EP2659093A1 - Strömungsmaschine - Google Patents

Strömungsmaschine

Info

Publication number
EP2659093A1
EP2659093A1 EP11802969.3A EP11802969A EP2659093A1 EP 2659093 A1 EP2659093 A1 EP 2659093A1 EP 11802969 A EP11802969 A EP 11802969A EP 2659093 A1 EP2659093 A1 EP 2659093A1
Authority
EP
European Patent Office
Prior art keywords
impeller
working medium
edge
channel
turbomachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11802969.3A
Other languages
English (en)
French (fr)
Other versions
EP2659093B1 (de
Inventor
Frank Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Cyplan Ltd
Original Assignee
Duerr Cyplan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010056557 external-priority patent/DE102010056557A1/de
Priority claimed from DE202010017157U external-priority patent/DE202010017157U1/de
Application filed by Duerr Cyplan Ltd filed Critical Duerr Cyplan Ltd
Priority to EP18209322.9A priority Critical patent/EP3480425B1/de
Publication of EP2659093A1 publication Critical patent/EP2659093A1/de
Application granted granted Critical
Publication of EP2659093B1 publication Critical patent/EP2659093B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/302Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor characteristics related to shock waves, transonic or supersonic flow

Definitions

  • the invention relates to a turbomachine, in particular a turbine, with a housing which has at least one inflow channel, and with a rotatably mounted in the housing on a shaft impeller on which a plurality of blades are arranged, which are flowed by a working medium, wherein the working medium via the inflow channel flows into at least one formed between two blades received on the impeller blades formed channel.
  • the invention also relates to an energy conversion plant which makes use of a cyclic process for the provision of mechanical energy, in which a working medium is thermodynamically expanded almost isentropically by means of a thermal turbomachine (turbine).
  • a thermal turbomachine turbine
  • FIG. 1 is a sectional view of a portion of a conventional steam turbine in the form of a radial turbine, which is designed for a vapor flow below the sound velocity (subsonic flow).
  • a radial turbine the corresponding working medium flows in the radial direction with respect to an axis of rotation of an impeller and acts on the blade at the edge of this impeller.
  • the working medium is flowed in the axial direction with respect to a rotational axis of the impeller.
  • Fig. 1 shown turbine are formed by the radial in the axial direction at an angle of 90 ° extending blade inlet and -austrittskanten.
  • the turbomachine of FIG. 1 designed as a radial turbine has an essentially stationary turbine housing 110, in which a turbine wheel 120 (impeller) is arranged.
  • the impeller 120 includes a plurality of (co-rotating) blades, wherein in Fig. 1 representative of a blade 121 is shown.
  • a gaseous working medium for example exhaust gas from an internal combustion engine, flows through an inflow channel or through a nozzle channel 100 of the turbine housing 110 according to a directional arrow 151 and drives the impeller 120.
  • the flowing working fluid is first accelerated in the nozzle channel 1 10 and deflected along a blade 121, wherein the edges of the blade are aligned on the one hand in the region of a working medium inlet parallel to the axis of rotation of the impeller 120 and have a working medium outlet 153 in the radial direction.
  • the working medium is guided along its entire flow path in the impeller between vanes 121.
  • the impeller 120 of the flow device (turbine) according to FIG. 1 is fundamentally similar to the impeller of a compressor, in which the working medium driven by the blades flows in a direction oriented opposite to the illustration according to FIG. Accordingly, the flow can be deflected in an operating state as a compressor within the blades of the impeller from the inside out so that it runs after exiting the blade channels at Hämediumaustritt axially to the impeller.
  • This type of paddle wheels or blading is well suited for working medium or vapor velocities below the speed of sound.
  • radial turbines according to the prior art with wheels in which the flow is deflected along its blading by 90 °, give Difficulties when steam flows reach their speed of sound.
  • a particular problem is that radial turbines for supersonic flows with parallel and axially directed to the shaft blades lead to vortex formation and thereby lose effectiveness.
  • the Organic Rankine cycle process is a process of energy conversion in which a working fluid other than water vapor is used from a heat source to operate steam turbines.
  • a working medium mostly organic liquids are used with a lower evaporation temperature (T V erd ⁇ 100 ° C), rarely with a higher evaporation temperature.
  • the method is used primarily in power generation and energy conversion plants when the available temperature gradient between the heat source and the heat sink is too low for the operation of a water vapor driven turbine.
  • a turbomachine according to the invention has a housing with an inflow channel.
  • a rotatably mounted on a shaft impeller is arranged, which has a plurality of flowable by the working medium blades.
  • a special feature of a turbomachine according to the invention is that a guide body with at least one deflection element is provided in the intermediate region between the blade channel outlet and the outlet channel for a deflection of the working medium flowing out of a blade channel in the direction of the outlet channel.
  • the working fluid first flows into the impeller via the inflow passage in the radial direction with respect to an axis of rotation of the impeller.
  • the blades of the impeller thereby form a grid rotating with the impeller and subdivided in the circumferential direction of the impeller, in which the working medium is deflected in particular in the circumferential direction and directed in the radial direction into the interior of the impeller.
  • rectangular inlet openings of a plurality of blade channels are formed between the radially outer edges of the blades and rectangular outlet openings of a plurality of blade channels are formed between the radially inner edges of the blades.
  • the inlet and outlet openings of a blade channel are each arranged in planes which are parallel to one another or at an acute angle to one another.
  • the intermediate region (co-rotating) according to the invention is arranged in the interior of the impeller such that it is at least partially surrounded annularly by the outlet openings of a plurality of vane channels.
  • the guide body preferably has a deflection element in the form of an integrally formed with the impeller shaft support structure with rotationshyperboloider or conical outer contour (impeller cone), which serves on its outer side for flow deflection.
  • the guide body also has an annular deflection element in the form of a circular ring structure, which is at least partially inserted into the intermediate space.
  • a guidance body with all sections rotatably connected to the impeller may have both stationary and non-moving baffles connected to the impeller.
  • annular deflecting element engaging in the interspace can be fixed via a fastening ring on the housing of the turbomachine.
  • the mounting ring is then preferably designed as a disk-shaped, fürström bare grid structure with radially extending spokes. In this case, the axial force acting on the paddle wheel resulting from the directional change of the flow is reduced.
  • the turbomachine is designed as a compressor, in which the working fluid, due to the function, flows contrary to the direction flowing in a turbine.
  • the working medium flows into the impeller via a widening inflow channel (in relation to the rotational axis of the impeller) in the radial direction.
  • a bottleneck is for the Stream of the working medium in the region of the inflow channel is preferred in order to achieve supersonic speed in the region of the inflow channel can.
  • the guide body has a deflecting element with a first and a second annular edge, wherein the first annular edge of the deflecting element is positioned adjacent to the Schaufelkanalaustritt and wherein the second annular edge is positioned adjacent to the diffuser channel entrance.
  • the deflecting element is designed such that the first edge is a leading edge and in (relative to the impeller) radial direction, wherein the second edge is a trailing edge and facing in the same direction as the axis of rotation, so that so that the effluent from the blade channel working fluid is deflected from the radial to the axial direction.
  • the guide body has a plurality of spaced-apart deflection elements.
  • the deflecting element comprises a side facing the impeller and a side facing away from the impeller.
  • the deflecting element is here positioned such that it can be flowed around on both sides of the working medium. Accordingly arise on both sides of the deflecting annular channels for the working fluid.
  • the annular deflecting element is arranged approximately on all sides by working medium umströmbar. More preferably, the annular deflecting element at least in sections on a drop, semi-moon or Tragf liege-shaped cross-sectional geometry. This results in an advantageous deflection of the working medium in the region of the impeller. This enables a particularly efficient operation of the flow device.
  • the guide body on a plurality of spaced deflecting elements, which together form a through-flow grating with annular channels.
  • the total flow of the working medium is divided into a plurality of annular partial streams.
  • the total current can be deflected effectively, wherein the individual partial flows formed can be subjected to different treatments by making the contours of the deflecting elements different from each other.
  • further flow guidance elements such as turbulence promoters, surface coatings or the like can be arranged on the deflection elements. The same effect can basically be achieved even when using only one deflecting element.
  • the deflecting elements spaced from each other are positioned such that their edges facing the blades of the impeller have an axial spacing in the axial direction.
  • the edges facing the blades of the impeller at least approximately the same (outer) diameter, which in turn is smaller by a maximum of 10% than a (common) diameter of the inner edges of the impeller blades.
  • the deflecting elements spaced apart from each other are positioned such that their edges pointing in the direction of the axis of rotation of the impeller have a different radial deflection. stand with respect to the axis of rotation of the impeller.
  • a plurality of permanent magnets and / or rotor windings are arranged on a shaft connected to the impeller, which with a plurality of adjacently arranged, the shaft encircling stator windings form an electrical generator.
  • the turbomachine can be used as a "generator turbine" for power generation.
  • a turbomachine according to the invention may in particular be a thermal turbomachine.
  • An idea of the invention is, moreover, to use a turbomachine according to the invention as a turbine, in particular as a radial turbine, in an Organic Rankine cycle.
  • the invention therefore also extends to a system for converting energy with a cyclic process in which a turbomachine according to the invention is used.
  • the invention relates to a radial turbine for a plant for the conversion of energy in the form of a so-called ORC plant.
  • An ORC plant is a plant in which a thermodynamic cycle in the form of an "Organic Rankine Cycle” (ORC) is performed, with which heat can be converted into mechanical energy.
  • the heat supplied to an ORC system according to the invention can originate, for example, from a heat source in the form of an internal combustion engine from a combined heat and power plant, from a biomass combustion plant, from a geothermal source or from a solar power plant.
  • a heat source in the form of an internal combustion engine from a combined heat and power plant, from a biomass combustion plant, from a geothermal source or from a solar power plant.
  • Any form of waste heat can be used with an ORC system.
  • Systems- example can be obtained from the waste heat of internal combustion engines by means of an ORC plant additional electrical energy.
  • An ORC plant may contain a condenser for liquefying a working medium of the plant, a pump, an evaporator for evaporating the working medium.
  • a turbomachine downstream of the evaporator, in particular a turbine, in which the working fluid is expanded while removing kinetic energy from the circulation.
  • the pump brings a liquid working under standard conditions to operating pressure. Subsequently, the still liquid working medium flows through the heat exchanger (evaporator) or a heat exchanger system in which thermal energy is transferred for example from one of the aforementioned sources to the working medium of the ORC system. Due to the energy input, the working medium preferably evaporates completely. At the outlet of the evaporator then saturated steam or dry steam is formed. The energy input in the evaporator increases the specific volume and the temperature of the steam.
  • volume change work which converts the turbine on their blades into mechanical energy.
  • the steam flows out of the turbine through a regenerator in which a heat exchange takes place between the vaporous working medium and the liquid working medium coming from the pump (internal heat exchange).
  • the (still vaporous) working medium brought to the condensation temperature in the turbine and possibly in the regenerator reaches the downstream condenser, in which the working medium is recondensed with the release of low-temperature heat.
  • the heat released in the condensation is preferably fed via a cooling water circuit in a heat network.
  • the working medium condenses out and returns completely to the liquid state of aggregation.
  • the feed pump (pump) subsequently brings the working fluid to operating pressure and then back into the evaporator. This completes the cycle.
  • a generator can be driven, which generates electrical current with the mechanical energy generated by the turbine from thermal energy.
  • Such an ORC system with a turbomachine according to the invention can be used both for small and large domestic installations as well as for large industrial plants and power plants.
  • house equipment are the power supplies, z.
  • Industrial plants are e.g. Manufacturing plants, in particular manufacturing plants of the automotive industry, in particular paint shops, in which a balanced demand for electricity (from mechanical energy) and heat at different temperature levels is needed.
  • FIGS. 2, 3, 4, 5 a and 5b Advantageous embodiments of a turbomachine according to the invention are shown in FIGS. 2, 3, 4, 5 a and 5b and will be described below. Show it:
  • FIG. 2 shows a sectional view of a radial turbine for supersonic flow with a deflecting element in the form of a hyperboloid of revolution (impeller cone) for deflecting the flow within the impeller;
  • FIG 3 is a sectional view of an impeller of a radial turbine for supersonic flow with a sectionally projecting into the impeller guide body for reducing the vortex formation in a downstream diffuser.
  • FIG. 4 shows a sectional view of a flow device with guide bodies located mainly within the rotor wheel
  • Fig. 5a is an enlarged sectional view of a portion of the flow device of Fig. 4; and Fig. 5a shows a view of vanes of the impeller of the flow device according to the invention from Fig. 5a, which are shown cut to illustrate their geometry transversely to the blade axis.
  • Fig. 2 shows a section of a sectional view of a turbomachine according to the invention in the form of a radial turbine with a substantially stationary turbine housing 1, 4, 1 1, in which a turbine wheel 2 (impeller) is arranged.
  • the turbine housing 1, 4, 1 1 comprises in particular a nozzle ring 1 and an associated cover 1 1.
  • the cover 1 1 and the nozzle ring 1 are preferably designed as separate modules. Between them, the nozzle channels 10 are formed.
  • the turbine housing 1, 4, 1 1 comprises a diffuser 4 with an outlet channel 40 for the working medium.
  • the impeller 2 disposed in the turbine housing includes a plurality of (co-rotating) vanes.
  • the impeller 2 is shown with a blade 21.
  • Between the blades of the impeller 2 straight or curved blade channels 20 are formed, which have a substantially rectangular cross-section.
  • the blades are connected to each other via a base of the impeller 2 and on a side spaced therefrom via a so-called bandage 22.
  • a vaporous working medium for example the working medium of an ORC system, flows through a nozzle channel 10 of the turbine housing 1 1 acting as an inflow channel in accordance with a directional arrow 51.
  • the flowing working medium is accelerated via a corresponding nozzle geometry, so that sound velocity is reached at a constriction, wherein the working medium can be brought to supersonic speed before being transferred to the impeller 2.
  • the vaporous working medium flows out of the nozzle channel 10 and impinges on the blade 21, which is designed in such a way that both the flowed edge and the downstream edge of the blade 21 and therefore also these are aligned parallel to and axially towards the impeller shaft.
  • the majority of the stream 51 of working medium is after passing through the blades 21 or a respective blade channel between see several blades 21 (and thus in a so-called intermediate region of the impeller 2) deflected parallelism to the axis of rotation of the impeller (arrow 53).
  • a guide body 3 in Form of a conical deflecting element (impeller cone) provided, which is preferably designed as a rotational hyperboloid.
  • This deflecting element can optionally be designed in one piece with the impeller.
  • the guide body 3 is located in an intermediate region 29 between the blade channel outlet 23 and the inlet opening 24 in the outlet channel 40 formed by the diffuser 4.
  • the deflecting element with the guide body 3 designed as an impeller cone is in the region of its base in the intermediate region 29 within the Impeller 2 arranged. It is enclosed in sections annularly by the blade channel outlets 23 and by the blades 21 of the rotor.
  • the guide body 3 extends into the outlet channel 40 formed by the diffuser 4.
  • the impeller cone causes a largely laminar flow deflection at moderate flow velocities. At high flow velocities, vortices 54 can occur.
  • the positioning of guide bodies in the outflow channel or in the diffuser 4 behind the impeller 2 can reduce vortex formation.
  • FIG. 3 is essentially the same as the flow device according to FIG. 2. Accordingly, reference can be made to the above description to Fig. 2 reference. Accordingly, similar components and functional units are provided with the same reference numerals.
  • the flow apparatus according to FIG. 3 comprises, in addition to a first deflection element in the form of the co-rotating impeller cone, a second deflection element 31 in the form of a ring-shaped guide body 3 mounted on the housing side.
  • the guide body 3 ' preferably engages in an intermediate region 29 of the impeller 2, which differs from the one Impeller blades 21 is encompassed. As a result, the stream of working fluid emerging from the impeller blade channels can be split early into two annular partial streams.
  • the guide body 3 ' has a first and a second annular edge 25, 26.
  • the first edge 25 of the deflection element is positioned adjacent to the blade channel exit 23 within the intermediate region 29.
  • the second edge 26 is arranged adjacent to the inlet opening 24 within the outlet channel 40.
  • the first edge 25 acts as a leading edge.
  • the second edge 26 is a trailing edge.
  • the deflecting element 31 is formed with a guide contour 28, which extends from the first edge 25 from an approximately to a rotational axis 27 of the impeller 2 radial direction to the second edge 26 in an approximately to the axis of rotation 27 of the impeller 2 axial direction.
  • the effluent from the blade channel 20 working fluid is thus deflected by the deflecting element 31 from a substantially radial in a substantially axial direction.
  • other flow directions can be generated by the contours of the deflecting elements are oriented in the corresponding directions.
  • radial turbines are often used in ORC plants for converting the flow energy of the working medium into a torque. Due to the low sound velocity in such media and the high pressure ratios between the inlet and outlet of the steam in the turbine, the flow velocity of the steam in the impeller of the turbine is often above the speed of sound. Also, the exit velocity of the steam from the impeller is often still over Mach 0.7.
  • FIGS. 4, 5a and 5b are sections of a further inventive, designed as a radial turbine flow machine shown, the nozzle ring 1 with a nozzle cover 1 1, mounted in a housing on a shaft impeller 2, an inflow passage 10, a diffuser 4, a plurality of blades arranged on the impeller 2, a first lattice-shaped guide body 3 " and a second conical guide body 3.
  • a basic mode of operation corresponds to that of the radial turbine according to Fig. 2 or Fig. 3, so that reference is made to the statements made for this purpose can be.
  • a vaporous working medium can be conducted via the inflow passage 10 to a wheel entry of the impeller according to a directional arrow 51. It hits the blade 21 there and flows between the blades 21 into a blade channel 20 according to a directional arrow 42 (FIG. 5b). The flow onto the blade 21 takes place in the radial direction with respect to a rotational axis of the impeller 2. After flowing through the blade channel 20, the working fluid passes into an intermediate region 29 between a blade channel outlet and an outlet channel 40 downstream of the rotor 2.
  • the first guide body 3 " and the second guide body 3 are positioned, whereby both guide bodies can preferably extend in sections out of the intermediate area into the outlet channel 40.
  • the first guide body 3 " also comprises a lattice-shaped, in particular provided with radial spokes, permeable mounting ring 34 two annular deflecting elements 31 and 32, wherein in alternative embodiments, more than two deflecting elements are usable. Alternatively, a single annular deflecting element 31 may also be provided.
  • the annular deflection elements 31, 32 are preferably carried integrally excluded together with the mounting ring 34 and thus form the first guide body 3 ", which may also be referred to as a flow grid.
  • the thus constructed first guide member 3 ' engages with the second guide member 3 in the form of Impeller cone together: both guide body 3, 3 " cooperatively share the intermediate region 29 of the impeller 2 at least in sections into separate annular flow channels.
  • the working medium is accordingly divided several times immediately after the blades 21 by the deflecting elements 31 and 32 of the first guide body 3 " and for the most part still directed within the blade wheel 2 parallel to its axis of rotation according to a directional arrow 53.
  • the first guide body 3 extends between a first 25 and a second edge 26 of a deflection element 31 or 32 and is designed such that the first edge is positioned adjacent to the blade channel exit, wherein the second edge 26 is positioned adjacent to the diffuser channel entrance 40 is.
  • the deflection element 31, 32 is formed such that the first edge 25 serves as leading edge and in the radial direction to the axis of rotation of the impeller 2, wherein the second edge 26 is a trailing edge and facing in the same direction as the axis of rotation, so that from the working fluid flowing from the blade channel 20 is deflected from a radial to an approximately axial direction.
  • Both deflecting elements 31, 32 each have a side facing the impeller 2 and a side facing away from the impeller 2.
  • the deflecting elements 31, 32 are in particular so positioned that they are flow around the working medium on both sides.
  • the working medium is deflected after its exit from the bluff channel 20 in such a way in the diffuser channel 40 that a flow along the impeller 2 is optimized.
  • the deflecting elements 31 and 32 of the first guide body 3 " preferably have crescent-shaped cross-sectional contours, the profile of which has a favorable flow configuration.
  • the first edge (annular leading edge) pointing towards the impeller 2 points radially away from the center
  • the second edge located on the axial opposite side (annular trailing edge) points away from the impeller base 2.
  • the curvature of the profile of the deflecting elements is designed so that the working medium is continuously deflected parallel to the axis of rotation of the impeller 2.
  • the trailing edges of these deflecting elements 31, 32 have different diameters with respect to the axis of rotation of the impeller 2, while it is expedient that the leading edges have the same diameter with respect to a rotational axis of the impeller 2
  • the leading edges are positioned as close as possible to the exit edges of the blades 21.
  • the (substantially equal) diameter of the leading edges of the deflecting elements 31, 32 have a diameter which is less than 10% smaller than the diameter of the circle touching all the exit edges of the blades.
  • each blade 21 has a blade height 60 at the blade channel outlet within the rotor 2.
  • a first axial distance 61 between see a surface of the impeller base and the inflow edge of the (first) deflecting element 31 is smaller than an axial distance between the leading edge of the (second) deflecting element 32 and the same surface the impeller base, so that between the leading edges of both deflecting elements 31, 32 an axial distance 62 is present.
  • the leading edge of the deflecting element 32 to the drum 22 is spaced by an axial distance 63.
  • the mutually adjacent deflecting elements 31, 32 are positioned such that their trailing edges 26 have a different radial distance with respect to the axis of rotation of the impeller 2.
  • the leading edges facing the blades of the impeller have a different axial distance 61 or distance 61 +62 to the impeller base in the axial direction.
  • the impeller 2 is the rotating part of the turbomachine or the radial turbine, which either extracts work from the flowing working medium when using the turbomachine as a turbine or work feeds when using the turbomachine as a compressor.
  • the impeller 2 is connected to a shaft, not shown, is discharged through the generated mechanical energy.
  • downstream diffuser 4 is slowed by expansion of the flow cross section, the gas flow and increases the static gas pressure.
  • the diffuser 4 represents in principle the inversion of a nozzle.
  • a bandage 22 shown in Fig. 5a is arranged on the blades 21 and serves to stabilize the impeller 2 and to keep it in shape.
  • the guide body 3 or the deflecting elements 31 and 32 are preferably connected via webs 33 to the turbine housing or the diffuser 4 of the turbine, so that the forces acting on account of the diversion of the working medium are not transmitted to the impeller shaft.
  • the guide body 3 is the counterpart to the moving impeller 2, wherein the guide body 3 preferably fixed to the housing or on the diffuser 4 via the webs 33 is formed. Accordingly, the impeller 2 and the guide body 3 together form a step.
  • a fastening ring 34 of the guide body 3 is provided on the diffuser inlet. It is also possible to attach the deflecting elements 31 and 32 to the impeller 2, so that they then co-rotate.
  • a deflecting element may be fixed to the impeller and another to the housing.
  • the guide body 3 " or the deflecting elements 31 and 32 in a turbomachine according to the invention are made of a (noble) steel and are produced by means of machining processes, but these can in principle also be produced from cast metal (cast aluminum, cast steel, cast iron)
  • the turbomachine is used as a radial turbine in an ORC plant for performing an Organic Rankine cycle.
  • a turbomachine in particular, in which a vaporous working medium flows under a pressure, is expanded in a stationary nozzle system, even with a guide blade, and in this process is accelerated.
  • the steam is deflected therein by a rotating blade system, possibly further relaxed and gives off its flow energy through the blades to a shaft connected to the blades or coupled. From this shaft, the mechanical rotational energy is then transferred to a consumer or a means for converting energy for further use.
  • devices for converting energy in the form of generators for power generation can be driven by the shaft.
  • the invention causes with simple and inexpensive Leit Congress an increase in efficiency of radial turbines.
  • a turbomachine in particular a turbine, comprises a housing 1, 4, 11, which has at least one inflow passage 10.
  • a plurality of blades are arranged on an impeller 2, which can be flowed against by a working medium.
  • the working medium in this case flows via the inflow passage 10 into at least one vane passage 20 formed between two vanes 21 accommodated on the impeller 2. After exiting the impeller area, the working medium enters a diffuser 4.
  • At least one guide body 3, 3 ' , 3 " is provided for a deflection of the working medium flowing out of the blade channel 20 in the direction of the diffuser 4.
  • the guide body in the turbomachine is preferably at least partially in an intermediate region 29 of the radial direction surrounded by the impeller blades Impeller positioned between a blade channel outlet 23 and an inlet opening 24 in a downstream of the impeller 2 formed by the diffuser 4 outlet channel 40.
  • the invention also relates to a system for performing an Organic Rankine cycle with such a turbomachine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Turbine umfasst ein Gehäuse, welches zumindest einen Einströmungskanal (10) aufweist. Dabei sind an einem Laufrad (2) mehrere Schaufeln angeordnet, die von einem Arbeitsmedium anströmbar sind. Das Arbeitsmedium strömt dabei über den Einströmungskanal (10) in mindestens einen zwischen zwei am Laufrad (2) aufgenommenen Schaufeln (21) gebildeten Schaufelkanal (20) ein. Nach dem Austritt aus dem Laufradbereich tritt das Arbeitsmedium in einen Diffusor (4) ein. Dabei ist mindestens ein Leitkörper (3,3") für eine Umlenkung des aus dem Schaufelkanal (20) ausströmenden Arbeitsmediums in Richtung des Diffusors (4) vorgesehen. Der Leitkörper in der Strömungsmaschine ist bevorzugt zumindest abschnittsweise in einem von den Laufradschaufeln (21) in radialer Richtung umgebenen Zwischenbereich (29) des Laufrades (2) positioniert, der zwischen einem Schaufelkanalaustritt (23) und einer Eintrittsöffnung (24) in einem dem Laufrad (2) nachgeschalteten von dem Diffusor (4) gebildeten Austrittskanal (40) liegt. Die Erfindung betrifft auch eine Anlage zur Durchführung eines Organic-Rankine-Kreisprozesses mit einer solchen Strömungsmaschine.

Description

Strömungsmaschine
Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Turbine, mit einem Gehäuse, das zumindest einen Einströmungskanal aufweist, und mit einem in dem Gehäuse auf einer Welle drehbar gelagerten Laufrad, an dem mehrere Schaufeln angeordnet sind, die von einem Arbeitsmedium anströmbar sind, wobei das Arbeitsmedium über den Einströmungskanal in mindestens einen zwischen zwei am Laufrad aufgenommenen Schaufeln gebildeten Schaufelkanal einströmt.
Die Erfindung betrifft außerdem eine Energieumwandlungsanlage, die zur Bereitstellung von mechanischer Energie von einem Kreisprozess Gebrauch macht, bei dem ein Arbeitsmedium mit Hilfe einer thermischen Strömungsmaschine (Turbine) thermodynamisch nahezu isentrop entspannt wird.
Eine solche erfindungsgemäße Strömungsmaschine ist in der deutschen Gebrauchsmusteranmeldung DE 20 2010 017 157.1 mit der Gebrauchsmusterschrift DE 20 2010 017 157 U1 und der am 30.12.2010 angemeldeten deutschen Patentanmeldung DE 10 2010 056 557.1 beschrieben, auf die hiermit Bezug genommen und deren Offenbarungen in die Beschreibung dieser Erfindung in vollem Umfang einbezogen wird.
Eine als Radialturbine ausgebildete Strömungsmaschine gemäß dem Stand der Technik ist in der Fig. 1 gezeigt. Die Fig. 1 ist eine Schnittansicht eines Abschnitts einer herkömmlichen Dampfturbine in Form einer Radialturbine, die für eine Dampfströmung unterhalb der Schallgeschwindigkeit (Unterschallströmung) ausgelegt ist. Bei einer Radialturbine strömt das entsprechende Arbeitsmedium in radialer Richtung bezüglich einer Rotationsachse eines Laufrads und beaufschlagt die Schaufel am Rande dieses Laufrads. Bei Axialturbinen hingegen wird das Arbeitsmedium in axialer Richtung bezüglich einer Rotationsachse des Laufrads eingeströmt. Bei der in der Fig. 1 gezeigten Turbine sind von der radialen in die axiale Richtung mit einem Winkel um 90° verlaufende Schaufelein- und -austrittskanten ausgebildet.
Die als Radialturbine ausgebildete Strömungsmaschine der Fig. 1 hat ein im Wesentlichen ruhendes Turbinengehäuse 1 10, in dem ein Turbinenrad 120 (Laufrad) angeordnet ist. Das Laufrad 120 umfasst eine Mehrzahl an (mitrotierenden) Schaufeln, wobei in Fig. 1 stellvertretend eine Schaufel 121 dargestellt ist. Ein gasförmiges Arbeitsmedium, beispielsweise Abgas aus einer Brennkraftmaschine, strömt durch einen Einströmungskanal bzw. durch ei- nen Düsenkanal 100 des Turbinengehäuses 1 10 gemäß eines Richtungspfeils 151 und treibt das Laufrad 120 an. Hierzu wird das strömende Arbeitsmedium zunächst im Düsenkanal 1 10 beschleunigt und entlang einer Schaufel 121 umgelenkt, wobei die Kanten der Schaufel einerseits im Bereich eines Arbeitsmediumeintritts parallel zur Rotationsachse des Laufrads 120 ausgerichtet sind und an einem Arbeitsmediumaustritt 153 in radiale Richtung weisen. Das Arbeitsmedium wird dabei entlang seines gesamten Strömungsweges im Laufrad zwischen Schaufeln 121 geführt.
Das Laufrad 120 der Strömungsvorrichtung (Turbine) gemäß Fig.1 ist grund- sätzlich ähnlich wie das Laufrad eines Verdichters gestaltet, bei dem das durch die Schaufeln getriebene Arbeitsmedium in einer entgegengesetzt zur Darstellung gemäß Fig. 1 orientierten Richtung einströmt. Entsprechend kann die Strömung in einem Betriebszustand als Verdichter innerhalb der Schaufeln des Laufrades von innen nach außen derart umgelenkt werden, dass sie nach dem Austritt aus den Schaufelkanälen am Arbeitsmediumaustritt axial zum Laufrad verläuft. Diese Bauart von Schaufelrädern bzw. Beschaufelung ist für Arbeitsmedium- bzw. Dampfgeschwindigkeiten unterhalb der Schallgeschwindigkeit gut geeignet. Bei Radialturbinen gemäß dem Stand der Technik, mit Laufrädern, in denen die Strömung entlang ihrer Beschaufelung um 90° umgelenkt wird, ergeben sich Schwierigkeiten, wenn Dampfströmungen ihre Schallgeschwindigkeit erreichen.
Ein besonderes Problem besteht darin, dass Radialturbinen für Überschall- Strömungen mit parallelen und axial zur Welle ausgerichteten Schaufeln zur Wirbelbildung führen und dadurch an Effektivität verlieren.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Strömungsvorrichtung der eingangs genannten Art anzugeben, mit der ein höherer Wirkungsgrad und eine verbesserte Strömungsführung ermöglicht wird.
Des Weiteren ist es Aufgabe der vorliegenden Erfindung, eine Anlage zur Energiewandlung, insbesondere zur Durchführung eines Kreisprozesses, insbesondere eines sogenannten Organic-Rankine-Kreisprozesses, zur Ver- fügung zu stellen, deren Wirkungsgrad insbesondere im Bereich des enthaltenen Entspannungsvorgangs verbessert ist.
Der Organic-Rankine-Kreisprozess (ORC) ist ein Verfahren zur Energieumwandlung, bei dem aus einer Wärmequelle zum Betrieb von Dampfturbinen ein anderes Arbeitsmedium als Wasserdampf verwendet wird. Als Arbeitsmedium werden meistens organische Flüssigkeiten mit einer niedrigeren Verdampfungstemperatur (TVerd < 100°C), selten mit einer höheren Verdampfungstemperatur verwendet. Das Verfahren kommt in Energieerzeugungsund Energieumwandlungsanlagen vorwiegend dann zum Einsatz, wenn das zur Verfügung stehende Temperaturgefälle zwischen Wärmequelle und Wärmesenke zu niedrig für den Betrieb einer von Wasserdampf angetriebenen Turbine ist.
Diese Aufgabe wird zum einen gelöst durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 1 sowie zum anderen durch eine Anlage mit den Merkmalen des Patentanspruchs 15. Eine erfindungsgemäße Strömungsmaschine hat ein Gehäuse mit einem Einströmungskanal. In dem Gehäuse ist ein auf einer Welle drehbar gelagertes Laufrad angeordnet, das mehrere, von dem Arbeitsmedium anströmbare Schaufeln aufweist.
Eine Besonderheit einer erfindungsgemäßen Strömungsmaschine ist, dass für eine Umlenkung des aus einem Schaufelkanal ausströmenden Arbeitsmediums in Richtung des Austrittskanals ein Leitkörper mit mindestens einem Umlenkelement im Zwischenbereich zwischen dem Schaufelkanalaus- tritt und dem Austrittskanal vorgesehen ist. Vorzugsweise strömt das Arbeitsmedium zunächst über den Einströmungskanal in radialer Richtung bezogen auf eine Rotationsachse des Laufrades in das Laufrad ein. Die Schaufeln des Laufrades bilden dabei ein mit dem Laufrad rotierendes, in Umfangs- richtung des Laufrades unterteiltes Gitter, in dem das Arbeitsmedium insbe- sondere in Umfangsrichtung umgelenkt und in radialer Richtung in das Innere des Laufrades geleitet wird. Bevorzugt sind zwischen den radial äußeren Kanten der Schaufeln rechteckige Eintrittsöffnungen von mehreren Schaufelkanälen und zwischen den radial innenliegenden Kanten der Schaufeln rechteckige Austrittsöffnungen von mehreren Schaufelkanälen gebildet. Da- bei sind die Eintritts- und Austrittsöffnungen eines Schaufelkanals erfindungsgemäß jeweils in Ebenen angeordnet, die zueinander parallel sind oder einen spitzen Winkel zueinander aufweisen. Weiter bevorzugt ist der erfindungsgemäße (mitrotierende) Zwischenbereich derart im Inneren des Laufrades angeordnet, dass er zumindest abschnittsweise von den Austrittsöff- nungen mehrerer Schaufelkanäle ringförmig umgeben ist.
Der Leitkörper weist bevorzugt ein Umlenkelement in Form einer einstückig mit der Laufradwelle ausgeführten Tragstruktur mit rotationshyperboloider oder kegeliger Außenkontur (Laufradkegel) auf, die an ihrer Außenseite zur Strömungsumlenkung dient. Der Leitkörper weist ferner ein ringförmiges Umlenkelement in Form einer Kreisringstruktur auf, die zumindest abschnittsweise in den Zwischenraum eingesetzt ist. Erfindungsgemäß kann ein Leit- körper mit allen Teilabschnitten drehfest mit dem Laufrad verbunden sein. Alternativ kann ein Leitkörper sowohl mit dem Laufrad verbundene mitdrehende als auch mit dem Gehäuse verbundene unbewegte Umlenkelemente aufweisen.
Mit der Anordnung von Umlenkelementen innerhalb des Schaufelrades wird erfindungsgemäß eine Ablösung der Strömung und ein damit verbundener Druckverlust unmittelbar nach dem Schaufelrad minimiert. Die Wirkung eines gegebenenfalls nachgeschalteten Diffusors zur zusätzlichen Effizienzerhö- hung wird verbessert. Dies wird erfindungsgemäß besonders dann erreicht, wenn durch wenigstens ein ringförmiges Umlenkelement der aus den Austrittsöffnungen mehrerer Schaufelkanäle (Schaufelkanalaustritte) austretende Strom an Arbeitsmedium nochmals in mehrere voneinander getrennte Teilströme unterteilt wird. Erfindungsgemäß ergeben sich dabei insbesondere in (bezogen auf das Laufrad) axialer Richtung voneinander getrennte Teilströme, die mittels unterschiedlicher Konturen an Vorder- und Rückseite eines Umlenkelements unterschiedlich geführt werden können.
Weiterhin kann ein in den Zwischenraum eingreifendes ringförmiges Umlenk- element über einen Befestigungsring am Gehäuse der Strömungsmaschine festgelegt sein. Der Befestigungsring ist dann bevorzugt als scheibenförmige, durchström bare Gitterstruktur mit radial verlaufenden Speichen ausgeführt. In diesem Fall wird die auf das Schaufelrad wirkende axiale Kraft reduziert, welche aus der Richtungsänderung der Strömung resultiert.
Nach einem weiteren Aspekt der Erfindung ist die Strömungsmaschine als Verdichter ausgebildet, bei dem das Arbeitsmedium funktionsbedingt entgegen der bei einer Turbine strömenden Richtung fließt. In einer Ausgestaltung der Erfindung strömt das Arbeitsmedium über einen sich erweiternden Einströmungskanal in (bezogen auf die Rotationsachse des Laufrads) radialer Richtung in das Laufrad ein. Eine Engstelle ist für den Strom des Arbeitsmediums im Bereich des Einströmungskanals bevorzugt, um im Bereich des Einströmungskanals Überschallgeschwindigkeit erreichen zu können. Nach einer Ausgestaltung der Erfindung weist der Leitkörper ein Umlenkelement mit einer ersten und einer zweiten ringförmigen Kante auf, wobei die erste ringförmige Kante des Umlenkelements benachbart zu dem Schaufelkanalaustritt positioniert ist und wobei die zweite ringförmige Kante benachbart zu dem Diffusorkanaleintritt positioniert ist. Hierdurch wird eine vorteil- hafte Abströmung des Arbeitsmediums von dem Laufrad erzielt. Die Folge ist, dass damit eine Wirbelbildung im Austrittsbereich der Strömungsvorrichtung bzw. im Diffusoreintrittsbereich verhindert wird.
In einer weiteren Ausgestaltung der Erfindung ist das Umlenkelement derart ausgebildet, dass die erste Kante eine Anströmkante ist und in (bezogen auf das Laufrad) radialer Richtung weist, wobei die zweite Kante eine Abströmkante ist und in die gleiche Richtung wie die Rotationsachse weist, so dass damit das aus dem Schaufelkanal ausströmende Arbeitsmedium von der radialen in die axiale Richtung umgelenkt wird. Hierdurch wird der Wirkungs- grad der Strömungsmaschine verbessert. Vorzugsweise weist der Leitkörper mehrere zueinander beabstandete Umlenkelemente auf.
Nach einer weiteren Ausgestaltung der Erfindung umfasst das Umlenkelement eine dem Laufrad zugewandte und eine dem Laufrad abgewandte Sei- te. Das Umlenkelement ist hier derart positioniert, dass es von dem Arbeitsmedium beidseitig umströmt werden kann. Entsprechend ergeben sich beiderseits des Umlenkelements ringförmige Kanäle für das Arbeitsmedium. Weiter bevorzugt ist das ringförmige Umlenkelement näherungsweise allseitig von Arbeitsmedium umströmbar angeordnet. Weiter bevorzugt weist das ringförmige Umlenkelement zumindest abschnittsweise eine tropfen-, halb- mond- oder tragf lügeiförmige Querschnittsgeometrie auf. Hierdurch erfolgt eine vorteilhafte Umlenkung des Arbeitsmediums im Bereich des Laufrads. Damit wird ein besonders effizienter Betrieb der Strömungsvorrichtung ermöglicht.
In einer weiteren Ausgestaltung der Erfindung weist der Leitkörper mehrere voneinander beabstandete Umlenkelemente auf, die zusammen ein durchströmbares Gitter mit ringförmigen Kanälen bilden. Damit wird der Gesamtstrom des Arbeitsmediums in mehrere ringförmige Teilströme unterteilt. Innerhalb eines solchen Gitters aus Umlenkelementen kann der Gesamtstrom wirksam umgelenkt werden, wobei die gebildeten einzelnen Teilströme un- terschiedlichen Behandlungen unterzogen werden können, indem die Konturen der Umlenkelemente voneinander unterschiedlich gestaltet werden. Auf den Umlenkelementen können wiederum weitere Strömungsleitelemente wie Turbulenzpromotoren, Oberflächenbeschichtungen oder dergleichen angeordnet sein. Derselbe Effekt kann grundsätzlich auch bei Verwendung nur eines Umlenkelements erreicht werden.
In weiterer Ausgestaltung der Erfindung sind die voneinander beabstandeten Umlenkelemente derart positioniert, dass deren den Schaufeln des Laufrades zugewandte Kanten in axialer Richtung einen axialen Abstand aufwei- sen. Zugleich weisen die den Schaufeln des Laufrades zugewandte Kanten wenigstens näherungsweise den gleichen (Außen-)Durchmesser auf, der wiederum um maximal 10% kleiner ist als ein (gemeinsamer) Durchmesser der inneren Kanten der Laufradschaufeln. Somit wird eine nennenswerte Vereinigung der aus den Schaufelkanälen austretenden Teilströme des Ar- beitsmediums unterbunden. Vielmehr werden die in Umfangsrichtung des Laufrades separierten Teilströme im Leitkörper nochmals in (bezogen auf das Laufrad) axialer Richtung unterteilt. Dies kann selbstverständlich auch bei Verwendung nur eines Umlenkelements erreicht werden. In weiterer Ausgestaltung der Erfindung sind die voneinander beabstandeten Umlenkelemente derart positioniert, dass deren in Richtung der Rotationsachse des Laufrads weisenden Kanten einen unterschiedlichen radialen Ab- stand bezüglich der Rotationsachse des Laufrads aufweisen. Damit werden unterschiedliche Teilströme des Arbeitsmediums mit unterschiedlichem radialem Abstand in einen nachgeschalteten Diffusor entlassen und unerwünschte Verwirbelungen minimiert.
Nach einem weiteren Aspekt der Erfindung sind an einer mit dem Laufrad verbundenen Welle mehrere Permanentmagneten und/oder Rotorwicklungen angeordnet sind, die mit mehreren benachbart angeordneten, die Welle umgreifenden Statorwicklungen einen elektrischen Generator bilden. Dement- sprechend kann die Strömungsmaschine als„Generatorturbine" zur Stromerzeugung verwendet werden.
Eine erfindungsgemäße Strömungsmaschine kann insbesondere eine thermische Strömungsmaschine sein. Eine Idee der Erfindung ist es darüber hin- aus, eine erfindungsgemäße Strömungsmaschine als Turbine, insbesondere als Radialturbine, in einem Organic-Rankine-Kreisprozess zu verwenden.
Die Erfindung erstreckt sich deshalb auch auf eine Anlage für das Umwandeln von Energie mit einem Kreisprozess, in der eine erfindungsgemäße Strömungsmaschine eingesetzt wird. Insbesondere betrifft die Erfindung eine Radialturbine für eine Anlage für das Umwandeln von Energie in Form einer sogenannten ORC-Anlage. Als ORC-Anlage wird dabei eine Anlage bezeichnet, in der ein thermodynamischer Kreisprozess in Form eines„Organic Rankine Cycle" (ORC) durchgeführt wird, mit dem Wärme in mechanische Energie gewandelt werden kann.
Die einer erfindungsgemäßen ORC-Anlage zugeführte Wärme kann zum Beispiel aus einer Wärmequelle in Form einer Brennkraftmaschine aus einer Kraft-Wärme-Kopplungsanlage, aus einer Biomasse-Feuerungsanlage, aus einer Geothermie-Quelle oder aus einem Solarkraftwerk stammen. Mittels einer ORC-Anlage kann jede Form von Abwärme genutzt werden. Beispiels- weise kann aus der Abwärme von Verbrennungsmotoren mittels einer ORC- Anlage zusätzlich elektrische Energie gewonnen werden.
Eine erfindungsgemäße ORC-Anlage kann einen Kondensator zur Verflüssi- gung eines Arbeitsmediums der Anlage, eine Pumpe, einen Verdampfer zur Verdampfung des Arbeitsmediums enthalten. In einer solchen Anlage gibt es eine dem Verdampfer nachgeschalteten Strömungsmaschine, insbesondere eine Turbine, in der das Arbeitsmedium unter Entnahme von kinetischer Energie aus dem Kreislauf entspannt wird.
Die Pumpe bringt ein bei Normbedingungen flüssiges Arbeitsmedium auf Betriebsdruck. Nachfolgend durchströmt das noch flüssige Arbeitsmedium den Wärmetauscher (Verdampfer) oder auch ein Wärmetauschersystem, in dem thermische Energie beispielsweise aus einer der vorgenannten Quellen auf das Arbeitsmedium der ORC-Anlage übertragen wird. Durch den Energieeintrag verdampft das Arbeitsmedium bevorzugt vollständig. Am Austritt des Verdampfers entsteht dann Sattdampf bzw. Trockendampf. Durch den Energieeintrag im Verdampfer nehmen das spezifische Volumen und die Temperatur des Dampfes zu.
Der Dampf des Arbeitsmediums wird über eine erfindungsgemäße Strömungsvorrichtung in Form einer Turbine nahezu isentrop auf einen geringeren Druck entspannt. Das spezifische Volumen nimmt dann durch die Expansion in der Turbine zu. Diese Volumenvergrößerung, hervorgerufen durch die Druckdifferenz und die daraus resultierende Arbeit, wird als Volumenänderungsarbeit bezeichnet, welche die Turbine an ihren Schaufeln in mechanische Energie umwandelt.
Aus der Turbine strömt der Dampf gegebenenfalls durch einen Regenerator, in dem ein Wärmeaustausch zwischen dem dampfförmigen Arbeitsmedium und dem von der Pumpe kommenden flüssigen Arbeitsmedium stattfindet (innerer Wärmeaustausch). Das in der Turbine und ggf. im Regenerator auf Kondensationstemperatur gebrachte (noch dampfförmige) Arbeitsmedium gelangt in den nachgeschalteten Kondensator, in dem das Arbeitsmedium unter Abgabe von Niedertem- peraturwärme rekondensiert wird. Die bei der Kondensation abgegebene Wärme wird bevorzugt noch über einen Kühlwasserkreislauf in ein Wärmenetz gespeist. Das Arbeitsmedium kondensiert aus und geht wieder vollständig in den flüssigen Aggregatzustand über. Die Speisepumpe (Pumpe) bringt nachfolgend das Arbeitsmedium auf Betriebsdruck und anschließend wieder in den Verdampfer. Damit schließt sich der Kreislauf.
Mit einer als Turbine in einer ORC-Anlage eingesetzten erfindungsgemäßen Strömungsvorrichtung kann insbesondere ein Generator angetrieben werden, der mit der Turbine aus thermischer Energie gewonnenen mechani- sehen Energie elektrischen Strom erzeugt.
Eine solche ORC-Anlage mit einer erfindungsgemäßen Strömungsmaschine (Turbine) kann sowohl für kleine und große Hausanlagen als auch für große industrielle Anlagen sowie für Kraftwerke eingesetzt werden. Als Hausanla- gen sind dabei die Energieversorgungen, z. B. Klimatisierungsanlagen für Büros, Garagen, Krankenhäuser und alle Arten von Gebäuden zu verstehen. Industrielle Anlagen sind z.B. Fertigungsanlagen, insbesondere Fertigungsanlagen der Automobilindustrie, insbesondere Lackierereien, in denen ein ausgewogener Bedarf an Strom (aus mechanischer Energie) und Wärme auf unterschiedlichem Temperaturniveau benötigt wird.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgenden in der Figurenbeschreibung genann- ten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegeben Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Vorteilhafte Ausführungsformen einer erfindungsgemäßen Strömungsmaschine sind in der Fig. 2, Fig. 3, Fig. 4. Fig. 5a und Fig. 5b dargestellt und werden nachfolgend beschrieben. Es zeigen:
Fig. 2 eine Schnittansicht einer Radialturbine für Überschallströmung mit einem Umlenkelement in Form eines Rotationshyperboloiden (Laufradkegel) zur Umlenkung der Strömung innerhalb des Laufrads;
Fig. 3 eine Schnittansicht eines Laufrads einer Radialturbine für Überschallströmung mit einem abschnittsweise in das Laufrad hineinragenden Leitkörper zur Verringerung der Wirbelbildung in einem nachgeschalteten Diffusor;
Fig. 4 eine Schnittansicht einer Strömungsvorrichtung mit hauptsächlich innerhalb des Laufrads liegenden Leitkörpern;
Fig. 5a in einer vergrößerten Schnittansicht einen Abschnitt der Strömungs- Vorrichtung nach Fig. 4; und eine Ansicht von Schaufeln des Laufrads der erfindungsgemäßen Strömungsvorrichtung aus Fig. 5a, die zur Verdeutlichung ihrer Geometrie quer zur Schaufelachse geschnitten gezeigt sind.
Fig. 2 zeigt abschnittsweise eine Schnittansicht einer erfindungsgemäßen Strömungsmaschine in Form einer Radialturbine mit einem im Wesentlichen ruhenden Turbinengehäuse 1 , 4, 1 1 , in dem ein Turbinenrad 2 (Laufrad) angeordnet ist. Das Turbinengehäuse 1 , 4, 1 1 umfasst insbesondere einen Düsenring 1 sowie eine zugehörige Abdeckung 1 1 . Die Abdeckung 1 1 und der Düsenring 1 sind bevorzugt als separate Baugruppen ausgeführt. Zwischen ihnen sind die Düsenkanäle 10 gebildet. Das Turbinengehäuse 1 , 4, 1 1 umfasst einen Diffusor 4 mit einem Austrittkanal 40 für das Arbeitsmedium.
Das in dem Turbinengehäuse angeordnete Laufrad 2 umfasst eine Mehrzahl von (mitrotierenden) Schaufeln. In der Fig. 2 ist das Laufrad 2 mit einer Schaufel 21 gezeigt. Zwischen den Schaufeln des Laufrades 2 sind gerade oder gekrümmte Schaufelkanäle 20 ausgebildet, die einen im Wesentlichen rechteckigem Querschnitt haben. Die Schaufeln sind über eine Basis des Laufrades 2 sowie auf einer davon beabstandeten Seite über eine sogenannte Bandage 22 miteinander verbunden.
Ein dampfförmiges Arbeitsmedium, beispielsweise das Arbeitsmedium einer ORC-Anlage, strömt durch einen als Einströmungskanal wirkenden Düsenkanal 10 des Turbinengehäuses 1 1 gemäß eines Richtungspfeils 51 . In dem Einströmungskanal 10 wird über eine entsprechende Düsengeometrie das strömende Arbeitsmedium beschleunigt, so dass an einer Engstelle Schallgeschwindigkeit erreicht, wobei das Arbeitsmedium vor einer Überleitung in das Laufrad 2 auf Überschallgeschwindigkeit gebracht werden kann.
Das dampfförmige Arbeitsmedium strömt aus dem Düsenkanal 10 und trifft auf die Schaufel 21 , die derart ausgebildet ist, dass sowohl die angeströmte Kante als auch die in Abströmungsrichtung liegende Kante der Schaufel 21 und somit auch diese selbst parallel und axial zur Laufradwelle ausgerichtet sind. Der überwiegende Teil des Stromes 51 an Arbeitsmedium wird nach dem Passieren der Schaufeln 21 bzw. eines jeweiligen Schaufelkanals zwi- sehen mehreren Schaufeln 21 (und somit in einem sogenannten Zwischenbereich des Laufrades 2) auf Parallelität zur Rotationsachse des Laufrades umgelenkt (Pfeilrichtung 53). Hierzu ist erfindungsgemäß ein Leitkörper 3 in Form eines kegeligen Umlenkelements (Laufradkegel) vorgesehen, der bevorzugt als Rotationshyperboloid gestaltet ist. Dieses Umlenkelement kann optional einstückig mit dem Laufrad ausgeführt sein kann. Der Leitkörper 3 befindet sich in einem Zwischenbereich 29 zwischen dem Schaufelkanalaus- tritten 23 und der Eintrittsöffnung 24 in den von dem Diffusor 4 gebildeten Austrittskanal 40. Das als Laufradkegel ausgebildete Umlenkelement mit dem Leitkörper 3 ist dabei im Bereich seiner Basis in dem Zwischenbereich 29 innerhalb des Laufrades 2 angeordnet. Er wird abschnittsweise ringförmig von den Schaufelkanalaustritten 23 bzw. von den Schaufeln 21 des Laufra- des umschlossen. Der Leitkörper 3 erstreckt sich in den von dem Diffusor 4 gebildeten Austrittskanal 40.
Der Laufradkegel bewirkt bei moderaten Strömungsgeschwindigkeiten eine weitgehend laminare Strömungsumlenkung. Bei hohen Strömungsgeschwin- digkeiten können Wirbel 54 entstehen.
Zur Verminderung des in Fig. 2 dargestellten Wirbelbildungseffektes kann durch die Positionierung von Leitkörpern in dem Abströmkanal bzw. in dem Diffusor 4 hinter dem Laufrad 2 eine Reduzierung der Wirbelbildung erzielt werden.
Eine weitere erfindungsgemäße Strömungsvorrichtung ist in der Fig. 3 dargestellt, die im Wesentlichen gleichartig wie die Strömungsvorrichtung gemäß Fig. 2 ausgeführt ist. Entsprechend kann auf die vorstehende Beschrei- bung zu Fig. 2 Bezug genommen werden. Entsprechend sind auch gleichartige Bauelemente und Funktionseinheiten mit gleichen Bezugszeichen versehen. Die Strömungsvorrichtung nach Fig. 3 umfasst neben einem ersten Umlenkelement in Form des mitrotierenden Laufradkegels ein zweites Umlenkelement 31 in Form eines gehäuseseitig montierten, ringförmigen Leit- körpers 3\ Der Leitkörper 3' greift bevorzugt in einen Zwischenbereich 29 des Laufrads 2 ein, der von den Laufradschaufeln 21 umgriffen wird. Dadurch kann der aus den Laufradschaufelkanälen austretende Strom Arbeitsmedium frühzeitig in zwei ringförmige Teilströme aufgeteilt werden.
Der Leitkörper 3' weist eine erste und eine zweite ringförmige Kante 25, 26 auf. Die erste Kante 25 des Umlenkelements ist benachbart zu dem Schaufelkanalaustritt 23 innerhalb des Zwischenbereichs 29 positioniert. Die zweite Kante 26 ist benachbart zu der Eintrittsöffnung 24 innerhalb des Austrittskanals 40 angeordnet. Die die erste Kante 25 wirkt dabei als eine Anströmkante. Die zweite Kante 26 ist eine Abströmkante. Das Umlenkelement 31 ist mit einer Leitkontur 28 ausgebildet, die sich von der ersten Kante 25 aus einer näherungsweise zu einer Rotationsachse 27 des Laufrades 2 radialen Richtung zu der zweiten Kante 26 in eine näherungsweise zu der Rotationsachse 27 des Laufrades 2 axiale Richtung erstreckt. Das aus dem Schaufelkanal 20 ausströmende Arbeitsmedium wird damit von dem Umlenkelement 31 aus einer im Wesentlichen radialen in eine im wesentlichen axiale Richtung umgelenkt. In modifizierten Ausführungsbeispielen können auch andere Strömungsrichtungen erzeugt werden, indem die Konturen der Umlenkelemente in die entsprechenden Richtungen orientiert werden.
Falls trotz der beschriebenen Maßnahmen Restwirbel 54 entstehen - beispielsweise bei besonders hohen Strömungsgeschwindigkeiten können erfindungsgemäß alternativ oder zusätzlich weitere Verbesserungen vorgesehen werden. Insbesondere werden in ORC-Anlagen häufig Radialturbinen zur Umwandlung der Strömungsenergie des Arbeitsmediums in ein Drehmoment verwendet. Aufgrund der niedrigen Schallgeschwindigkeit in solchen Medien und der hohen Druckverhältnisse zwischen Ein- und Austritt des Dampfes in die Turbine liegt die Strömungsgeschwindigkeit des Dampfes im Laufrad der Turbi- ne häufig oberhalb der Schallgeschwindigkeit. Auch die Austrittsgeschwindigkeit des Dampfes aus dem Laufrad liegt häufig noch über Mach 0,7. Unter Betrachtung des geometrisch vorgegebenen großen Unterschieds zwischen dem Krümmungsradius des Laufradkegels und der inneren Kante einer Bandage 22 über den Schaufeln 21 sowie durch die hohe Abströmgeschwindigkeit wird ein gleichmäßiges Abströmen des dampfförmigen Arbeitsmediums in Turbinen von ORC-Anlagen häufig verhindert.
In den Fig. 4, 5a und 5b sind Ausschnitte einer weiteren erfindungsgemäßen, als Radialturbine ausgebildeten Strömungsmaschine gezeigt, die einen Düsenring 1 mit einer Düsenabdeckung 1 1 , ein in einem Gehäuse auf einer Welle gelagerten Laufrad 2, einen Einströmungskanal 10, einen Diffusor 4, mehrere am Laufrad 2 angeordnete Schaufeln 21 , einen ersten gitterförmi- gen Leitkörper 3" und einen zweiten kegeligen Leitkörper 3 aufweist. Eine grundsätzliche Funktionsweise entspricht derjenigen der Radialturbine nach Fig. 2 bzw. Fig. 3, so dass auf die hierzu gemachten Ausführungen Bezug genommen werden kann.
Ein dampfförmiges Arbeitsmedium ist über den Einströmungskanal 10 zu einem Radeintritt des Laufrads gemäß eines Richtungspfeils 51 leitbar. Es trifft dort auf die Schaufel 21 und strömt zwischen den Schaufeln 21 in einen Schaufelkanal 20 gemäß eines Richtungspfeils 42 ein (Fig. 5b). Die Anströ- mung auf die Schaufel 21 erfolgt in radialer Richtung bezüglich einer Rotationsachse des Laufrads 2. Nach Durchströmung des Schaufelkanals 20 gelangt das Arbeitsmedium in einen Zwischenbereich 29 zwischen einem Schaufelkanalaustritt und einem dem Laufrad 2 nachgeschalteten Austrittskanal 40. In dem Zwischenbereich 29 nach dem Schaufelkanalaustritt und einem Diffusorkanaleintritt sind erfindungsgemäß der erste Leitkörper 3" und der zweite Leitkörper 3 positioniert, wobei beide Leitkörper bevorzugt auch abschnittsweise aus dem Zwischenbereich heraus in den Austrittskanal 40 ragen können. Gemäß der Fig. 5a umfasst der erste Leitkörper 3" neben einem ebenfalls gitterförmigen, insbesondere mit radialen Speichen versehenen, durchströmbaren Befestigungsring 34 zwei kreisringförmige Umlenkelemente 31 und 32, wobei in alternativen Ausführungsbeispielen mehr als zwei Umlenkelemente verwendbar sind. Alternativ kann auch ein einzelnes kreisringförmiges Umlenkelement 31 vorgesehen sein. Die kreisringförmigen Umlenkelemente 31 , 32 sind bevorzugt zusammen mit dem Befestigungsring 34 einstückig ausge- führt und bilden so den ersten Leitkörper 3", der auch als Strömungsgitter bezeichnet werden kann. Der so aufgebaute erste Leitkörper 3" wirkt mit dem zweiten Leitkörper 3 in Form des Laufradkegels zusammen: Beide Leitkörper 3, 3" teilen zusammenwirkend den Zwischenbereich 29 des Laufrads 2 zumindest abschnittsweise in voneinander separierte ringförmige Strö- mungskanäle auf.
Das Arbeitsmedium wird unmittelbar nach den Schaufeln 21 durch die Umlenkelemente 31 und 32 des ersten Leitkörpers 3" dementsprechend mehrfach aufgeteilt und zum überwiegenden Teil noch innerhalb des Schaufelra- des 2 parallel zu dessen Rotationsachse gemäß eines Richtungspfeils 53 gelenkt.
Der erste Leitkörper 3" erstreckt sich zwischen einer ersten 25 und einer zweiten Kante 26 eines Umlenkelements 31 bzw. 32 und ist derart ausgebil- det ist, dass die erste Kante benachbart zum Schaufelkanalaustritt positioniert ist, wobei die zweite Kante 26 benachbart zum Diffusorkanaleintritt 40 positioniert ist.
Das Umlenkelement 31 , 32 ist derart ausgebildet, dass die erste Kante 25 als Anströmkante dient und in radialer Richtung zur Rotationsachse des Laufrades 2 weist, wobei die zweite Kante 26 eine Abströmkante ist und in die gleiche Richtung wie die Rotationsachse weist, so dass das aus dem Schaufelkanal 20 ausströmende Arbeitsmedium von einer radialen in eine näherungsweise axiale Richtung umgelenkt wird. Dabei weisen beide Umlen- kelemente 31 , 32 jeweils eine dem Laufrad 2 zugewandte und eine dem Laufrad 2 abgewandte Seite auf. Die Umlenkelemente 31 , 32 sind insbeson- dere derart positioniert, dass sie vom Arbeitsmedium beidseitig umströmbar sind.
Infolgedessen wird das Arbeitsmedium nach dessen Austritt aus dem Schau- felkanal 20 derart in den Diffusorkanal 40 umgelenkt, dass ein Entlangströmen am Laufrad 2 optimiert wird.
Die Umlenkelemente 31 und 32 des ersten Leitkörpers 3" weisen bevorzugt halbmondförmige Querschnittskonturen auf, wobei deren Profil strömungs- günstig ausgestaltet ist. Die zum Laufrad 2 weisende erste Kante (ringförmige Anströmkante) weist radial vom Zentrum weg. Die auf der axialen Gegenseite befindliche zweite Kante (ringförmige Abströmkante) weist von der Laufradbasis 2 weg. Die Krümmung des Profils der Umlenkelemente ist so gestaltet, dass das Arbeitsmedium kontinuierlich parallel zur Rotationsachse des Laufrads 2 umgelenkt wird.
Werden bei dem Leitkörper 3" mehrere ringförmige Umlenkelemente 31 , 32 verwendet, so weisen die Abströmkanten dieser Umlenkelemente 31 , 32 unterschiedliche Durchmesser bezüglich der Rotationsachse des Laufrads 2 auf, während es zweckmäßig ist, dass die Anströmkanten den gleichen Durchmesser bezüglich einer Rotationsachse des Laufrads 2 besitzen. Vorzugsweise sind die Anströmkanten möglichst dicht an den Austrittskanten der Schaufeln 21 positioniert. Hierzu ist es sinnvoll, dass die (im Wesentlichen gleichen) Durchmesser der Anströmkanten der Umlenkelemente 31 , 32 ei- nen Durchmesser aufweisen, der weniger als 10% kleiner ist als der Durchmesser desjenigen Kreises, den alle Austrittskanten der Schaufeln berühren.
Gemäß Fig. 5a weist jede Schaufel 21 am Schaufelkanalaustritt innerhalb des Laufrads 2 eine Schaufelhöhe 60 auf. Ein erster axialer Abstand 61 zwi- sehen einer Oberfläche der Laufradbasis und der Anström kante des (ersten) Umlenkelements 31 ist dabei kleiner als ein axialer Abstand zwischen der Anströmkante des (zweiten) Umlenkelements 32 und derselben Oberfläche der Laufradbasis, so dass zwischen den Anströmkanten beider Umlenkelemente 31 , 32 ein axialer Abstand 62 vorhanden ist. Außerdem ist die Anströmkante des Umlenkelements 32 zur Bandage 22 durch einen axialen Abstand 63 beabstandet angeordnet.
Ferner sind die zueinander benachbarten Umlenkelemente 31 ,32 derart positioniert, dass deren Abströmkanten 26 einen unterschiedlichen radialen Abstand bezüglich der Rotationsachse des Laufrads 2 aufweisen. Außerdem weisen die zu den Schaufeln des Laufrades weisenden Anströmkanten in axialer Richtung einen unterschiedlich axialen Abstand 61 bzw. Abstand 61 +62 zur Laufradbasis auf.
Das Laufrad 2 ist der rotierende Teil der Strömungsmaschine bzw. der Radialturbine, der dem strömenden Arbeitsmedium entweder Arbeit entzieht bei Verwendung der Strömungsmaschine als Turbine oder Arbeit zuführt bei Verwendung der Strömungsmaschine als Verdichter. Das Laufrad 2 ist mit einer nicht dargestellten Welle verbunden, über die erzeugte mechanische Energie abgeführt wird. In dem Leitkörper 3 nachgeschalteten Diffusor 4 wird durch Erweiterung des Strömungsquerschnitts die Gasströmung verlangsamt und der statische Gasdruck erhöht. Der Diffusor 4 stellt im Prinzip die Umkehrung einer Düse dar.
Eine in Fig. 5a gezeigte Bandage 22 ist an den Schaufeln 21 angeordnet und dient dazu, das Laufrad 2 zu stabilisieren und in Form zu halten.
Der Leitkörper 3 bzw. die Umlenkelemente 31 bzw. 32 werden über Stege 33 vorzugsweise mit dem Turbinengehäuse oder dem Diffusor 4 der Turbine verbunden, so dass die aufgrund der Umlenkung des Arbeitsmediums wir- kenden Kräfte nicht auf die Laufradwelle übertragen werden. Der Leitkörper 3 ist das Gegenstück zum bewegten Laufrad 2, wobei der Leitkörper 3 vorzugsweise fest mit dem Gehäuse bzw. am Diffusor 4 über die Stege 33 aus- gebildet ist. Demnach bilden das Laufrad 2 und der Leitkörper 3 zusammen eine Stufe. Zur Befestigung der Umlenkelemente am Diffusor 4 ist ein Befestigungsring 34 des Leitkörpers 3 am Diffusoreinlauf vorgesehen. Es ist auch möglich, die Umlenkelemente 31 bzw. 32 an dem Laufrad 2 zu befestigen, so dass diese dann mitrotieren. Alternativ kann ein Umlenkelement am Laufrad und ein anderes am Gehäuse festgelegt sein.
Der Leitkörper 3" bzw. die Umlenkelemente 31 bzw. 32 in einer erfindungs- gemäßen Strömungsmaschine sind aus einem (Edel-)Stahl hergestellt und werden mit zerspanenden Bearbeitungsverfahren gefertigt. Diese können allerdings grundsätzlich auch aus Metallguss (Aluminiumguss, Stahlguss, Grauguss) hergestellt werden. Vorzugsweise wird die Strömungsmaschine als Radialturbine in einer ORC- Anlage verwendet zur Durchführung eines Organic-Rankine-Kreisprozesses.
Im Sinne der vorliegenden Erfindung wird als Strömungsmaschine insbesondere auch eine Turbinensystem bezeichnet, in dem ein dampfförmiges Ar- beitsmedium unter einem Druck einströmt, in einem feststehenden Düsensystem, auch mit Leitbeschaufelung, entspannt und hierbei beschleunigt wird. Nach dem Düsensystem wird der Dampf darin durch ein rotierendes Schaufelsystem umgelenkt, eventuell weiter entspannt und gibt dabei seine Strömungsenergie über die Schaufeln an eine mit den Schaufeln verbundene bzw. gekoppelte Welle ab. Von dieser Welle wird die mechanische Rotationsenergie danach zu der weiteren Nutzung an einen Verbraucher oder eine Einrichtung für das Umwandeln von Energie übertragen. Beispielsweise können durch die Welle Einrichtungen für das Umwandeln von Energie in Form von Generatoren für die Stromerzeugung angetrieben werden. Die Erfindung bewirkt mit einfachen und preiswerten Leitkörpern eine Effizienzerhöhung von Radialturbinen. Mit einer erfindungsgemäßen Strömungsmaschine kann so der Wirkungsgrad einer ORC-Anlage verbessert werden. Zusammenfassend sind insbesondere folgende bevorzugte Merkmale der Erfindung festzuhalten: Eine Strömungsmaschine, insbesondere eine Turbine umfasst ein Gehäuse 1 , 4, 1 1 , welches zumindest einen Einströmungskanal 10 aufweist. Dabei sind an einem Laufrad 2 mehrere Schaufeln angeordnet, die von einem Arbeitsmedium anströmbar sind. Das Arbeitsmedium strömt dabei über den Einströmungskanal 10 in mindestens einen zwischen zwei am Laufrad 2 aufgenommenen Schaufeln 21 gebildeten Schaufelkanal 20 ein. Nach dem Austritt aus dem Laufradbereich tritt das Arbeitsmedium in einen Diffusor 4 ein. Dabei ist wenigstens ein Leitkörper 3, 3', 3" für eine Umlenkung des aus dem Schaufelkanal 20 ausströmenden Arbeitsmediums in Richtung des Diffusors 4 vorgesehen. Der Leitkörper in der Strömungsmaschine ist bevorzugt zumindest abschnittsweise in einem von den Laufradschaufeln in radialer Richtung umgebenen Zwischenbereich 29 des Laufrades positioniert, der zwischen einem Schaufelkanalaustritt 23 und einer Eintrittsöffnung 24 in einem dem Laufrad 2 nachgeschalteten von dem Diffusor 4 gebildeten Austrittskanal 40 liegt. Die Erfindung betrifft auch eine Anlage zur Durchführung eines Organic-Rankine-Kreisprozesses mit einer solchen Strömungsmaschine.
Bezugszeichenliste:
I Düsenring
1 ,4, 1 1 Turbinengehäuse
2 Laufrad
3, 3', 3" Leitkörper
4 Diffusor
5 Strömungsrichtung
6 Abstände
10 Düsenkanal
10 Einströmungskanal
I I Abdeckung der Düsen
20 Schaufelkanal
21 Schaufel
22 Bandage an Schaufel
23 Schaufelaustritt
24 Eintrittsöffnung
25 Kante
26 Kante
27 Rotationsachse
28 Leitkontur
29 Zwischenbereich innerhalb des Laufrads
30 Kanal zwischen den Leitkörpern
31 ,32 Umlenkelemente
33 Verbindungssteg zwischen den Leitkörpern und der Befestigung
33 Steg
34 Befestigungsring der Leitkörper am Diffusoreinlauf
40 Kanal im Diffusor
40 Austrittskanal
40 Diffusorkanaleintritt
40 Diffusorkanal 42 Strömung zwischen den Schaufeln des Laufrads
42,51 Richtungspfeil
51 Strom
51 Strömung im Düsenkanal
52 Strömung im Schaufelkanal
53 Strömung zwischen den Leitkörpern
53 Pfeilrichtung
54 Wirbel
54 Strömungsablösung im Diffusor
60 Schaufelhöhe am Schaufelkanalaustritt des Laufrads
61 ,62,63 Axialer Abstand
61 Axialer Abstand zwischen Laufradscheibe und Umlenkelement
62 Axialer Abstand zwischen beiden Umlenkelementen
63 Axialer Abstand zwischen Leitkörper 2 und dem Schaufelkopf bzw. der Bandage
100 Düsenkanal
1 10 Turbinengehäuse
120 Turbinenrad, Laufrad
121 Schaufel
151 Richtungspfeil
153 Arbeitsmediumaustritt

Claims

Patentansprüche
1 . Strömungsmaschine mit einem Gehäuse (1 ,4, 1 1 ), das zumindest einen Einströmungskanal (10) aufweist, und einem im Gehäuse auf einer Welle drehbar gelagerten Laufrad (2), an dem mehrere Schaufeln (21 ) angeordnet sind, die von einem Arbeitsmedium anströmbar sind, wobei das Arbeitsmedium über den Einströmungskanal (10) in mindestens einen zwischen zwei am Laufrad (2) aufgenommenen Schaufeln (21 ) gebildeten Schaufelkanal (20) einströmt, wobei das Arbeitsmedium nach dessen Austritt aus dem Schaufelkanal (20) in einen Zwischenbereich
(29) eintritt, der zwischen einem Schaufelkanalaustritt (23) und einer Eintrittsöffnung (24) in einem dem Laufrad (20) nachgeschalteten Austrittskanal (40) liegt, und wobei für eine Umlenkung des aus dem Schaufelkanal (20) ausströmenden Arbeitsmediums in Richtung des Austrittskanals (40) wenigstens ein Leitkörper (3, 3', 3") mit mindestens einem Umlenkelement (31 , 32) in dem Zwischenbereich (29) zwischen dem Schaufelkanalaustritt (23) und dem Austrittskanal (40) vorgesehen ist.
2. Strömungsmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Leitkörper (3') in den Austrittskanal (40) ragt.
3. Strömungsmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Arbeitsmedium über einen sich erweiternden Einströ- mungskanal (10) auf das Laufrad (2) in radialer Richtung zu einer Rotationsachse (27) des Laufrades (2) einströmt.
4. Strömungsmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Leitkörper (3',3") ein Umlenkelement (31 , 32) mit einer ersten und einer zweiten ringförmigen Kante (25, 26) aufweist, wobei die erste Kante (25) des Umlenkelements (31 , 32) benachbart zu dem Schaufelkanalaustritt (23) positioniert ist, und wobei die zweite Kante (26) benachbart zu der Eintrittsöffnung (24) in dem Austrittskanal (40) angeordnet ist.
Strömungsmaschine nach Anspruch 4, dadurch gekennzeichnet, dass die erste Kante (25) eine Anströmkante und die zweite Kante (26) eine Abströmkante ist.
Strömungsmaschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Umlenkelement (31 , 32) mit einer Leitkontur (28) ausgebildet ist, die sich von der ersten Kante (25) aus einer zu einer Rotationsachse (27) des Laufrades (2) radialen Richtung zu der zweiten Kante (26) in eine zu der Rotationsachse (27) des Laufrades (2) axiale Richtung erstreckt, um aus dem Schaufelkanal (20) ausströmendes Arbeitsmedium aus der radialen in die axiale Richtung umzulenken.
7. Strömungsmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Umlenkelement (31 ,32) eine dem Laufrad (2) zugewandte und eine dem Laufrad (2) abgewandte Seite umfasst und derart positioniert ist, dass es vom Arbeitsmedium beidseitig umström- bar ist.
8. Strömungsmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Leitkörper (3") mehrere voneinander beab- standete Umlenkelemente (31 , 32) aufweist, die zusammen ein durch- strömbares Gitter bilden, in dem der Gesamtstrom des Arbeitsmediums in mehrere ringförmige Teilströme unterteilt wird.
9. Strömungsmaschine nach Anspruch 8, dadurch gekennzeichnet, dass wenigstens ein Umlenkelement (31 , 32) eine tropfenförmige, halbmond- förmige oder tragf lügeiförmige Querschnittsgeometrie aufweist.
Strömungsmaschine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die voneinander beabstandeten Umlenkelemente (31 , 32) derart positioniert sind, dass deren den Schaufeln (21 ) des Laufrades (2) zugewandte Kanten in axialer Richtung einen axialen Abstand (62) aufweisen.
Strömungsmaschine nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die voneinander beabstandeten Umlenkelemente (31 , 32) derart positioniert sind, dass deren in Richtung der Rotationsachse (27) des Laufrads (2) weisenden Kanten (25, 26) einen unterschiedlichen radialen Abstand bezüglich der Rotationsachse (27) des Laufrads (2) aufweisen.
Strömungsmaschine nach Anspruch 1 1 , dadurch gekennzeichnet, dass der radiale Abstand der ersten Kante (25) von der Rotationsachse (27) des Laufrads (2) größer ist als der radiale Abstand der zweiten Kante (26) von der Rotationsachse (27) des Laufrads (2).
Strömungsmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass an einer mit dem Laufrad (2) verbundenen Welle mehrere Permanentmagneten und/oder Rotorwicklungen angeordnet sind, die mit mehreren benachbart angeordneten, die Welle umgreifenden Statorwicklungen einen elektrischen Generator bilden.
14. Verwendung einer gemäß einem der Ansprüche 1 bis 12 ausgebildeten Strömungsmaschine als Turbine, insbesondere als Radialturbine, in einem Organic-Rankine-Kreisprozess oder als Verdichter von gasförmigem Medium, indem das gasförmige Medium durch Anströmen des Leitkörpers (3, 3', 3") zu den Schaufeln (21 ) geleitet wird.
15. Anlage zur Durchführung eines Organic-Rankine-Kreisprozesseses mit einem Kondensator zur Verflüssigung eines in der Anlage umgewälzten Arbeitsmediums, einer Pumpe, einem Verdampfer zur Verdampfung des Arbeitsmediums sowie einer dem Verdampfer nachgeschalteten Strömungsmaschine, insbesondere einer Turbine, in der das Arbeitsmedium unter Entnahme von Energie aus dem Kreislauf entspannt wird, wobei die Strömungsmaschine nach einem der Ansprüche 1 bis
13 ausgeführt ist.
EP11802969.3A 2010-12-30 2011-12-30 Strömungsmaschine Active EP2659093B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18209322.9A EP3480425B1 (de) 2010-12-30 2011-12-30 Radialturbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010056557 DE102010056557A1 (de) 2010-12-30 2010-12-30 Einrichtung zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen
DE202010017157U DE202010017157U1 (de) 2010-12-30 2010-12-30 Einrichtungen zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen
PCT/EP2011/074330 WO2012089837A1 (de) 2010-12-30 2011-12-30 Strömungsmaschine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18209322.9A Division EP3480425B1 (de) 2010-12-30 2011-12-30 Radialturbine

Publications (2)

Publication Number Publication Date
EP2659093A1 true EP2659093A1 (de) 2013-11-06
EP2659093B1 EP2659093B1 (de) 2018-12-05

Family

ID=45440557

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11802969.3A Active EP2659093B1 (de) 2010-12-30 2011-12-30 Strömungsmaschine
EP18209322.9A Active EP3480425B1 (de) 2010-12-30 2011-12-30 Radialturbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18209322.9A Active EP3480425B1 (de) 2010-12-30 2011-12-30 Radialturbine

Country Status (3)

Country Link
US (1) US9322414B2 (de)
EP (2) EP2659093B1 (de)
WO (1) WO2012089837A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203448A1 (de) 2013-02-28 2014-08-28 Dürr Systems GmbH Anlage und Verfahren zum Behandeln und/oder Verwerten von gasförmigemMedium
DE102014218344B4 (de) 2014-09-12 2023-08-03 Dürr Systems Ag Verfahren und Anlage zum Abtrennen von Verunreinigungen aus Prozessabluft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB492144A (en) 1937-02-27 1938-09-15 Linde Eismasch Ag Improvements in or relating to gas expansion turbines for the production of cold
US2949224A (en) * 1955-08-19 1960-08-16 American Mach & Foundry Supersonic centripetal compressor
GB877988A (en) * 1957-09-24 1961-09-20 American Mach & Foundry Centripetal compressors
DE1551190A1 (de) * 1966-06-24 1970-01-15 Rudolf Logaida Geschwindigkeitsturbine mit Gleichlaufstufen
US4066381A (en) * 1976-07-19 1978-01-03 Hydragon Corporation Turbine stator nozzles
SU595519A1 (ru) * 1976-11-02 1978-02-28 Ордена Ленина И Ордена Трудового Красного Знамени Невский Машиностроительный Завод Им.В.И.Ленина Способ сборки центробежной турбомашины
US4428715A (en) * 1979-07-02 1984-01-31 Caterpillar Tractor Co. Multi-stage centrifugal compressor
EP0093990B1 (de) * 1982-05-11 1988-04-27 A.G. Kühnle, Kopp &amp; Kausch Dampfturbine
US4789300A (en) * 1983-06-16 1988-12-06 Rotoflow Corporation Variable flow turbine expanders
US5188510A (en) * 1990-11-21 1993-02-23 Thomas R. Norris Method and apparatus for enhancing gas turbo machinery flow
JPH09264106A (ja) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd タービンの排気ディフューザ
DE10037684A1 (de) 2000-07-31 2002-02-14 Alstom Power Nv Niederdruckdampfturbine mit Mehrkanal-Diffusor
DE102010056557A1 (de) 2010-12-30 2012-07-05 Duerr Cyplan Ltd. Einrichtung zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen
DE202010017157U1 (de) 2010-12-30 2011-03-17 Eckert, Frank Einrichtungen zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen

Also Published As

Publication number Publication date
US9322414B2 (en) 2016-04-26
EP2659093B1 (de) 2018-12-05
EP3480425A1 (de) 2019-05-08
US20130129496A1 (en) 2013-05-23
WO2012089837A1 (de) 2012-07-05
EP3480425B1 (de) 2020-09-09

Similar Documents

Publication Publication Date Title
EP0690206B1 (de) Diffusor für Turbomaschine
CH703553A2 (de) Profilierter axial-radialer Auslassdiffusor.
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
EP0397768B1 (de) Turbine eines abgasturboladers
DE102011006066A1 (de) Wasserseparator und Verfahren zum Abtrennen von Wasser aus einer Nassdampfströmung
WO1999051858A1 (de) Dampfturbine
EP2773854B1 (de) Strömungsmaschine
AT515217B1 (de) Vorrichtung und Verfahren zum Umwandeln thermischer Energie
DE102015102560A1 (de) Abgaskammer für Radialdiffusor
EP2659093B1 (de) Strömungsmaschine
EP3164578A1 (de) Abströmbereich einer turbine eines abgasturboladers
AT512653B1 (de) Läufer und radial durchströmbare Turbine
DE202007010614U1 (de) Windkraftanlage mit einer Ummantelung der Schaufelturbinen und mit Anwendung von Vorrichtungen zur Erzeugung von Drehströmungen hinter der Anlage
DE102010064450B3 (de) Entspannungs-Turbine zur Entspannung von Gas
DE102010044819A1 (de) Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine
DE102010056557A1 (de) Einrichtung zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen
DE202010017157U1 (de) Einrichtungen zur Effizienzerhöhung für Radialturbinen in ORC-Anlagen
WO2016096420A1 (de) Kühlmöglichkeit für strömungsmaschinen
DE10028053C2 (de) Strömungskraftmaschine zur Nutzung geringer Druckdifferenzen
EP0959231A1 (de) Axial-Radial-Diffusor einer Axialturbine
DE102010064441B3 (de) Entspannungs-Turbine zur Entspannung von Gas
WO2005021975A1 (de) Laufradanordnung einer strömungsmaschine
DE102010001034A1 (de) Entspannungs-Turbine zur Entspannung von Gas
DE19653057A1 (de) Radialturbine eines Turboladers
DE102011006065B4 (de) Dampfturbine mit Dampfsiebanordnungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161124

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR CYPLAN LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011015129

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0001080000

Ipc: F04D0029540000

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/54 20060101AFI20180427BHEP

Ipc: F01D 25/30 20060101ALI20180427BHEP

Ipc: F01D 1/08 20060101ALI20180427BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1073435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015129

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015129

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

26N No opposition filed

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1073435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011015129

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR CYPLAN LTD., READING, BERKSHIRE, GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111230

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 13

Ref country code: DE

Payment date: 20231214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13