EP3130876A1 - Wärmeüberträger - Google Patents

Wärmeüberträger Download PDF

Info

Publication number
EP3130876A1
EP3130876A1 EP16001801.6A EP16001801A EP3130876A1 EP 3130876 A1 EP3130876 A1 EP 3130876A1 EP 16001801 A EP16001801 A EP 16001801A EP 3130876 A1 EP3130876 A1 EP 3130876A1
Authority
EP
European Patent Office
Prior art keywords
disks
small
tube bundle
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16001801.6A
Other languages
English (en)
French (fr)
Other versions
EP3130876B1 (de
Inventor
Herbert Falk
Peter Zehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Falk and Thomas Engineering GmbH
Falk and Thomas Eng GmbH
Original Assignee
Falk and Thomas Engineering GmbH
Falk and Thomas Eng GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Falk and Thomas Engineering GmbH, Falk and Thomas Eng GmbH filed Critical Falk and Thomas Engineering GmbH
Publication of EP3130876A1 publication Critical patent/EP3130876A1/de
Application granted granted Critical
Publication of EP3130876B1 publication Critical patent/EP3130876B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions

Definitions

  • the invention relates to heat exchangers having a tube bundle having outer and inner tubes, which tube is arranged in a tube, and having a plurality of transverse struts which hold the tubes of the tube bundle together and deflection surfaces, cross struts of a first type being arranged in the tube bundle, that the deflection surfaces are rectilinearly oblique to the longitudinal axis of the tube bundle, and the transverse struts of a second type are arranged in the tube bundle, that their deflection also rectified obliquely to the longitudinal axis of the tube bundle, but crossing to the cross struts of the first type.
  • Each cross brace consists of several web plates whose surfaces form deflection surfaces and which are pushed between the tubes of the tube bundle, whereby a lattice-like structure with a plurality of intersecting deflection surfaces is formed. Due to the intersecting arrangement of the individual web plates, the web plates of the cross struts of the first type but spaced from each other by the web plates of the cross braces of the second type and vice versa, so that the deflection of each cross member is not a closed surface.
  • the invention is therefore based on the object to improve the steering of the fluid flowing through the tube in terms of increased heat transfer and to simplify the assembly of the heat exchanger.
  • the invention provides that the cross struts of the first type of large disks are formed with holes for lying in the peripheral edge of the tube bundle outer tubes and with a central opening, wherein the outer periphery of each large disk comprises the tube bundle, and that the cross struts of the second kind are formed by small disks with holes for the inner inner tubes of the tube bundle, each small disc penetrates the central opening of at least one large disk.
  • the dimensions of the small disks and the large disks are chosen so that the outer edges of the small disks pointwise opposite to the inner edges of the central openings in the large disks.
  • a plurality of individual web plates are no longer used to form the deflection surface in a plane, but discs which form a deflection surface in a plane, wherein at least the large disks comprise the entire tube bundle and receive the outer tubes of the tube bundle in whole or in part.
  • the small disks, which receive the inner tubes in whole or in part, lie in the central openings of the large disks and are held pointwise therein, so that a stable, the tube bundle cohesive structure is formed.
  • the dimensions of the small disks and the large disks can be selected so that the diameter of the small disks is greater than the diameter of the central openings, and that the inner edges of the large disks each have recesses with an edge extending in the radial direction. At this edge, the small disc lays down.
  • the large disks and the small disks each form flat deflection surfaces, which are directed against each other. Since the discs each have a closed surface, the deflection surfaces are closed, so that the flow guidance is improved.
  • the construction of a heat exchanger is relatively simple: It alternately large and small disks are pushed onto the tube bundle. This is done relatively quickly, since only one disc is required for each plane and not several multi-wall plates as are required in the prior art (see above).
  • the inclinations of the large and small disks are directed opposite. Their inclination lines include an inclination angle with the longitudinal axis of the tube.
  • the flow steering is particularly effective when the area of the central opening of a large disk is 40-60% of the area of the area enclosed by the outer periphery of the large disk. Since the small disks - as explained below - have a surface area which is substantially equal to the surface area of the central opening, the oppositely inclined deflection surfaces are equally weighted by the selected area ratio.
  • the angle of inclination is preferably between 20 ° and 70 ° or between 30 ° and 60 °.
  • Optimum flow conditions are achieved when the angle of inclination is between 40 ° and 50 °.
  • large and small disks include an angle of 80 ° and 100 °.
  • the outer peripheral shape of the small discs is to a scale congruent with the inner peripheral shape of the central openings. This has the further advantage that the small slices can be generated as a section of the large disks, which simultaneously creates the central opening in the large windows. Due to cutting losses, the small disc is a little smaller than the central opening.
  • the small disks have a smaller extent in the direction of a minor axis than in the direction of a main axis perpendicular thereto, the main axis extending in the direction of the inclination of the small disks.
  • the large disks each have an outer circumference which is mirror-symmetrical to the main axis, and the central openings in the large disks have an inner circumference, which also extends mirror-symmetrically to the main axis, wherein the main axes of the outer and inner circumference in a longitudinal axis of the Tubus receiving vertical plane and run in the direction of the inclination.
  • the large disks have an elliptical outer circumference, while the same axis central openings have an elliptical or a polygonal inner circumference in the large disks.
  • a plurality of holes through which the outer tubes of the tube bundle are passed.
  • On the inner circumference of the central opening and on the outer circumference of the small disks are corresponding recesses, which also receive inner tubes of the tube bundle lying further inside.
  • the small disks mainly have holes for the inner tubes lying inside the tube bundle.
  • the discs are arranged in groups, wherein the inclination line of the discs of the second group are offset from the inclination line of the discs of the first group by an azimuth angle of 90 °.
  • a main package and from large disks of the second group and the associated small disks a follow-up package is formed, with major and minor packages - alternately follow one another in the longitudinal direction of the tube bundle.
  • the starting and end disks are each cut in such a way that the packages end in a frontal plane which runs perpendicular to the longitudinal axis of the tube bundle.
  • support rods can be provided, which penetrate the discs and are designed as tie rods.
  • a heat exchanger consists of a tube 1, in which a tube bundle 2 is held together by a plurality of transverse struts 3.
  • the cross struts 3 also serve to guide a fluid through the tube.
  • tubes of the tube bundle 2 it may be z. B. to be nested tubes, where a heat transfer medium in the form of a fluid via an end flange 4 is supplied to a head 5 of the tube 1, which is discharged via a side flange 6 on the head 5.
  • the tube bundle 2 is held together by main packages and follow-up packages, wherein a main package 11 in the Fig. 2 is shown.
  • This package 11 consists of a plurality of mutually parallel and inclined with respect to the longitudinal axis of the tube large disks 12 and a plurality of mutually parallel and inclined relative to the longitudinal axis of the tube small disks 13.
  • the surfaces of the discs 12, 13 form deflection surfaces for a flowing through the tube 1 fluid ,
  • the inclination of the discs 12, 13 is defined in each case by an inclination line which lies in the respective disc and which encloses a minimum angle, the inclination angle, with the longitudinal axis of the tube.
  • the angular position of the projection of the inclination line in the polar plane is the azimuth angle.
  • the angular distance between the azimuth angle of the inclination lines of the large disks 12 and the inclination lines of the small disks 13 is 180 ° in this embodiment.
  • the inclination lines of the large disks 12 and the small disks 13 at the same time form their main axes 16 (see Fig. 3 ), which lie in a common plane, on which the discs 12, 13 are each perpendicular.
  • the large disks 12 further each have a central opening 14 in which the small disks 13 are inserted. Large disks 12 and small disks 13 are thus nested.
  • the large disks 12 and the small disks 13 have a plurality of holes 15, through which the tubes of the tube bundle 2 are passed accurately.
  • the large disks 12 and the small disks 13 are congruent with each other.
  • the dimensions of a large disk 12 and a small disk 13 result from the Fig. 3 , which shows a plan view of the discs 12, 13 in the direction of the tube bundle 2, so that the large disc appears circular. In fact, both have an elliptical shape, as in the Fig. 2 can be seen.
  • the central openings 14 are substantially congruent with the small disks 13. This allows, in each case a small disk 13 from a large disk 12 z. B. cut out by means of a laser beam. Because of the resulting cutting losses, the small disks 13 are slightly smaller than the large disks and are therefore congruent with the central openings 14 only up to a scaling factor.
  • Fig. 3 also does not recognize the inclination of the discs 12, 13. These are - like that Fig. 2 it can be seen - directed against each other, so that the two discs 12, 13 at an angle of z. B. cut 90 °. Other angles are also possible.
  • the lengths of the discs 12, 13 are, measured in their major axes 16, about the same size.
  • the widths of the small disks 13 are, based on their minor axes 17, which are perpendicular to the main axes 16, approximately smaller by half than the corresponding widths of the large disks 12th
  • the tube bundle has a hexagonal outer contour, wherein adjacent tubes are arranged in the corners of an equilateral triangle. This corresponds to a so-called triangular division of 60 °.
  • the large disk 12 includes further holes 19 for pipes in the outer region of the tube bundle 2, while tubes inside the tube bundle 2 of holes 20 in the Small disc 13 can be recorded.
  • the arrangement of the tubes in the hexagon is to be understood as an example. It is a shape in which adjacent tubes lie in the corners of an isosceles triangle. The result of this is that when the disks 12, 13 slope in the direction of a line of the triangle, the holes in the disks 12, 13 must be arranged differently than in the case of disks whose main axis lies in the direction of a bisector of the triangle (as in FIG FIGS. 2 and 3 shown). The same applies to an arrangement of the tubes on the corners of an equilateral right triangle with two equal sides.
  • the previously described discs 12, 13 according to FIGS. 2 and 3 are arranged so that the azimuth angle of their inclination lines is 0 ° or 180 °. They thus form a main package.
  • the discs 12, 13 are oriented so that the azimuth angle of their inclination lines at 90 ° and 270 ° lie.
  • the 4 and 5 show such a follow-up package 26.
  • holes 28 located on the major axis of the small discs 13 holes 28 which are adjacent in the isosceles triangle.
  • tube bundles are known in which the tubes are arranged in a square.
  • the tube mirror is identical for both axes, identical discs can be used for main and follower packages, since the distribution of the tubes in the tube bundle 2 is identical in each case at azimuth angles offset by 90 ° from one another.
  • a change to slices of the auxiliary package is made after one or more large disks, and then change back to a main package. Since the individual packages require a straight front end, the large and small disks that form the end pieces of a package 11, 26, along a cutting edge 29, as the Fig. 2 and 4 show, shortened.
  • the angle of inclination of the discs 12, 13 can be adapted to the respective requirements.
  • the principle can basically be used for all shell and tube heat exchangers such as liquid / liquid, gas / gas, gas / liquid and liquid / gas.
  • the pipes can be both smooth and ribbed.
  • field tubes can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung bezieht sich auf einen Wärmeüberträger mit einem Rohrbündel (2) in einem Tubus (1) und mit geneigt zur Achse des Wärmeüberträgers angeordneten Scheiben (12, 13), die Umlenkflächen bilden, um den fluidischen Wärmeträger mäandernd durch den Tubus (2) zu leiten. Die Scheiben (12, 13) haben außerdem die Aufgabe, die Rohre des Rohrbündels (2) zusammenzuhalten und deren Schwingung verhindern. Es sind Groß- und Kleinscheiben (12, 13) vorgesehen, wobei der Außenumfang der Großscheiben (12) das Rohrbündel (2) umfasst und sich in jeder Großscheibe (12) eine Zentralöffnung (14) befindet. Kleinscheiben (13) besitzen Löcher (20, 21) für innen liegende Innenrohre des Rohrbündels (2), wobei die Kleinscheiben (13) die Zentralöffnungen (14) von jeweils zwei benachbarten Großscheiben (12) durchdringen und die Außenränder der Kleinscheiben (13) an den Innenrändern der Zentralöffnungen (14) in den Großscheiben (12) punktweise anliegen. Dadurch ergibt sich ein kompaktes und schnell herzustellendes Gerüst für das Rohrbündel, mit dem eine effektive Führung des Wärmeträgers durch den Tubus gewährleistet wird.

Description

  • Die Erfindung bezieht sich auf Wärmeüberträger mit einem Außen- und Innenrohre aufweisenden Rohrbündel, das in einem Tubus angeordnet ist, und mit einer Vielzahl von Querstreben, die die Rohre des Rohrbündels zusammenhalten und Umlenkflächen aufweisen, wobei Querstreben einer ersten Art derart im Rohrbündel angeordnet sind, dass deren Umlenkflächen gleichgerichtet schräg zur Längsache des Rohrbündels verlaufen, und die Querstreben einer zweiten Art derart im Rohrbündel angeordnet sind, dass deren Umlenkflächen ebenfalls gleichgerichtet schräg zur Längsachse des Rohrbündels, aber kreuzend zu den Querstreben der ersten Art verlaufen.
  • Ein derartiger Wärmeüberträger ist z. B. in der EP 1 067 352 A1 beschrieben. Jede Querstrebe besteht aus mehreren Stegplatten, deren Oberflächen Umlenkflächen bilden und die zwischen die Rohre des Rohrbündels geschoben werden, wodurch eine gitterartige Struktur mit mehreren sich kreuzenden Umlenkflächen entsteht. Durch die sich kreuzende Anordnung der einzelnen Stegplatten werden die Stegplatten der Querstreben der ersten Art aber durch die Stegplatten der Querstreben der zweiten Art voneinander beabstandet und umgekehrt, so dass die Umlenkfläche einer jeden Querstrebe keine geschlossene Fläche ist.
  • Darüber hinaus ist die Montage solcher Wärmeüberträger mit aus einzelnen Stegplatten bestehenden Querstreben sehr aufwändig, da für eine Umlenkfläche mehrere Stegplatten nebeneinander angeordnet werden müssen, die einzeln auf das Rohrbündel aufgeschoben werden müssen.
  • Die Erfindung beruht daher auf der Aufgabe, die Lenkung des durch den Tubus strömenden Fluids im Sinne eines erhöhten Wärmeübertrags zu verbessern und die Montage des Wärmeüberträgers zu vereinfachen.
  • Zur Lösung des Problems sieht die Erfindung vor, dass die Querstreben der ersten Art von Großscheiben mit Löchern für im Umfangsrand des Rohrbündels liegende Außenrohre und mit einer Zentralöffnung gebildet sind, wobei der Außenumfang einer jeden Großscheibe das Rohrbündel umfasst, und dass die Querstreben der zweiten Art von Kleinscheiben mit Löchern für die innen liegenden Innenrohre des Rohrbündels gebildet sind, wobei jede Kleinscheibe die Zentralöffnung von mindestens einer Großscheibe durchdringt.
  • Vorzugsweise sind die Abmessungen der Kleinscheiben und der Großscheiben so gewählt, dass die Außenränder der Kleinscheiben den Innenrändern der Zentralöffnungen in den Großscheiben punktweise gegenüberliegen.
  • Gemäß dieser Anordnung werden nicht mehr mehrere einzelne Stegplatten zur Bildung der Umlenkfläche in einer Ebene verwendet, sondern Scheiben, die in einer Ebene jeweils eine Umlenkfläche bilden, wobei zumindest die Großscheiben das gesamte Rohrbündel umfassen und die Außenrohre des Rohrbündels ganz oder teilweise aufnehmen. Die Kleinscheiben, die die Innenrohre ganz oder teilweise aufnehmen, liegen in den Zentralöffnungen der Großscheiben und werden darin punktweise gehalten, so dass eine stabile, das Rohrbündel zusammenhaltende Struktur entsteht.
  • Um den Zusammenhalt zwischen den Scheiben zu erhöhen, können die Abmessungen der Kleinscheiben und der Großscheiben so gewählt werden, dass der Durchmesser der Kleinscheiben größer ist als der Durchmesser der Zentralöffnungen, und dass die Innenränder der Großscheiben jeweils Ausnehmungen mit einer in radialer Richtung verlaufenden Kante aufweisen. An diese Kante legt sich die Kleinscheibe an.
  • Es kann auch daran gedacht werden, die Großscheiben zu teilen, wobei die Kleinscheiben zwischen der Teilungskante aufgenommen werden.
  • Die Großscheiben und die Kleinscheiben bilden jeweils ebene Umlenkflächen, die gegeneinander gerichtet sind. Da die Scheiben jeweils eine geschlossene Fläche aufweisen, sind auch die Umlenkflächen geschlossen, so dass die Strömungslenkung verbessert ist.
  • Der Aufbau eines Wärmeüberträgers erfolgt relativ einfach: Es werden abwechselnd Groß- und Kleinscheiben auf das Rohrbündel aufgeschoben. Dies geht relativ schnell vonstatten, da für jede Ebene nur eine Scheibe und nicht mehrere Stegplatten wie sie nach dem Stand der Technik (siehe oben) benötigt werden, vorgesehen ist.
    Die Neigungen der Groß- und Kleinscheiben sind entgegengesetzt gerichtet. Ihre Neigungslinien schließen einen Neigungswinkel mit der Längachse des Tubus ein.
  • Die Strömungslenkung ist besonders dann effektiv, wenn der Flächeninhalt der Zentralöffnung einer Großscheibe 40-60 % vom Flächeninhalt der Fläche beträgt, die vom Außenumfang der Großscheibe eingeschlossen ist. Da die Kleinscheiben - wie weiter unten ausgeführt - einen Flächeninhalt besitzen, der dem Flächeninhalt der Zentralöffnung im Wesentlichen gleicht, werden durch das gewählte Flächenverhältnis die entgegengesetzt geneigten Umlenkflächen gleich gewichtet.
  • Der Neigungswinkel liegt vorzugsweise zwischen 20° und 70° bzw. zwischen 30° und 60°.
  • Optimale Strömungsverhältnisse werden erreicht, wenn der Neigungswinkel zwischen 40° und 50°.liegt. In diesem Fall schließen Groß- und Kleinscheiben einen Winkel von 80° und 100° ein.
  • Um keine geraden Pfade durch den Tubus entstehen zu lassen, die nicht von den Scheiben betroffen sind, ist die Außenumfangsform der Kleinscheiben bis auf eine Skalierung deckungsgleich mit der Innenumfangsform der Zentralöffnungen. Dies hat weiterhin den Vorteil, dass die Kleinscheiben als Ausschnitt aus den Großscheiben erzeugt werden können, wodurch gleichzeitig die Zentralöffnung in den Großscheiben entsteht. Auf Grund von Schnittverlusten ist die Kleinscheibe ein wenig kleiner als die Zentralöffnung.
  • Die Kleinscheiben besitzen in Richtung einer Nebenachse eine kleinere Ausdehnung als in Richtung einer dazu senkrechten Hauptachse, wobei die Hauptachse in Richtung der Neigung der Kleinscheiben verläuft.
  • Weiterhin ist vorgesehen, dass die Großscheiben jeweils einen Außenumfang besitzen, der spiegelsymmetrisch zu der Hauptachse verläuft, und die Zentralöffnungen in den Großscheiben einen Innenumfang besitzen, der ebenfalls spiegelsymmetrisch zu der Hauptachse verläuft, wobei die Hauptachsen des Außen- und Innenumfanges in einer die Längsachse des Tubus aufnehmenden Vertikalebene liegen und in Richtung der Neigung verlaufen.
  • Typischerweise besitzen die Großscheiben einen elliptischen Außenumfang, während die achsgleichen Zentralöffnungen in den Großscheiben einen elliptischen oder auch einen polygonen Innenumfang besitzen.
  • Dabei befinden sich in den Außenbereichen der Großscheiben, die die Zentralöffnung umfassen, mehrere Löcher, durch die die Außenrohre des Rohrbündels hindurchgeführt werden. Am Innenumfang der Zentralöffnung sowie am Außenumfang der Kleinscheiben befinden sich korrespondierende Ausnehmungen, die ebenfalls weiter innen liegende Innenrohre des Rohrbündels aufnehmen. Die Kleinscheiben weisen vor allem Löcher für die innen im Rohrbündel liegenden Innenrohre auf.
  • Aus dem obengenannten Stand der Technik ist ebenfalls bekannt, die Umlenkflächen abschnittsweise um die Tubusachse um einen Azimutwinkel verdreht anzuordnen. Um eine noch bessere Durchmischung des Fluids im Tubus zu erreichen, sind die Scheiben in Gruppen angeordnet, wobei die Neigungslinie der Scheiben der zweiten Gruppe gegenüber den Neigungslinie der Scheiben der ersten Gruppe um einem Azimutwinkel von 90° versetzt sind.
  • Wenn die benachbarten Rohre des Rohrbündels in einem Dreieck angeordnet sind, benötigt man einerseits Groß- und Kleinscheiben einer ersten Gruppe, deren Hauptachsen in einer Vertikalebene parallel zu einer Verbindungslinie von zwei benachbarten Rohren des Dreiecks liegen, und Groß- und Kleinscheiben einer zweiten Gruppe, deren Hauptachsen in einer Vertikalebene liegen, in der wiederum eine Verbindungslinie von zwei benachbarten Rohren des Dreiecks liegt.
  • Aus Großscheiben der ersten Gruppe und den dazugehörigen Kleinscheiben wird ein Hauptpaket und aus Großscheiben der zweiten Gruppe und den dazugehörigen Kleinscheiben ein Folgepaket gebildet, wobei Haupt- und Nebenpakete - abwechselnd in Längsrichtung des Rohrbündels aufeinander folgen.
  • Bei den Haupt- und Nebenpaketen sind jeweils die Anfangs- und Endscheiben derart gekappt, dass die Pakete in einer Stirnebene enden, die senkrecht zur Längsachse des Rohrbündels verläuft.
  • Um eine Demontage zu erleichtern, können Haltestangen vorgesehen werden, die die Scheiben durchdringen und die als Zuganker ausgeführt sind.
  • Im Folgenden soll anhand eines Ausführungsbeispiels die Erfindung näher erläutert werden. Dazu zeigen:
  • Fig. 1
    den prinzipiellen Aufbau eines erfindungsgemäßen Wärmeüberträgers mit einem Tubus und einem darin angeordneten Rohrbündel, dessen Rohre von Querstreben zusammengehalten werden,
    Fig. 2
    eine perspektivische Darstellung eines Hauptpaketes, das sich aus Querstreben in Form von Klein- und Großscheiben zusammensetzt,
    Fig. 3
    eine Draufsicht auf eine Großscheibe und eine Kleinscheibe für ein Hauptpaket gemäß Fig. 2,
    Fig. 4
    eine perspektivische Darstellung eines aus Großscheiben und Kleinscheiben bestehenden Folgepaketes, und
    Fig. 5
    eine Draufsicht auf eine Großscheibe und eine Kleinscheibe für ein Folgepaket gemäß Fig. 4.
  • Gemäß der Fig. 1 besteht ein Wärmeüberträger aus einem Tubus 1, in dem sich ein Rohrbündel 2 befindet, das von mehreren Querstreben 3 zusammengehalten wird. Die Querstreben 3 dienen außerdem der Führung eines Fluids durch den Tubus 1.
  • Bei den Rohren des Rohrbündels 2 kann es sich z. B. um ineinander gesteckte Rohre handeln, denen ein Wärmeträger in Form eines Fluids über einen stirnseitigen Flansch 4 an einem Kopf 5 des Tubus 1 zugeführt wird, das über einen seitlichen Flansch 6 am Kopf 5 abgeführt wird.
  • Die Zu- und Abfuhr des Wärmeträgers erfolgt über gegenüberliegende seitliche Flansche 7, 8 am Tubus 1, die sich knapp unterhalb des Kopfes 5 befinden.
  • Das Rohrbündel 2 wird von Hauptpaketen und Folgepaketen zusammengehalten, wobei ein Hauptpaket 11 in der Fig. 2 dargestellt ist. Dieses Paket 11 besteht aus mehreren parallel zueinander angeordneten und gegenüber der Längsachse des Tubus geneigten Großscheiben 12 und mehreren parallel zueinander angeordneten und gegenüber der Längsachse des Tubus geneigten Kleinscheiben 13. Die Flächen der Scheiben 12, 13 bilden Umlenkflächen für ein durch den Tubus 1 fließendes Fluid.
  • Die Neigung der Scheiben 12, 13 wird jeweils durch eine Neigungslinie definiert, die in der jeweiligen Scheibe liegt und die mit der Längsachse des Tubus einen minimalen Winkel, den Neigungswinkel, einschließt. Die Winkellage der Projektion der Neigungslinie in die Polarebene ist der Azimutwinkel. Der Winkelabstand zwischen dem Azimutwinkel der Neigungslinien der Großscheiben 12 und den Neigungslinien der Kleinscheiben 13 beträgt in dieser Ausführung 180°. Die Neigungslinien der Großscheiben 12 und der Kleinscheiben 13 bilden gleichzeitig deren Hauptachsen 16 (siehe Fig. 3), die in einer gemeinsamen Ebene liegen, auf der die Scheiben 12, 13 jeweils senkrecht stehen.
  • Die Großscheiben 12 besitzen weiterhin jeweils eine Zentralöffnung 14, in denen die Kleinscheiben 13 eingeschoben sind. Großscheiben 12 und Kleinscheiben 13 sind somit ineinander geschachtelt.
  • Weiterhin besitzen die Großscheiben 12 und die Kleinscheiben 13 eine Vielzahl von Löchern 15, durch die die Rohre des Rohrbündels 2 passgenau hindurchgeführt sind.
  • Die Großscheiben 12 und die Kleinscheiben 13 sind untereinander deckungsgleich. Die Abmessungen einer Großscheibe 12 und einer Kleinscheibe 13 ergeben sich aus der Fig. 3, die eine Draufsicht auf die Scheiben 12, 13 in Richtung des Rohrbündels 2 zeigt, so dass die Großscheibe kreisrund erscheint. Tatsächlich haben beide eine elliptische Form, wie dies auch in der Fig. 2 zu erkennen ist. Die Zentralöffnungen 14 sind im Wesentlichen deckungsgleich mit den Kleinscheiben 13. Dies erlaubt es, jeweils eine Kleinscheibe 13 aus einer Großscheibe 12 z. B. mittels eines Laserstrahls auszuschneiden. Auf Grund der dabei entstehenden Schnittverluste sind die Kleinscheiben 13 etwas kleiner als die Großscheiben und sind daher nur bis auf einen Skalierungsfaktor deckungsgleich mit den Zentralöffnungen 14.
  • Die hier dargestellte elliptische Form stellt eine Möglichkeit dar, die Groß- und Kleinscheiben auszuführen. Möglich sind aber auch polygone oder runde Formen. Fig. 3 lässt auch nicht die Neigung der Scheiben 12, 13 erkennen. Diese sind - wie der Fig. 2 zu entnehmen ist - gegeneinander gerichtet, so dass sich die beiden Scheiben 12, 13 unter einem Winkel von z. B. 90° schneiden. Andere Winkel sind aber auch möglich.
  • Die Längen der Scheiben 12, 13 sind, gemessen in deren Hauptachsen 16, etwa gleich groß. Die Breiten der Kleinscheiben 13 sind, bezogen auf ihre Nebenachsen 17, die senkrecht zu den Hauptachsen 16 verlaufen, in etwa um die Hälfte kleiner als die entsprechenden Breiten der Großscheiben 12.
  • In diesem Ausführungsbeispiel besitzt das Rohrbündel eine sechseckige Außenkontur, wobei benachbarte Rohre in den Ecken eines gleichseitigen Dreiecks angeordnet sind. Dies entspricht einer so genannten Dreiecksteilung von 60°.
  • Somit befinden sich die Löcher 18 für die Eckrohre eines im Sechseck angeordneten Rohrbündels 2 auf der Nebenachse 17 der Großscheibe 12. Die Großscheibe 12 enthält weitere Löcher 19 für Rohre im Außenbereich des Rohrbündels 2, während Rohre im Inneren des Rohrbündels 2 von Löchern 20 in der Kleinscheibe 13 aufgenommen werden.
  • Einige Rohre verlaufen durch die Kanten der Kleinscheibe 13 bzw. der Innenkante der Großscheibe. Hier befinden sich Ausnehmungen 22a, 22b, die in der Draufsicht - wie die Fig. 3 zeigt - scheinbar ein geschlossenes Loch bilden.
  • Die Anordnung der Rohre im Sechseck ist als Beispiel zu verstehen. Es ist eine Form, bei der benachbarte Rohre in den Ecken eines gleichschenkligen Dreiecks liegen. Dies hat zur Folge, dass bei einer Neigung der Scheiben 12, 13 in Richtung einer Seitenlinie des Dreiecks die Löcher in den Scheiben 12, 13 anders angeordnet werden müssen, als bei Scheiben, deren Hauptachse in Richtung einer Mittelsenkrechten des Dreiecks liegt (wie in Fig. 2 und 3 dargestellt). Entsprechendes gilt auch für eine Anordnung der Rohre auf den Ecken eines gleichseitigen rechtwinkeligen Dreiecks mit zwei gleichen Seiten.
  • Die bisher beschriebenen Scheiben 12, 13 gemäß Fig. 2 und 3 sind so angeordnet, dass der Azimutwinkel ihrer Neigungslinien 0° bzw. 180° beträgt. Sie bilden somit ein Hauptpaket.
  • Um die Strömung des Fluids im Tubus 1 so zu beeinflussen, dass der Wärmeübertrag verbessert wird, folgt im Tubus auf ein Hauptpaket 11 ein Folgepaket 26, dessen Scheiben 12, 13 so orientiert sind, dass die Azimutwinkel ihrer Neigungslinien bei 90° bzw. 270° liegen.
  • Die Fig. 4 und 5 zeigen ein solches Folgepaket 26. Dies entspricht einem Hauptpaket mit dem Unterschied, dass sich auf den Nebenachsen 17 der Großscheiben 12 Löcher 27 für Rohre des Rohrbündels 2 befinden, die sich alle auf den Mittelsenkrechten der gleichschenkeligen Dreiecke befinden, also gemäß der Darstellung in der Fig. 5 in einer Kante des Sechsecks des Rohrbündels 2 liegen. Weiterhin befinden sich auf der Hauptachse der Kleinscheiben 13 Löcher 28, die im gleichschenkeligen Dreieck benachbart sind.
  • Es sind auch Rohrbündel bekannt, bei denen die Rohre in einem Quadrat angeordnet sind. In diesem Fall können - soweit der Rohrspiegel für beide Achsen identisch ist - gleichartige Scheiben für Haupt- und Folgepakete verwendet werden, da die Verteilung der Rohre im Rohrbündel 2 in jeweils um 90° gegeneinander versetzten Azimutwinkeln identisch ist.
  • Zur Herstellung eines von Querstreben 3 gesicherten Rohrbündels 2 werden zunächst die Groß- und Kleinscheiben 12, 13 eines Hauptpaketes abwechselnd auf das Rohrbündel 2 aufgeschoben, wobei sich die Außenkanten der Kleinscheiben 13 den Innenkanten der Zentralöffnungen 14 der Großscheiben 12 punktweise gegenüberliegen, wobei die Scheiben 12, 13 an diesen Stellen miteinander verschweißt werden können.
  • Um eine Änderung der Ausrichtung der Neigung zu erreichen, wird nach einer oder mehreren Großscheiben ein Wechsel zu Scheiben des Hilfspaketes vorgenommen, um anschließend wieder zu einem Hauptpaket zu wechseln. Da die einzelnen Pakete dazu einen geraden Stirnabschluss benötigen, sind die Groß- und Kleinscheiben, die die Endstücke eines Paketes 11, 26 bilden, entsprechend entlang einer Schnittkante 29, wie dies die Fig. 2 und 4 zeigen, gekürzt.
  • Die Umlenkflächen der schräg und winkelversetzt angeordneten Scheiben 12, 13 bewirken, dass das Fluid mäandernd durch den Tubus 2 geleitet wird, wodurch ein guter Wärmeübergang gewährleistet ist.
  • Durch die Bündelung der Rohre mittels der Scheiben 12, 13 werden außerdem Schwingungen der Rohre des Rohrbündels unterdrückt. Des Weiteren wird durch einen konstanten Winkel der Neigung gegenüber der Rohrbündelachse eine gleichmäßige Anströmung der Rohre über den ganzen Bereich erreicht, so dass ein gleichmäßiger Wärmeübergang erreicht wird.
  • Die Verwendung von Scheiben verhindert tote Ecken und Winkel und es liegt ein gleichmäßiger, aber geringer Druckabfall über den Querschnitt und die Länge des Tubus vor.
  • Durch eine Änderung der Abstände der Löcher für die Rohre lässt sich der Neigungswinkel der Scheiben 12, 13 den jeweiligen Bedürfnissen anpassen.
  • Das Prinzip ist grundsätzlich für alle Rohrbündelwärmeüberträger wie flüssig/flüssig, Gas/Gas, Gas/flüssig und flüssig/Gas einsetzbar.
  • Die Rohre können sowohl glatt als auch gerippt sein. Wie oben schon erläutert, können Fieldrohre eingesetzt werden.
  • Bezugszeichenliste
  • 1
    Tubus
    2
    Rohrbündel
    3
    Querstreben
    4
    stirnseitiger Flansch
    5
    Kopf
    6
    seitlicher Flansch
    7
    seitlicher Flansch
    8
    seitlicher Flansch
    11
    Hauptpaket
    12
    Großscheiben
    13
    Kleinscheiben
    14
    Zentralöffnung
    15
    Löcher
    16
    Hauptachse
    17
    Nebenachse
    18
    Loch für Eckrohr
    19
    weitere Löcher
    20
    Löcher
    21
    Loch für Zentralrohr
    22a
    Ausnehmungen
    22b
    Ausnehmungen
    26
    Folgepaket
    27
    Loch
    28
    Loch
    29
    Schnittkante

Claims (14)

  1. Wärmeüberträger mit einem Außen- und Innenrohre aufweisenden Rohrbündel (2), das in einem Tubus (1) angeordnet ist, und mit einer Vielzahl von Querstreben, die die Rohre des Rohrbündels (2) zusammenhalten und Umlenkflächen aufweisen, wobei Querstreben einer ersten Art derart im Rohrbündel angeordnet sind, dass deren Umlenkflächen gleichgerichtet schräg zur Längsache des Rohrbündels (2) verlaufen, und die Stegplatten einer zweiten Art derart im Rohrbündel angeordnet sind, dass deren Umlenkflächen ebenfalls gleichgerichtet schräg zur Längsache des Rohrbündels (2), aber kreuzend zu den Querstreben der ersten Art verlaufen, dadurch gekennzeichnet, dass die Querstreben der ersten Art vom Großscheiben (12) mit Löchern (18, 19) für im Umfangsrand des Rohrbündels (2) liegende Außenrohre und mit einer Zentralöffnung gebildet sind, wobei der Außenumfang einer jeden Großscheibe (12) das Rohrbündel (2) umfasst, und dass die Querstreben der zweiten Art von Kleinscheiben (13) mit Löchern (20, 21) für innen liegende Innenrohre des Rohrbündels (2) gebildet sind, wobei jede Kleinscheibe (13) die Zentralöffnungen (14) von mindestens einer Großscheibe (12) durchdringt.
  2. Wärmeüberträger nach Anspruch 1, dadurch gekennzeichnet, dass die Abmessungen der Kleinscheiben und der Großscheiben so gewählt sind, dass die Außenränder der Kleinscheiben (13) den Innenrändern der Zentralöffnungen (14) in den Großscheiben (12) punktweise gegenüberliegen.
  3. Wärmeüberträger nach Anspruch 1, dadurch gekennzeichnet, dass die Abmessungen der Kleinscheiben und der Großscheiben so gewählt sind, dass der Durchmesser der Kleinscheiben größer ist als der Durchmesser der Zentralöffnungen, und dass die Innenränder der Großscheiben jeweils Ausnehmungen mit einer in radialer Richtung verlaufenden Kante aufweisen.
  4. Wärmeüberträger nach einem der vorhergehenden Ansprüche, dadurch gekenn-zeichnet, dass der Flächeninhalt der Zentralöffnung einer Großscheibe (12) 40-60 % vom Flächeninhalt der Fläche beträgt, die vom Außenumfang der Großscheibe (12) eingeschlossen ist.
  5. Wärmeüberträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Winkel der Neigungslinien von Groß- und Kleinscheiben (12, 13) zur Längsachse des Tubus zwischen 20° und 70° liegt.
  6. Wärmeüberträger nach Anspruch 5, dadurch gekennzeichnet, dass der Winkel der Neigungslinien von Groß- und Kleinscheiben (12, 13) zur Längsache des Tubus (1) zwischen 30° und 60° und bevorzugt zwischen 40° und 50° liegt.
  7. Wärmeüberträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenumfangsform der Kleinscheiben (13) bis auf eine Skalierung deckungsgleich mit der Innenumfangsform der Zentralöffnungen (14) ist.
  8. Wärmeüberträger nach Anspruch 7, dadurch gekennzeichnet, dass die Kleinscheiben (13) in Richtung einer Nebenachse (17) eine kleinere Ausdehnung als in Richtung einer dazu senkrechten Hauptachse (16) besitzen.
  9. Wärmeüberträger nach Anspruch 8, dadurch gekennzeichnet, dass die Großscheiben (12) jeweils einen Außenumfang besitzen, der spiegelsymmetrisch zu der Hauptachse (16) verläuft, und die Zentralöffnungen (14) in den Großscheiben (12) einen Innenumfang besitzen, der ebenfalls spiegelsymmetrisch zu der Hauptachse (16) verläuft, wobei die Hauptachsen (16) des Außen- und Innenumfanges in einer die Längsachse des Tubus (1) aufnehmenden Vertikalebene liegen.
  10. Wärmeüberträger nach Anspruch 9, dadurch gekennzeichnet, dass die Großscheiben (12) einen elliptischen Außenumfang haben, während die achsgleichen Zentralöffnungen (14) in den Großscheiben (12) ebenfalls einen elliptischen oder auch polygonen Innenumfang besitzen.
  11. Wärmeüberträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass benachbarte Rohre des Rohrbündels (2) in einem Dreieck angeordnet sind, und dass Groß- und Kleinscheiben (12, 13) einer ersten Gruppe existieren, deren Hauptachsen (16) in einer Vertikalebene mit den parallel zu einer Verbindungslinie von zwei benachbarten Rohren des Dreiecks liegen, und Groß- und Kleinscheiben (12, 13) einer zweiten Gruppe existieren, deren Hauptachsen (16) in einer Vertikalebene liegen, in der wiederum eine Verbindungslinie von zwei benachbarten Rohren des Dreiecks liegt.
  12. Wärmeüberträger nach Anspruch 11, dadurch gekennzeichnet, dass aus Großscheiben (12) der ersten Gruppe und den dazugehörigen Kleinscheiben (13) ein Hauptpaket (11) und aus Großscheiben (12) der zweiten Gruppe und den dazugehörigen Kleinscheiben (13) ein Folgepaket (26) gebildet ist, wobei Haupt- und Folgepakete (11, 26) abwechselnd in Längsrichtung des Rohrbündels (2) aufeinander folgen.
  13. Wärmeüberträger nach Anspruch 12, dadurch gekennzeichnet, dass bei den Haupt- und Folgepaketen (11, 26) jeweils die Anfangs- und Endscheiben derart gekappt sind, dass die Pakete (11, 26) in einer Stirnebene enden, die senkrecht zur Längsachse des Rohrbündels (2) verläuft.
  14. Wärmeüberträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheiben (12, 13) von einer oder mehreren Haltestangen durchdrungen sind, die als Zuganker ausgeführt sind.
EP16001801.6A 2015-08-14 2016-08-16 Wärmeüberträger Active EP3130876B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015113501.9A DE102015113501A1 (de) 2015-08-14 2015-08-14 Wärmeüberträger

Publications (2)

Publication Number Publication Date
EP3130876A1 true EP3130876A1 (de) 2017-02-15
EP3130876B1 EP3130876B1 (de) 2019-07-10

Family

ID=56787192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001801.6A Active EP3130876B1 (de) 2015-08-14 2016-08-16 Wärmeüberträger

Country Status (2)

Country Link
EP (1) EP3130876B1 (de)
DE (1) DE102015113501A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883803A (zh) * 2017-11-06 2018-04-06 深圳中广核工程设计有限公司 管壳式换热器
US10502451B2 (en) * 2017-05-02 2019-12-10 Rheem Manufacturing Company Diffuser plates and diffuser plates assemblies
EP3800418A1 (de) * 2019-10-01 2021-04-07 BITZER Kühlmaschinenbau GmbH Wärmeübertrager, kälte- oder wärmeanlage mit einem solchen wärmeübertrager

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1525094A (en) * 1921-03-05 1925-02-03 Griscom Russell Co Multivane cooler
US20080190593A1 (en) * 2007-02-09 2008-08-14 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles
CN102538562B (zh) * 2012-02-17 2013-08-14 西安交通大学 一种组合式单壳程连续螺旋折流板管壳式换热器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693942A (en) * 1952-06-09 1954-11-09 Gulf Oil Corp Heat transfer apparatus
DE3528426A1 (de) * 1985-08-08 1987-02-19 Mederer Gmbh Druckaufloeser - giessmassenerhitzer
ATE248345T1 (de) 1999-07-07 2003-09-15 Fluitec Georg Ag Vorrichtung für den wärmetausch
US8628233B2 (en) * 2007-05-24 2014-01-14 Atlas Holding Ag Flow channel for a mixer heat exchanger
EP2113732A1 (de) * 2008-04-30 2009-11-04 Fluitec Invest AG Mischer-Wärmetauscher

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1525094A (en) * 1921-03-05 1925-02-03 Griscom Russell Co Multivane cooler
US20080190593A1 (en) * 2007-02-09 2008-08-14 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles
CN102538562B (zh) * 2012-02-17 2013-08-14 西安交通大学 一种组合式单壳程连续螺旋折流板管壳式换热器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502451B2 (en) * 2017-05-02 2019-12-10 Rheem Manufacturing Company Diffuser plates and diffuser plates assemblies
US11199340B2 (en) 2017-05-02 2021-12-14 Rheem Manufacturing Company Diffuser plates and diffuser plate assemblies
US11566816B2 (en) 2017-05-02 2023-01-31 Rheem Manufacturing Company Diffuser plates and diffuser plate assemblies
CN107883803A (zh) * 2017-11-06 2018-04-06 深圳中广核工程设计有限公司 管壳式换热器
CN107883803B (zh) * 2017-11-06 2019-10-15 深圳中广核工程设计有限公司 管壳式换热器
EP3800418A1 (de) * 2019-10-01 2021-04-07 BITZER Kühlmaschinenbau GmbH Wärmeübertrager, kälte- oder wärmeanlage mit einem solchen wärmeübertrager

Also Published As

Publication number Publication date
EP3130876B1 (de) 2019-07-10
DE102015113501A1 (de) 2017-02-16

Similar Documents

Publication Publication Date Title
CH558584A (de) Abstandsgitter fuer eine kernbrennstoffelementanordnung.
DE2339104A1 (de) Kernreaktor
EP0261544B1 (de) Kernreaktorbrennelement
DE2057294C3 (de) Kernbrennstoßbaugruppe für Kernreaktoren
EP3130876B1 (de) Wärmeüberträger
DE2951352C2 (de) Flachrohr-Wärmetauscher
DE1539806B2 (de) Stuetzgitter zur starren und genauen abstuetzung von einander abstand haltender spaltstoffelemente
WO2015117938A1 (de) Mikronadelsystem und verfahren seiner herstellung
DE4441503C2 (de) Wärmetauscher, insbesondere für Kraftfahrzeuge
WO2006074903A1 (de) Stapelscheiben-wärmetauscher
DE3925517C2 (de) Glätteinrichtung eines Auftragswerkes
DE1501586B2 (de) Wärmeaustauscher
EP1508654B1 (de) Hohlprofil zum Befestigen von Gegenständen
DE2840146C2 (de)
EP1923653B1 (de) Wärmeübertrager
WO2004079748A2 (de) Abstandhalter
EP3669133B1 (de) Wärmeübertrager
DE2016818A1 (de) Abstandshalter für Rohre, insbesondere Wärmeaustauscher
DE102019134587A1 (de) Wärmeübertrager und Adsorptionsmaschine
EP3211357B1 (de) Rohrbündel, rohrbündelwärmetauscher und verfahren zu deren herstellung
DE2251866A1 (de) Vorrichtung zur halterung und distanzierung von rohren in einem waermetauscher
EP2881694B1 (de) Einbaueinrichtung für eine Vorrichtung zur Behandlung eines strömenden Fluids
DE2326151A1 (de) Kernreaktor-brennstoffelementanordnung
AT209361B (de) Wärmeaustauscher
DE19915444A1 (de) Abstandhalter für Leichtwasserreaktor-Brennelement mit Maschengitter und sechseckigem Querschnitt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170815

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181219

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190529

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1154043

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005426

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005426

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160816

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016005426

Country of ref document: DE

Representative=s name: RAUCH, UDO, DIPL.-PHYS. DR. PHIL. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 8

Ref country code: CH

Payment date: 20230902

Year of fee payment: 8

Ref country code: AT

Payment date: 20230822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240716

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240826

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240821

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 9