JPH06191821A - Higher order silane containing solution for forming silicon film - Google Patents

Higher order silane containing solution for forming silicon film

Info

Publication number
JPH06191821A
JPH06191821A JP34268292A JP34268292A JPH06191821A JP H06191821 A JPH06191821 A JP H06191821A JP 34268292 A JP34268292 A JP 34268292A JP 34268292 A JP34268292 A JP 34268292A JP H06191821 A JPH06191821 A JP H06191821A
Authority
JP
Japan
Prior art keywords
order silane
silicon film
film
substrate
higher order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34268292A
Other languages
Japanese (ja)
Inventor
Kotaro Yano
幸太郎 矢野
Yutaka Kitsuno
裕 橘野
Shoichi Tazawa
昇一 田沢
Keiji Kawasaki
計二 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP34268292A priority Critical patent/JPH06191821A/en
Publication of JPH06191821A publication Critical patent/JPH06191821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solution capable of safely and efficiently obtaining a uniform silicon film with a film coating method by using a specific solvent and dissolving it so as to be a specific conc. in producing a solution of forming silicon film by dissolving a higher order silane in an organic solvent. CONSTITUTION:The organic solvent selected from saturated hydrocarbons expressed by CaHb (3<=a<=16, 8<=b<=34), unsaturated hydrocarbons, aromatics (e.g. toluene), ethers expressed by CdHeOf(2<=d<=16, 6<=e<=34, 1<=f<=3), e.g. diethyletter or a mixed solvent of them is prepared. The higher order silane (e.g. trisilane) expressed by the formula ((n) >=2) is dissolved in the solvent so that the total higher order silane conc. in the solvent (total higher order silane weight)/(total higher order silane weight+solvent weight)X100) is 1-50wt.%. Thus, the higher order silane containing solution suitable for forming silicon film by the film coating method is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI、薄膜トランジ
スタ、光電変換装置、及び感光体用途でのシリコン膜形
成に用いられる高次シラン含有溶液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LSI, a thin film transistor, a photoelectric conversion device, and a high-order silane-containing solution used for forming a silicon film for photoconductor applications.

【0002】[0002]

【従来の技術】従来、ポリシリコン膜やアモルファスシ
リコン(以下「a−Si」という)膜の形成方法として
は、熱CVD(Chemical Vapor Deposition)法、プラズ
マCVD法、光CVD法等が利用されており、一般的に
はポリシリコン膜では熱CVD法(Kern, W.ら: J. Vac.
Sci. Technol., 14(5)巻(1977年)第1082頁参照)、a−
Si膜ではプラズマCVD法(Spear, W. E.ら: Solid
State Com., 17巻(1975年)第1193頁参照)が広く用い
られ企業化されている。
2. Description of the Related Art Conventionally, a thermal CVD (Chemical Vapor Deposition) method, a plasma CVD method, an optical CVD method or the like has been used as a method for forming a polysilicon film or an amorphous silicon (hereinafter referred to as "a-Si") film. In general, a polysilicon film has a thermal CVD method (Kern, W. et al .: J. Vac.
Sci. Technol., 14 (5) (1977) p. 1082), a-
Plasma CVD method (Spear, WE et al .: Solid
State Com., Volume 17 (1975), page 1193) is widely used and commercialized.

【0003】しかるに、これらの気相からの堆積方法を
用いた場合は、高価な高真空装置が必要である。ガスの
流れの解析が難しく、基板の大きさに比べて装置が大き
くなり形状の制約も受ける。また大面積化が困難であ
る。気相反応を用いるため気相中で粉末が発生し、装置
の汚染及び洗浄、デバイスの歩留り等の問題点を生じ
る。また膜形成速度が遅くスループットが悪い。プラズ
マCVD法においては、高周波発生装置等複雑で高価な
装置が必要となる。また原料にガスを用いるが、それら
のほとんどが爆発性あるいは有毒性を有し、取扱い上の
危険性が大きい。一方、以上の気相法における欠点が無
い方法として、塗布膜法(SOG法)がある。LSIで
の層間絶縁膜や平坦化膜等には塗布膜法が利用されてい
るが、シリコン膜用には塗布するための適当な溶液が存
在しなかった。
However, when these vapor phase deposition methods are used, expensive high vacuum equipment is required. It is difficult to analyze the gas flow, the size of the device is larger than the size of the substrate, and the shape is restricted. Further, it is difficult to increase the area. Since the gas phase reaction is used, powder is generated in the gas phase, which causes problems such as device contamination and cleaning, and device yield. In addition, the film formation rate is slow and the throughput is poor. The plasma CVD method requires a complicated and expensive device such as a high frequency generator. Moreover, although gas is used as a raw material, most of them are explosive or toxic, and are dangerous in handling. On the other hand, there is a coating film method (SOG method) as a method which does not have the above defects in the vapor phase method. Although a coating film method is used for an interlayer insulating film, a flattening film and the like in LSI, there is no suitable solution for coating for a silicon film.

【0004】[0004]

【発明が解決しようとする課題】塗布膜法によるシリコ
ン膜形成に用いることのできる液体の原料としては、炭
素や酸素を分子内に含まないことが必要であるため、一
般式Sin2n+2(但し、nはn≧2の整数)で表される
高次シランが適している。しかるに高次シランのみの状
態では、高次シランを基板上に薄膜として均一に塗布す
るには困難を生じ、また大気中に出した場合、蒸気圧分
の高次シランが大気と反応し容易に燃焼に至る危険性が
ある。本発明はかかる点に鑑みてなされたもので、気相
からの堆積方法を用いず、塗布膜法によるシリコン膜形
成に用いることのできる溶液を提供することを目的とし
ている。
A liquid raw material that can be used for forming a silicon film by a coating film method is required to contain no carbon or oxygen in its molecule. Therefore, the general formula Si n H 2n + is used. Higher order silane represented by 2 (where n is an integer of n ≧ 2) is suitable. However, in the state of only high-order silane, it is difficult to uniformly coat the high-order silane as a thin film on the substrate, and when exposed to the atmosphere, the high-order silane reacts with the atmospheric pressure and easily reacts with the atmosphere. Risk of burning. The present invention has been made in view of the above points, and an object thereof is to provide a solution that can be used for forming a silicon film by a coating film method without using a deposition method from a vapor phase.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために鋭意努力した結果、一般式Sin
2n+2(但し、nはn≧2の整数)で表される高次シラン
を、一定の割合で有機溶剤に溶解させた高次シラン含有
溶液において、有機溶剤としてCab(但し、aは3≦
a≦16、bは8≦b≦34の整数)で表される飽和炭
化水素類、不飽和炭化水素類、芳香族類、あるいはCd
ef(但し、dは2≦d≦16、eは6≦e≦34、
fは1≦f≦3の整数)で表されるエーテル類、あるい
はこれらの混合溶剤を用いた高次シラン含有溶液を、塗
布膜法によるシリコン膜形成用に用いることにより、高
品質なシリコン膜が大面積に安全にかつ効率よく得られ
ることを発見した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made diligent efforts to achieve the above object, and as a result, the general formula Si n H
In a high-order silane-containing solution obtained by dissolving a high-order silane represented by 2n + 2 (where n is an integer of n ≧ 2) in an organic solvent at a constant ratio, C a H b (provided that a is 3 ≦
a ≦ 16, b is an integer of 8 ≦ b ≦ 34), saturated hydrocarbons, unsaturated hydrocarbons, aromatics, or C d
H e O f (where, d is 2 ≦ d ≦ 16, e is 6 ≦ e ≦ 34,
f is an integer of 1 ≦ f ≦ 3), or a high-order silane-containing solution using an ether or a mixed solvent thereof is used for forming a silicon film by a coating film method to obtain a high-quality silicon film. We have found that can be obtained safely and efficiently on a large area.

【0006】以下、本発明の高次シラン含有溶液を説明
する。有機溶剤に溶解させて基板上に塗布する液体原料
として本発明で使用する高次シランは、一般式Sin
2n+2 (但し、nはn≧2の整数)で表され、ジシラン
(Si26)、トリシラン(Si38)、テトラシラン
(Si410)、ペンタシラン(Si512)、あるいは
ヘキサシラン(Si614)以上のものである。これら
の高次シランは、1種用いても2種以上の混合液を用い
てもよい。
The high-order silane-containing solution of the present invention will be described below. The high-order silane used in the present invention as a liquid raw material which is dissolved in an organic solvent and applied on a substrate has a general formula Si n H
2n + 2 (where n is an integer of n ≧ 2), and is represented by disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), tetrasilane (Si 4 H 10 ), pentasilane (Si 5 H 12 ), Alternatively, it is hexasilane (Si 6 H 14 ) or more. These higher order silanes may be used alone or as a mixture of two or more kinds.

【0007】本発明で使用する有機溶剤は、高次シラン
が可溶なものであればかまわないが、高次シランとの反
応性が無いことが望ましい。また、生成した膜中への溶
剤の残留を防ぐために沸点が300℃以下の有機溶剤を
用いることが望ましい。このような有機溶剤としては、
ab(但し、aは3≦a≦16、bは8≦b≦34の整
数)で表される飽和炭化水素類、不飽和炭化水素類、芳
香族類、あるいはCdef(但し、dは2≦d≦16、
eは6≦e≦34、fは1≦f≦3の整数)で表される
エーテル類、あるいはこれらの混合溶剤が用いられる。
また取扱い上、室温で液体状のものが好ましい。
The organic solvent used in the present invention may be any solvent in which the higher order silane is soluble, but it is desirable that the organic solvent has no reactivity with the higher order silane. Further, it is desirable to use an organic solvent having a boiling point of 300 ° C. or lower in order to prevent the solvent from remaining in the formed film. As such an organic solvent,
C a H b (where, a is 3 ≦ a ≦ 16, b is 8 integer of ≦ b ≦ 34) saturated hydrocarbons represented by, unsaturated hydrocarbons, aromatics, or C d H e O f (where d is 2 ≦ d ≦ 16,
An ether represented by e is 6 ≦ e ≦ 34, and f is an integer of 1 ≦ f ≦ 3, or a mixed solvent thereof is used.
In terms of handling, it is preferably liquid at room temperature.

【0008】例をあげれば、Cab(但し、aは3≦a
≦16、bは8≦b≦34の整数)で表される飽和炭素
水素類、不飽和炭化水素類、芳香族類としては、プロパ
ン、ブタン、ペンタン、2−メチルブタン、ヘキサン、
2−メチルペンタン、2,2−ジメチルブタン、2,3
−ジメチルブタン、ヘプタン、2−メチルヘキサン、3
−メチルヘキサン、ジメチルペンタン、オクタン、2,
2,3−トリメチルペンタン、イソオクタン、ノナン、
2,2,5−トリメチルヘキサン、デカン、ドデカン、
ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デ
セン、ベンゼン、トルエン、キシレン、エチルベンゼ
ン、クメン、メシチレン、ブチルベンゼン、ジエチルベ
ンゼン、スチレン、シクロペンタン、メチルシクロペン
タン、シクロヘキサン、メチルシクロヘキサン等であ
る。
For example, C a H b (where a is 3 ≦ a
≦ 16, b is an integer of 8 ≦ b ≦ 34) and examples of saturated hydrocarbons, unsaturated hydrocarbons, and aromatics include propane, butane, pentane, 2-methylbutane, hexane,
2-methylpentane, 2,2-dimethylbutane, 2,3
-Dimethylbutane, heptane, 2-methylhexane, 3
-Methylhexane, dimethylpentane, octane, 2,
2,3-trimethylpentane, isooctane, nonane,
2,2,5-trimethylhexane, decane, dodecane,
Pentene, hexene, heptene, octene, nonene, decene, benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, butylbenzene, diethylbenzene, styrene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane and the like.

【0009】Cdef(但し、dは2≦d≦16、eは6
≦e≦34、fは1≦f≦3の整数)で表されるエーテル
類としては、ジメチルエーテル、メチルエチルエーテ
ル、ジエチルエーテル、ジプロピルエーテル、ジイソプ
ロピルエーテル、ジブチルエーテル、エチルビニルエー
テル、ブチルビニルエーテル、アニソール、ベンジルエ
チルエーテル、ジフェニルエーテル、ジオキサン、トリ
オキサン、フラン、テトラヒドロフラン、テトラヒドロ
ピラン、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、1,2−ジブトキシエタン、ジエチレングリコ
ールジメチルエーテル、ジエチレングリコールジエチル
エーテル、ジエチレングリコールジブチルエーテル、グ
リセリンエーテル、クラウンエーテル、メチラール、ア
セタール等である。これらの有機溶剤は、1種用いても
2種以上の混合溶剤を用いてもよい。
[0009] C d H e O f (where, d is 2 ≦ d ≦ 16, e 6
The ethers represented by ≦ e ≦ 34 and f is an integer of 1 ≦ f ≦ 3) include dimethyl ether, methyl ethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethyl vinyl ether, butyl vinyl ether, and anisole. , Benzyl ethyl ether, diphenyl ether, dioxane, trioxane, furan, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di Butyl ether, glycerin ether, crown ether, methylal, acetal and the like. These organic solvents may be used alone or in combination of two or more.

【0010】本発明における有機溶剤に溶解させた高次
シランの溶液中の全高次シラン濃度(全高次シラン重量
/(全高次シラン重量+溶剤重量)×100)は、好ま
しくは全高次シラン濃度が0.1〜50重量%である。
高次シラン濃度が50重量%以上では、大気雰囲気下で
は蒸気圧分の高次シランが大気と反応し燃焼に至る危険
性が大幅に増加する。全高次シラン濃度が0.1重量%
以下では、十分な膜厚の膜を得るのに困難を生じる。
The total high-order silane concentration (total high-order silane weight / (total high-order silane weight + solvent weight) × 100) in the solution of the high-order silane dissolved in the organic solvent in the present invention is preferably the total high-order silane concentration. It is 0.1 to 50% by weight.
When the high-order silane concentration is 50% by weight or more, the risk that the high-order silane corresponding to the vapor pressure reacts with the atmosphere and burns in the atmosphere is significantly increased. Total higher silane concentration is 0.1% by weight
In the following, it is difficult to obtain a film having a sufficient film thickness.

【0011】本発明の高次シラン含有溶液を用いてシリ
コン膜を形成する際には、まず第一に基板上に高次シラ
ン含有溶液を塗布する。その際には、スピンコート法、
あるいは浸漬後引き上げる方法等があるが、一般にはス
ピンコート法が用いられる場合が多い。スピンコート法
におけるスピナーの回転数は、一般には100〜100
00RPM、好ましくは300〜6000RPMが用いられ
る。塗布を行なった後は、必要に応じて高次シラン含有
溶液から有機溶剤をあらかじめ蒸発除去した後、紫外線
光照射による光重合、あるいは加熱による熱重合等の方
法により所定のシリコン膜を得る。本発明の高次シラン
含有溶液を用いて得られるシリコン膜の膜厚は、5nm〜
5μm程度まで自由に選択することができるが、好まし
くは10nm〜2μm程度の膜厚が用いられる。
When forming a silicon film using the high-order silane-containing solution of the present invention, first, the high-order silane-containing solution is applied onto a substrate. In that case, spin coating method,
Alternatively, there is a method of pulling up after immersion, but in general, a spin coating method is often used. The spinner rotation speed in the spin coating method is generally 100 to 100.
00 RPM, preferably 300-6000 RPM is used. After coating, if necessary, the organic solvent is previously removed by evaporation from the high-order silane-containing solution, and then a predetermined silicon film is obtained by a method such as photopolymerization by ultraviolet light irradiation or thermal polymerization by heating. The film thickness of the silicon film obtained by using the high-order silane-containing solution of the present invention is 5 nm to
The thickness can be freely selected up to about 5 μm, but a film thickness of about 10 nm to 2 μm is preferably used.

【0012】請求項2の高次シランが分解するようなエ
ネルギーとは、波長400nm以下の光照射、または25
0℃以上の加熱のことをいう。紫外線光照射による光重
合を行なう場合は、一般に照射する光の光源としては、
波長400nm以下の光の光源が用いられる。これには例
えば、低圧水銀ランプ光、H2や重水素、あるいはAr,
Kr,Xe等の希ガスの放電光、エキシマレーザー光等が
用いられる。加熱による熱重合を行なう場合は、一般に
250〜700℃において10〜120分加熱すること
により行なう。以上の方法において、一般に450〜5
00℃以下の温度ではa−Si膜、それ以上の温度では
ポリシリコン膜が得られる。
The energy for decomposing the high-order silane according to claim 2 is irradiation with light having a wavelength of 400 nm or less, or 25
It means heating at 0 ° C or higher. When performing photopolymerization by ultraviolet light irradiation, as a light source of light to be generally irradiated,
A light source having a wavelength of 400 nm or less is used. This includes, for example, low pressure mercury lamp light, H 2 , deuterium, Ar,
Discharge light of a rare gas such as Kr or Xe or excimer laser light is used. When the thermal polymerization is carried out by heating, it is generally carried out by heating at 250 to 700 ° C. for 10 to 120 minutes. In the above method, generally 450 to 5
An a-Si film is obtained at a temperature of 00 ° C. or lower, and a polysilicon film is obtained at a temperature of higher than that.

【0013】[0013]

【作用】一般式Sin2n+2(但し、nはn≧2の整数)
で表される高次シランを、一定の割合で有機溶剤に溶解
させた溶液を基板上に塗布した後、分解して基板上にシ
リコン膜を形成させることにより高品質なシリコン膜が
形成できる。 本発明の方法では高次シランを有機溶剤
に溶解させて用いるため、塗布膜法により高次シランを
薄膜として均一に塗布することができ、これにより基板
上に選択された膜厚で均一にシリコン膜が形成できる。
Function General formula Si n H 2n + 2 (where n is an integer of n ≧ 2)
A high-quality silicon film can be formed by applying a solution in which a high-order silane represented by the following is dissolved in an organic solvent at a constant ratio to the substrate and then decomposing it to form a silicon film on the substrate. In the method of the present invention, since the high-order silane is used by being dissolved in an organic solvent, the high-order silane can be uniformly applied as a thin film by a coating film method, which allows the silicon to be uniformly applied at a selected film thickness on the substrate. A film can be formed.

【0014】また一般に高次シランは大気中で自然発火
性の液体あるいは液化ガスであるが、本発明の方法では
高次シランを有機溶剤に溶解させて用いるため、大気中
での自然発火性は大幅に減少し取扱いが容易になる。本
発明の方法では液状の原料を用いるため、一般のCVD
法と異なり装置が容易で粉末の発生が防げる。また従来
のCVD法では困難であった大面積基板にも効率よく安
全に高品質なシリコン膜が形成できる。
In general, the higher order silane is a liquid or a liquefied gas that is spontaneously ignitable in the atmosphere, but since the higher order silane is used by dissolving it in an organic solvent in the method of the present invention, the spontaneous ignitability in the atmosphere is Significant reduction and easy handling. Since a liquid raw material is used in the method of the present invention, general CVD
Unlike the method, the device is easy and the generation of powder can be prevented. Further, a high-quality silicon film can be efficiently and safely formed on a large-area substrate, which was difficult by the conventional CVD method.

【0015】[0015]

【実施例】以下実施例により本発明を詳細に説明する
が、本発明を限定するものではない。本発明の高次シラ
ン含有溶液は以下のようにして調製した。まず有機溶剤
として市販の特級試薬を脱気及び脱水を行なった後、蒸
留により精製して用いた。高次シランとしては、一定の
組成の混合液体、あるいは蒸留によりほぼ単一の高次シ
ランに精製した液体を用い、不活性ガス中で上記有機溶
剤中に所定濃度まで撹拌しながら混合する。混合にあた
り、系内への空気の混入を防ぐために、系内圧力は微加
圧に保った。混合の順番は高次シランを有機溶剤に滴下
しても逆でも可であるが、容器に高次シランが付着する
ことを防ぐために、高次シランの滴下口を有機溶剤の液
面近くに設置した。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto. The high-order silane-containing solution of the present invention was prepared as follows. First, a commercially available special grade reagent as an organic solvent was deaerated and dehydrated, and then purified by distillation and used. As the high-order silane, a mixed liquid having a constant composition or a liquid purified to almost a single high-order silane by distillation is used, and mixed with the organic solvent in an inert gas to a predetermined concentration while stirring. During the mixing, the pressure inside the system was kept slightly increased in order to prevent air from being mixed into the system. The order of mixing can be high-order silane dropped into the organic solvent or vice versa, but in order to prevent the high-order silane from adhering to the container, the high-order silane dropping port is installed near the surface of the organic solvent. did.

【0016】本発明の高次シラン含有溶液を用いてシリ
コン膜を形成するための装置の例を示せば図1,図2の
ようになる。図1は紫外線照射による光重合を行なう場
合の例、図2は加熱による熱重合を行なう場合の例を示
している。図1の装置において、光源として重水素ラン
プ106を用いた。膜形成室101内へは重水素ランプ
106からMgF2製の光照射窓107を通して光を照射
する。膜形成室101内にはヒーター等によって加熱可
能な100φの円形の基板台103が設けられ、その上
に基板102が保持される。重水素ランプ106は、1
50W,25φのものを設置した。光のスペクトルは1
15nm〜400nmに分布し、160.8nmに最大ピーク
を持っている。高次シラン含有溶液を塗布された基板1
02を膜形成室101中の基板台103に保持した後、
不活性ガスを不活性ガス流量計104によって膜形成室
101に導入し、必要に応じて基板102上の溶液から
有機溶媒を蒸発させる。蒸発した有機溶媒は排気系10
5を通って排出させる。膜形成室101において高次シ
ランを光の照射により分解し基板102上にシリコン膜
を堆積させる。
An example of an apparatus for forming a silicon film using the high-order silane-containing solution of the present invention is shown in FIGS. FIG. 1 shows an example in the case of performing photopolymerization by ultraviolet irradiation, and FIG. 2 shows an example in the case of performing thermal polymerization by heating. In the device of FIG. 1, a deuterium lamp 106 was used as a light source. Light is irradiated from the deuterium lamp 106 into the film forming chamber 101 through a light irradiation window 107 made of MgF 2 . In the film forming chamber 101, a 100φ circular substrate stand 103 that can be heated by a heater or the like is provided, and the substrate 102 is held thereon. Deuterium lamp 106 has 1
The one with 50W and 25φ was installed. Light spectrum is 1
It is distributed from 15 nm to 400 nm and has a maximum peak at 160.8 nm. Substrate 1 coated with a high-order silane-containing solution
02 is held on the substrate table 103 in the film forming chamber 101,
An inert gas is introduced into the film forming chamber 101 by the inert gas flow meter 104, and the organic solvent is evaporated from the solution on the substrate 102 as needed. Evaporated organic solvent is exhaust system 10
Discharge through 5. High-order silane is decomposed by light irradiation in the film forming chamber 101, and a silicon film is deposited on the substrate 102.

【0017】図2の装置において、膜形成室201内に
はヒーター等によって加熱可能な100φの円形の基板
台203が設けられ、その上に基板202が保持され
る。高次シラン含有溶液を塗布された基板202を膜形
成室201中の基板台203に保持した後、不活性ガス
を不活性ガス流量計204によって膜形成室201に導
入し、必要に応じて基板202上の溶液から有機溶媒を
蒸発させる。蒸発した有機溶媒は排気系205を通って
排出させる。膜形成室201において高次シランを加熱
により分解し基板202上にシリコン膜を堆積させる。
In the apparatus shown in FIG. 2, a 100 φ circular substrate base 203 which can be heated by a heater or the like is provided in the film forming chamber 201, and the substrate 202 is held thereon. After the substrate 202 coated with the high-order silane-containing solution is held on the substrate table 203 in the film forming chamber 201, an inert gas is introduced into the film forming chamber 201 by an inert gas flow meter 204, and the substrate may be added as necessary. Evaporate the organic solvent from the solution on 202. The evaporated organic solvent is discharged through the exhaust system 205. High-order silane is decomposed by heating in the film forming chamber 201 to deposit a silicon film on the substrate 202.

【0018】以上図1及び図2の例において、基板上へ
の溶液の塗布は、市販の不活性ガスで置換可能な、回転
数100〜6000RPM 、ホルダー径200mmのスピン
コーターを用いて行なった。基板上への溶液の塗布はス
ピンコーターに基板102,202を保持した後、所定
量溶液を滴下し、所定の回転数で所定時間回転させて行
なう。
In the examples of FIGS. 1 and 2, the coating of the solution on the substrate was carried out by using a spin coater having a rotation speed of 100 to 6000 RPM and a holder diameter of 200 mm, which can be replaced with a commercially available inert gas. The solution is applied onto the substrate by holding the substrates 102 and 202 on a spin coater, dropping a predetermined amount of the solution, and rotating the substrate at a predetermined rotation speed for a predetermined time.

【0019】実施例において使用した高次シラン含有溶
液の組成を表1に示した。実施例、比較例において得ら
れた膜の構造をX線回折により調べた後、a−Si膜に
ついては次の物性の測定を行ない結果を表2に示した。 光電気伝導度…AM−1.5,100mW/cm2の光照射下
で行ない、電気伝導度はAl蒸着により、コプレーナー
型のセルを形成して測定した。 光学ギャップ…光吸収係数αより、√αhν−hνプロ
ットの切辺として求めた。
The composition of the high-order silane-containing solution used in the examples is shown in Table 1. After examining the structures of the films obtained in Examples and Comparative Examples by X-ray diffraction, the following physical properties of the a-Si film were measured and the results are shown in Table 2. Performed under light irradiation of the optical electric conductivity ... AM-1.5,100mW / cm 2, the electric conductivity of the Al deposition was measured by forming a coplanar type cell. Optical gap: Determined as the cut edge of the √αhν-hν plot from the light absorption coefficient α.

【0020】実施例1 高次シラン含有溶液として表1(以下同じ)のNo.1の
組成のものを用い、実験装置として図1に示した装置を
使用した。基板102としてコーニング社の7059ガ
ラスを用い、まず窒素ガス雰囲気下でスピンコーターに
て、溶液No.1を数ml基板102上に滴下し、1000
RPMで3秒、次いで3000RPMで10秒間回転し、塗布
膜を形成した。次に膜形成室101内の基板台103の
上に基板102を設置し、不活性ガス流量計104より
水素ガスを500CCM 流しながら、基板台103の温度
を150℃に設定した後、重水素ランプ106から紫外
光を光照射窓107を通して40分間照射して、高次シ
ランの光重合を行ない、基板102上にシリコン膜を形
成させた。
Example 1 No. 1 in Table 1 (hereinafter the same) as a high-order silane-containing solution. The composition shown in FIG. 1 was used as the experimental apparatus. As the substrate 102, 7059 glass manufactured by Corning Co., Ltd. is used, and the solution No. 1 drop on a few ml substrate 102, 1000
The coated film was formed by rotating at RPM for 3 seconds and then at 3000 RPM for 10 seconds. Next, the substrate 102 is placed on the substrate table 103 in the film forming chamber 101, and the temperature of the substrate table 103 is set to 150 ° C. while flowing hydrogen gas at 500 CCM from the inert gas flow meter 104, and then the deuterium lamp is used. Ultraviolet light was irradiated from 106 through the light irradiation window 107 for 40 minutes to carry out photopolymerization of the higher order silane to form a silicon film on the substrate 102.

【0021】実施例2 高次シラン含有溶液としてNo.1の組成のものを用い、
実験装置として図2に示した装置を使用した。基板20
2としてコーニング社の7059ガラスを用い、まず窒
素ガス雰囲気下でスピンコーターにて、溶液No.1を数
ml基板202上に滴下し、1000RPMで3秒、次いで
3000RPMで10秒間回転し、塗布膜を形成した。次
に膜形成室201内の基板台203の上に基板202を
設置し、不活性ガス流量計204より水素ガスを500
CCM 流しながら、基板台203の温度を350℃に設定
した後、50分間保持し高次シランの熱重合を行ない、
基板202上にシリコン膜を形成させた。
Example 2 No. 1 as a high-order silane-containing solution. Use the composition of 1
The device shown in FIG. 2 was used as an experimental device. Board 20
As the No. 2 solution, 7059 glass manufactured by Corning Co., Ltd. was used. First, the solution No. Number 1
The solution was dropped on the ml substrate 202 and rotated at 1000 RPM for 3 seconds and then at 3000 RPM for 10 seconds to form a coating film. Next, the substrate 202 is placed on the substrate table 203 in the film forming chamber 201, and the inert gas flow meter 204 supplies hydrogen gas to 500
After flowing the CCM and setting the temperature of the substrate table 203 to 350 ° C., it is held for 50 minutes to carry out thermal polymerization of the higher silane,
A silicon film was formed on the substrate 202.

【0022】実施例3 高次シラン含有溶液としてNo.2の組成のものを用い、
塗布膜形成をスピンコーターで、1000RPMで5秒、
次いで3000RPMで15秒間回転して行なった他は、
実施例1と同じにしてシリコン膜を形成させた。
Example 3 No. 3 as a high-order silane-containing solution. Using the composition of 2,
Coating film formation with a spin coater at 1000 RPM for 5 seconds,
Next, except rotating at 3000 RPM for 15 seconds,
A silicon film was formed in the same manner as in Example 1.

【0023】実施例4 高次シラン含有溶液としてNo.2の組成のものを用い、
塗布膜形成をスピンコーターで、1000RPMで5秒、
次いで3000RPMで15秒間回転して行なった他は、
実施例2と同じにしてシリコン膜を形成させた。
Example 4 No. 4 as a high-order silane-containing solution. Using the composition of 2,
Coating film formation with a spin coater at 1000 RPM for 5 seconds,
Next, except rotating at 3000 RPM for 15 seconds,
A silicon film was formed in the same manner as in Example 2.

【0024】実施例5,7,8,10,11,15,1
6 高次シラン含有溶液としてNo.3,5,6,8,9,1
1,12の組成のものを用いた他は、実施例1と同じに
してシリコン膜を形成させた。
Embodiments 5, 7, 8, 10, 11, 15, 1
No. 6 as a high-order silane-containing solution 3,5,6,8,9,1
A silicon film was formed in the same manner as in Example 1 except that the compositions of 1 and 12 were used.

【0025】実施例12 高次シラン含有溶液としてNo.9の組成のものを用いた
他は、実施例2と同じにしてシリコン膜を形成させた。
Example 12 No. 6 as a high-order silane-containing solution. A silicon film was formed in the same manner as in Example 2 except that the composition of 9 was used.

【0026】実施例6,9,13,17 高次シラン含有溶液としてNo.4,7,10,13の組
成のものを用いた他は、実施例3と同じにしてシリコン
膜を形成させた。
Examples 6, 9, 13, 17 No. 6 as a high-order silane-containing solution. A silicon film was formed in the same manner as in Example 3 except that the compositions of 4, 7, 10, and 13 were used.

【0027】実施例14 高次シラン含有溶液としてNo.10の組成のものを用い
た他は、実施例4と同じにしてシリコン膜を形成させ
た。
Example 14 No. 6 as a high-order silane-containing solution. A silicon film was formed in the same manner as in Example 4 except that the composition of 10 was used.

【0028】実施例18 基板102として石英ガラスを用い、塗布膜形成を行な
った基板を紫外光照射しながら、基板台103の温度を
150℃で10分間保持した後、さらに10℃/分の昇
温速度で550℃まで40分、さらに550℃で20分
間保持して紫外光照射を続けた他は、実施例1と同じに
してシリコン膜を形成させた。得られた膜の光電気伝導
度は3.1×10-4S/cmであり、従来の膜(約10-4
S/cm)と同等であった。
Example 18 Using quartz glass as the substrate 102, the temperature of the substrate stage 103 was maintained at 150 ° C. for 10 minutes while irradiating the substrate on which the coating film was formed with ultraviolet light, and then the temperature was further increased by 10 ° C./min. A silicon film was formed in the same manner as in Example 1, except that the temperature was maintained at 550 ° C. for 40 minutes, and the temperature was further held at 550 ° C. for 20 minutes to continue irradiation with ultraviolet light. The photo-electric conductivity of the obtained film was 3.1 × 10 -4 S / cm, which was about the same as that of the conventional film (about 10 -4
S / cm).

【0029】実施例19 基板202として石英ガラスを用い、塗布膜形成を行な
った基板を熱重合における基板台203の温度を350
℃で30分間保持した後、さらに5℃/分の昇温速度で
550℃まで40分、さらに550℃で20分間保持し
た他は、実施例2と同じにしてシリコン膜を形成させ
た。得られた膜の光電気伝導度は1.1×10-4S/cm
であり、従来の膜(約10-4S/cm)と同等であった。
Example 19 Quartz glass was used as the substrate 202, and the substrate on which the coating film was formed was heated at a temperature of the substrate table 203 of 350 in the thermal polymerization.
A silicon film was formed in the same manner as in Example 2, except that the temperature was kept at 30 ° C. for 30 minutes, the temperature was further raised to 550 ° C. for 40 minutes, and the temperature was further held at 550 ° C. for 20 minutes. Photoelectric conductivity of the obtained film was 1.1 × 10 −4 S / cm.
And was equivalent to the conventional film (about 10 −4 S / cm).

【0030】実施例20 基板102として100nmの熱酸化膜を形成した3イン
チ径のシリコン単結晶基板を用いた他は、実施例1と同
じにしてシリコン膜を形成せしめた。基板102を取り
出した後、Al蒸着によりソース及びドレイン電極を形
成し、チャンネル長100μm、チャンネル幅200μ
mの薄膜トランジスタを作成した。得られたトランジス
タの特性を測定しところ、電界効果移動度は電子移動度
が2.1cm2/Vsであり、従来のアモルファスシリコンT
FT(約2cm2/Vs)と同等であった。
Example 20 A silicon film was formed in the same manner as in Example 1 except that a 3-inch diameter silicon single crystal substrate having a 100 nm thermal oxide film formed thereon was used as the substrate 102. After taking out the substrate 102, source and drain electrodes are formed by Al vapor deposition, and the channel length is 100 μm and the channel width is 200 μm.
m thin film transistor was prepared. The characteristics of the obtained transistor were measured, and the field effect mobility was electron mobility of 2.1 cm 2 / Vs.
It was equivalent to FT (about 2 cm 2 / Vs).

【0031】実施例21 基板102として100nmの熱酸化膜を形成した3イン
チ径のシリコン単結晶基板を用いた他は、実施例3と同
じにしてシリコン膜を形成せしめた。基板102を取り
出した後、Al蒸着によりソース及びドレイン電極を形
成し、チャンネル長100μm、チャンネル幅200μ
mの薄膜トランジスタを作成した。得られたトランジス
タの特性を測定したところ、電界効果移動度は電子移動
度が64cm2/Vsであり、従来のポリシリコンTFT(約
50cm2/Vs)と同等であった。
Example 21 A silicon film was formed in the same manner as in Example 3 except that a 3-inch diameter silicon single crystal substrate having a 100 nm thermal oxide film formed thereon was used as the substrate 102. After taking out the substrate 102, source and drain electrodes are formed by Al vapor deposition, and the channel length is 100 μm and the channel width is 200 μm.
m thin film transistor was prepared. When the characteristics of the obtained transistor were measured, the field effect mobility was an electron mobility of 64 cm 2 / Vs, which was equivalent to that of a conventional polysilicon TFT (about 50 cm 2 / Vs).

【0032】以上の実施例においてX線回折測定より実
施例1〜17及び20ではシリコン膜としてa−Si
膜、実施例18,19及び21ではポリシリコン膜が得
られた。ポリシリコンの粒径はいずれも約4〜5μm、
膜厚は約50nmであった。
According to the X-ray diffraction measurement in the above examples, in Examples 1 to 17 and 20, a-Si was used as the silicon film.
A film, a polysilicon film was obtained in Examples 18, 19 and 21. The particle size of polysilicon is about 4 to 5 μm,
The film thickness was about 50 nm.

【0033】比較例 市販のプラズマCVD装置を用い、反応ガスとしてモノ
シランを用い、0.1torrの圧力下、基板台温度200
℃で、13.56MHz の高周波出力20Wにて5分間プ
ラズマCVD法を行ないa−Si膜を80nmの膜厚に堆
積せしめた。
Comparative Example Using a commercially available plasma CVD apparatus, using monosilane as a reaction gas, under a pressure of 0.1 torr and a substrate table temperature of 200.
Plasma CVD was performed for 5 minutes at a high-frequency output of 20 W of 13.56 MHz at a temperature of ℃, and an a-Si film was deposited to a thickness of 80 nm.

【0034】[0034]

【表1】 [Table 1]

【0035】表2から明らかなように、本発明により形
成したa−Si膜は、プラズマCVD法により得られた
膜と比較して、光伝導度において同等または優れてい
た。
As is clear from Table 2, the a-Si film formed according to the present invention has the same or superior photoconductivity as the film obtained by the plasma CVD method.

【表2】 [Table 2]

【0036】[0036]

【発明の効果】以上述べたように本発明によれば、一般
式Sin2n+2(但し、nはn≧2の整数)で表される高
次シランを、一定の割合で有機溶剤に溶解させた溶液を
基板上に塗布した後、分解して基板上にシリコン膜を形
成させることにより高品質なシリコン膜が均一に高い安
全性で形成できる。本発明の高次シラン含有溶液を用い
てシリコン膜を形成すると、液状の原料を用いるため、
一般のCVD法と異なり装置が容易で粉末の発生が防げ
る。また従来のCVD法では困難であった大面積基板に
も効率よく安全に高品質なシリコン膜が形成できる。ま
た複雑で高価な反応装置を必要としないため、半導体材
料装置における設備費を極めて小さくできる等の長所を
有する。以上のことより本発明の高次シラン含有溶液
は、シリコン膜応用デバイスとしてのLSI、薄膜トラ
ンジスタ、光電変換装置、感光体等のシリコン膜形成用
に広く利用でき、シリコン膜の利用分野の飛躍的な拡大
が期待できる。
As described above, according to the present invention, the higher order silane represented by the general formula Si n H 2n + 2 (where n is an integer of n ≧ 2) is mixed with the organic solvent at a constant ratio. A high quality silicon film can be uniformly formed with high safety by applying a solution dissolved in the substrate on the substrate and then decomposing it to form a silicon film on the substrate. When a silicon film is formed using the high order silane-containing solution of the present invention, since a liquid raw material is used,
Unlike the general CVD method, the device is easy and powder generation can be prevented. Further, a high-quality silicon film can be efficiently and safely formed on a large-area substrate, which was difficult by the conventional CVD method. Further, since a complicated and expensive reaction device is not required, there is an advantage that the facility cost in the semiconductor material device can be made extremely small. From the above, the high-order silane-containing solution of the present invention can be widely used for forming a silicon film such as an LSI as a silicon film application device, a thin film transistor, a photoelectric conversion device, and a photoconductor, and is a breakthrough in the application field of the silicon film. Expect expansion.

【図面の簡単な説明】[Brief description of drawings]

【図1】紫外線照射による光重合でシリコン膜を形成す
る装置。
FIG. 1 is an apparatus for forming a silicon film by photopolymerization by ultraviolet irradiation.

【図2】加熱による熱重合でシリコン膜を形成する装
置。
FIG. 2 is an apparatus for forming a silicon film by thermal polymerization by heating.

【符号の説明】[Explanation of symbols]

101,201 反応室 102,202 基板 103,203 基板台 104,204 不活性ガス流量計 105,205 排気系 106 重水素ランプ 107 光透過窓 101, 201 Reaction chamber 102, 202 Substrate 103, 203 Substrate stand 104, 204 Inert gas flow meter 105, 205 Exhaust system 106 Deuterium lamp 107 Light transmission window

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 計二 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Keiji Kawasaki 5-1, Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko K.K.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式Sin2n+2(但し、nはn≧2の
整数)で表される高次シランを、有機溶剤に溶解させた
シリコン膜形成用の高次シラン含有溶液において、該溶
媒中の全高次シラン濃度(全高次シラン重量/(全高次
シラン重量+溶剤重量)×100)が0.1〜50重量
%であり、有機溶剤としてCab(但し、aは3≦a≦
16、bは8≦b≦34の整数)で表される飽和炭化水
素類、不飽和炭化水素類、芳香族類あるいはCde
f(但し、dは2≦d≦16、eは6≦e≦34、fは1
≦f≦3の整数)で表されるエーテル類、あるいはこれ
らの混合溶剤を用いることを特徴とするシリコン膜形成
用の高次シラン含有溶液。
1. A high-order silane-containing solution for forming a silicon film, wherein a high-order silane represented by the general formula Si n H 2n + 2 (where n is an integer of n ≧ 2) is dissolved in an organic solvent. The total high-order silane concentration in the solvent (total high-order silane weight / (total high-order silane weight + solvent weight) × 100) is 0.1 to 50% by weight, and C a H b as an organic solvent (where a is 3 ≦ a ≦
16, b is 8 ≦ b saturated hydrocarbons represented by ≦ 34 integer), unsaturated hydrocarbons, aromatics or C d H e O
f (however, d is 2 ≦ d ≦ 16, e is 6 ≦ e ≦ 34, and f is 1
A high order silane-containing solution for forming a silicon film, characterized by using an ether represented by ≦ f ≦ 3) or a mixed solvent thereof.
【請求項2】 請求項1記載の溶液を塗布し、高次シラ
ンが分解するようなエネルギーを加えることを特徴とす
るシリコン膜形成法。
2. A method for forming a silicon film, which comprises applying the solution according to claim 1 and applying energy such that high-order silane is decomposed.
JP34268292A 1992-12-22 1992-12-22 Higher order silane containing solution for forming silicon film Pending JPH06191821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34268292A JPH06191821A (en) 1992-12-22 1992-12-22 Higher order silane containing solution for forming silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34268292A JPH06191821A (en) 1992-12-22 1992-12-22 Higher order silane containing solution for forming silicon film

Publications (1)

Publication Number Publication Date
JPH06191821A true JPH06191821A (en) 1994-07-12

Family

ID=18355684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34268292A Pending JPH06191821A (en) 1992-12-22 1992-12-22 Higher order silane containing solution for forming silicon film

Country Status (1)

Country Link
JP (1) JPH06191821A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059015A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method for forming silicon film
WO2000059014A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method for forming a silicon film and ink composition for ink jet
JP2002324907A (en) * 2001-04-25 2002-11-08 Jsr Corp Method of manufacturing solar battery
US7223802B2 (en) 2002-04-22 2007-05-29 Seiko Epson Corporation High order silane composition, and method of forming silicon film using the composition
US7314513B1 (en) 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7422708B2 (en) 2003-07-08 2008-09-09 Kovio, Inc. Compositions for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
JP2008536784A (en) * 2005-04-05 2008-09-11 ボルテツクス・インコーポレイテツド System and method for producing SI2H6 and higher order silanes
US7485691B1 (en) 2004-10-08 2009-02-03 Kovio, Inc Polysilane compositions, methods for their synthesis and films formed therefrom
US7498015B1 (en) 2004-02-27 2009-03-03 Kovio, Inc. Method of making silane compositions
US7674926B1 (en) 2004-10-01 2010-03-09 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
WO2010117088A1 (en) * 2009-04-10 2010-10-14 独立行政法人科学技術振興機構 Pattern formation method, pattern, and device
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8038972B2 (en) 2007-01-18 2011-10-18 Seiko Epson Corporation Higher order silane composition, method for manufacturing film-coated substrate, electro-optical device and electronic device
US8092867B2 (en) 2006-10-06 2012-01-10 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8211396B1 (en) 2004-09-24 2012-07-03 Kovio, Inc. Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US8624049B2 (en) 2010-01-18 2014-01-07 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
JP2014501216A (en) * 2010-12-23 2014-01-20 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト Method and apparatus for depositing silicon on a substrate
JP2014135393A (en) * 2013-01-10 2014-07-24 Denso Corp Organic material coating apparatus and organic material coating method using the same
US9336925B1 (en) 2008-11-26 2016-05-10 Thin Film Electronics Asa Siloxanes, doped siloxanes, methods for their synthesis, compositions containing the same, and films formed therefrom
US10752507B2 (en) 2018-10-11 2020-08-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
US11097953B2 (en) 2018-10-11 2021-08-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
US11401166B2 (en) 2018-10-11 2022-08-02 L'Air Liaquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing isomer enriched higher silanes

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059015A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method for forming silicon film
WO2000059014A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method for forming a silicon film and ink composition for ink jet
US6541354B1 (en) 1999-03-30 2003-04-01 Seiko Epson Corporation Method for forming silicon film
EP1085560A4 (en) * 1999-03-30 2005-07-27 Seiko Epson Corp Method for forming silicon film
EP1087428A4 (en) * 1999-03-30 2005-07-27 Seiko Epson Corp Method for forming a silicon film and ink composition for ink jet
CN1294626C (en) * 1999-03-30 2007-01-10 精工爱普生株式会社 Method for forming silicon film and ink composition for ink jet
JP2002324907A (en) * 2001-04-25 2002-11-08 Jsr Corp Method of manufacturing solar battery
US7223802B2 (en) 2002-04-22 2007-05-29 Seiko Epson Corporation High order silane composition, and method of forming silicon film using the composition
US7879696B2 (en) 2003-07-08 2011-02-01 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7422708B2 (en) 2003-07-08 2008-09-09 Kovio, Inc. Compositions for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7767261B2 (en) 2003-07-08 2010-08-03 Kovio, Inc. Methods for forming passivated semiconductor nanoparticles
US7553545B2 (en) 2003-07-08 2009-06-30 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US8603426B1 (en) 2004-02-27 2013-12-10 Kovio, Inc. Method of making a silicon-containing film
US8124040B1 (en) 2004-02-27 2012-02-28 Kovio, Inc. Methods of making silane compositions
US7498015B1 (en) 2004-02-27 2009-03-03 Kovio, Inc. Method of making silane compositions
US7799302B1 (en) 2004-02-27 2010-09-21 Kovio, Inc. Silane compositions, methods of making the same, method for forming a semiconducting and/or silicon-containing film, and thin film structures formed therefrom
US8367031B1 (en) 2004-02-27 2013-02-05 Kovio, Inc. Silane compositions, methods of making the same, method for forming a semiconducting and/or silicon-containing film, and thin film structures formed therefrom
US8840857B1 (en) 2004-09-24 2014-09-23 Thin Film Electronics Asa Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US8211396B1 (en) 2004-09-24 2012-07-03 Kovio, Inc. Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US8372194B1 (en) 2004-09-24 2013-02-12 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7314513B1 (en) 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7981482B1 (en) 2004-09-24 2011-07-19 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7674926B1 (en) 2004-10-01 2010-03-09 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US7951892B1 (en) 2004-10-08 2011-05-31 Kovio, Inc. Doped polysilanes, compositions containing the same, methods for making the same, and films formed therefrom
US8236916B1 (en) 2004-10-08 2012-08-07 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7485691B1 (en) 2004-10-08 2009-02-03 Kovio, Inc Polysilane compositions, methods for their synthesis and films formed therefrom
US8057865B1 (en) 2004-10-08 2011-11-15 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8455604B1 (en) 2004-10-08 2013-06-04 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7491782B1 (en) 2004-10-08 2009-02-17 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7723457B1 (en) 2004-10-08 2010-05-25 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8242227B2 (en) 2004-10-08 2012-08-14 Kovio, Inc. Doped polysilanes, compositions containing the same, methods for making the same, and films formed therefrom
JP4855462B2 (en) * 2005-04-05 2012-01-18 ボルテツクス・インコーポレイテツド System and method for producing SI2H6 and higher order silanes
JP2008536784A (en) * 2005-04-05 2008-09-11 ボルテツクス・インコーポレイテツド System and method for producing SI2H6 and higher order silanes
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8092867B2 (en) 2006-10-06 2012-01-10 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8461284B2 (en) 2006-10-06 2013-06-11 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8846507B2 (en) 2006-10-06 2014-09-30 Thin Film Electronics Asa Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8038972B2 (en) 2007-01-18 2011-10-18 Seiko Epson Corporation Higher order silane composition, method for manufacturing film-coated substrate, electro-optical device and electronic device
US9336925B1 (en) 2008-11-26 2016-05-10 Thin Film Electronics Asa Siloxanes, doped siloxanes, methods for their synthesis, compositions containing the same, and films formed therefrom
US9704713B1 (en) 2008-11-26 2017-07-11 Thin Film Electronics Asa Siloxanes, doped siloxanes, methods for their synthesis, compositions containing the same, and films formed therefrom
CN102388435A (en) * 2009-04-10 2012-03-21 独立行政法人科学技术振兴机构 Pattern formation method, pattern, and device
WO2010117088A1 (en) * 2009-04-10 2010-10-14 独立行政法人科学技術振興機構 Pattern formation method, pattern, and device
JP2010263202A (en) * 2009-04-10 2010-11-18 Japan Science & Technology Agency Pattern formation method
US8624049B2 (en) 2010-01-18 2014-01-07 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
JP2014501216A (en) * 2010-12-23 2014-01-20 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト Method and apparatus for depositing silicon on a substrate
JP2014135393A (en) * 2013-01-10 2014-07-24 Denso Corp Organic material coating apparatus and organic material coating method using the same
US10752507B2 (en) 2018-10-11 2020-08-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
US11097953B2 (en) 2018-10-11 2021-08-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
US11377359B2 (en) 2018-10-11 2022-07-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing liquid polysilanes and isomer enriched higher silanes
US11401166B2 (en) 2018-10-11 2022-08-02 L'Air Liaquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing isomer enriched higher silanes

Similar Documents

Publication Publication Date Title
JPH06191821A (en) Higher order silane containing solution for forming silicon film
CN101480110B (en) Method for depositing an amorphous carbon film with improved density and step coverage
US4495218A (en) Process for forming thin film
JP3517934B2 (en) Method of forming silicon film
JP5013128B2 (en) Methods and compositions for silicon film formation
WO2000059015A1 (en) Method for forming silicon film
TW200305575A (en) High order silane composition, and method of forming silicon film using the composition
JP4016419B2 (en) Silicon film forming composition and silicon film forming method
KR101736888B1 (en) Method for forming silicon oxynitride film, and substrate having silicon oxynitride film produced using this formation method
JP2003332333A (en) Low-temperature deposition method of insulation film
JP3408399B2 (en) Method of forming silicon film
Aoki et al. Silicon nitride film growth by remote plasma CVD using Tris (dimethylamino) silane
JPH05144741A (en) Formation of amorphous silicon film
Usami et al. Preparation and properties of silica films with higher-alkyl groups
JP2007254593A (en) Germanium polymer, process for producing the same and method for forming germanium film
JPH1179727A (en) Formation of silicon film
JPH0817738A (en) Formation method for crystalline semiconductor thin film
Kaneko et al. Growth kinetics of hydrogenated amorphous silicon carbide films by RF plasma-enhanced CVD using two kinds of source materials
JPH03139824A (en) Depositing method for semiconductor device
JPH0364019A (en) Semiconductor thin film
JP2006310345A (en) Method of forming laminated film
Shi et al. Preparation and photoluminescence of nanocrystalline Si-rich silicon oxide films by PECVD
JPS60231498A (en) Synthesizing method of diamond under low pressure
EP0407088B1 (en) Method of forming an amorphous semiconductor film
JPH0536608A (en) Forming method of amorphous silicon film