EP2655685A1 - Method and device for depositing silicon on a substrate - Google Patents

Method and device for depositing silicon on a substrate

Info

Publication number
EP2655685A1
EP2655685A1 EP11811328.1A EP11811328A EP2655685A1 EP 2655685 A1 EP2655685 A1 EP 2655685A1 EP 11811328 A EP11811328 A EP 11811328A EP 2655685 A1 EP2655685 A1 EP 2655685A1
Authority
EP
European Patent Office
Prior art keywords
substrate
precursor
silicon
deposition
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11811328.1A
Other languages
German (de)
French (fr)
Inventor
Michael Huth
Andreas Terfort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goethe Universitaet Frankfurt am Main
Original Assignee
Goethe Universitaet Frankfurt am Main
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goethe Universitaet Frankfurt am Main filed Critical Goethe Universitaet Frankfurt am Main
Publication of EP2655685A1 publication Critical patent/EP2655685A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/4551Jet streams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials

Definitions

  • the invention relates to a method for depositing silicon on a substrate using a focused beam of charged particles, wherein a silicon-containing precursor is provided which is dissociated by the beam in the immediate vicinity of the substrate. It further relates to a corresponding device.
  • Coating processes for example for the deposition of silicon on a substrate (S1O 2 , Au, etc.) are used in many fields of microelectronics and related fields, but also in applied and fundamentally oriented research.
  • Various methods are known for depositing substances (diamond layers, silicon-containing layers, tin oxide layers) on a substrate, for example chemical vapor deposition (CVD) or electron beam-based vapor deposition (EB-CVD).
  • CVD chemical vapor deposition
  • EB-CVD electron beam-based vapor deposition
  • the latter method is also referred to in the literature as EBID (Electron Beam Induced Deposition) or, when using an ion beam as IBID (Ion Beam Induced Deposition or as IB-CVD) method.
  • IBID Ion Beam Induced Deposition
  • FPBID Fluorused Particle Beam Induced Deposition
  • the substrate is usually heated to temperatures of several hundred ° C. From one or more reactants solid components are then deposited by chemical reactions from the gas phase, which are deposited on the substrate.
  • a precursor is provided in the immediate vicinity of the substrate, that is to say substantially on its surface, from which the solid component, for example silicon, is deposited by means of a focused electron beam.
  • a method can also be carried out with ion beams, which are e.g. can be generated by a fine ion beam system.
  • the surface of the substrate can be coated with substantially two-dimensional as well as three-dimensional structures.
  • chlorine-containing precursors and in particular of SiH 2 Cl 2 has the disadvantages that the unintentional but usually unavoidable inclusion of chlorine atoms in the landfill deteriorates the electrical properties of the landfill.
  • chlorine atoms can combine with the water content of the residual gas in the vacuum chamber, for example, to HCl and exert unwanted corrosive effects on the substrate, causing it to be damaged. In the event that other structures are already in the vicinity of the deposition site, these can also be endangered and damaged.
  • the liberated chlorine due to its reactivity lead to damage to the separator itself (corrosion).
  • the invention is therefore based on the object to provide a method which allows in a particularly effective, material-friendly and precise manner, the direct deposition of silicon on a substrate.
  • a suitable device should be specified.
  • this object is achieved according to the invention in that a polysilane is used as precursor.
  • the invention is based on the consideration that the properties of Siliziumdepo- on substrates in modern applications must meet increased demands on their properties. These requirements relate in particular to the conductivity, the structure size and the purity of the landfill. Also, the substrate should not be damaged or contaminated during the deposition process.
  • the silicon In order to meet these requirements, it is necessary to deposit the silicon directly on the substrate, in particular without the use of a lithographic masking technique. To this end, the silicon should, if possible, be deposited on the substrate by means of direct deposition by particle beam-induced dissociation of a precursor. In addition, a suitable precursor or precursor should be used to ensure the highest possible quality of the silicon debris. The precursor should be as free of chlorine as possible, as chlorine can cause damage to landfill and substrate due to its highly corrosive properties.
  • Si deposition can be achieved by using a silicon-containing precursor from the class of polysilanes or a polysilane-containing precursor.
  • Polysilanes are chlorine-free, so the harmful effects of chlorine on substrate and landfill can be avoided.
  • Polysilanes also have chemical structures that can be precisely dissociated by a focused charged particle beam and thus allow a precise deposition of the silicon.
  • the precursor molecules adsorbed on the substrate surface are decomposed into permanent and volatile components by various inelastic processes (for example "dissociative electron attachment") .
  • the permanent component forms the silicon deposit.
  • neopentane silane (Si 5 H 12 ) is used as the precursor.
  • Neopentasilane is chlorine-free, so that the highly corrosive effects of chlorine, which occur when using chlorine-containing precursors, can be completely eliminated, and at room temperature has a vapor pressure favorable for focussed particle deposition processes, ie preferably in the range 0.1-100 mbar .
  • a particularly precise deposition or deposition with high spatial resolution, in particular in the lateral direction to the substrate, can be achieved by the use of an electron beam.
  • the particle beam may consist of ions, for example Ga + ions. The use of such ion beams usually leads to a doping of the landfill.
  • the particle beam is advantageously moved in a rastered manner over the landfill.
  • landfills having predetermined two- or three-dimensional structures can be produced.
  • such screening is advantageously carried out with the aid of a scanning electron microscope (SEM), which also generates the electron beam.
  • SEM scanning electron microscope
  • the lateral resolution of the method is determined in this case by the resolution of the scanning electron microscope used. In this case, however, the exit region of the secondary electrons from the surface of the substrate in the vicinity of the beam focus must also be taken into account. At typical beam energies of 5 to 15 keV and currents around 100 pA, minimum structure widths of 10 to 20 nm or even less can be achieved with high-resolution microscopes.
  • the screening is preferably carried out by a scanning ion microscope. In this case, structure sizes of about 30 nm can be achieved.
  • the provision or offering of the precursor on the surface of the substrate advantageously takes place by means of a gas injection system, through which the precursor can be targeted.
  • a gas injection system through which the precursor can be targeted.
  • the process is carried out at room temperature.
  • the vapor pressure of neopentasilane at room temperature and other polysilanes mentioned above is in the range favorable for FPBID processes. This makes it possible to easily deposit silicon at room temperature. Furthermore, heating the substrate or the precursor are not necessary.
  • EUV Extra Ultra Violet
  • multilayer or multilayer systems which function as Bragg interference mirrors, the state of the art being the use of Mo-Si layer pairs, which are repeated 40-50 times.
  • a major problem in this context is already the production of defect-free, large-area mask structures. Defects can arise, for example, as a result of contamination by particles from the air, abrasion of the handling systems or even crystal formation on the mask surface.
  • the critical defect size is less than 30 nm, which is why only super-resolution correction methods can work.
  • a high-resolution Si / MO-SI-EBID process can thus be advantageously used not only in the repair of already used masks, but also in the quality control and repair of produced masks.
  • the described method is also advantageously carried out for editing circuits. Further areas of application are application-oriented and basic-oriented research.
  • the abovementioned object is achieved according to the invention in that a polysilane is used as the precursor.
  • neopentasilane is used as the precursor.
  • the particle beam device used is a scanning electron microscope.
  • the advantages achieved by the invention are in particular that the use of a silicon-containing precursor from the class of polysilanes in an EBID / IBID process enables direct deposition of silicon with high accuracy, resolution and low contamination.
  • silicon when using neopentasilane as a precursor, which is liquid at room temperature and has a favorable vapor pressure for EBID / IBID method, silicon can be deposited with high purity and without inclusion of chlorine.
  • a guided (rasterized or continuous) and repeated movement of the particle beam across the substrate allows the precise production of two- and three-dimensional landfills.
  • FIG. 1 shows a device for deposition of silicon on a substrate with the aid of a precursor from the class of polysilanes with a particle beam device and a gas injection system in a preferred embodiment
  • Fig. 2 shows three examples of deposited between metallic contact structures Si de ponaten
  • Fig. 3 shows the temperature dependence of the electrical conductivity of a typical Help the device of FIG. 1 produced landfill.
  • the device 2 for the direct deposition of silicon shown in FIG. 1 has a particle beam device 8 which generates a beam 14 of electrons.
  • the particle beam device 8 is configured in the present embodiment as a scanning electron microscope.
  • a precursor 20 is offered or provided in a region 18 of the surface 26 of a substrate 32, in which silicon is to be deposited.
  • the precursor 20 containing silicon is decomposed by the beam 14 and the secondary processes it causes on the surface 26 of the substrate 32.
  • the precursor forms a volatile component and a solid component.
  • the solid component is the landfill 38. This should contain the highest possible proportion of silicon in order to have the best possible electrical conductivity.
  • neopentasilane (S15H12) is used in the present exemplary embodiment.
  • Neopentasilane is a carbon-free Si precursor 20 that is liquid under ambient conditions. The decomposition of the precursor results in the solid phase silicon to be deposited on the substrate 32 and the volatile hydrogen-containing phase.
  • the vapor pressure of neopentasilane is at room temperature in a favorable range for FPBI D processes. As a result, growth rates of at least 0.01 m 3 / min can be achieved.
  • the gaseous precursor SiH 2 Cl 2 has a much higher vapor pressure, so that it is to be expected that its adhesion coefficient is very low and correspondingly the growth rate is significantly lower than when using neopentasilane.
  • Typical landfills produced by device 2 consist of at least 87 at% silicon, with fractions of carbon (C) and oxygen (O) in the range of 5 to 7 at%. This can be demonstrated, for example, by the use of energy-dispersive X-ray analysis (EDX).
  • EDX energy-dispersive X-ray analysis
  • FIG. 2 shows various contact structures 50, 52, 54, 56, 58, 60 in a light micrograph, with Si deposits 38 being prepared between the contact structures 50, 52 and the contact structures 56, 58.
  • the distance A between the contact structures 50, 52 and 56, 58 is 20 pm each.
  • the temperature dependence of the electrical conductivity of a typical landfill 38 created with the apparatus of FIG. 1 is shown in FIG.
  • the multiplied by the factor 1000 inverse temperature T 1 in the unit K ⁇ 1 , on the ordinate 86 of the electrical resistance R in the unit ohm ( ⁇ ) is shown.
  • the curve 92 shows a behavior typical of amorphous silicon. In particular, localized states below the conduction band lower edge of the silicon also contribute to charge transport. This phenomenon is also referred to as trap-controlled carrier contribution. Phenomenologically, this can be modeled by a distribution of activation energies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)

Abstract

The invention relates to a method for depositing silicon on a substrate (32) using a focused beam of charged particles (14). A precursor (20) containing silicon is provided, said precursor being dissociated by the beam (14) in the immediate vicinity of the substrate (32). The aim of the invention is to allow the deposition of silicon on a substrate (32) in a particularly effective, material-protecting, and precise manner. For this purpose, a polysilane is used as the precursor (20).

Description

Beschreibung  description
Verfahren und Vorrichtung zur Abscheidung von Silizium auf einem Substrat Method and apparatus for depositing silicon on a substrate
Die Erfindung betrifft ein Verfahren zur Abscheidung von Silizium auf einem Substrat unter Verwendung eines fokussierten Strahls geladener Teilchen, bei dem ein silizium- haltiger Precursor bereitgestellt wird, der durch den Strahl in unmittelbarer Nähe des Substrats dissoziiert wird. Sie betrifft weiterhin eine entsprechende Vorrichtung. The invention relates to a method for depositing silicon on a substrate using a focused beam of charged particles, wherein a silicon-containing precursor is provided which is dissociated by the beam in the immediate vicinity of the substrate. It further relates to a corresponding device.
Beschichtungsverfahren, beispielsweise zur Abscheidung von Silizium auf einem Substrat (S1O2, Au etc.) finden in vielen Bereichen der Mikroelektronik und verwandter Gebiete, aber auch in der angewandten und Grundlagen-orientierten Forschung Anwendung. Zur Abscheidung von Stoffen (Diamantschichten, siliziumhaltige Schichten, Zinnoxidschichten) auf einem Substrat sind unterschiedliche Verfahren bekannt, beispielsweise chemische Gasphasenabscheidungsverfahren (CVD, Chemical Vapor Deposition) oder auch elektronenstrahlbasierte Gasphasenabscheidung (EB-CVD, Electron Beam Chemical Vapor Deposition). Letzteres Verfahren wird in der Literatur auch als EBID (Electron Beam Induced Deposition) oder - bei Verwendung eines lonen- strahls- als IBID (Ion Beam Induced Deposition bzw. als IB-CVD) Verfahren bezeichnet Eine weitere übliche Bezeichnung bei Verfahren dieser Art mit fokussierten Teilchenstrahlen ist FPBID (Focused Particle Beam Induced Deposition). Coating processes, for example for the deposition of silicon on a substrate (S1O 2 , Au, etc.) are used in many fields of microelectronics and related fields, but also in applied and fundamentally oriented research. Various methods are known for depositing substances (diamond layers, silicon-containing layers, tin oxide layers) on a substrate, for example chemical vapor deposition (CVD) or electron beam-based vapor deposition (EB-CVD). The latter method is also referred to in the literature as EBID (Electron Beam Induced Deposition) or, when using an ion beam as IBID (Ion Beam Induced Deposition or as IB-CVD) method. Another common name for methods of this type with focused Particle radiation is FPBID (Focused Particle Beam Induced Deposition).
Bei chemischer Gasphasenabscheidung wird das Substrat gewöhnlich auf Temperaturen von mehreren hundert 0 C erhitzt. Aus einem oder mehreren Reaktanden werden dann durch chemische Reaktionen aus der Gasphase feste Komponenten abgeschieden, die auf dem Substrat deponiert werden. In chemical vapor deposition, the substrate is usually heated to temperatures of several hundred ° C. From one or more reactants solid components are then deposited by chemical reactions from the gas phase, which are deposited on the substrate.
Bei der elektronenstrahlbasierten Gasphasenabscheidung wird ein Precursor in unmittelbarer Nähe zum Substrat, also im Wesentlichen an dessen Oberfläche, bereitgestellt, aus dem mittels eines fokussierten Elektronenstrahls die feste Komponente, beispielsweise Silizium, abgeschieden wird. Ein derartiges Verfahren kann auch mit lo- nenstrahlen durchgeführt werden, die z.B. durch eine lonenfeinstrahlanlage generiert werden können. In electron beam-based vapor deposition, a precursor is provided in the immediate vicinity of the substrate, that is to say substantially on its surface, from which the solid component, for example silicon, is deposited by means of a focused electron beam. Such a method can also be carried out with ion beams, which are e.g. can be generated by a fine ion beam system.
BESTÄTIGUNGSKOPIE Mit den beiden oben genannten Verfahren kann die Oberfläche des Substrates sowohl mit im Wesentlichen zweidimensionalen als auch mit dreidimensionalen Strukturen beschichtet werden. CONFIRMATION COPY With the two methods mentioned above, the surface of the substrate can be coated with substantially two-dimensional as well as three-dimensional structures.
Aus dem Artikel„Si deposition by electron beam induced surface reaction" von S. From the article "Si deposition by electron beam induced surface reaction" of S.
Matsui und M. Mito, Appl. Phys. Lett. 53 (16), 17 October 1988 ist ein elektronenstrahl- basiertes Gasphasenabscheidungsverfahren zur Abscheidung von Silizium auf einem Substrat bekannt, bei dem als siliziumhaltiger Precursor Dichlorsilan (S1H2CI2) eingesetzt wird. Die Deponate enthalten nach Angaben der Autoren 1 ,9 at-% Chlor. Matsui and M. Mito, Appl. Phys. Lett. 53 (16), 17 October 1988, an electron beam-based vapor deposition method for depositing silicon on a substrate is known in which dichlorosilane (S1H2Cl2) is used as the silicon-containing precursor. According to the authors, the landfills contain 1, at.% Chlorine.
Die Verwendung von chlorhaltigen Precursoren und insbesondere von SiH2Cl2 birgt die Nachteile, dass sich durch den unbeabsichtigten, aber gewöhnlich nicht vermeidbaren Einschluss von Chloratomen im Deponat die elektrischen Eigenschaften des Deponats verschlechtern. Zudem können sich Chloratome mit dem Wasseranteil des in der Vakuumkammer befindlichen Restgases beispielsweise zu HCl verbinden und ungewollte ätzende Auswirkungen auf das Substrat ausüben, wodurch dieses beschädigt wird. In dem Fall, dass sich bereits andere Strukturen in der Umgebung des Depositionsortes befinden, können auch diese gefährdet und beschädigt werden. Weiterhin kann das freigesetzte Chlor aufgrund seiner Reaktivität zu Beschädigungen an der Abscheidevorrichtung selbst führen (Korrosion). The use of chlorine-containing precursors and in particular of SiH 2 Cl 2 has the disadvantages that the unintentional but usually unavoidable inclusion of chlorine atoms in the landfill deteriorates the electrical properties of the landfill. In addition, chlorine atoms can combine with the water content of the residual gas in the vacuum chamber, for example, to HCl and exert unwanted corrosive effects on the substrate, causing it to be damaged. In the event that other structures are already in the vicinity of the deposition site, these can also be endangered and damaged. Furthermore, the liberated chlorine due to its reactivity lead to damage to the separator itself (corrosion).
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, das auf besonders effektive, materialschonende und präzise Weise die Direktabscheidung von Silizium auf einem Substrat ermöglicht. Zudem soll eine dafür geeignete Vorrichtung angegeben werden. The invention is therefore based on the object to provide a method which allows in a particularly effective, material-friendly and precise manner, the direct deposition of silicon on a substrate. In addition, a suitable device should be specified.
In Bezug auf das Verfahren wird diese Aufgabe erfindungsgemäß dadurch gelöst, dass ein Polysilan als Precursor eingesetzt wird. With regard to the method, this object is achieved according to the invention in that a polysilane is used as precursor.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Die Erfindung geht von der Überlegung aus, dass die Eigenschaften von Siliziumdepo- naten auf Substraten in modernen Anwendungen erhöhten Anforderungen an deren Eigenschaften genügen müssen. Diese Anforderungen betreffen insbesondere die Leitfähigkeit, die Strukturgröße und die Reinheit des Deponats. Zudem sollte auch das Substrat während des Abscheidevorgangs keine Beschädigungen oder Verunreinigungen erfahren. Advantageous embodiments of the invention are the subject of the dependent claims. The invention is based on the consideration that the properties of Siliziumdepo- on substrates in modern applications must meet increased demands on their properties. These requirements relate in particular to the conductivity, the structure size and the purity of the landfill. Also, the substrate should not be damaged or contaminated during the deposition process.
Um diesen Anforderungen zu genügen, ist es erforderlich, das Silizium direkt, insbesondere ohne Einsatz einer lithographischen Maskentechnik, auf dem Substrat abzuscheiden. Dazu sollte das Silizium möglichst mittels Direktabscheidung durch teilchen- strahlinduzierte Dissoziation eines Precursors auf dem Substrat deponiert werden. Zudem sollte ein geeigneter Precursor bzw. Präkursor verwendet werden, um die höchstmögliche Qualität der Siliziumdeponate sicherzustellen. Der Precursor sollte möglichst chlorfrei sein, da Chlor aufgrund seiner hochkorrosiven Eigenschaften Schäden an Deponat und Substrat verursachen kann. In order to meet these requirements, it is necessary to deposit the silicon directly on the substrate, in particular without the use of a lithographic masking technique. To this end, the silicon should, if possible, be deposited on the substrate by means of direct deposition by particle beam-induced dissociation of a precursor. In addition, a suitable precursor or precursor should be used to ensure the highest possible quality of the silicon debris. The precursor should be as free of chlorine as possible, as chlorine can cause damage to landfill and substrate due to its highly corrosive properties.
Wie nunmehr erkannt wurde, lässt sich eine präzise, reine und materialschonende Si- Abscheidung durch den Einsatz eines siliziumhaltigen Precursors aus der Klasse der Polysilane oder einen Polysilan enthaltenden Precursor erreichen. Polysilane sind chlorfrei, so dass die schädlichen Auswirkungen von Chlor auf Substrat und Deponat vermieden werden können. Polysilane weisen zudem chemische Strukturen auf, die sich durch einen fokussierten geladenen Teilchenstrahl präzise dissoziieren lassen und somit eine präzise Deposition des Siliziums ermöglichen. Die an der Substratoberfläche adsorbierten Precursor-Moleküle werden durch verschiedene inelastische Prozesse (z.B.„dissociative electron attachment") zersetzt in bleibende und flüchtige Komponenten. Die bleibende Komponente bildet das Siliziumdeponat. As has now been recognized, a precise, clean and material-saving Si deposition can be achieved by using a silicon-containing precursor from the class of polysilanes or a polysilane-containing precursor. Polysilanes are chlorine-free, so the harmful effects of chlorine on substrate and landfill can be avoided. Polysilanes also have chemical structures that can be precisely dissociated by a focused charged particle beam and thus allow a precise deposition of the silicon. The precursor molecules adsorbed on the substrate surface are decomposed into permanent and volatile components by various inelastic processes (for example "dissociative electron attachment") .The permanent component forms the silicon deposit.
In einer bevorzugten Ausführungsform des Verfahrens wird als Precursor Neopenta- silan (Si5H12) eingesetzt. Neopentasilan ist chlorfrei, so dass die hochkorrosiven Wirkungen von Chlor, die bei der Verwendung chlorhaltiger Precursoren auftreten, vollständig eliminiert werden können und weist bei Raumtemperatur einen für Abschei- dungsverfahren mit fokussiertem Teilchenstrahl günstigen Dampfdruck auf, also vorzugsweise im Bereich 0,1 - 100 mbar. Weitere Polysilane, die vorteilhaft als Precursoren eingesetzt werden können, sind zyklische, verzweigte und lineare Silane (SinHm) bis n = 7, beispielsweise lineares Penta- silan (Si5H 2) und lineares Hexasilan (Si6H 4). Auch diese beiden Polysilane sind chlorfrei, bei Raumtemperatur flüssig und weisen bei Raumtemperatur einen für EBID/IBID- Verfahren günstigen Dampfdruck auf. In a preferred embodiment of the process, neopentane silane (Si 5 H 12 ) is used as the precursor. Neopentasilane is chlorine-free, so that the highly corrosive effects of chlorine, which occur when using chlorine-containing precursors, can be completely eliminated, and at room temperature has a vapor pressure favorable for focussed particle deposition processes, ie preferably in the range 0.1-100 mbar , Further polysilanes which can be advantageously used as precursors are cyclic, branched and linear silanes (Si n H m ) to n = 7, for example linear pentasilane (Si 5 H 2 ) and linear hexasilane (Si 6 H 4 ). These two polysilanes are chlorine-free, liquid at room temperature and have a favorable vapor pressure for EBID / IBID process at room temperature.
Eine besonders präzise Deposition bzw. eine Deposition mit hoher räumlicher Auflösung, insbesondere in lateraler Richtung zum Substrat, lässt sich durch die Verwendung eines Elektronenstrahls erreichen. In alternativer Ausgestaltung des Verfahrens kann der Teilchenstrahl aus Ionen, beispielsweise Ga+-lonen, bestehen. Der Einsatz derartiger lonenstrahlen führt gewöhnlich zu einer Dotierung des Deponats. A particularly precise deposition or deposition with high spatial resolution, in particular in the lateral direction to the substrate, can be achieved by the use of an electron beam. In an alternative embodiment of the method, the particle beam may consist of ions, for example Ga + ions. The use of such ion beams usually leads to a doping of the landfill.
Um lokalisierte Deponate nach strukturellen Vorgaben auf einem Substrat anzulegen, wird der Teilchenstrahl vorteilhafterweise gerastert über das Deponat bewegt. Durch eine gerasterte und vorzugsweise wiederholte Bewegung des Teilchenstrahls über die Substratoberfläche oder über das bereits vorhandene Deponat können Deponate mit vorgegebenen zwei- oder dreidimensionalen Strukturen erzeugt werden. In order to create localized landfills on a substrate according to structural specifications, the particle beam is advantageously moved in a rastered manner over the landfill. By means of a screened and preferably repeated movement of the particle beam over the substrate surface or over the already existing deposit, landfills having predetermined two- or three-dimensional structures can be produced.
Bei Verwendung eines Elektronenstrahls erfolgt eine derartige Rasterung vorteilhafterweise mit Hilfe eines Rasterelektronenmikroskops (SEM), welches den Elektronenstrahl auch erzeugt. Das laterale Auflösungsvermögen des Verfahrens wird in diesem Falle durch das Auflösungsvermögen des verwendeten Rasterelektronenmikroskops bestimmt. Dabei muss jedoch auch der Austrittsbereich der Sekundärelektronen aus der Oberfläche des Substrats in der Umgebung des Strahlfokus mit berücksichtigt werden. Bei typischen Strahlenergien von 5 bis 15 keV und Strömen um 100 pA sind mit hochauflösenden Mikroskopen minimale Strukturbreiten von 10 bis 20 nm oder sogar weniger erzielbar. Bei der Verwendung von fokussierten lonenstrahlen erfolgt die Rasterung vorzugsweise durch ein Rasterionenmikroskop. Dabei können Strukturgrößen von ca. 30 nm erreicht werden. When using an electron beam, such screening is advantageously carried out with the aid of a scanning electron microscope (SEM), which also generates the electron beam. The lateral resolution of the method is determined in this case by the resolution of the scanning electron microscope used. In this case, however, the exit region of the secondary electrons from the surface of the substrate in the vicinity of the beam focus must also be taken into account. At typical beam energies of 5 to 15 keV and currents around 100 pA, minimum structure widths of 10 to 20 nm or even less can be achieved with high-resolution microscopes. When using focused ion beams, the screening is preferably carried out by a scanning ion microscope. In this case, structure sizes of about 30 nm can be achieved.
Das Bereitstellen bzw. das Anbieten des Precursors auf der Oberfläche des Substrats erfolgt vorteilhafterweise durch ein Gasinjektionssystem, durch das der Precursor ziel- gerichtet in dem Bereich der Oberfläche des Substrates bereitgestellt werden kann, in dem das Deponat platziert werden soll und sich in der Regel der Fokus des Elektronenoder lonenstrahls befindet. The provision or offering of the precursor on the surface of the substrate advantageously takes place by means of a gas injection system, through which the precursor can be targeted. can be provided directed in the region of the surface of the substrate in which the landfill is to be placed and is usually the focus of the electron or ion beam.
Vorteilhafterweise wird das Verfahren bei Raumtemperatur durchgeführt. Der Dampfdruck von Neopentasilan bei Raumtemperatur und von anderen, oben genannten Poly- silanen liegt in dem für FPBID Prozesse günstigen Bereich. Dadurch gelingt die Ab- scheidung von Silizium bei Raumtemperatur problemlos. Weiterhin sind Beheizungen des Substrates oder des Precursors nicht notwendig. Advantageously, the process is carried out at room temperature. The vapor pressure of neopentasilane at room temperature and other polysilanes mentioned above is in the range favorable for FPBID processes. This makes it possible to easily deposit silicon at room temperature. Furthermore, heating the substrate or the precursor are not necessary.
Das dargestellte Verfahren wird vorteilhafterweise zur Maskenreparatur bei Lithographieprozessen angewendet. EUV-Masken (EUV = Extreme Ultra Violet) werden mit Hilfe elektromagnetischer Strahlung bei Wellenlängen im„fernen" bzw. extremen UV- bzw. Röntgenbereich von 13,5 nm erstellt. Dazu sind aufgrund der sehr geringen Transmittivität gängiger Markensubstrate aufwändige Bestrahlungsarbeiten durch Nutzung von Reflexion notwendig. Zur Kompensation der geringen Reflexivität einzelner Materialschichten bei diesen Wellenlängen werden Multilagen- bzw. Mehrfachschichtsysteme verwendet, welche als Braggscher Interferenzspiegel funktionieren. Dabei ist Stand der Technik die Verwendung von Mo-Si-Schichtpaaren, die 40-50-mal wiederholt werden. The illustrated method is advantageously used for mask repair in lithographic processes. EUV (Extreme Ultra Violet) masks are produced using electromagnetic radiation at wavelengths in the "far" or extreme UV or X-ray range of 13.5 nm Reflection is necessary In order to compensate for the low reflectivity of individual material layers at these wavelengths, multilayer or multilayer systems are used which function as Bragg interference mirrors, the state of the art being the use of Mo-Si layer pairs, which are repeated 40-50 times.
Ein großes Problem in diesem Zusammenhang ist bereits die Herstellung defektfreier, großflächiger Maskenstrukturen. Defekte können beispielsweise aufgrund von Verschmutzungen durch Partikel aus der Luft, Abrieb der Hantierungssysteme oder auch Kristallbildung an der Maskenoberfläche entstehen. Die kritische Defektgröße liegt dabei unter 30 nm, weshalb nur höchstauflösende Korrekturmethoden funktionieren können. Ein hochauflösender Si/MO-SI-EBID-Prozess kann somit vorteilhaft nicht nur in der Reparatur von bereits eingesetzten Masken, sondern auch in der Qualtitätskontrolle und Nachbesserung produzierter Masken eingesetzt werden. Die Reparatur von Cr-ba- sierten Masken in der konventionellen Lithographie bei Wellenlängen im Bereich von 193 nm und ArF-Exzimer-Lasern als Lichtquellen mittels EBID von Cr-basierten Strukturen und elektronenstrahl-induziertem reaktiven Ätzen wird kommerziell angewendet, beispielsweise durch das von der Carl Zeiss SMT AG übernommene Unternehmen NaWoTec GmbH. A major problem in this context is already the production of defect-free, large-area mask structures. Defects can arise, for example, as a result of contamination by particles from the air, abrasion of the handling systems or even crystal formation on the mask surface. The critical defect size is less than 30 nm, which is why only super-resolution correction methods can work. A high-resolution Si / MO-SI-EBID process can thus be advantageously used not only in the repair of already used masks, but also in the quality control and repair of produced masks. The repair of Cr-based masks in conventional lithography at wavelengths in the range of 193 nm and ArF excimer lasers as light sources by means of EBID of Cr-based structures and electron beam-induced reactive etching is used commercially, for example, by the company NaWoTec GmbH, acquired by Carl Zeiss SMT AG.
Das beschriebene Verfahren wird zudem vorteilhafterweise zum Editieren von Schaltkreisen durchgeführt. Weitere Anwendungsgebiete liegen in der anwendungsnahen und der Grundlagen-orientierten Forschung. The described method is also advantageously carried out for editing circuits. Further areas of application are application-oriented and basic-oriented research.
In Bezug auf die Vorrichtung wird die oben genannte Aufgabe erfindungsgemäß dadurch gelöst, dass als Precursor ein Polysilan eingesetzt wird. In einer bevorzugten Variante der Vorrichtung wird als Precursor Neopentasilan eingesetzt. Vorteilhafterweise findet als Teilchenstrahlvorrichtung ein Rasterelektronenmikroskop Verwendung. With regard to the device, the abovementioned object is achieved according to the invention in that a polysilane is used as the precursor. In a preferred variant of the device, neopentasilane is used as the precursor. Advantageously, the particle beam device used is a scanning electron microscope.
Die mit der Erfindung erzielten Vorteile liegen insbesondere darin, dass durch die Verwendung eines siliziumhaltigen Precursors aus der Klasse der Polysilane in einem EBID/IBID-Verfahren eine Direktabscheidung von Silizium mit hoher Genauigkeit, Auflösung und geringer Verunreinigung ermöglicht wird. Insbesondere bei der Verwendung von Neopentasilan als Precursor, welches bei Raumtemperatur flüssig ist und einen für EBID/IBID-Verfahren günstigen Dampfdruck aufweist, lässt sich Silizium mit großer Reinheit und ohne Einschluss von Chlor deponieren. Eine geführte (gerasterte oder kontinuierliche) und wiederholte Bewegung des Teilchenstrahls über das Substrat erlaubt die präzise Erzeugung zwei- und dreidimensionaler Deponate. The advantages achieved by the invention are in particular that the use of a silicon-containing precursor from the class of polysilanes in an EBID / IBID process enables direct deposition of silicon with high accuracy, resolution and low contamination. In particular, when using neopentasilane as a precursor, which is liquid at room temperature and has a favorable vapor pressure for EBID / IBID method, silicon can be deposited with high purity and without inclusion of chlorine. A guided (rasterized or continuous) and repeated movement of the particle beam across the substrate allows the precise production of two- and three-dimensional landfills.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen in stark schematischer Darstellung: An embodiment of the invention will be explained in more detail with reference to a drawing. In it show in a highly schematic representation:
Fig. 1 eine Vorrichtung zur Abscheidung von Silizium auf einem Substrat mit Hilfe eines Precursors aus der Klasse der Polysilane mit einer Teilchenstrahlvorrichtung und einem Gasinjektionssystem in einer bevorzugten Ausführungsform, 1 shows a device for deposition of silicon on a substrate with the aid of a precursor from the class of polysilanes with a particle beam device and a gas injection system in a preferred embodiment,
Fig. 2 drei Beispiele von zwischen metallischen Kontaktstrukturen deponierten Si-De ponaten, und Fig. 2 shows three examples of deposited between metallic contact structures Si de ponaten, and
Fig. 3 die Temperaturabhängigkeit der elektrischen Leitfähigkeit eines typischen mit Hilfe der Vorrichtung aus Fig. 1 hergestellten Deponats. Fig. 3 shows the temperature dependence of the electrical conductivity of a typical Help the device of FIG. 1 produced landfill.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen. Identical parts are provided with the same reference numerals in all figures.
Die in Fig. 1 dargestellte Vorrichtung 2 zur Direktabscheidung von Silizium weist eine Teilchenstrahlvorrichtung 8 auf, die einen Strahl 14 aus Elektronen erzeugt. Die Teilchenstrahlvorrichtung 8 ist im vorliegenden Ausführungsbeispiel als Rasterelektronenmikroskop ausgestaltet. Durch ein Gasinjektionssystem 16 wird ein Precursor 20 in einem Bereich 18 der Oberfläche 26 eines Substrates 32 angeboten bzw. bereitgestellt, in dem Silizium deponiert werden soll. Der Precursor 20, der Silizium enthält, wird durch den Strahl 14 und die von ihm verursachten Sekundärprozesse auf der Oberfläche 26 des Substrats 32 zersetzt. Dabei entstehen im Allgemeinen aus dem Precursor eine flüchtige und eine feste Komponente. Die feste Komponente ist das Deponat 38. Dieses sollte einen möglichst hohen Anteil von Silizium beinhalten, um eine möglichst gute elektrische Leitfähigkeit aufzuweisen. Durch geführte und wiederholte Bewegung des Strahls 4 über die Oberfläche 26 bzw. über das bereits vorhandene Deponat 38 wird die gewünschte Struktur - auch dreidimensional - abgeschieden. The device 2 for the direct deposition of silicon shown in FIG. 1 has a particle beam device 8 which generates a beam 14 of electrons. The particle beam device 8 is configured in the present embodiment as a scanning electron microscope. By means of a gas injection system 16, a precursor 20 is offered or provided in a region 18 of the surface 26 of a substrate 32, in which silicon is to be deposited. The precursor 20 containing silicon is decomposed by the beam 14 and the secondary processes it causes on the surface 26 of the substrate 32. In general, the precursor forms a volatile component and a solid component. The solid component is the landfill 38. This should contain the highest possible proportion of silicon in order to have the best possible electrical conductivity. By guided and repeated movement of the beam 4 over the surface 26 or over the existing landfill 38, the desired structure - even three-dimensional - deposited.
Als Precursor 20 wird im vorliegenden Ausführungsbeispiel Neopentasilan (S15H12) eingesetzt. Neopentasilan ist ein kohlenstofffreier Si-Precursor 20, der unter ambienten Bedingungen flüssig ist. Bei der Zersetzung des Precursors entstehen die feste Phase Silizium, die auf dem Substrat 32 deponiert werden soll, und die flüchtige wasserstoff- haltige Phase. Der Dampfdruck von Neopentasilan liegt bei Raumtemperatur in einem für FPBI D-Prozesse günstigen Bereich. Dadurch lassen sich Wachstumsraten von mindestens 0,01 m3/min erzielen. Im Vergleich zu diesen Werten weist der gasförmige Precursor SiH2Cl2 einen sehr viel höheren Dampfdruck auf, so dass zu erwarten ist, dass dessen Haftkoeffizient sehr gering und entsprechend die Wachstumsrate deutlich geringer ist als bei Verwendung von Neopentasilan. As precursor 20, neopentasilane (S15H12) is used in the present exemplary embodiment. Neopentasilane is a carbon-free Si precursor 20 that is liquid under ambient conditions. The decomposition of the precursor results in the solid phase silicon to be deposited on the substrate 32 and the volatile hydrogen-containing phase. The vapor pressure of neopentasilane is at room temperature in a favorable range for FPBI D processes. As a result, growth rates of at least 0.01 m 3 / min can be achieved. In comparison to these values, the gaseous precursor SiH 2 Cl 2 has a much higher vapor pressure, so that it is to be expected that its adhesion coefficient is very low and correspondingly the growth rate is significantly lower than when using neopentasilane.
Typische, mit Hilfe der Vorrichtung 2 erzeugte Deponate bestehen aus mindestens 87 at-% Silizium, mit Anteilen von Kohlenstoff (C) und Sauerstoff (O) im Bereich von 5 bis 7 at-%. Dies kann beispielsweise durch den Einsatz von energiedispersiver Rönt- genanalyse (EDX) nachgewiesen werden. Die beschriebenen Verunreinigungen sind eine Folge der Restgaszusammensetzung im Vakuum des Elektronmikroskops während des beschriebenen Prozesses der Si-Abscheidung. Sie sind durch eine Verbesserung des Vakuums weitgehend bis vollständig eliminierbar. Typical landfills produced by device 2 consist of at least 87 at% silicon, with fractions of carbon (C) and oxygen (O) in the range of 5 to 7 at%. This can be demonstrated, for example, by the use of energy-dispersive X-ray analysis (EDX). The impurities described are a consequence of the residual gas composition in the vacuum of the electron microscope during the described process of Si deposition. They are largely or completely eliminated by improving the vacuum.
Darüber hinaus ist mit der erfindungsgemäßen Vorrichtung und dem korrespondierenden Verfahren auch eine Deposition von Silizium auf einem (moderat) geheizten (< 100 °C) Substrat 32 möglich. Moreover, with the device according to the invention and the corresponding method, it is also possible to deposit silicon on a (moderately) heated (<100 ° C.) substrate 32.
In Fig. 2 sind in einer lichtmikroskopischen Aufnahme verschiedene Kontaktstrukturen 50, 52, 54, 56, 58, 60 dargestellt, wobei zwischen den Kontaktstrukturen 50,52 und den Kontaktstrukturen 56, 58 jeweils Si-Deponate 38 präpariert wurden. Der Abstand A zwischen den Kontaktstrukturen 50, 52 und 56, 58 beträgt jeweils 20 pm. FIG. 2 shows various contact structures 50, 52, 54, 56, 58, 60 in a light micrograph, with Si deposits 38 being prepared between the contact structures 50, 52 and the contact structures 56, 58. The distance A between the contact structures 50, 52 and 56, 58 is 20 pm each.
Die Temperaturabhängigkeit der elektrischen Leitfähigkeit eines typischen, mit der Vorrichtung aus Fig. 1 erstellten Deponats 38 ist in Fig. 3 dargestellt. Auf der Abszisse 80 ist die mit dem Faktor 1000 multiplizierte inverse Temperatur T1 in der Einheit K~1, auf der Ordinate 86 der elektrische Widerstand R in der Einheit Ohm (Ω) dargestellt. Die Kurve 92 zeigt ein Verhalten, welches für amorphes Silizium typisch ist. Zum Ladungstransport tragen insbesondere auch lokalisierte Zustände unterhalb der Leitungsbandunterkante des Siliziums bei, dieses Phänomen wird auch als trap-controlled carrier contribution bezeichnet. Phänomenologisch lässt sich dies durch eine Verteilung von Aktivierungsenergien modellieren. Aufgrund des hohen Wasserstoffgehalts des Precur- sors 20 Neopentasilan ist davon auszugehen, dass nicht-verknüpfte Si-Bindungen weitgehend mit Wasserstoff abgesättigt sind (a-Si:H). Im Hinblick auf eine erhöhte Langzeitstabilität von a-Si:H ist bekannt, dass C-Beimengungen positive Auswirkungen haben. Diese allerdings wirken sich negativ auf die Beweglichkeit der Ladungsträger aus. Bezugszeichenliste Vorrichtung The temperature dependence of the electrical conductivity of a typical landfill 38 created with the apparatus of FIG. 1 is shown in FIG. On the abscissa 80, the multiplied by the factor 1000 inverse temperature T 1 in the unit K ~ 1 , on the ordinate 86 of the electrical resistance R in the unit ohm (Ω) is shown. The curve 92 shows a behavior typical of amorphous silicon. In particular, localized states below the conduction band lower edge of the silicon also contribute to charge transport. This phenomenon is also referred to as trap-controlled carrier contribution. Phenomenologically, this can be modeled by a distribution of activation energies. Due to the high hydrogen content of the precursor 20 neopentasilane it can be assumed that non-linked Si bonds are largely saturated with hydrogen (a-Si: H). In view of increased long-term stability of a-Si: H, it is known that C admixtures have positive effects. However, these have a negative effect on the mobility of the charge carriers. List of Reference Devices
Teilchenstrahlvorrichtung particle beam
Strahl beam
Gasinjektionssystem Gas injection system
Bereich Area
Precursor precursor
Oberfläche surface
Substrat substratum
Deponat Surety
Kontaktstruktur Contact structure
Kontaktstruktur Contact structure
Kontaktstruktur Contact structure
Kontaktstruktur Contact structure
Kontaktstruktur Contact structure
Kontaktstruktur Contact structure
Abszisse abscissa
Ordinate ordinate
Kurve Curve

Claims

Patentansprüche claims
1. Verfahren zur Abscheidung von Silizium auf einem Substrat (32) unter Verwendung eines fokussierten Strahls (14) geladener Teilchen, bei dem ein siliziumhalti- s ger Precursor (20) bereitgestellt wird, der durch den Strahl (14) in unmittelbarer A method of depositing silicon on a substrate (32) using a focused beam (14) of charged particles, wherein a silicon-containing precursor (20) is provided by the beam (14) in the immediate vicinity
Nähe des Substrats (32) dissoziiert wird, dadurch gekennzeichnet, dass ein Poly- silan als Precursor (20) eingesetzt wird.  Near the substrate (32) is dissociated, characterized in that a polysilane is used as precursor (20).
2. Verfahren nach Anspruch 1 , wobei als Precursor (20) Neopentasilan eingesetzto wird. 2. The method of claim 1, wherein Nopentasilan used as precursor (20).
3. Verfahren nach Anspruch 1 oder 2, wobei die geladenen Teilchen Elektronen sind. 53. The method of claim 1 or 2, wherein the charged particles are electrons. 5
4. Verfahren nach Anspruch 1 oder 2, wobei die geladenen Teilchen Ionen sind. 4. The method of claim 1 or 2, wherein the charged particles are ions.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Strahl (14) gerastert über das Substrat bewegt wird. A method according to any one of claims 1 to 4, wherein the beam (14) is scanned across the substrate.
6. Verfahren nach Anspruch 5, wobei der Strahl (14) durch ein Rasterelektronenmikroskop erzeugt und bewegt wird. 6. The method of claim 5, wherein the beam (14) is generated and moved by a scanning electron microscope.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Precursor (20) durch ein Gasinjektionssystem (16) bereitgestellt wird. A method according to any one of claims 1 to 6, wherein the precursor (20) is provided by a gas injection system (16).
8. Verfahren nach einem der Ansprüche 1 bis 7, das bei Raumtemperatur durchgeführt wird. 8. The method according to any one of claims 1 to 7, which is carried out at room temperature.
9. Vorrichtung (2) zur Abscheidung von Silizium auf einem Substrat (32) mit einer Teilchenstrahlvorrichtung (8) zur Erzeugung eines Strahls geladener Teilchen (14) und einem Injektionssystem (16) zum Bereitstellen eines siliziumhaltigen Precur- sors (20), dadurch gekennzeichnet, dass ein Polysilan als Precursor (20) eingesetzt wird. 9. Device (2) for depositing silicon on a substrate (32) with a particle beam device (8) for generating a beam of charged particles (14) and an injection system (16) for providing a silicon-containing precursor (20), characterized in that a polysilane is used as precursor (20).
10. Vorrichtung (2) nach Anspruch 9, wobei als Precursor (20) Neopentasilan eingesetzt wird. 10. Device (2) according to claim 9, wherein as precursor (20) neopentasilane is used.
EP11811328.1A 2010-12-23 2011-12-23 Method and device for depositing silicon on a substrate Withdrawn EP2655685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010055564A DE102010055564A1 (en) 2010-12-23 2010-12-23 Method and apparatus for depositing silicon on a substrate
PCT/EP2011/006543 WO2012084261A1 (en) 2010-12-23 2011-12-23 Method and device for depositing silicon on a substrate

Publications (1)

Publication Number Publication Date
EP2655685A1 true EP2655685A1 (en) 2013-10-30

Family

ID=45524475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11811328.1A Withdrawn EP2655685A1 (en) 2010-12-23 2011-12-23 Method and device for depositing silicon on a substrate

Country Status (5)

Country Link
US (1) US20140295105A1 (en)
EP (1) EP2655685A1 (en)
JP (1) JP5883025B2 (en)
DE (1) DE102010055564A1 (en)
WO (1) WO2012084261A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004116A1 (en) 2013-03-08 2014-09-11 Johann Wolfgang Goethe-Universität Method for optimizing a deposition process, method for adjusting a deposition plant and deposition plant
DE102013020518A1 (en) 2013-12-11 2015-06-11 Forschungszentrum Jülich GmbH Fachbereich Patente Process and device for the polymerization of a composition comprising hydridosilanes and subsequent use of the polymers for the production of silicon-containing layers
DE102014223465A1 (en) * 2014-11-18 2016-05-19 Evonik Degussa Gmbh Method of producing doped polycrystalline semiconductor layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945922A (en) * 1995-07-27 1997-02-14 Showa Denko Kk Method for forming poly crystal silicon film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308910A (en) * 1987-06-11 1988-12-16 Nikon Corp Manufacture of thin film applying energy beam irradiation and its equipment
JPH06191821A (en) * 1992-12-22 1994-07-12 Showa Denko Kk Higher order silane containing solution for forming silicon film
JPH11349321A (en) * 1998-06-05 1999-12-21 Osaka Gas Co Ltd Production of functional silicon material
US6440615B1 (en) * 1999-02-09 2002-08-27 Nikon Corporation Method of repairing a mask with high electron scattering and low electron absorption properties
JP2000232047A (en) * 1999-02-09 2000-08-22 Nikon Corp Correction method of scattered stencil type reticle
US20080138955A1 (en) * 2006-12-12 2008-06-12 Zhiyuan Ye Formation of epitaxial layer containing silicon
US8486191B2 (en) * 2009-04-07 2013-07-16 Asm America, Inc. Substrate reactor with adjustable injectors for mixing gases within reaction chamber
JP5442572B2 (en) * 2010-09-28 2014-03-12 株式会社日立ハイテクサイエンス Charged particle beam apparatus, thin film manufacturing method, defect correcting method, and device manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945922A (en) * 1995-07-27 1997-02-14 Showa Denko Kk Method for forming poly crystal silicon film

Also Published As

Publication number Publication date
WO2012084261A1 (en) 2012-06-28
DE102010055564A1 (en) 2012-06-28
US20140295105A1 (en) 2014-10-02
JP5883025B2 (en) 2016-03-09
JP2014501216A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5676774B2 (en) Graphene-coated steel sheet and method for producing the same
DE102016203094B4 (en) Method and apparatus for permanently repairing missing material defects of a photolithographic mask
DE102007041820A1 (en) graphite layers
EP1727925A1 (en) Method and device for forming thin silicon nitride layers on the surface of substrates
DE102014114572A1 (en) EUV lithography system and operating method therefor
DE102017213172A1 (en) Method for applying a cover layer and reflective optical element
EP3028295B1 (en) Method for bonding substrates
EP2668661A1 (en) Method for the permanent bonding of wafers
DE102005032320A1 (en) Decontaminating optical element surface, especially in projection illumination plant for microlithography, using cleaning device applying activated reducing gas to the surface under atmospheric pressure
EP3010854A1 (en) Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof
EP2655685A1 (en) Method and device for depositing silicon on a substrate
EP0259791A1 (en) Process for the production of work pieces with a surface layer of carbon
DE102012011277B4 (en) A method of forming closed sheets of graphene on the surface of a substrate and substrate coated with the method
WO2014202459A1 (en) Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof
DE10223359A1 (en) Micromechanical component and method for producing an anti-adhesive layer on a micromechanical component
DE3437120A1 (en) METHOD FOR THE PRODUCTION OF SEMICONDUCTOR LAYERS ON SEMICONDUCTOR BODIES OR FOR THE DIFFUSION OF INTERFERENCE POINTS IN THE SEMICONDUCTOR BODY
EP0757362A1 (en) X-ray transmitting coating material, its manufacturing method and its use
DE102010000983A1 (en) Plasma- or ion-supported system for the production of adhesive coatings on fluoropolymers
DE102019212910A1 (en) Optical element and EUV lithography system
DE102017116261A1 (en) Process for coating a conductive component and coating a conductive component
EP3266034A1 (en) Ion implanter
WO2006027106A1 (en) Method for depositing photocatalytic titanium oxide layers
DE102017223600A1 (en) Method and apparatus for cleaning a material damage substrate
DE102022202058A1 (en) METHOD AND DEVICE FOR MASK REPAIR
DE102022202061A1 (en) METHOD AND DEVICE FOR MASK REPAIR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170701