu'illustré aux figures, le moteur 1 comprend un arbre de sortie 8 monté coaxialement au premier piston 4, l'arbre de sortie 8 et le premier piston 4 coopérant pour convertir le mouvement du premier piston 4 en mouvement rotatif de l'arbre de sortie 8. De manière préférentielle, la coopération entre l'arbre de sortie 8 et le premier piston 4 est réciproque, c'est-à-dire qu'elle permet de convertir le mouvement rotatif de l'arbre de sortie 8 en mouvement du premier piston 4, c'est-à-dire en l'occurrence en mouvement alternatif (de va-et-vient) dudit premier piston 4. L'arbre de sortie 8 présente de préférence un caractère rectiligne et s'étend selon un axe longitudinal Z-Z' qui est avantageusement confondu avec l'axe X-X' du cylindre 2, ainsi qu'en l'occurrence avec l'axe Y-Y' du premier piston 4 et l'axe S-S' de la première soupape 6. De manière préférentielle, l'arbre de sortie 8 traverse le premier piston 4, c'est-à-dire que ledit premier piston 4 est enfilé sur l'arbre de sortie 8. A cet effet, le premier piston 4 est pourvu d'un orifice central 4E par lequel passe l'arbre de sortie 8, ce dernier étant enfilé de manière ajustée dans l'orifice 4E de manière à permettre au premier piston 4 de coulisser le long de l'arbre de sortie 8 tout en restant en contact étanche avec ledit arbre de sortie 8, et éviter ainsi toute mise en communication de l'intérieur de la chambre 3 avec l'extérieur par l'intermédiaire de l'interface entre l'arbre de sortie 8 et le premier piston 4. Il convient de noter que pour des raisons de simplicité et de clarté, une portion centrale de l'arbre de sortie 8, qui traverse la chambre 3, a été omise dans les figures 1 et 2.
  • De préférence, l'arbre de sortie 8 et le premier piston 4 coopèrent directement pour la conversion du mouvement du premier piston 4 en mouvement rotatif de l'arbre de sortie 8 et réciproquement. A cet effet, le premier piston 4 et l'arbre de sortie 8 sont pourvus de moyens de transmission d'effort complémentaires conçus pour convertir le mouvement alternatif (de translation axiale pure dans l'exemple illustré aux figures) du premier piston 4 en mouvement rotatif, et plus précisément en mouvement rotatif continu selon un sens unique de rotation, de l'arbre de sortie 8. En d'autres termes, les moyens de transmission d'effort complémentaires équipant le premier piston 4 et l'arbre de sortie 7 permettent de transformer le mouvement de va-et-vient rectiligne du premier piston 4 en rotation de l'arbre de sortie 7 sur lui-même, selon son axe Z-Z'. La variante du moteur 1 conforme à l'invention illustrée aux figures fonctionne donc selon le principe général suivant :
    • les variations de pression au sein de la chambre 3, obtenues par des cycles de déflagration d'un mélange détonant (du type mélange air/carburant vaporisé), entraînent un mouvement alternatif rectiligne du premier piston 4,
    • le premier piston 4 entraîne lui-même en rotation l'arbre de sortie 8, lequel constitue l'arbre moteur destiné à être raccordé à l'objet à entraîner, par exemple aux roues d'un véhicule automobile.
  • Une telle conception évite la mise en oeuvre de renvoi d'effort selon différents axes de travail, comme dans l'art antérieur, et permet au contraire une transmission directe de l'action du premier piston 4 sur l'arbre de sortie 8. En d'autres termes, le premier piston 4 entraîne directement l'arbre de sortie 8 en rotation, ce qui confère au moteur 1 un caractère particulièrement compact, ce dernier pouvant ainsi être facilement intégré dans le châssis d'un véhicule.
  • Une telle conception est également de nature à améliorer le centre de gravité du véhicule grâce au caractère essentiellement longitudinal du moteur 1, qui autorise le positionnement dudit moteur 1 selon l'axe de symétrie dudit véhicule. Grâce à l'entraînement direct et coaxial de l'arbre de sortie 8 par le premier piston 4, les effets de torsion auxquels est soumis l'arbre de sortie 8 sont largement minimisés par rapport à ceux impartis aux vilebrequins par les bielles des moteurs de l'art antérieur.
  • Avantageusement, le moteur 1 comprend un premier chemin de guidage 9 solidaire de l'arbre de sortie 8, et de préférence formé (c'est à dire réalisé directement ou rapporté) sur l'arbre de sortie 8, à la surface de ce dernier. Avantageusement, le moteur 1 comprend également un premier élément de guidage 10 solidaire du premier piston 4, ledit premier élément de guidage 10 étant monté pour se déplacer le long du premier chemin de guidage 9, pour convertir le mouvement du premier piston 4 en mouvement rotatif de l'arbre de sortie 8. Avantageusement, comme illustré aux figures, le premier chemin de guidage 9 présente une forme sensiblement ondulée, et de façon encore plus préférentielle une forme sensiblement sinusoïdale. Plus précisément, dans l'exemple illustré aux figures, le premier chemin de guidage 9 s'étend selon un profil annulaire autour de l'axe longitudinal d'extension Z-Z' de l'arbre de sortie 8. Avantageusement, le moteur 1 comprend une première bague 8A montée sur l'arbre de sortie 8, ladite première bague 8A portant ledit premier chemin de guidage 9. La première bague 8A peut être ainsi constituée d'une pièce annulaire distincte de l'arbre de sortie 8 et enfilée sur ce dernier. Dans ce cas, la première bague 8A est montée sur l'arbre de sortie 8 de façon à être solidaire en rotation (autour de l'axe X-X') de l'arbre de sortie 8. Il est également tout à fait envisageable que la première bague 8A vienne de matière avec l'arbre de sortie 8. De préférence, le premier chemin de guidage 9 comprend une première rainure 9A ménagée à la surface de la première bague 8A (c'est-à-dire de l'arbre de sortie 8 lorsque la bague 8A se confond avec l'arbre de sortie 8) tandis que le premier élément de guidage 10 comprend un premier doigt qui fait saillie du premier piston 4 et s'engage dans ladite première rainure 9A. De préférence, le premier élément de guidage 10 comprend deux doigts disposés de manière diamétralement opposée relativement à l'axe Y-Y' et engageant la même première rainure 9A. Afin d'améliorer le contact entre le premier élément de guidage 10 et la première rainure 9A, le premier doigt comprend avantageusement un galet 10A monté à rotation sur un axe lui-même monté dans un orifice ménagé à travers la jupe 4B, de manière à ce que ledit axe s'étende sensiblement radialement par rapport à l'axe d'extension X-X' du piston 4. De préférence, l'axe en question correspond à l'axe 400C sur lequel est monté le galet 40C. Dans ce mode de réalisation particulièrement simple et fiable, le galet 10A est monté sur l'axe 400C, à l'intérieur de la jupe 4B, pour engager la rainure sinusoïdale correspondante 9A, tandis que le galet 40C est monté sur le même axe 400C, à l'extérieur de la jupe 4B, pour engager la rainure rectiligne 2A correspondante.
  • Comme illustré aux figures, l'arbre de sortie 8 et la première soupape 6 coopèrent pour convertir le mouvement rotatif de l'arbre de sortie 8 en mouvement de la première soupape 6 relativement au premier piston 4. Ainsi, la position de la première soupape 6 par rapport au premier piston 4, et donc le contrôle de l'ouverture et de la fermeture du premier passage 5, sont commandés directement par l'arbre de sortie 8, lequel interagit, de préférence directement, avec la première soupape 6 pour impartir à cette dernière un mouvement, et par exemple un mouvement alternatif de translation axiale comme dans le mode de réalisation illustré aux figures. A cette fin, le moteur 1 comprend avantageusement un deuxième chemin de guidage 11 solidaire de l'arbre de sortie 8 et de préférence formé (c'est à dire réalisé directement ou rapporté) sur l'arbre de sortie 8, à la surface de ce dernier. Avantageusement, le moteur 1 comprend également un deuxième élément de guidage 12 solidaire de la première soupape 6, ledit deuxième élément de guidage 12 étant monté pour se déplacer le long du deuxième chemin de guidage 11, pour convertir le mouvement rotatif de l'arbre de sortie 8 en mouvement de la première soupape 6 relativement au premier piston 4, et plus particulièrement en mouvement alternatif (c'est-à-dire de va-et-vient) axial rectiligne. Avantageusement, et comme illustré aux figures, le deuxième chemin de guidage 11 présente une forme sensiblement ondulée, et de manière encore plus préférentielle une forme sensiblement sinusoïdale. De préférence le deuxième chemin de guidage ne présente pas un profil purement sinusoïdal, façon à permettre au moment opportun, l'admission et l'échappement, comme expliqué plus en détails ci-après. Par exemple, le profil du deuxième chemin de guidage 11 suit celui du premier chemin de guidage 9 lors des phases de compression et de détente (la soupape 6 devant être fermée), tandis que lors des phases d'admission et d'échappement, le profil du deuxième chemin de guidage 11 est décalé par rapport à celui du premier chemin de guidage 9, de façon à permettre l'ouverture et la fermeture de la soupape 6 en temps utile.
  • De préférence, tout comme le premier chemin de guidage 9, le deuxième chemin de guidage 11 s'étend selon un profil annulaire autour de l'axe longitudinal d'extension Z-Z' de l'arbre de sortie 8. Avantageusement, le moteur 1 comprend une deuxième bague 8B montée sur l'arbre de sortie 8, ladite deuxième bague 8B portant ledit deuxième chemin de guidage 11. La deuxième bague 8B peut être ainsi constituée d'une pièce annulaire distincte de l'arbre de sortie 8 et enfilée sur ce dernier. Dans ce cas, la deuxième bague 8B est montée sur l'arbre de sortie 8 de façon à être solidaire en rotation (autour de l'axe X-X') de l'arbre de sortie 8. Il est également tout à fait envisageable que la deuxième bague 8B vienne de matière avec l'arbre de sortie 8.
  • De préférence, le premier chemin de guidage 9 comprend une première rainure 9A ménagée à la surface de la première bague 8A (c'est-à-dire de l'arbre de sortie 8 lorsque la bague 8A se confond avec l'arbre de sortie 8) tandis que le premier élément de guidage 10 comprend un premier doigt qui fait saillie du premier piston 4 et s'engage dans ladite première rainure 9A. Dans le mode de réalisation préférentiel illustré aux figures, le deuxième chemin de guidage 11 comprend une deuxième rainure 13 ménagée à la surface de la deuxième bague 8B (c'est-à-dire de l'arbre de sortie 8 lorsque la bague 8B se confond avec l'arbre de sortie 8) tandis que le deuxième élément de guidage 12 comprend un deuxième doigt qui fait saillie de la première soupape 6 et s'engage dans ladite deuxième rainure 13. Ainsi, il est particulièrement avantageux de mettre en oeuvre un accouplement mécanique entre la soupape 6 et l'arbre de sortie 8 qui soit sensiblement similaire, dans son principe au moins, à l'accouplement mécanique existant entre le premier piston 4 et ce même arbre de sortie 8. De manière préférentielle, le deuxième élément de guidage 12 est formé par une tige cylindrique qui s'étend à travers la jupe 6C de la première soupape 6, la première extrémité de ladite tige, située à l'extérieur de ladite jupe 6C, formant le pion de guidage 7, tandis que la seconde extrémité opposée, située à l'intérieur de ladite jupe 6C, forme le deuxième élément de guidage proprement dit, lequel qui s'étend sensiblement radialement par rapport à l'axe S-S'. De préférence, le deuxième élément de guidage 12 est formé par deux tiges cylindriques positionnées de façon diamétralement opposée relativement à l'axe S-S' (seule l'une de ces tiges est représentée aux figures, pour des raisons de simplicité et de clarté des dessins). Avantageusement, et comme illustré à la figure 12, les première et deuxième bague 8A, 8B sont formées par une seule et même pièce d'un seul tenant, laquelle porte à la fois le premier chemin de guidage 9 et le deuxième chemin de guidage 11. Il est toutefois envisageable, dans un mode de réalisation alternatif, que les première et deuxième bague 8A, 8B soient formées par des pièces distinctes et indépendantes. Dans ce cas, il est par exemple avantageux que la première bague 8A soit montée fixe (ou même mobile, en translation et/ou rotation) sur l'arbre de sortie 8, et que la deuxième bague 8B soit montée mobile sur l'arbre de sortie 8, et de préférence soit capable de tourner, relativement à l'arbre de sortie 8 et à la première bague 8A, selon l'axe X-X'. Dans ce mode de réalisation préférentiel, la position angulaire de la deuxième bague 8B relativement à l'arbre de sortie 8 peut être ainsi avantageusement ajustée, par tout moyen approprié, ce qui permet par exemple de régler l'admission en fonction du régime du moteur 1. Il suffit ainsi de faire tourner légèrement la deuxième bague 8B relativement à l'arbre 8 pour agir sur la vitesse et/ou le moment d'ouverture de la première soupape 6. Il est également envisageable que la deuxième bague 8B soit montée mobile en translation relativement à l'arbre de sortie 8, pour régler la position de la première soupape 6 en fonction de l'avancement du cycle thermodynamique du moteur 1.
  • Avantageusement, le moteur 1 conforme à l'invention comprend un deuxième piston 14 qui contribue également à délimiter le volume de la chambre 3. De préférence et comme illustré aux figures, le moteur 1 comprend ainsi dans ce cas un cylindre 2 au sein duquel le premier et le deuxième piston 4, 14 sont montés à coulissement axial. Dans ce mode de réalisation particulièrement avantageux, qui est illustré aux figures, la chambre 3 est de préférence formée par l'espace interstitiel séparant le premier et le deuxième piston 4, 14 dans le cylindre 2. En d'autres termes, la chambre 3 correspond dans ce cas à l'espace libre de volume variable situé à l'intérieur du cylindre 2, entre les pistons 4, 14. Avantageusement, comme illustré aux figures, les premier et deuxième pistons 4, 14 sont montés en opposition au sein du cylindre 2, c'est-à-dire de telle sorte que leurs têtes respectives 4A, 14A se font face. La chambre 3 s'étend ainsi dans l'espace délimité axialement par les têtes 4A, 14A des premier et deuxième pistons 4, 14 et radialement par la paroi interne 20 du cylindre 2 s'étendant entre lesdites têtes 4A, 14A desdits pistons 4, 14. La chambre 3 présente donc un volume variable qui dépend de la position relative du premier et du deuxième piston 4, 14.
  • Avantageusement, le premier piston 4 et le deuxième piston 14 sont conçus pour se déplacer selon des mouvements de va-et-vient opposés, de telle sorte que lesdits pistons 4, 14 se rapprochent et s'éloignent l'un de l'autre sensiblement simultanément. En d'autres termes, le premier piston 4 et le deuxième piston 14 se déplacent de manière symétrique par rapport au plan médian de la chambre 3, perpendiculaire à l'axe X-X'. Dans le mode de réalisation préférentiel illustré aux figures, chaque piston 4, 14 est conçu pour se déplacer dans le cylindre 2 de manière individuelle, c'est-à-dire indépendamment de l'autre piston. De préférence, le deuxième piston 14 est identique au premier piston 4 et il est également monté dans le moteur 1 de manière identique audit premier piston 4. Dans ce mode de réalisation avantageux, qui est illustré aux figures, l'arbre de sortie 8 est donc également monté coaxialement au deuxième piston 14, l'arbre de sortie 8 et le deuxième piston 14 coopérant pour convertir le mouvement du deuxième piston 14 en mouvement rotatif de l'arbre de sortie 8. A cette fin, le moteur 1 comprend de préférence un troisième chemin de guidage 15 solidaire de l'arbre de sortie 8 et de préférence formé (c'est à dire réalisé directement ou rapporté) sur l'arbre de sortie 8, à la surface de ce dernier. Avantageusement, le moteur 1 comprend en outre un troisième élément de guidage 16 solidaire du deuxième piston 14, ledit troisième élément de guidage 16 étant monté pour se déplacer le long du troisième chemin de guidage 15, pour convertir le mouvement du deuxième piston 14 en mouvement rotatif de l'arbre de sortie 8, de concert avec le premier piston 4. De préférence, le troisième chemin de guidage 15 présente une forme sensiblement ondulée qui est avantageusement symétrique de la forme du premier chemin de guidage 9 par rapport au plan médian de la chambre 3 perpendiculaire à l'axe X-X'. Avantageusement, les structures du troisième chemin de guidage 15 et du troisième élément de guidage 16 sont respectivement identiques aux structures du premier chemin de guidage 9 et du premier élément de guidage 10.
  • Avantageusement, le moteur 1 comprend une troisième bague montée sur l'arbre de sortie 8, ladite troisième bague portant ledit troisième chemin de guidage 15. La troisième bague peut être ainsi constituée d'une pièce annulaire distincte de l'arbre de sortie 8 et enfilée sur ce dernier. Dans ce cas, la troisième bague est montée sur l'arbre de sortie 8 de façon à être solidaire en rotation (autour de l'axe X-X') de l'arbre de sortie 8. Il est également tout à fait envisageable que la troisième bague vienne de matière avec l'arbre de sortie 8. De préférence, le troisième chemin de guidage 15 comprend une troisième rainure ménagée à la surface de la première bague 8A (c'est-à-dire de l'arbre de sortie 8 lorsque la bague 8A se confond avec l'arbre de sortie 8) tandis que le troisième élément de guidage 16 comprend un troisième doigt à galet qui fait saille du deuxième piston 14 et s'engage dans ladite troisième rainure. En définitive, dans l'exemple illustré aux figures, le moteur 1 présente une symétrie globale par rapport au plan médian de la chambre 3, c'est-à-dire le plan qui passe par le centre de la chambre 3 et qui est perpendiculaire à l'axe X-X' d'extension longitudinal du cylindre 2. Il s'avère particulièrement intéressant de combiner :
    • une chambre 3 délimitée par deux pistons 4, 14 travaillant en opposition,
    • et la réalisation d'un passage 5 ménagé au sein et à travers l'un desdits pistons pour mettre en communication l'intérieur de la chambre 3 avec l'extérieur.
  • En effet, lorsque le premier passage 5 est ouvert, c'est-à-dire lorsque la chambre 3 est mise en communication avec l'extérieur par l'intermédiaire dudit premier passage 5, les mouvements de va-et-vient du premier piston 4 procurent des effets de compression et d'aspiration moins efficaces, puisque la section de poussée ou d'aspiration dudit piston 4, qui correspond à la face avant 40A n'est alors pas étanche (puisque la soupape 6 est ouverte).
  • La mise en oeuvre d'un deuxième piston 14 travaillant en opposition avec le premier piston 4 permet de palier à ce déficit de compression et d'aspiration par le travail simultané du deuxième piston, qui vient en renfort du premier piston 4 dans les phases d'aspiration et de compression.
  • De préférence, le moteur 1 comprend un deuxième passage 17 ménagé à travers le deuxième piston 14 pour mettre en communication l'intérieur de la chambre 3 avec l'extérieur. De préférence, dans l'architecture à double piston illustrée aux figures, le deuxième passage 17 ménagé dans le deuxième piston 14 est conçu pour alimenter la chambre 3 en fluide de travail, c'est-à-dire en mélange frais destiné à subir une combustion, tandis que le premier passage 5 du premier piston 4 est conçu pour évacuer hors de la chambre 3 le fluide brûlé résultant de la combustion du fluide de travail dans la chambre 3. Ainsi, l'admission se fait à travers le deuxième piston 14 tandis que l'échappement se fait à travers le premier piston 4. Une telle conception s'avère particulièrement avantageuse pour réaliser un moteur fonctionnant selon un cycle à quatre temps, comme cela va être décrit plus en.détails dans ce qui suit.
  • D'ailleurs, un moteur 1 à combustion interne comprenant :
    • une chambre 3 conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre 3,
    • un premier piston 4 et un deuxième piston 14 qui contribuent tous deux à délimiter le volume de ladite chambre 3,
    • un premier passage 5 ménagé à travers ledit premier piston 4 pour mettre en communication l'intérieur de la chambre 3 avec l'extérieur, ledit premier passage 5 étant conçu pour évacuer hors de la chambre 3 le fluide brûlé résultant de la combustion du fluide de travail,
    • un deuxième passage 17 ménagé à travers ledit deuxième piston 14 pour mettre en communication l'intérieur de la chambre 3 avec l'extérieur, ledit premier passage 5 étant conçu pour alimenter la chambre 3 en fluide de travail,
    constitue en tant que tel une invention indépendante.
  • Bien entendu, il est particulièrement avantageux de prévoir, en ce qui concerne le deuxième piston 14, des mesures techniques identiques à celles mises en oeuvre sur le premier piston 4. Cela signifie que dans cet exemple, le moteur 1 comprend une deuxième soupape 18 identique à la première soupape 6, ladite deuxième soupape 18 étant montée sur le deuxième piston 14 pour contrôler l'ouverture et la fermeture du deuxième passage 17 ménagé à travers le deuxième piston 14. De même, l'arbre de sortie 8 et la deuxième soupape 18 coopèrent pour convertir le mouvement rotatif de l'arbre de sortie 8 en mouvement de la deuxième soupape 18 relativement au deuxième piston 14. A cette fin, le moteur 1 comprend d'une part un quatrième chemin de guidage 19 solidaire de l'arbre de sortie et de préférence formé sur l'arbre de sortie 8 et d'autre part un quatrième élément de guidage 21 solidaire de la deuxième soupape 18, ledit quatrième élément de guidage 21 étant monté pour se déplacer le long du quatrième chemin de guidage 19, pour convertir le mouvement rotatif de l'arbre de sortie en mouvement de la deuxième soupape relativement au deuxième piston. Avantageusement, le quatrième chemin de guidage 21 présente une forme sensiblement ondulée, de façon encore plus préférentielle sensiblement sinusoïdale. La structure de la deuxième soupape 18, du deuxième piston 14 et de la partie correspondante de l'arbre 8 qui coopère à la fois avec la deuxième soupape 18 et le deuxième piston 14 ne sera pas décrite plus en détails, puisque comme indiqué dans ce qui précède, le moteur 1 présente avantageusement une symétrie par rapport au plan médian de la chambre 3.
  • On va maintenant décrire le fonctionnement du moteur 1 illustré aux figures dans le cadre d'un cycle à quatre temps.
  • Le premier temps du cycle de fonctionnement du moteur, qui est illustré aux figures 3 et 4, correspond à une étape d'admission du fluide de travail, lequel est de préférence constitué par un mélange d'air et de carburant vaporisé, dans la chambre de combustion 3. A cette fin, la deuxième soupape 18 est en position ouverte, de manière à permettre l'admission, à travers le deuxième piston 14 via le deuxième passage 17, du fluide de travail frais en provenance de l'extérieur du cylindre 2.
  • Au cours de ce premier temps, le premier et le deuxième piston 4, 14 subissent un mouvement d'éloignement mutuel qui crée une dépression dans la chambre de combustion 3, ce qui favorise l'aspiration du fluide de travail par le deuxième passage 17, la deuxième soupape 18 étant ouverte pour autoriser l'introduction de fluide de travail dans la chambre de combustion 3. La première soupape 6 qui équipe le premier piston 4 est quant à elle fermée, ce qui permet d'assurer un excellent effet d'aspiration sous l'effet du déplacement du premier piston 4, cet effet d'aspiration venant compenser l'effet d'aspiration plus faible généré par le deuxième piston 14 dont la soupape 18 est ouverte.
  • Une fois arrivés à leur écartement mutuel maximal (illustré à la figure 4), les pistons 4, 14 subissent un mouvement inverse de rapprochement mutuel, c'est-à-dire qu'ils se rapprochent l'un de l'autre (figure 5) de manière à comprimer le fluide de travail contenu dans la chambre 3. Dans cette phase de rapprochement mutuel des pistons, qui correspond au deuxième temps, la première et la deuxième soupape 6, 18 sont fermées de manière à produire un effet de compression du fluide de travail entre les pistons 4, 14. Le fluide de travail est ainsi fortement comprimé, ce qui entraîne son réchauffage.
  • Lorsque les pistons 4, 14 atteignent leur point d'écartement minimal (les pistons sont alors en position dite de « point mort haut »), illustré à la figure 6, le fluide de travail comprimé au maximum explose soit sous l'effet d'un allumage obtenu par la production d'une étincelle générée par une bougie (non représentée) soit sous l'effet du taux de compression lui-même, qui produit un échauffement tel que le fluide de travail explose spontanément (cas d'un moteur Diesel).
  • Cette phase d'explosion produit une détente et une expansion des gaz constituant le fluide de travail. Cette détente génère une forte pression dans la chambre (par exemple comprise entre 40 et 100 bars) qui s'exerce sur les pistons, dont les soupapes 6, 18 sont fermées. Cela entraîne un écartement mutuel des pistons 4, 14.
  • Cet écartement des pistons 4, 14 sous l'effet de la pression résultant de l'explosion dans la chambre entraîne en rotation l'arbre de sortie 8. Ainsi, cette phase d'explosion et de détente (qui correspond au troisième temps) crée de l'énergie thermique qui est transformée en énergie mécanique de rotation de l'arbre de sortie 8. Les pistons 4, 14 se rapprochent ensuite à nouveau, ce qui crée une compression dans la chambre 3.
  • A cet instant, la première soupape 6 du premier piston 4 est ouverte, ce qui permet, sous l'effet de compression réalisée par le mouvement de rapprochement mutuel des pistons 4, 14, de faire échapper le fluide de travail brûlé à travers le premier passage 5.
  • A l'issue de ce quatrième temps, le moteur 1 se retrouve dans la configuration correspondant au premier temps et est prêt à recommencer à nouveau le cycle à quatre temps qui vient d'être décrit.
  • L'invention concerne également en tant que tel un véhicule, du genre véhicule automobile, équipé d'un moteur 1 conforme à l'invention.
  • L'invention concerne en outre de manière indépendante un piston 4 conçu pour former le premier piston 4 d'un moteur 1 conforme à l'invention.
  • L'invention concerne enfin également une soupape conçue pour former la première soupape 6 d'un moteur 1 conforme à l'invention.
  • POSSIBILITE D'APPLICATION INDUSTRIELLE
  • L'invention trouve son application industrielle dans la conception, la fabrication et l'utilisation de moteurs.

Claims (15)

  1. Moteur (1) à combustion interne comprenant :
    - une chambre (3) conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre (3),
    - un premier piston (4) et un deuxième piston (14) qui contribuent tous deux à délimiter le volume de ladite chambre (3),
    ledit moteur (1) étant caractérisé en ce que :
    - un premier passage (5) est ménagé à travers ledit premier piston (4) pour mettre en communication l'intérieur de la chambre (3) avec l'extérieur, ledit premier passage (5) étant conçu pour évacuer hors de la chambre (3) le fluide brûlé résultant de la combustion du fluide de travail,
    - un deuxième passage (17) est ménagé à travers ledit deuxième piston (14) pour mettre en communication l'intérieur de la chambre (3) avec l'extérieur, ledit premier passage (5) étant conçu pour alimenter la chambre (3) en fluide de travail.
  2. Moteur (1) selon la revendication 1 caractérisé en ce qu'il comprend un cylindre (2), qui se présente de préférence sous la forme d'un tube creux rectiligne, lesdits premier et deuxième pistons (4, 14) étant montés à coulissement axial au sein dudit cylindre (2), ladite chambre (3) étant formée par l'espace interstitiel séparant lesdits pistons (4, 14) dans le cylindre (2).
  3. Moteur (1) selon la revendication 2 caractérisé en ce lesdits premier et deuxième pistons (4, 14) sont montés en opposition au sein du cylindre (2).
  4. Moteur (1) selon l'une des revendications 1 à 3 caractérisé en ce que le premier piston (4) et le deuxième piston (14) sont conçus pour se déplacer selon des mouvements de va-et-vient opposés.
  5. Moteur (1) selon l'une des revendications 1 à 4 caractérisé en ce qu'il comprend un arbre de sortie (8) monté coaxialement audit premier piston (4), l'arbre de sortie (8) et le premier piston (4) coopérant pour convertir le mouvement du premier piston (4) en mouvement rotatif de l'arbre de sortie (8).
  6. Moteur (1) selon la revendication 5 caractérisé en ce que la coopération entre l'arbre de sortie (8) et le premier piston (4) est réciproque, c'est-à-dire qu'elle permet de convertir le mouvement rotatif de l'arbre de sortie (8) en mouvement du premier piston (4).
  7. Moteur (1) selon la revendication 5 ou 6 caractérisé en ce qu'il comprend d'une part un premier chemin de guidage (9) solidaire de l'arbre de sortie (8) et d'autre part un premier élément de guidage (10) solidaire du premier piston (4), ledit premier élément de guidage (10) étant monté pour se déplacer le long du premier chemin de guidage (9), pour convertir le mouvement du premier piston (4) en mouvement rotatif de l'arbre de sortie (8).
  8. Moteur (1) selon l'une des revendications 1 à 7 caractérisé en ce qu'il comprend un arbre de sortie (8) monté coaxialement audit deuxième piston (14), l'arbre de sortie (8) et le deuxième piston (14) coopérant pour convertir le mouvement du deuxième piston (14) en mouvement rotatif de l'arbre de sortie (8).
  9. Moteur (1) selon l'une des revendications précédentes caractérisé en ce qu'il comprend une première soupape (6) montée sur le premier piston (4) pour contrôler l'ouverture et la fermeture dudit premier passage (5).
  10. Moteur (1) selon les revendications 5 et 9 caractérisé en ce que ledit arbre de sortie (8) et la première soupape (6) coopèrent pour convertir le mouvement rotatif de l'arbre de sortie (8) en mouvement de la première soupape (6) relativement au premier piston (4).
  11. Moteur (1) selon la revendication 10 caractérisé en ce qu'il comprend d'une part un deuxième chemin de guidage (11) solidaire de l'arbre de sortie (8) et d'autre part un deuxième élément de guidage (12) solidaire de la première soupape (6), ledit deuxième élément de guidage (12) étant monté pour se déplacer le long du deuxième chemin de guidage (11) pour convertir le mouvement rotatif de l'arbre de sortie (8) en mouvement de la première soupape (6) relativement au premier piston (4).
  12. Moteur (1) selon la revendication 11 caractérisé en ce que la position dudit deuxième chemin de guidage (11) relativement à l'arbre de sortie (8) peut être ajustée en rotation et/ou en translation.
  13. Moteur (1) selon l'une des revendications précédentes caractérisé en ce qu'il comprend une deuxième soupape (18) montée sur le deuxième piston (14) pour contrôler l'ouverture et la fermeture dudit deuxième passage (17).
  14. Moteur (1) selon les revendications 8 et 13 caractérisé en ce que l'arbre de sortie (8) et la deuxième soupape (18) coopèrent pour convertir le mouvement rotatif de l'arbre de sortie (8) en mouvement de la deuxième soupape (18) relativement au deuxième piston (14).
  15. Moteur (1) selon l'une des revendications caractérisé en ce qu'il est conçu pour fonctionner selon le cycle à quatre temps suivant :
    - au cours du premier temps du cycle de fonctionnement du moteur, le premier et le deuxième piston (4, 14) subissent un mouvement d'éloignement mutuel qui crée une dépression dans la chambre de combustion (3), ce qui favorise l'aspiration du fluide de travail par le deuxième passage (17), la deuxième soupape (18) étant en position ouverte pour autoriser l'admission, à travers le deuxième piston (14) via le deuxième passage (17), de fluide de travail dans la chambre de combustion (3), la première soupape (6) qui équipe le premier piston (4) étant quant à elle fermée ;
    - une fois arrivés à leur écartement mutuel maximal, les premier et deuxième pistons (4, 14) subissent un mouvement inverse de rapprochement mutuel, qui correspond au deuxième temps du cycle, c'est-à-dire qu'ils se rapprochent l'un de l'autre de manière à comprimer le fluide de travail contenu dans la chambre (3) tandis que la première et la deuxième soupape (6, 18) sont fermées de manière à produire un effet de compression du fluide de travail entre les pistons (4, 14) ;
    - lorsque les pistons 4, 14 atteignent leur point d'écartement minimal, le fluide de travail comprimé au maximum explose soit sous l'effet d'un allumage obtenu par la production d'une étincelle générée par une bougie soit sous l'effet du taux de compression lui-même, qui produit un échauffement tel que le fluide de travail explose spontanément ;
    - cette phase d'explosion produit une détente et une expansion des gaz constituant le fluide de travail, ce qui génère une forte pression dans la chambre (3) qui s'exerce sur les pistons (4, 14), dont les soupapes (6, 18) sont fermées, entraînant ainsi un écartement mutuel des pistons (4, 14) ;
    - cet écartement des pistons (4, 14) sous l'effet de la pression résultant de l'explosion dans la chambre (3) entraîne en rotation l'arbre de sortie (8) ;
    - les pistons (4, 14) se rapprochent ensuite à nouveau, ce qui crée une compression dans la chambre (3) ;
    - à cet instant, la première soupape (6) du premier piston (4) est ouverte, ce qui permet, sous l'effet de compression réalisée par le mouvement de rapprochement mutuel des pistons (4, 14), de faire échapper le fluide de travail brûlé à travers le premier passage (5).
    à l'issue de ce quatrième temps, le moteur (1) se retrouve dans la configuration correspondant au premier temps et est prêt à recommencer à nouveau le cycle à quatre temps.
EP13181010.3A 2008-03-17 2009-03-17 Moteur à combustion interne Active EP2669470B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801436A FR2928693A1 (fr) 2008-03-17 2008-03-17 Moteur a combustion interne
EP09726478.2A EP2279332B1 (fr) 2008-03-17 2009-03-17 Moteur a combustion interne

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP09726478.2 Division 2009-03-17
EP09726478.2A Division EP2279332B1 (fr) 2008-03-17 2009-03-17 Moteur a combustion interne
EP09726478.2A Division-Into EP2279332B1 (fr) 2008-03-17 2009-03-17 Moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP2669470A1 true EP2669470A1 (fr) 2013-12-04
EP2669470B1 EP2669470B1 (fr) 2017-05-03

Family

ID=39587978

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09726478.2A Active EP2279332B1 (fr) 2008-03-17 2009-03-17 Moteur a combustion interne
EP13181010.3A Active EP2669470B1 (fr) 2008-03-17 2009-03-17 Moteur à combustion interne

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09726478.2A Active EP2279332B1 (fr) 2008-03-17 2009-03-17 Moteur a combustion interne

Country Status (13)

Country Link
US (2) US8640659B2 (fr)
EP (2) EP2279332B1 (fr)
JP (2) JP5706311B2 (fr)
KR (1) KR101633522B1 (fr)
CN (1) CN102016230B (fr)
BR (1) BRPI0909495B1 (fr)
EA (1) EA027228B1 (fr)
ES (2) ES2526866T3 (fr)
FR (1) FR2928693A1 (fr)
IL (1) IL208148A (fr)
UA (1) UA104860C2 (fr)
WO (1) WO2009122087A2 (fr)
ZA (1) ZA201007307B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928693A1 (fr) 2008-03-17 2009-09-18 Antar Daouk Moteur a combustion interne
NL2007987C2 (en) * 2011-12-16 2013-06-18 Griend Holding B V Rotary drive system having a cam follower with detachable wheel support.
AT516249B1 (de) * 2015-05-05 2016-04-15 Ge Jenbacher Gmbh & Co Og Anordnung aus einem Genset und einem Container
WO2016198554A1 (fr) * 2015-06-09 2016-12-15 Universiteit Gent Dispositif de piston libre
CA3165700A1 (fr) * 2020-01-31 2021-08-05 Intelline Inc. Moteurs a combustion lineaire dotes de soupape a l'interieur de piston
CN113389611A (zh) * 2020-03-12 2021-09-14 赵天安 一种进气调节机构、一种发动机和一种气动马达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE167245C (fr) *
DE3940826A1 (de) * 1989-12-11 1991-06-13 Josef Smidrkal Brennkraftmaschine mit im kolben angebrachten ventilen mit verstellbaren steuerzeiten
US5351657A (en) * 1992-09-28 1994-10-04 Buck Erik S Modular power unit
WO1999043936A1 (fr) * 1998-02-25 1999-09-02 Sunpower, Inc. Moteur a combustion interne et pistons libres
WO2005052338A1 (fr) * 2003-11-26 2005-06-09 Graydon Aubrey Shepherd Moteur alternatif
WO2007126312A1 (fr) * 2006-04-27 2007-11-08 Stichting Administratiekantoor Brinks Westmaas Convertisseur d'energie comprenant des pistons comportant des passages de gaz internes

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US665970A (en) * 1900-05-24 1901-01-15 William Obuch Rotary engine.
GB191328301A (en) * 1913-12-08 1914-12-08 Robert Daniel Bradford Improvements in Rotary and Reciprocating Internal Combustion Engines.
US1372559A (en) * 1917-10-29 1921-03-22 Frank H Stiasny Internal-combustion engine
US1479918A (en) * 1920-01-05 1924-01-08 Lleo Multicylinder internal-combustion engine
US1745821A (en) * 1927-03-18 1930-02-04 Gribojedoff Nicolai Von Internal-combustion engine
US2040182A (en) * 1932-12-20 1936-05-12 Harry E Myers Opposed piston engine
US2228184A (en) * 1938-08-31 1941-01-07 Worthey E Strite Internal combustion engine
GB541053A (en) * 1940-05-28 1941-11-11 Vivian Charles Eric Marten Gwi An improved four-stroke internal combustion engine using crankcase compression
US2331165A (en) * 1941-02-13 1943-10-05 Bird James Thomas Reciprocating engine
GB580631A (en) * 1944-07-14 1946-09-13 Reginald John Fisher Improvements in or relating to means for the admission of the charge to the cylinders of two-stroke cycle internal combustion engines
US2532106A (en) * 1946-12-06 1950-11-28 Korsgren Theodore Yngve Multiple opposed piston engine
US2473936A (en) * 1947-10-18 1949-06-21 Burrough Joe Internal-combustion engine
US3014468A (en) * 1959-10-09 1961-12-26 British Internal Comb Eugine R Internal combustion engines and pistons therefor
US3584610A (en) * 1969-11-25 1971-06-15 Kilburn I Porter Internal combustion engine
GB1346902A (en) * 1971-05-26 1974-02-13 Deacon B F Internal combustion engines
GB1346901A (en) * 1971-05-26 1974-02-13 Deacon B F Internal combustion engines
US4043301A (en) * 1975-06-20 1977-08-23 Templet Industries Incorporated Internal combustion engine
AU497643B2 (en) * 1975-06-23 1978-12-21 F Kaye Internal combustion engine
JPS5853176B2 (ja) * 1976-05-14 1983-11-28 株式会社クボタ ピストン対向式内燃機関
US4090478A (en) * 1976-07-26 1978-05-23 Trimble James A Multiple cylinder sinusoidal engine
US4366784A (en) * 1981-03-16 1983-01-04 Paul Brayton B Crankless cam driven piston engine
JPS6282236A (ja) * 1985-10-05 1987-04-15 Shigeyoshi Karasawa 対向ピストン式同軸エンジン
FR2603338B1 (fr) * 1986-09-02 1990-12-21 Esparbes Bernard Moteur a combustion interne a piston annulaire et arbre central
WO1988005862A1 (fr) * 1987-01-28 1988-08-11 Johnston Richard P Moteur a combustion interne a mouvement alternatif et a cycle variable
US6125819A (en) * 1995-08-08 2000-10-03 Strieber; Louis Charles Rotating piston engine with variable effective compression stroke
US5743220A (en) * 1996-07-29 1998-04-28 Guarner-Lans; Enrique Eduardo Internal combustion engine with central chamber
AU2167800A (en) * 1998-12-11 2000-06-26 Ovation Products Corporation Low pressure ratio piston compressor
FR2819016B1 (fr) * 2001-01-03 2003-05-02 Michel Petit Moteur thermique a cylindre tournant
US20020043226A1 (en) * 2000-10-17 2002-04-18 Marion Gofron Internal combustion engine featuring axially and opposingly arranged units
US6584610B1 (en) * 2000-10-25 2003-06-24 Numerical Technologies, Inc. Incrementally resolved phase-shift conflicts in layouts for phase-shifted features
JP2005520095A (ja) * 2001-12-18 2005-07-07 デルフィ テクノロジーズ,インコーポレイティド 対向ピストン式内燃機関
US7469664B2 (en) * 2003-06-25 2008-12-30 Advanced Propulsion Technologies, Inc. Internal combustion engine
JP2005155345A (ja) * 2003-11-20 2005-06-16 Denso Corp フリーピストンエンジンおよびこれを用いた発電装置
WO2005067508A2 (fr) * 2004-01-02 2005-07-28 Darrell Grayson Higgins Moteur a combustion interne a corps coulissant
CN1707079A (zh) * 2004-06-09 2005-12-14 贵阳众康科技开发有限公司 轴向往复式转子发动机
US7156056B2 (en) * 2004-06-10 2007-01-02 Achates Power, Llc Two-cycle, opposed-piston internal combustion engine
CN100429431C (zh) * 2004-11-24 2008-10-29 赵荃 直线运动与旋转运动转换的功率传输机构
US7194989B2 (en) * 2005-03-03 2007-03-27 Samuel Raymond Hallenbeck Energy efficient clean burning two-stroke internal combustion engine
US7434549B2 (en) * 2005-08-30 2008-10-14 Kwong Wang Tse Opposed double piston internal combustion engine
US7559298B2 (en) * 2006-04-18 2009-07-14 Cleeves Engines Inc. Internal combustion engine
US8091519B2 (en) * 2006-05-12 2012-01-10 Bennion Robert F Paired-piston linear engine
US20080105224A1 (en) * 2006-11-08 2008-05-08 Larry Kubes Barrel-type internal combustion engine
MY165334A (en) * 2007-11-08 2018-03-21 Two Heads Llc Monoblock valveless opposing piston internal combustion engine
CN101960088B (zh) * 2008-01-11 2013-08-21 迈克梵航空有限责任公司 往复式内燃机
FR2928693A1 (fr) 2008-03-17 2009-09-18 Antar Daouk Moteur a combustion interne

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE167245C (fr) *
DE3940826A1 (de) * 1989-12-11 1991-06-13 Josef Smidrkal Brennkraftmaschine mit im kolben angebrachten ventilen mit verstellbaren steuerzeiten
US5351657A (en) * 1992-09-28 1994-10-04 Buck Erik S Modular power unit
WO1999043936A1 (fr) * 1998-02-25 1999-09-02 Sunpower, Inc. Moteur a combustion interne et pistons libres
WO2005052338A1 (fr) * 2003-11-26 2005-06-09 Graydon Aubrey Shepherd Moteur alternatif
WO2007126312A1 (fr) * 2006-04-27 2007-11-08 Stichting Administratiekantoor Brinks Westmaas Convertisseur d'energie comprenant des pistons comportant des passages de gaz internes

Also Published As

Publication number Publication date
IL208148A0 (en) 2010-12-30
US20110036330A1 (en) 2011-02-17
FR2928693A1 (fr) 2009-09-18
EA201071091A1 (ru) 2011-04-29
ES2641739T3 (es) 2017-11-13
UA104860C2 (uk) 2014-03-25
US20140130780A1 (en) 2014-05-15
WO2009122087A2 (fr) 2009-10-08
JP2011514479A (ja) 2011-05-06
EP2279332A2 (fr) 2011-02-02
EP2669470B1 (fr) 2017-05-03
ZA201007307B (en) 2011-07-27
CN102016230B (zh) 2013-07-17
JP5706311B2 (ja) 2015-04-22
US8640659B2 (en) 2014-02-04
CN102016230A (zh) 2011-04-13
KR101633522B1 (ko) 2016-06-27
BRPI0909495A2 (pt) 2020-08-18
IL208148A (en) 2015-04-30
JP2015129516A (ja) 2015-07-16
US9353681B2 (en) 2016-05-31
JP6242358B2 (ja) 2017-12-06
EP2279332B1 (fr) 2014-07-23
KR20100135259A (ko) 2010-12-24
BRPI0909495B1 (pt) 2021-07-27
ES2526866T3 (es) 2015-01-16
WO2009122087A3 (fr) 2009-11-26
EA027228B1 (ru) 2017-07-31

Similar Documents

Publication Publication Date Title
EP2669470B1 (fr) Moteur à combustion interne
WO2000040845A2 (fr) Moteur compresse a combustion interne a deux ou a quatre temps
WO1999020881A1 (fr) Procede de controle du mouvement de piston de machine, dispositif de mise en oeuvre et equilibrage du dispositif
WO2009122089A2 (fr) Moteur pourvu d'une chambre a volume variable
EP0587479B1 (fr) Moteur à deux temps à injection pneumatique et à équilibrage du premier ordre des masses alternatives
FR2857408A1 (fr) Moteur a combustion interne a balayage des gaz brules residuels presents dans une chambre de combustion et procede permettant un tel balayage
WO1995004877A2 (fr) Moteur thermique a combustion interne comportant au moins deux cylindres opposes
EP0069039B1 (fr) Moteur à combustion interne suralimenté
EP2166198B1 (fr) Moteur à combustion interne du type à fonctionnement dégradé d'au moins un cylindre
FR2898383A1 (fr) Ensemble mecanique pour la realisation de machines telles que compresseurs, moteurs thermiques ou autres, dotees d'un cylindre et d'un piston
EP3004550B1 (fr) Dispositif de transformation de mouvement et procédé correspondant
WO2010086516A2 (fr) Moteur rotatif à rotor circulaire
BE1008009A3 (fr) Procede de distribution pour moteur a combustion interne et dispositif pour la mise en oeuvre de ce procede.
FR2562156A1 (fr) Systeme de soupape pour un moteur a combustion interne
WO1980002443A1 (fr) Moteur thermique a combustion interne et a injection
FR2833647A1 (fr) Moteur a combustion interne entrainant un compresseur
EP3983647A1 (fr) Moteur a combustion interne a train epicycloïdale et a pistons alternatifs
FR3103216A1 (fr) Système de commande pour une soupape d’admission sur piston d’un moteur deux temps
WO2015189530A1 (fr) Moteur a soupapes latérales perfectionne
WO1999057425A1 (fr) Moteur a quatre temps a combustion interne
FR2882398A1 (fr) Moteur rotatif a combustion interne a quatre temps simultanes
FR2652124A1 (fr) Procede et appareil pour refouler a force de l'air dans un moteur a combustion interne apres la phase de combustion.
WO1988005861A1 (fr) Procede pour allumer par compression un melange gazeux dans un moteur a combustion interne, et moteur mettant en oeuvre ce procede
FR2466609A1 (fr) Machine rotative
FR3016929A1 (fr) Dispositif d'injection de carburant pour moteur a pistons a plat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2279332

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20140603

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20150326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160622

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2279332

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009045948

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2641739

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009045948

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 890226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230317

Year of fee payment: 15

Ref country code: FR

Payment date: 20230322

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230316

Year of fee payment: 15

Ref country code: AT

Payment date: 20230321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 15

Ref country code: IT

Payment date: 20230316

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 15

Ref country code: DE

Payment date: 20230412

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240318

Year of fee payment: 16

Ref country code: CZ

Payment date: 20240315

Year of fee payment: 16