EP2657635B1 - Plattenwärmetauscher - Google Patents

Plattenwärmetauscher Download PDF

Info

Publication number
EP2657635B1
EP2657635B1 EP12165204.4A EP12165204A EP2657635B1 EP 2657635 B1 EP2657635 B1 EP 2657635B1 EP 12165204 A EP12165204 A EP 12165204A EP 2657635 B1 EP2657635 B1 EP 2657635B1
Authority
EP
European Patent Office
Prior art keywords
inflow
heat exchanger
plate
medium
plate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12165204.4A
Other languages
English (en)
French (fr)
Other versions
EP2657635A1 (de
Inventor
Gerd Abker
Alfred Ernst
Bernd Müller
Klaus Mönig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelvion PHE GmbH
Original Assignee
GEA Ecoflex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Ecoflex GmbH filed Critical GEA Ecoflex GmbH
Priority to EP12165204.4A priority Critical patent/EP2657635B1/de
Priority to US13/620,790 priority patent/US20130277024A1/en
Priority to RU2012145975/06A priority patent/RU2575378C2/ru
Priority to KR1020130051327A priority patent/KR102009304B1/ko
Publication of EP2657635A1 publication Critical patent/EP2657635A1/de
Application granted granted Critical
Publication of EP2657635B1 publication Critical patent/EP2657635B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow

Definitions

  • the invention relates to a plate heat exchanger with flowed in cocurrent or countercurrent flow of a first and a second medium flow channels, which are formed for the first medium between each pair of plates connected to individual plates and for the second medium between assembled to a plate stack plate pairs, wherein the individual plates and the plate pairs are connected to one another at longitudinal edges and contact surfaces extending parallel to the main flow direction, wherein each individual plate has longitudinally corresponding, diagonally arranged inflow and outflow cross sections for the first medium and transversely adjacent inflow and outflow cross sections for the second medium, wherein the Abströmqueritese for the first medium are offset in each case by half the height of the inflow and outflow of the second medium, wherein the individual plates within an inlet region by Ausff have formed, projecting into the flow channel guide vanes, wherein the guide vanes are arcuately formed with a substantially parallel to the main flow direction aligned inflow leg and at an angle to the inflow leg aligned Abströmschenkel, and wherein the individual plates are provided with a
  • Plate heat exchangers of this type are used industrially with plate dimensions of several meters.
  • One field of application here is the use in waste incineration plants, power plants, chemical plants, refineries and / or the like in which the resulting combustion heat of the flue gas is used to heat a second medium.
  • a plate heat exchanger discloses in detail the German patent DE 41 42 177 C2 ,
  • guide vanes are provided to increase the efficiency of the heat exchanger or alternatively to reduce the dimensions of the required individual plates, which distribute the medium entering through the inflow to the full channel width of the flow channel.
  • the guide vanes are provided with extended Abströmschenkeln, which protrude beyond the longitudinal center of the single plate.
  • the vanes for equalizing the flow within the flow channel in the longitudinal center of the individual plates are arranged closer to the inflow cross section than in the direction of the longitudinal edge of the single plate.
  • a plate heat exchanger according to the preamble of the main claim is proposed, in which the guide vanes of the inflow cross sections do not protrude beyond the longitudinal center of the individual plates, ie guide vanes are exclusively formed in the respective inflow cross sections associated plate halves, wherein the on-stream legs and the outflow legs have substantially equal lengths, and wherein the guide vanes are arranged at substantially the same distance from the associated transverse edge of the respective single plate, and at the same time the turbulence-generating profiling protrudes in the inlet region of the inflow cross sections up to the guide vanes and in mirror symmetry recessed to the longitudinal center of the individual plates adjacent area.
  • the present invention By the present invention shorter, steeper to the main flow direction and closer to the edge arranged vanes, the adhesion of the dirt particles is minimized. At the same time a high performance of the heat exchanger is ensured by the fact that the turbulence generating profiling of the individual plates in the inlet region of the inflow cross-sections protrudes to the vanes and recessed in the region of the plate, which is mirror-symmetrical to the longitudinal center. By this profile recess in lying next to the inflow sections plate half creates a negative pressure relative to the gas pressure within the profiled inflow cross-section, whereby suction of the inflowing flue gas is effected in the profile-free area.
  • the invention thus provides a solution which brings the two competing factors into balance so that on the one hand the adhesion of dirt particles is reduced and on the other hand, no performance losses occur.
  • the guide blade design according to the invention on the one hand and the inventive design of the turbulence generating profiling on the other hand provide in combination the synergistic effect that a homogenization of the incoming media in the plate heat exchanger on the entire plate width, while minimizing the risk of leading to blockages in the worst case Contamination of the vanes.
  • This is in contrast to the prior art according to the aforementioned DE 41 42 177 C2 with the invention deliberately in contrast to the previous embodiment proposed to reduce the guide vanes, in particular with regard to the respective discharge limb.
  • the number of vanes has been significantly reduced.
  • the guide vanes are completely embossed, so that these rest without gaps on the adjacent individual plate.
  • the guide vanes serve completely as a support or as a spacer, so that vibrations within the plate pairs and within the plate stack are reduced and thus the overall construction of the heat exchanger becomes more stable.
  • the fully stamped guide vanes may rest on the guide vanes of adjacent individual plates or on the opposite wall of the flow channels.
  • the invention provides that the onflow limbs and the outflow limbs have an angle between 140 ° and 100 °, preferably 135 ° and 112 ° to each other.
  • angling of up to 90 ° is thus also possible, without the risk of blockages of the inflow cross sections due to foreign substance deposits on the guide vanes.
  • the turbulence-generating profiling of the individual plates has pronounced nubs.
  • the nubs can be produced very easily and inexpensively by embossing the individual plates.
  • a uniform pimple field is also Excellent for increasing the performance of the heat exchanger. Due to the turbulent flow of heat transfer is increased and thus improves the efficiency.
  • nubs may be formed as spacers for adjacent individual plates.
  • spacers can also be formed in the region of the guide vanes in order to keep the individual plates in the region of the inflow and outflow cross sections at the predetermined distance from one another.
  • all nubs can serve as spacers.
  • the invention provides that the turbulence generating profiling of the single plate is formed perpendicular to the main flow direction over the entire bottom up to the contact surfaces. Through this over the entire width of the single plate reaching to its side edges profiling a controlled flow pattern is created while avoiding bypasses. In contrast to the prior art, it is thus avoided that the medium flowing over the single plate migrates into profile-free channels and contributes only to a lesser extent to the heat exchange. Overall, in contrast to the prior art guided closer to the side edge profiling thus causes an improvement in the heat output of the heat exchanger.
  • the individual plates have edge channels in the area of the contact surfaces with a cross-section which is variable in size over their longitudinal extent.
  • these edge channels also lead to an improved flow pattern, which in turn increases the heat output of the heat exchanger.
  • the edge channels are formed like a labyrinth and are in the area of the contact surfaces, ie formed in the edge region of the individual plates, where otherwise the heat medium would seek a barrier-free and thus interaction-free flow path.
  • the variation of the cross-section over the longitudinal extension of the edge channels ensures that the medium flowing through it can not continue to flow straightforward, but suffers a congestion effect at the narrowings of the cross section.
  • an interaction-free medium flow through the edge channels of the single plate and consequently also a Power loss greatly reduced prevented. This leads to a performance increase of up to 5% over the prior art.
  • the edge channels are substantially S-shaped, i. formed several s-shaped. This results in a staggered blocking embossing on both sides of each edge channel, which leads to an increased interaction of the heat medium due to the resulting constrictions and extensions.
  • the cross section of the edge channels is variable by up to 50% or more. This reduces the barrier-free cross section for the medium at a constriction by up to more than half.
  • a spatially offset flow channel is created in combination with the s-shaped design, which further enhances the interaction between the medium and the heat exchanger.
  • the Randkanalsaussch invention results in combination with the inventive design of the turbulence generating profiling into the respective edge region of each individual plate the synergistic effect that free flow paths for the medium are basically avoided.
  • the media flowing into the plate heat exchanger can thus not escape via a bypass-like, interaction-free flow path.
  • Neither the edge near the bottom of each individual plate still forming in the edge region between two individual plates edge channel represent according to the embodiment of the invention in contrast to the prior art such Beipass entry, since the edge channels are formed according to the invention labyrinth and the turbulence causing profiling into the edge region is pulled into each individual plate.
  • a performance increase or with the same power a reduced plate size can be achieved. For such a configuration, there is no model in the prior art.
  • FIG. 1 schematically illustrated embodiment of a plate heat exchanger shows in perspective a plate stack S of a plurality of stamped individual plates 1, which are each connected to a pair of plates P.
  • Each individual plate 1 comprises a bottom 11, which lies in a different plane than the longitudinal edges 12.
  • each individual plate 1 is in each case formed with a contact surface 13, which is offset in height relative to the longitudinal edges 12.
  • the offset between the abutment surface 13 and the associated longitudinal edge 12 is twice as large as the offset between the longitudinal edges 12 and the bottom 11.
  • the floor 11 is therefore in height in the middle between the plane of the longitudinal edges 12 and the plane of the contact surfaces 13.
  • transverse edges 14a and 14b, in height, ie perpendicular to the surface of the bottom 11 are offset by the same amount as the planes in which on the one hand the longitudinal edges 12 and on the other hand the contact surfaces 13 lie.
  • the FIG. 1 clearly shows that in this case the transverse edges 14a and 14b are diagonally opposite each other.
  • FIG. 1 Two of each in FIG. 1 As a top part illustrated individual plates 1 are shown in the lower illustration in FIG. 1 connected to plate pairs P. In FIG. 1 are exemplified five complete plate pairs P, wherein on the uppermost plate pair still a single plate 1 is arranged, which is also connected to the spaced topmost single plate 1 to a pair of plates P.
  • the plate pairs P are connected in the region of the contact surfaces 13 to the plate stack S, resulting superimposed channels for the two participating in the heat exchange media. While one medium flows in the flow channels formed respectively by the plate pairs P, the other medium flows in the flow channels resulting from the joining of the plate pairs P to the plate stack S.
  • the transverse edges 14b of the individual plates 1 running in the plane of the abutment surfaces 13 form the inflow cross sections Z2 and the outflow cross sections A2 for the other medium, which flows between the individual plates 1 of each plate pair P either in the same or in the opposite direction to the first medium.
  • the FIG. 1 which shows a countercurrent heat exchanger, can be seen that due to the diagonal arrangement of the inlet and outlet openings, the inflow Z1 or Z2 for the one medium next to the outflow sections A2 and A1 for the other medium, each by half Height of a pair of plates P offset.
  • FIG. 2a shows a single plate 1 according to the invention, the Zuströmquerites Z1 extends over half the width of the single plate 1, from the longitudinal center to the longitudinal edge 12.
  • the single plate has an inlet region E whose length in the main flow direction characterizes the distance which the inflowing medium requires in order to be distributed over the full width of the single plate 1.
  • four guide vanes 2 are arranged to the right next to the longitudinal center of the single plate 1, which each have an inflow leg 21 and a discharge limb 22.
  • the on-stream legs 21 and outflow legs 22 are approximately the same length and enclose an angle of approximately 140 ° to 100 ° between them. In this case, none of the outflow limb 22 projects beyond the longitudinal center of the single plate 1.
  • the on-stream legs 21 are each mounted in the immediate vicinity of the transverse edge 14a.
  • the single plate 1 has over its entire width up to the contact surfaces 13 a turbulence generating profiling 31, 32.
  • This profiling 31, 32 consists of a large variety in the single plate 1 embossed knobs 31, 32, which in the field of Zuströmqueriteses Z1 extend to the vanes 2 and are recessed in the area left of the longitudinal center.
  • S-shaped edge channels 15 formed with a size variable over its longitudinal extension cross-section.
  • FIG. 2b can be seen in a perspective view one of a plurality of individual plates 1 plate stack S formed. The interaction of the individual plates 1 can be taken from this presentation well.
  • FIG. 3 shows such an enlarged edge channel 15 shown in plan view.
  • the Figures 4a, 4b and 4c show sectional views of this edge channel 15 at different interfaces A, B and C according to FIG. 3 . It can be seen that the cross section through which the medium can flow at point A is maximally large, while the cross section at points B and C is in each case less than about 50% of the maximum cross section, the cross section at points B and C in each case too different sides of the edge channel 15 is narrowed. This results in the constrictions due to impressions 33, which with respect to the image plane after FIG. 3 are formed part-circular, resulting in the total longitudinally s-shaped channel shape.
  • the invention works in such a way that the heat medium, in this case flue gas, flowing into the single plate 1 through the inflow cross section Z1, meets the on-stream leg 21 of the guide vanes 2, which adjoins the transverse edge 14a directly. From there, the flue gas is directed to the outflow legs 22, which are at an angle of about 140 ° to 100 °, preferably 135 ° to 112 ° to the onflow legs 21.
  • the heat medium in this case flue gas
  • the inlet region E in the region of the inflow Z1 has a directly following the vanes 2 profiling 31, 32, while in the mirror-symmetrical left of the longitudinal center region of the inlet plate 1 no profiling is formed above the profiling 31, 32 within the inlet region E from a pressure distribution, which sucks the inflowing flue gas from the guide vanes 2 in the profile-free area.
  • the flue gas is distributed uniformly over the plate width and ensures a homogeneous heat output over the entire inlet plate 1 of the heat exchanger.
  • the guide vanes 2 reduces the adhesion of dirt particles to the guide vanes 2, so that a blockage of the inflow Z1 is prevented. Overall, thus creating a low maintenance plate heat exchanger, which requires no loss of performance.
  • the single plate 1 may have, in addition to the measures described above, edge channels 15, which have indentations 33 for the purpose of labyrinth formation.
  • the medium reaching into the edge region of the single plate 1 flows through the edge channels 15 and strikes the constrictions and expansions of the respective channel cross sections, which cause a congestion effect and lead to a higher interaction of the medium with the single plate 1.
  • the flue gas enters the S-shaped cut edge channels 15, where it is in the section A (view FIG. 4 a) the entire channel cross-section has available.
  • the flue gas In the area of section B (view FIG. 4 b) the flue gas must flow through the first bend, in which the cross-section is reduced by half. This creates the aforementioned congestion effect.
  • the cross-section then expands again for a short time in order to reach the region C (FIG. FIG. 4c) again to reduce to half, but this time the s-shape of the edge channel 15 following in the region of the opposite channel side wall.
  • the turbulence generating profiling 31, 32 is formed over the entire width of the individual plates 1 up to the contact surfaces 13. This helps avoid by-passes and thus improves the performance of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Plattenwärmetauscher mit im Gleichstrom oder Gegenstrom von einem ersten und einem zweiten Medium durchströmten Strömungskanälen, die für das erste Medium zwischen jeweils zu einem Plattenpaar verbundenen Einzelplatten und für das zweite Medium zwischen zu einem Plattenstapel zusammengefügten Plattenpaaren gebildet sind, wobei die Einzelplatten und die Plattenpaare an parallel zur Hauptströmungsrichtung verlaufenden Längsrändern und Anlageflächen miteinander verbunden sind, wobei jede Einzelplatte in Längsrichtung korrespondierende, diagonal angeordnete Zuström- und Abströmquerschnitte für das erste Medium und in Querrichtung neben diesen liegende Zuström- bzw. Abströmquerschnitte für das zweite Medium aufweist, wobei die Abströmquerschnitte für das erste Medium jeweils um die halbe Höhe der Zuström- bzw. Abströmquerschnitte für das zweite Medium versetzt sind, wobei die Einzelplatten innerhalb eines Eintrittsbereiches durch Ausprägungen gebildete, in den Strömungskanal hineinragende Leitschaufeln aufweisen, wobei die Leitschaufeln bogenförmig mit einem im Wesentlichen parallel zur Hauptströmungsrichtung ausgerichteten Anströmschenkel und einem unter einem Winkel zum Anströmschenkel ausgerichteten Abströmschenkel ausgebildet sind, und wobei die Einzelplatten mit einer Turbulenzen erzeugenden Profilierung versehen sind.
  • Plattenwärmetauscher dieser Art werden mit Plattendimensionen von mehreren Metern großtechnisch eingesetzt. Ein Anwendungsbereich ist hierbei die Verwendung in Müllverbrennungsanlagen, Kraftwerken, Chemieanlagen, Raffinerien und/oder dergleichen bei welchen die entstehende Verbrennungswärme des Rauchgases zur Erwärmung eines zweiten Mediums genutzt wird.
  • Einen Plattenwärmetauscher gemäß der vorstehenden Art offenbart im Einzelnen die deutsche Patentschrift DE 41 42 177 C2 . Dabei sind zur Erhöhung des Wirkungsgrades des Wärmetauschers oder alternativ zur Verringerung der Abmessungen der benötigten Einzelplatten Leitschaufeln vorgesehen, welche das durch den Zuströmquerschnitt eintretende Medium auf die volle Kanalbreite des Strömungskanals verteilen. Um Totzonen im Eintrittsbereich, insbesondere im spiegelsymmetrisch zur Längsmitte neben dem Zuströmquerschnitt liegenden Plattenbereich, zu vermeiden, sind die Leitschaufeln mit verlängerten Abströmschenkeln versehen, welche über die Längsmitte der Einzelplatte hinausragen. Zusätzlich sind die Leitschaufeln zur Vergleichmäßigung der Strömung innerhalb des Strömungskanals in der Längsmitte der Einzelplatten näher am Zuströmquerschnitt angeordnet als in Richtung des Längsrandes der Einzelplatte.
  • Obwohl sich diese Anordnung in der Praxis bewährt hat, ergeben sich dennoch Probleme durch Ablagerung von Feststoffen innerhalb des zuströmenden Mediums. Dies betrifft insbesondere den vorgenannten Einsatz in Müllverbrennungsanlagen, da die bei der Verbrennung entstehenden Rauchgase einen großen Anteil an Fremdkörpern aufweisen. Jedoch ist dieses Problem nicht auf den Einsatz der Wärmetauscher in Müllverbrennungsanlagen beschränkt, sondern tritt überall dort auf, wo das Medium mit problematischen Feststoffen versetzt ist. Die enthaltenen Feststoffe führen zu einer Belegung der Leitschaufeln, so dass sich die Zwischenräume zwischen benachbarten Leitschaufeln verengen und die Zuströmquerschnitte verstopfen. Um dies zu vermeiden, muss der Plattenwärmetauscher in manchen Anwendungsfällen regelmäßig, beispielsweise ein bis zwei mal pro Jahr, gereinigt werden, wodurch die nicht unerhebliche Ausfallzeiten entstehen. Hierdurch entstehen zum einen Kosten durch die aufwendige Reinigung und zum anderen Verluste durch die Ausfallzeiten der Anlage.
  • Daher ist es Aufgabe der Erfindung, einen Plattenwärmetauscher zu schaffen, bei welchem ein Verstopfen der Zuströmquerschnitte aufgrund von Feststoffanlagerungen auf den Leitschaufeln vermieden wird, ohne gleichzeitig die Leistung des Wärmetauschers zu verringern.
  • Zur technischen Lösung wird ein Plattenwärmetauscher gemäß dem Oberbegriff des Hauptanspruchs vorgeschlagen, bei welchem die Leitschaufeln der Zuströmquerschnitte nicht über die Längsmitte der Einzelplatten hinausragen, d.h. Leitschaufeln auschließlich in den den jeweiligen Zuströmquerschnitten zugeordneten Plattenhälften ausgebildet sind, wobei die Anströmschenkel und die Abströmschenkel im Wesentlichen gleiche Längen aufweisen, und wobei die Leitschaufeln mit im Wesentlichen gleichem Abstand zu dem zugehörigen Querrand der jeweiligen Einzelplatte angeordnet sind, und wobei gleichzeitig die Turbulenzen erzeugende Profilierung im Eintrittsbereich der Zuströmquerschnitte bis an die Leitschaufeln ragt und im spiegelsymmetrisch zur Längsmitte der Einzelplatten angrenzenden Bereich ausgespart ist.
  • Durch die erfindungsgemäß kürzeren, steiler zur Hauptströmungsrichtung und näher am Rand angeordneten Leitschaufeln wird die Anhaftung der Schmutzpartikel minimiert. Gleichzeitig wird eine hohe Leistung des Wärmetauschers dadurch sicher gestellt, dass die Turbulenzen erzeugende Profilierung der Einzelplatten im Eintrittsbereich der Zuströmquerschnitte bis an die Leitschaufeln ragt und in dem Bereich der Platte, welcher spiegelsymmetrisch zur Längsmitte gegenüberliegt, ausgespart ist. Durch diese Profilaussparung in der neben den Zuströmquerschnitten liegenden Plattenhälfte entsteht ein Unterdruck gegenüber dem Gasdruck innerhalb des profilierten Zuströmquerschnittes, wodurch ein Ansaugen des einströmenden Rauchgases in den profilfreien Bereich bewirkt wird.
  • Durch die besondere Ausgestaltung der Profilierung wird somit berücksichtigt, dass die Leistung des Wärmetauschers davon abhängt, wie homogen das Heizmedium über die Breite der Gegenstromplatte verteilt ist. Maßnahmen, die eine gleichmäßige Verteilung bewirken, sind jedoch im Allgemeinen begünstigend für Schmutzanlagerungen. Die Erfindung schafft somit eine Lösung, welche die beiden konkurrierenden Faktoren so ins Gleichgewicht bringt, dass zum einen die Anhaftung von Schmutzpartikeln verringert wird und zum anderen keine Leistungseinbußen auftreten.
  • Die erfindungsgemäße Leitschaufelnausgestaltung einerseits und die erfindungsgemäße Ausgestaltung der die Turbulenzen erzeugenden Profilierung andererseits erbringen in Kombination den synergetischen Effekt, dass eine Vergleichmäßigung der in den Plattenwärmetauscher einströmenden Medien auf die gesamte Plattenbreite erfolgt, und dies bei gleichzeitiger Minimierung der Gefahr von im schlimmsten Fall zu Verstopfungen führenden Verschmutzungen der Leitschaufeln. Dabei wird im Unterschied zum Stand der Technik nach der vorgenannten DE 41 42 177 C2 mit der Erfindung bewusst in Abkehr zur bisherigen Ausgestaltung vorgeschlagen, die Leitschaufeln zu verkleinern, insbesondere hinsichtlich des jeweiligen Abströmschenkels. Darüber hinaus ist in bewusster Abkehr zum vorbenannten Stand der Technik die Anzahl der Leitschaufeln deutlich reduziert worden. Die nach den Ausführungen in der DE 41 42 177 C2 infolge dieser Maßnahmen zu befürchtende Verschlechterung der Mediumsvergleichmäßigung ist in überraschender Weise nicht eingetreten bzw. konnte in Kombination mit der erfindungsgemäßen Ausgestaltung der die Turbulenzen erzeugenden Profilierung kompensiert werden. Im Ergebnis der erfindungsgemäßen Ausgestaltung ist bei einem gegenüber dem Stand der Technik erhöhten Wirkungsgrad hinsichtlich der Mediumsverteilung eine Reduzierung der durch die Leitschaufeln bedingten Angriffsflächen für Schmutzpartikel, Fremdstoffe und/oder dergleichen erreicht. Im Ergebnis neigt der erfindungsgemäße Plattenwärmetauscher im Unterschied zu vorbekannten Plattenwärmetauschern weniger stark zu Verschmutzungen oder gar Verstopfungen, wodurch die Betriebssicherheit erhöht ist und/oder Wartungsintervalle größer bemessen werden können. In diesem Zusammenhang wirkt sich insbesondere positiv aus, dass die Abströmschenkel der erfindungsgemäßen Leitschaufeln im Unterschied zum Stand der Technik sehr viel steiler und sehr viel kürzer ausgebildet sind.
  • Vorteilhaft sind die Leitschaufeln vollständig durchgeprägt, so dass diese spaltfrei an der benachbarten Einzelplatte anliegen. Durch diese Ausgestaltung dienen die Leitschaufeln vollständig als Abstützung bzw. als Abstandshalter, so dass Schwingungen innerhalb der Plattenpaare und innerhalb des Plattenstapels reduziert werden und somit der Aufbau des Wärmetauschers insgesamt stabiler wird. Dabei können die vollständig durchgeprägten Leitschaufeln je nach Ausgestaltung an den Leitschaufeln benachbarter Einzelplatten oder an der gegenüberliegenden Wand der Strömungskanäle anliegen.
  • Die Erfindung sieht vor, dass die Anströmschenkel und die Abströmschenkel einen Winkel zwischen 140° und 100°, vorzugsweise 135° und 112° zueinander aufweisen. Je kürzer die Leitschaufeln dabei sind, desto steiler können Anströmschenkel und Abströmschenkel zueinander angeordnet sein. Durch die Kombination mit einem im Wesentlichen parallel zur Hauptströmungsrichtung ausgerichteten Anströmschenkel sind somit auch Abwinklungen von bis zu 90° möglich, ohne dass die Gefahr von Verstopfungen der Zuströmquerschnitte durch Fremdstoffanlagerungen auf den Leitschaufeln besteht.
  • Es empfiehlt sich, dass die Turbulenzen erzeugende Profilierung der Einzelplatten ausgeprägte Noppen aufweist. Die Noppen lassen sich durch Prägen der Einzelplatten sehr einfach und kostengünstig herstellen. Ein gleichmäßiges Noppenfeld ist zudem hervorragend geeignet, die Leistung des Wärmetauschers zu erhöhen. Durch die turbulente Strömung wird der Wärmeübergang vergrößert und damit der Wirkungsgrad verbessert.
  • Zudem können einige der Noppen als Abstandshalter für benachbarte Einzelplatten ausgebildet sein. Dadurch kann auch bei geringen Abständen zwischen benachbarten Einzelplatten der vorgegebene Plattenabstand über die volle Kanallänge und Kanalbreite gewährleistet werden. Derartige Abstandshalter können auch im Bereich der Leitschaufeln ausgebildet werden, um die Einzelplatten im Bereich der Zuström- und Abströmquerschnitte im vorgegebenen Abstand voneinander zu halten. Selbstverständlich können auch alle Noppen als Abstandshalter dienen.
  • Die Erfindung sieht vor, dass die Turbulenzen erzeugende Profilierung der Einzelplatte senkrecht zur Hauptströmungsrichtung über den gesamten Boden bis zu den Anlageflächen ausgebildet ist. Durch diese über die ganze Breite der Einzelplatte bis hin zu ihren Seitenrändern reichende Profilierung wird ein kontrolliertes Strömungsbild unter gleichzeitiger Vermeidung von Bypässen geschaffen. Im Gegensatz zum Stand der Technik wird somit vermieden, dass das über die Einzelplatte strömende Medium in profilfreie Kanäle wandert und nur noch in geringerem Maße zum Wärmeaustausch beiträgt. Insgesamt bewirkt die im Gegensatz zum Stand der Technik dichter an den Seitenrand geführte Profilierung somit eine Verbesserung der Wärmeleistung des Wärmetauschers.
  • Weiterhin ist vorgesehen, dass die Einzelplatten im Bereich der Anlageflächen Randkanäle mit einem über ihre Längserstreckung größenvariablen Querschnitt aufweisen. Diese Randkanäle führen ebenfalls durch Verkleinerung der barrierefreien Bypässe zu einem verbesserten Strömungsbild, wodurch wiederum die Wärmeleistung des Wärmetauschers erhöht wird. Die Randkanäle sind labyrinthartig ausgebildet und werden im Bereich der Anlageflächen, d. h. im Randbereich der Einzelplatten, ausgebildet wo sich ansonsten das Wärmemedium einen barrierfreien und somit wechselwirkungsfreien Strömungsweg suchen würde. Die Variation des Querschnittes über die Längserstreckung der Randkanäle sorgt dafür, dass das hindurch strömende Medium nicht barrierefrei geradeaus weiterfließen kann, sondern an den Verengungen des Querschnitts einen Staueffekt erleidet. Somit wird ein wechselwirkungsfreier Mediumdurchfluss durch die Randkanäle der Einzelplatte und folglich auch ein Leistungsverlust stark vermindert verhindert. Dies führt gegenüber dem Stand der Technik zu einer Leistungssteigerung von bis zu 5%.
  • Besonders vorteilhaft sind die Randkanäle im Wesentlichen s-förmig, d.h. mehrfach s-förmig ausgebildet. Dabei ergibt sich eine versetzte Sperrprägung auf beiden Seiten jedes Randkanals, welche aufgrund der entstehenden Verengungen und Erweiterungen zu einer erhöhten Wechselwirkung des Wärmemediums führt.
  • Vorteilhaft ist der Querschnitt der Randkanäle dabei um bis zu 50 % oder mehr variabel. Dadurch reduziert sich der barrierefreie Querschnitt für das Medium an einer Verengung um bis zu mehr als die Hälfte. In Kombination mit der s-förmigen Ausbildung wird zudem ein örtlich versetzter Strömungskanal geschaffen, welcher weiterhin die Wechselwirkung zwischen Medium und Wärmetauscher verstärkt.
  • Die erfindungsgemäße Randkanalsausgestaltung ergibt in Kombination mit der erfindungsgemäßen Ausgestaltung der die Turbolenzen erzeugenden Profilierung bis in den jeweiligen Randbereich einer jeden Einzelplatte den synergetischen Effekt, dass freie Durchströmungswege für das Medium dem Grunde nach vermieden sind. Die in den Plattenwärmetauscher einströmenden Medien können somit nicht über einen beipassgleichen, wechselwirkungsfreien Strömungsweg ausweichen. Weder der randbereichnahe Boden einer jeden Einzelplatte noch der sich im Randbereich zwischen zwei Einzelplatten ausbildende Randkanal stellen gemäß der erfindungsgemäßen Ausgestaltung im Unterschied zum Stand der Technik eine solche Beipassführung dar, da die Randkanäle erfindungsgemäß labyrinthartig ausgebildet sind und die die Turbolenzen verursachende Profilierung bis in den Randbereich einer jeden Einzelplatte hineingezogen ist. Im Ergebnis kann so bei gleichbleibender Plattengröße eine Leistungssteigerung bzw. bei gleicher Leistung eine verkleinerte Plattengröße erreicht werden. Für eine solche Ausgestaltung gibt es im Stand der Technik keinerlei Vorbild.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung anhand der Figuren. Dabei zeigen:
  • Fig. 1
    eine perspektivische Ansicht eines aus mehreren Einzelplatten gebildeten Plattenstapels, wobei jedoch wegen der besseren Übersicht die Leitschaufeln und die Profilierung nicht dargestellt sind,
    Fig. 2a.
    eine Draufsicht auf eine erfindungsgemäße Einzelplatte mit Leitschaufeln und angedeuteter Profilierung,
    Fig. 2b
    eine perspektivische Ansicht eines aus mehreren Einzelplatten nach Figur 2a gebildeten Plattenstapels,
    Fig. 3
    eine vergrößerte Detaildarstellung eines erfindungsgemäßen s-förmigen Randkanals,
    Fig. 4a
    eine Schnittdarstellung gemäß Schnitt "A" des s-förmigen Randkanals,
    Fig. 4b
    eine Schnittdarstellung gemäß Schnitt "B" des s-förmigen Randkanals
    Fig. 4c
    eine Schnittdarstellung gemäß Schnitt "C" des s-förmigen Randkanals.
  • Das in Figur 1 schematisch dargestellte Ausführungsbeispiel eines Plattenwärmetauschers zeigt perspektivisch einen Plattenstapel S aus einer Mehrzahl formgeprägter Einzelplatten 1, die jeweils miteinander zu einem Plattenpaar P verbunden sind. Jede Einzelplatte 1 umfasst einen Boden 11, der in einer anderen Ebene liegt als die Längsränder 12. Im Anschluss und parallel zu diesen Längsrändern 12 ist jede Einzelplatte 1 jeweils mit einer Anlagefläche 13 ausgebildet, die gegenüber den Längsrändern 12 in der Höhe versetzt ist. Der Versatz zwischen der Anlagefläche 13 und dem zugehörigen Längsrand 12 ist doppelt so groß wie der Versatz zwischen den Längsrändern 12 und dem Boden 11. Der Boden 11 liegt demzufolge höhenmäßig in der Mitte zwischen der Ebene der Längsränder 12 und der Ebene der Anlageflächen 13. Die quer zu den Längsrändern 12 der Einzelplatte 1 verlaufenden Ränder liegen beim Ausführungsbeispiel etwas zur Hälfte in der Ebene der Längsränder 12 bzw. in der Ebene der Anlageflächen 13. Auf diese Weise ergeben sich Querränder 14a und 14b, die in der Höhe, d. h. senkrecht zur Fläche des Bodens 11 um denselben Betrag zueinander versetzt sind wie die Ebenen, in denen einerseits die Längsränder 12 und andererseits die Anlageflächen 13 liegen. Die Figur 1 lässt deutlich erkennen, dass hierbei die Querränder 14a bzw. 14b einander diagonal gegenüberliegen.
  • Jeweils zwei der in Figur 1 als oberstes Teil dargestellten Einzelplatten 1 werden gemäß der unteren Darstellung in Figur 1 zu Plattenpaaren P verbunden. In Figur 1 sind beispielhaft fünf komplette Plattenpaare P dargestellt, wobei auf dem obersten Plattenpaar noch eine Einzelplatte 1 angeordnet ist, die mit der im Abstand dargestellten obersten Einzelplatte 1 ebenfalls zu einem Plattenpaar P verbunden wird.
  • Wenn die Plattenpaare P im Bereich der Anlageflächen 13 zum Plattenstapel S verbunden werden, ergeben sich übereinander liegende Kanäle für die beiden am Wärmeaustausch teilnehmenden Medien. Während das eine Medium in den Strömungskanälen strömt, die jeweils durch die Plattenpaare P gebildet werden, strömt das andere Medium in den Strömungskanälen, die sich durch das Zusammenfügen der Plattenpaare P zum Plattenstapel S ergeben. Die in der Ebene der Längsränder 12 liegenden Querränder 14a der Einzelplatten 1 bilden hierbei den Zuströmquerschnitt Z1 bzw. den Abströmquerschnitt A1 der Strömungskanäle für das zwischen den Plattenpaaren P strömende Medium. Die in der Ebene der Anlageflächen 13 verlaufenden Querränder 14b der Einzelplatten 1 bilden die Zuströmquerschnitte Z2 bzw. die Abströmquerschnitte A2 für das andere Medium, das zwischen den Einzelplatten 1 jedes Plattenpaares P entweder in derselben oder in Gegenrichtung zum ersten Medium strömt. Die Figur 1, die einen Gegenstrom-Wärmetauscher zeigt, lässt erkennen, dass aufgrund der diagonalen Anordnung der Eintritts- und Austrittsöffnungen die Zuströmquerschnitte Z1 bzw. Z2 für das eine Medium neben den Abströmquerschnitten A2 bzw. A1 für das andere Medium liegen, und zwar jeweils um eine halbe Höhe eines Plattenpaares P versetzt.
  • Figur 2a zeigt eine Einzelplatte 1 nach der Erfindung, deren Zuströmquerschnitt Z1 sich über die halbe Breite der Einzelplatte 1, von der Längsmitte bis zum Längsrand 12 erstreckt. Die Einzelplatte weist einen Eintrittsbereich E auf, dessen Länge in Hauptströmungsrichtung die Strecke kennzeichnet, welche das einströmende Medium benötigt, um sich auf die volle Breite der Einzelplatte 1 zu verteilen. In der Bildebene sind rechts neben der Längsmitte der Einzelplatte 1 vier Leitschaufeln 2 angeordnet, welche jeweils einen Anströmschenkel 21 und einen Abströmschenkel 22 aufweisen. Die Anströmschenkel 21 und Abströmschenkel 22 sind ungefähr gleich lang und schließen einen Winkel von ca. 140° bis 100° zwischen sich ein. Dabei ragt keiner der Abströmschenkel 22 über die Längsmitte der Einzelplatte 1 hinaus. Die Anströmschenkel 21 sind jeweils in unmittelbarer Nähe des Querrandes 14a angebracht. Die Einzelplatte 1 weist über ihre gesamte Breite bis zu den Anlageflächen 13 eine Turbulenzen erzeugende Profilierung 31, 32 auf. Diese Profilierung 31, 32 besteht aus einer großen Vielzahl in die Einzelplatte 1 eingeprägter Noppen 31, 32, welche sich im Bereich des Zuströmquerschnittes Z1 bis an die Leitschaufeln 2 erstrecken und im Bereich links der Längsmitte ausgespart sind.
  • Im Bereich der Anlageflächen 13 sind mit Bezug auf die Bildebene nach Figur 2 s-förmige Randkanäle 15 mit einem über ihre Längserstreckung größenvariablen Querschnitt ausgebildet.
  • Figur 2b lässt in einer perspektivischen Ansicht einen aus einer Mehrzahl von Einzelplatten 1 gebildeten Plattenstapel S erkennen. Das Zusammenwirken der Einzelplatten 1 kann dieser Darstellung gut entnommen werden.
  • Die Figur 3 zeigt einen solchen vergrößert dargestellten Randkanal 15 in der Draufsicht. Die Figuren 4a, 4b und 4c zeigen Schnittdarstellungen dieses Randkanals 15 an unterschiedlichen Schnittstellen A, B und C gemäß Figur 3. Zu erkennen ist, dass der vom Medium durchströmbare Querschnitt an der Stelle A maximal groß ist, während der Querschnitt an den Stellen B und C jeweils weniger als ca. 50 % des maximalen Querschnitts beträgt, wobei der Querschnitt an den Stellen B und C jeweils zu unterschiedlichen Seiten des Randkanals 15 verengt ist. Dabei ergeben sich die Verengungen aufgrund von Einprägungen 33, die mit Bezug auf die Bildebene nach Figur 3 teilkreisförmig ausgebildet sind, wodurch sich der in Längsrichtung insgesamt s-förmig ausgebildete Kanalverlauf ergibt.
  • Die Erfindung funktioniert so, dass das durch den Zuströmquerschnitt Z1 in die Einzelplatte 1 einströmende Wärmemedium, hier Rauchgas, auf die sich unmittelbar an den Querrand 14a anschließenden Anströmschenkel 21 der Leitschaufeln 2 trifft. Von dort aus wird das Rauchgas auf die Abströmschenkel 22 geleitet, welche in einem Winkel von ca. 140° bis 100°, vorzugsweise 135° bis 112° zu den Anströmschenkeln 21 stehen. Dadurch, dass der Eintrittsbereich E im Bereich des Zuströmquerschnittes Z1 eine sich unmittelbar an die Leitschaufeln 2 anschließende Profilierung 31, 32 aufweist, während sich in dem spiegelsymmetrisch links neben der Längsmitte liegenden Bereich der Eintrittsplatte 1 keine Profilierung befindet, bildet sich oberhalb der Profilierung 31, 32 innerhalb des Eintrittsbereiches E eine Druckverteilung aus, welche das zuströmende Rauchgas von den Leitschaufeln 2 in den profilfreien Bereich saugt. Dadurch wird das Rauchgas gleichmäßig über die Plattenbreite verteilt und sorgt für eine homogene Wärmeleistung über die gesamte Eintrittsplatte 1 des Wärmetauschers. Durch die besonders kurze und steile Ausgestaltung der Leitschaufeln 2 reduziert sich die Anhaftung von Schmutzpartikeln an die Leitschaufeln 2, so dass einer Verstopfung des Zuströmquerschnittes Z1 vorgebeugt wird. Insgesamt entsteht somit ein wartungsarmer Plattenwärmetauscher, welcher keine Leistungseinbuße erfordert.
  • Gemäß einer Ausführungsvariante kann die Einzelplatte 1 zusätzlich zu den zuvor dargestellten Maßnahmen Randkanäle 15 aufweisen, welche zum Zwecke einer Labyrinthausbildung über Einprägungen 33 verfügt. Dabei strömt das in den Randbereich der Einzelplatte 1 gelangende Medium durch die Randkanäle 15 hindurch und trifft dabei auf die Verengungen und Erweiterungen der jeweiligen Kanalquerschnitte, welche einen Staueffekt bewirken und zu einer höheren Wechselwirkung des Mediums mit der Einzelplatte 1 führen. Wie in Figur 3 gezeigt gelangt das Rauchgas in die s-förmig geschnittenen Randkanäle 15, wo es im Schnittbereich A (Ansicht Figur 4 a) den gesamten Kanalquerschnitt zur Verfügung hat. Im Bereich des Schnittes B (Ansicht Figur 4 b) muss das Rauchgas die erste Krümmung durchströmen, in welcher sich der Querschnitt um die Hälfte reduziert. Dabei entsteht der vorgenannte Staueffekt. Hinter der Krümmung erweitert sich der Querschnitt dann wieder kurzzeitig, um sich im Bereich des Schnittes C (Figur 4 c) erneut auf die Hälfte zu reduzieren, jedoch diesmal der s-Form des Randkanals 15 folgend im Bereich der gegenüberliegenden Kanalseitenwand. Insgesamt werden somit durch die höhere Wechselwirkung des Wärmemediums mit den Einzelplatten 1 Leistungsverluste, welche gemäß dem Stand der Technik durch Bypässe im Randbereich der Einzelplatte 1 auftreten, erheblich vermindert, was wiederum zu einer Leistungssteigerung des Wärmetauschers führt. Verstärkt werden kann dieser Effekt weiterhin dadurch, dass die Turbulenzen erzeugende Profilierung 31, 32 über die gesamte Breite der Einzelplatten 1 bis hin zu den Anlageflächen 13 ausgebildet ist. Dies unterstützt die Vermeidung von Bypässen und führt somit zu einer Leistungsverbesserung des Wärmetauschers.
  • Bezugszeichenliste
  • A
    Austrittsbereich
    A1
    Abströmquerschnitt
    A2
    Abströmquerschnitt
    E
    Eintrittsbereich
    P
    Plattenpaar
    S
    Plattenstapel
    Z1
    Zuströmquerschnitt
    Z2
    Zuströmquerschnitt
    1
    Einzelplatte
    11
    Boden
    12
    Längsrand
    13
    Anlagefläche
    14a
    Querrand
    14b
    Querrand
    15
    Randkanal
    2
    Erhebung
    21
    Anströmschenkel
    22
    Abströmschenkel
    31
    Einzelnoppe
    32
    Einzelnoppe
    33
    Einprägung

Claims (9)

  1. Plattenwärmetauscher mit im Gleichstrom oder Gegenstrom von einem ersten und einem zweiten Medium durchströmten Strömungskanälen, die für das erste Medium zwischen jeweils zu einem Plattenpaar (P) verbundenen Einzelplatten (1) und für das zweite Medium zwischen zu einem Plattenstapel (S) zusammengefügten Plattenpaaren (P) gebildet sind, wobei die Einzelplatten (1) und die Plattenpaare (P) an parallel zur Hauptströmungsrichtung verlaufenden Längsrändern (12) und Anlageflächen (13) miteinander verbunden sind, wobei jede Einzelplatte (1) in Längsrichtung korrespondierende, diagonal angeordnete Zu- und Abströmquerschnitte (Z1, Z2, A1, A2) für das erste Medium und in Querrichtung neben diesen liegende Zuström- bzw. Abströmquerschnitte (Z1, Z2, A1, A2) für das zweite Medium aufweist, wobei die Zuström- bzw. Abströmquerschnitte (A1, A2, Z1, Z2) für das erste Medium jeweils um die halbe Höhe der Zuström- bzw. Abströmquerschnitte (Z1, Z2, A1, A2) für das zweite Medium versetzt sind, wobei die Einzelplatten (1) innerhalb eines Eintrittsbereiches (E) durch Ausprägungen gebildete, in den Strömungskanal hineinragende Leitschaufeln (2) aufweisen, wobei die Leitschaufeln (2) bogenförmig mit einem im Wesentlichen parallel zur Hauptströmungsrichtung ausgerichteten Anströmschenkel (21) und einem unter einem Winkel zum Anströmschenkel (21) ausgerichteten Abströmschenkel (22) ausgebildet sind, und wobei die Einzelplatten (1) mit einer Turbulenzen erzeugenden Profilierung (31, 32) versehen sind,
    dadurch gekennzeichnet,
    - dass die Leitschaufeln (2) der Zuströmquerschnitte (Z1, Z2) nicht über die Längsmitte der Einzelplatten (1) hinausragen, wobei die Anströmschenkel (21) und die Abströmschenkel (22) im Wesentlichen gleiche Längen aufweisen, und wobei die Leitschaufeln (2) mit im Wesentlichen gleichem Abstand zu dem zugehörigen Querrand (14a, 14b) der jeweiligen Einzelplatte (1) angeordnet sind, und
    - dass die Turbulenzen erzeugende Profilierung (31, 32) im Eintrittsbereich (E) der Zuströmquerschnitte (Z1, Z2) bis an die Leitschaufeln (2) ragt und im spiegelsymmetrisch zur Längsmitte der Einzelplatten (1) angrenzenden Bereich ausgespart ist.
  2. Plattenwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Leitschaufeln (2) vollständig durchgeprägt sind, so dass diese spaltfrei an der benachbarten Einzelplatte (1) anliegen.
  3. Plattenwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anströmschenkel (21) und die Abströmschenkel (22) einen Winkel zwischen 140° und 100°, vorzugsweise 135° und 112° zueinander aufweisen.
  4. Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Turbulenzen erzeugende Profilierung (31, 32) ausgeprägte Noppen (31, 32) aufweist.
  5. Plattenwärmetauscher nach Anspruch 4, dadurch gekennzeichnet, dass einige der Noppen (31, 32) als Abstandshalter für benachbarte Einzelplatten (1) ausgebildet sind.
  6. Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Turbulenzen erzeugende Profilierung (31, 32) der Einzelplatte (1) senkrecht zur Hauptströmungsrichtung über den gesamten Boden (11) bis zu den Anlageflächen (13) ausgebildet ist.
  7. Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einzelplatten (1) im Bereich der Anlageflächen (13) Randkanäle (15) mit einem über ihre Längserstreckung größenvariablen Querschnitt aufweisen.
  8. Plattenwärmetauscher nach Anspruch 7, dadurch gekennzeichnet, dass die Randkanäle (15) im Wesentlichen s-förmig bzw. mehrfach s-förmig ausgebildet sind.
  9. Plattenwärmetauscher nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass der Querschnitt der Randkanäle (15) um bis zu 50 % oder mehr variabel ist.
EP12165204.4A 2012-04-23 2012-04-23 Plattenwärmetauscher Active EP2657635B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12165204.4A EP2657635B1 (de) 2012-04-23 2012-04-23 Plattenwärmetauscher
US13/620,790 US20130277024A1 (en) 2012-04-23 2012-09-15 Plate Heat Exchanger
RU2012145975/06A RU2575378C2 (ru) 2012-04-23 2012-10-29 Пластинчатый теплообменник
KR1020130051327A KR102009304B1 (ko) 2012-04-23 2013-04-23 평판 열교환기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12165204.4A EP2657635B1 (de) 2012-04-23 2012-04-23 Plattenwärmetauscher

Publications (2)

Publication Number Publication Date
EP2657635A1 EP2657635A1 (de) 2013-10-30
EP2657635B1 true EP2657635B1 (de) 2015-06-10

Family

ID=46026684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12165204.4A Active EP2657635B1 (de) 2012-04-23 2012-04-23 Plattenwärmetauscher

Country Status (3)

Country Link
US (1) US20130277024A1 (de)
EP (1) EP2657635B1 (de)
KR (1) KR102009304B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108692597B (zh) * 2018-07-23 2023-10-03 江苏唯益换热器有限公司 一种防内漏的板式换热器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676000A (en) * 1949-03-26 1954-04-20 Ekwall Nils Richard Gosta Plate type heat exchanger
US2813708A (en) * 1951-10-08 1957-11-19 Frey Kurt Paul Hermann Devices to improve flow pattern and heat transfer in heat exchange zones of brick-lined furnaces
US2777674A (en) * 1953-05-29 1957-01-15 Creamery Package Mfg Co Plate type heat exchanger
GB1205933A (en) * 1967-01-25 1970-09-23 Clarke Chapman Ltd Improvements in or relating to plate heat exchangers
DE1601216B2 (de) * 1967-11-03 1971-06-16 Linde Ag, 6200 Wiesbaden Blechtafel fuer platten waermetauscher mit einem stapel solcher blechtafeln
US3893509A (en) * 1974-04-08 1975-07-08 Garrett Corp Lap joint tube plate heat exchanger
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
DE2906837A1 (de) * 1979-02-22 1980-09-04 Fsl Fenster System Lueftung Kontinuierlicher waermeaustauscher fuer gasfoermiges fluidum
US4475589A (en) * 1981-01-21 1984-10-09 Tokyo Shibaura Denki Kabushiki Kaisha Heat exchanger device
EP0208042A1 (de) * 1985-07-10 1987-01-14 Hamon-Industries Thermoformierte Folie für einen Gas-Gas-Plattenwärmetauscher und daraus resultierender Wärmetauscher
DE4100940C1 (de) * 1991-01-15 1991-11-21 Balcke-Duerr Ag, 4030 Ratingen, De
DE4142177C2 (de) * 1991-12-20 1994-04-28 Balcke Duerr Ag Plattenwärmetauscher
DE19832164C2 (de) * 1998-07-17 2002-12-05 Balcke Duerr Gmbh Plattenwärmetauscher
GB0023427D0 (en) * 2000-09-23 2000-11-08 Smiths Industries Plc Apparatus
KR20030067877A (ko) * 2002-02-08 2003-08-19 벤트-악시아 그룹 리미티드 열교환기
NL1022794C2 (nl) * 2002-10-31 2004-09-06 Oxycell Holding Bv Werkwijze voor het vervaardigen van een warmtewisselaar, alsmede met de werkwijze verkregen warmtewisselaar.
DE102007029753A1 (de) * 2007-06-27 2009-01-08 Gea Ecoflex Gmbh Plattenwärmetauscher

Also Published As

Publication number Publication date
KR102009304B1 (ko) 2019-08-09
US20130277024A1 (en) 2013-10-24
KR20130119390A (ko) 2013-10-31
RU2012145975A (ru) 2014-05-10
EP2657635A1 (de) 2013-10-30

Similar Documents

Publication Publication Date Title
EP0548602B1 (de) Plattenwärmetauscher
DE10346268B4 (de) Kornfliessbettvorrichtung
EP0152560B1 (de) Matrix für einen katalytischen Reaktor zur Abgasreinigung
DE2951352C2 (de) Flachrohr-Wärmetauscher
EP0463298B1 (de) Plattenwärmeaustauscher
DE102016115030A1 (de) Abgasmischelement
WO2015188812A1 (de) Wärmetauscher
EP0844454B1 (de) Gegenstromwärmetauscher
DE1451254B2 (de) Plattenwaermetauscher
EP2657635B1 (de) Plattenwärmetauscher
EP3957940A1 (de) Gegenstromplattenwärmetauscher-modul und gegenstromplattenwärmetauscher
DE102010036664B4 (de) Plattenwärmeübertrager
WO2011006579A2 (de) Plattenwärmeübertrager
EP3130876A1 (de) Wärmeüberträger
EP2657636B1 (de) Plattenwärmetauscher
DE2428042B2 (de) Roehrenwaermeaustauscher
WO2004079748A2 (de) Abstandhalter
DE19944426C2 (de) Plattenwärmetauscher und Verdampfer
DE1948282C3 (de) Wabenkörper zum Behandeln von Flüssigkeiten mittels Gasen
EP2881170B1 (de) Einbauelement für eine Vorrichtung zur Behandlung eines Fluids
DE3518744C1 (de) Wärmetauscher mit Reinigungsvorrichtung
DE102007029753A1 (de) Plattenwärmetauscher
EP0697913B1 (de) Plattenkatalysator
DE2513505A1 (de) Waermerueckgewinnungsgeraet
DE102020206933A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 731088

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003396

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150610

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003396

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003396

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003396

Country of ref document: DE

Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012003396

Country of ref document: DE

Owner name: KELVION PHE GMBH, DE

Free format text: FORMER OWNER: GEA ECOFLEX GMBH, 47059 DUISBURG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003396

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KELVION PHE GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

26N No opposition filed

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160423

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003396

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003396

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120423

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012003396

Country of ref document: DE

Owner name: KELVION THERMAL SOLUTIONS HOLDING GMBH, DE

Free format text: FORMER OWNER: KELVION PHE GMBH, 31157 SARSTEDT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 731088

Country of ref document: AT

Kind code of ref document: T

Owner name: KELVION THERMAL SOLUTIONS HOLDING GMBH, DE

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 13

Ref country code: FR

Payment date: 20240425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240418

Year of fee payment: 13