WO2006027106A1 - Method for depositing photocatalytic titanium oxide layers - Google Patents

Method for depositing photocatalytic titanium oxide layers Download PDF

Info

Publication number
WO2006027106A1
WO2006027106A1 PCT/EP2005/009129 EP2005009129W WO2006027106A1 WO 2006027106 A1 WO2006027106 A1 WO 2006027106A1 EP 2005009129 W EP2005009129 W EP 2005009129W WO 2006027106 A1 WO2006027106 A1 WO 2006027106A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
deposited
layer
photocatalytic
oxide layer
Prior art date
Application number
PCT/EP2005/009129
Other languages
German (de)
French (fr)
Inventor
Bert Scheffel
Christoph Metzner
Olaf Zywitzki
Volker Kirchhoff
Thomas Modes
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to JP2007529329A priority Critical patent/JP4847957B2/en
Publication of WO2006027106A1 publication Critical patent/WO2006027106A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation

Definitions

  • the invention relates to a method for depositing photocatalytic titanium oxide layers on objects.
  • the photocatalytic effect of titanium oxide layers has been known for years and is exploited in the industry to equip surfaces of objects, for example, with self-cleaning properties.
  • photocatalytic titanium oxide has u.v. in the presence of oxygen and water. a. the property of forming OH radicals that contribute to the decomposition of organic soil constituents.
  • a titanium oxide layer may not be arbitrarily formed.
  • the titanium oxide layer is crystalline and is formed as anatase and / or rutile phase.
  • titanium oxide layers are inseparably coupled with UV irradiation, ie it is only a certain UV irradiation time or UV irradiation dose required until a titanium oxide layer shows sensibly utilizable photocatalytic effects. Titanium oxide layers can maintain these effects only for a certain period of time (relaxation time) after completion of UV irradiation. It is therefore desirable to form photocatalytic titanium oxide layers in such a way that, on the one hand, they require the shortest possible UV irradiation time in order to exhibit photocatalytic effects and, on the other hand, have a long relaxation time.
  • a first group includes the so-called sol-gel method (DE 199 62 055 A1, DE 102 35 803 A1).
  • sol-gel method DE 199 62 055 A1, DE 102 35 803 A1.
  • a liquid or dispersion comprising titanium oxide constituents is first applied to an object to be coated.
  • the application of the liquid / dispersion can be carried out, for example, by spraying, dipping or brushing.
  • the liquid layer is dried and additionally hardened if necessary.
  • Sol-gel processes can achieve high coating rates. Disadvantages arise from the fact that layers produced in this way have, in addition to titanium oxide, other constituents originating from the liquid / dispersion.
  • the loss of concentration of titanium oxide constituents is also associated with limited photocatalytic properties of the deposited titanium oxide layer.
  • CVD processes Another known process group for producing photocatalytic titanium oxide layers form CVD processes.
  • a three-step CVD method for coating glass objects is known.
  • a gas mixture is prepared, which in addition to titanium tetrachloride comprises an oxygen-containing organic component.
  • this gas mixture is heated to a temperature which is below the threshold temperature at which the titanium from the titanium tetrachloride combines with the oxygen from the organic component to titanium oxide.
  • this gas mixture is heated above the threshold temperature, with titanium oxide depositing on the glass object to be coated.
  • Magnetron sputtering is also known for depositing photocatalytic titanium oxide layers [O. Zywitzki et al., Surface and Coatings Technology, 180-181 (2004) 538]
  • magnetron sputtering processes can be used to achieve better photocatalytic properties in titanium oxide layers, but one drawback is the low coating rates, which are below 5 nm / s. All known processes for the preparation of photocatalytic titanium oxide layers have ge that they have too low coating rates and / or realize titanium oxide layers with only limited photocatalytic effects.
  • the invention is therefore based on the technical problem of providing a method with which photocatalytic titanium oxide layers can be deposited at a deposition rate of at least 20 nm / s.
  • the deposited titanium oxide layers should achieve a better photocatalytic effect compared to the prior art, require a shorter UV irradiation time to trigger the photocatalytic effect and have a longer relaxation time of the photocatalytic effect after UV irradiation.
  • a photocatalytic titanium oxide layer is deposited on at least one object by means of high-rate electron beam vapor deposition in a vacuum chamber by generating an oxygen-containing atmosphere in the vacuum chamber; a predominantly Ti constituent material is evaporated by means of an electron beam; the deposition is supported by a plasma, the plasma being generated by means of a diffuse arc discharge on the surface of the material to be vaporized connected as a cathode; the coating rate is at least 20 nm / s; p ⁇ the temperature is maintained during deposition is between 100 0 C and 500 0 C, and the titanium oxide layer crystalline and predominantly anatase phase is deposited as.
  • Photocatalytic titanium oxide layers in the sense of the invention not only mean pure titanium oxide layers but also titanium oxide layers having doping elements.
  • Objects which can be coated by the method according to the invention consist, for example, of glass (architectural glass panes, displays), metal (façade elements, semi-finished products in strip or plate form), ceramics (tiles, tiles) or plastic (plastic glazings, foils).
  • objects to be coated can also consist of other materials and have surface layers of at least one of the materials exemplified above.
  • An essential step of the method according to the invention is the generation of a plasma by means of a diffuse arc discharge.
  • a high-energy electron beam incident on the surface of the Ti vaporization material is periodically deflected in such a fast and high-frequency manner that at least part of the surface of the Ti material to be vaporized is quasi-uniformly heated and ultimately vaporized.
  • the Ti material to be vaporized which is located, for example, in a crucible, is switched as the cathode of a high-current arc discharge. It forms a so-called diffuse arc, which burns substantially in the area heated by the electron beam surface of the evaporation material.
  • a diffuse arc discharge Compared to a cold cathode arc discharge, in which a not even 1 mm 2 large base is formed with extremely high current density, a diffuse arc discharge has a diffuse and areal extent on the Evampfungsgut, which essentially corresponds to the quasi-uniformly heated surface of the evaporating material , As a result, a substantial proportion of the generated Ti metal vapor is ionized and thus a high degree of ionization is achieved overall, which contributes to the formation of a photocatalytic titanium oxide layer with improved properties compared to the prior art.
  • the use of the diffuse arc discharge has the further advantage that it does not emit any spatter and is therefore particularly suitable for large-scale plasma-activated vapor deposition.
  • oxygen is introduced into a vacuum chamber in such a way that stoichiometric titanium oxide layers are deposited because these layers have the crystalline phases anatase and / or rutile in high concentrations.
  • an oxygen partial pressure within the vacuum chamber of 5x10 "4 mbar to 1x10 " 2 mbar is suitable.
  • the deposition of a titanium oxide layer is performed preferred wise at an object temperature in a range from 200 0 C to 300 0 C, because the oxide layer at these temperatures Titan ⁇ predominantly anatase phase is deposited.
  • a negative bias voltage in a range of 50 V to 300 V to an object to be coated, through which ionized Ti vapor or oxygen particles are accelerated towards the surface of the object has an advantageous effect on the layer properties, such as density, Refractive index and chemical resistance of a titanium oxide layer.
  • This negative bias voltage can, for example, with respect to a crucible, in which the Ti material to be evaporated is located, or with respect to an anode be switched.
  • a bias voltage a DC voltage or a medium-frequency or high-frequency pulsed voltage can be applied to the object to be coated.
  • Pulsbias has a particularly advantageous effect on the stability of the process control.
  • an arc current of the diffuse arc discharge to the surface of the evaporation material of at least 100 A aus ⁇ form In order to obtain a minimum of plasma activation, an arc current of the diffuse arc discharge to the surface of the evaporation material of at least 100 A aus ⁇ form. While maximum deposition rates of about 5 nm / s can be achieved, for example, by means of magnetron sputtering during the deposition of photocatalytic titanium oxide layers, the method according to the invention enables deposition rates of several hundred nm / s. Very good layer properties are achieved at deposition rates in a range of 30 nm / s to 120 nm / s and at layer thicknesses of 10 nm to 1 ⁇ m, preferably 20 nm to 100 nm.
  • elements from the substrate may diffuse into the titanium oxide layer, such that the titanium oxide layer is altered such that the photocatalytic properties of the titanium oxide layer are impaired. Therefore, in a further embodiment, at least one additional layer is deposited between an object to be coated and the titanium oxide layer to be applied thereon, which acts as a diffusion barrier. In this way, the diffusion of elements from the substrate (for example potassium in the case of a glass substrate) into the titanium oxide layer can be effectively prevented.
  • Such layers acting as a diffusion barrier advantageously comprise SiO 2 and have a layer thickness in the range from 10 nm to 200 nm.
  • the single figure shows schematically a device with which the method according to the invention can be carried out.
  • a vacuum chamber 1 an evaporator crucible 2 is arranged, in which is to be evaporated as the evaporation material 3 titanium.
  • An ⁇ closed to the vacuum chamber 1 is a high-power axial electron gun 4, which generates an electron beam 5, which is deflected by means of a not shown elektro ⁇ magnetic deflection on the surface of the evaporator crucible 2 located in the evaporation evaporating material 3 and thus the evaporation material. 3 heated and finally evaporated.
  • an electrode 6 is arranged, which encloses the vapor space and can be placed opposite to the vaporizer crucible 3 to a positive voltage.
  • An object 8 made of glass moved over the electrode 6 on a transport device 7 is coated with the evaporated material.
  • the high-energy electron beam 5 with a power of about 50 kW is rapidly, high-frequency and periodically deflected in such a way that at least part of the surface of the evaporation material 3 is quasi-uniformly heated and vaporized.
  • a DC voltage of approximately 30 V applied between electrode 6 and evaporator crucible 2 by means of a power supply device 9 causes the formation of a so-called diffuse arc discharge with a current of approximately 300 A, which essentially burns on the surface of the evaporation material 3 which is quasi-uniformly heated by means of electron beam 5.
  • a bias voltage of -100 V applied to the object 8 by means of a power supply device 10 causes the ionized vapor particles to accelerate to the surface of the object 8.
  • a 400 nm stoichiometric TiO 2 layer is deposited on the object 8 at a steady state deposition rate of about 70 nm / sec.
  • the object 8 is held at a temperature of about 250 ° C.
  • the TiO 2 layer deposited on the object 8 using the method according to the invention has markedly improved photocatalytic properties compared to photocatalytic TiO 2 layers which have been prepared by known processes. This was confirmed metrologically by experimental arrangements.
  • Sample 1 is a commercially available glass sheet having a photocatalytic TiO 2 layer produced by a CVD method
  • Sample 2 a glass sheet with a photocatalytic TiO 2 layer which was deposited by means of magnetron sputtering
  • Sample 3 a glass sheet with a rank ⁇ by the novel ist ⁇ photocatalytic TiO r layer.
  • the contact angle of a water drop was measured. From the width and height of a water drop, the contact angle with the surface of a sample can be calculated assuming a spherical segment. The smaller a detected contact angle, the better the hydrophilic properties of a sample surface. A contact angle of 0 ° corresponds to a complete wettability of a sample surface, which thus has optimum hydrophilic properties.
  • sample 1 had no optimum hydrophilic properties even after 3 h and sample 2 after 6 h, a contact angle greater than 0 ° was determined for sample 3, which was produced by the process according to the invention, only after a relaxation time of 10 h.
  • sample 4 a glass pane which was coated by means of vacuum vapor deposition without the aid of a diffuse arc discharge
  • sample 5 a glass pane which was produced by means of the process according to the invention was coated.
  • Studies on the density of the deposited TiO 2 layers yielded values of 3.0 g / cm 3 for Sample 4 and 3.85 g / cm 3 for Sample 5.
  • values of 2.1 and 2.5 of sample 5 were determined for sample.
  • both samples were each wetted with a drop of a solution having a concentration of 0.01 mmol / L of the substance "methylene blue.” Subsequently, both samples were irradiated under the same conditions with a UV-A lamp according to the first experimental set-up The decomposition process of the organic components of the test solution could be followed by the color of the solution with the naked eye.
  • the main advantages of the process according to the invention are thus, on the one hand, the high coating rates resulting from vacuum vapor deposition and, on the other hand, the properties of titanium oxide layers that are improved over the prior art. This applies both to the photocatalytic properties such as the ability of decomposing organic particles and the hydrophilicity and other layer properties such as density, refractive index and chemical resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a method for depositing a photocatalytic titanium oxide layer on at least one object, by means of high-speed electron beam evaporation in a vacuum chamber. According to the invention, an atmosphere containing oxygen is created in said vacuum chamber, a material comprising, predominately, Ti-components is evaporated by means of an electron beam, the deposition is supported by a plasma, the latter being generated on the surface of the material which is to be evaporated as a cathode by means of a diffuse arc discharge, the coating rate is at least 20 nm/s, the object temperature is maintained at between 100 °C and 500 °C during the deposition process and the titanium oxide layer is deposited as crystalline and, predominately, as an anatase-phase.

Description

Verfahren zum Abscheiden von photokatalytischen Titanoxid-SchichtenProcess for depositing photocatalytic titanium oxide layers
Die Erfindung betrifft ein Verfahren zum Abscheiden von photokatalytischen Titanoxid- Schichten auf Objekten. Der photokatalytische Effekt von Titanoxid-Schichten ist seit Jahren bekannt und wird in der Industrie ausgenutzt, um Oberflächen von Objekten beispielsweise mit selbstreinigenden Eigenschaften auszustatten. Bei UV-Einstrahlung besitzt photo- katalytisches Titanoxid unter Anwesenheit von Sauerstoff und Wasser u. a. die Eigenschaft, OH-Radikale zu bilden, die zum Zersetzen organischer Schmutzbestandteile beitragen.The invention relates to a method for depositing photocatalytic titanium oxide layers on objects. The photocatalytic effect of titanium oxide layers has been known for years and is exploited in the industry to equip surfaces of objects, for example, with self-cleaning properties. In the case of UV irradiation, photocatalytic titanium oxide has u.v. in the presence of oxygen and water. a. the property of forming OH radicals that contribute to the decomposition of organic soil constituents.
Unter UV-Einstrahlung ist bei Titanoxid-Schichten neben dem Zersetzen organischer.Under UV irradiation is in titanium oxide layers in addition to the decomposition of organic.
Bestandteile eine weitere Wirkung zu beobachten. Mit zunehmender UV-Bestrahlung einer Titanoxid-Schicht verändert diese auch ihre Eigenschaft bezüglich der Benetzbarkeit mit Wasser in Richtung einer sehr hydrophilen Oberfläche. Das Zersetzen von organischen Bestandteilen einerseits und deren Unterspülen und Wegspülen aufgrund der Hydrophilie andererseits verleihen einer aus photokatalytischem Titanoxid bestehenden Objekt¬ oberfläche somit selbstreinigende Eigenschaften.Ingredients to observe another effect. As the UV irradiation of a titanium oxide layer increases, it also changes its wettability property with water toward a very hydrophilic surface. The decomposition of organic constituents, on the one hand, and their sub-rinsing and washing away due to the hydrophilicity, on the other hand, thus impart self-cleaning properties to an object surface consisting of photocatalytic titanium oxide.
In der Literatur wird der Umfang des Begriffes Photokatalyse im Zusammenhang mit Titanoxid-Schichten unterschiedlich beschrieben. In einigen Schriften umfasst der Begriff Photokatalyse nur das Zersetzen organischer Bestandteile, bei anderen Autoren hingegen werden auch die hydrophilen Effekte unter dem Begriff Photokatalyse beschrieben. Es sei daher an dieser Stelle darauf verwiesen, dass die Begriffe „photokatalytisch" bzw. „Photo¬ katalyse" im Erfindungssinn sowohl das Zersetzen organischer Bestandteile als auch die hydrophilen Effekte umfassen.In the literature, the scope of the term photocatalysis in connection with titanium oxide layers is described differently. In some writings, the term photocatalysis covers only the decomposition of organic components, in other authors, however, the hydrophilic effects are described by the term photocatalysis. It should therefore be noted at this point that the terms "photocatalytic" or "Photo¬ catalysis" in the sense of the invention include both the decomposition of organic constituents and the hydrophilic effects.
Um verwertbare photokatalytische Wirkungen zu zeigen, darf eine Titanoxid-Schicht nicht beliebig ausgebildet sein. Hierzu ist es erforderlich, dass die Titanoxid-Schicht kristallin ist und als Anatas- und/oder Rutil-Phase ausgebildet ist.In order to show usable photocatalytic effects, a titanium oxide layer may not be arbitrarily formed. For this purpose, it is necessary that the titanium oxide layer is crystalline and is formed as anatase and / or rutile phase.
Die photokatalytischen Wirkungen von Titanoxid-Schichten sind jedoch untrennbar mit einer UV-Bestrahlung gekoppelt, d. h. es ist erst eine bestimmte UV-Bestrahlungszeit bzw. UV-Bestrahlungsdosis erforderlich, bis eine Titanoxid-Schicht sinnvoll verwertbare photo¬ katalytische Wirkungen zeigt. Titanoxid-Schichten können diese Wirkungen auch nur einen bestimmten Zeitraum (Relaxationszeit) nach Beendigung einer UV-Bestrahlung aufrecht- erhalten. Es wird daher angestrebt, photokatalytische Titanoxid-Schichten derart auszubilden, dass diese einerseits eine möglichst kurze UV-Bestrahlungszeit benötigen, um photokatalytische Wirkungen zu zeigen und andererseits eine lange Relaxationszeit aufweisen.However, the photocatalytic effects of titanium oxide layers are inseparably coupled with UV irradiation, ie it is only a certain UV irradiation time or UV irradiation dose required until a titanium oxide layer shows sensibly utilizable photocatalytic effects. Titanium oxide layers can maintain these effects only for a certain period of time (relaxation time) after completion of UV irradiation. It is therefore desirable to form photocatalytic titanium oxide layers in such a way that, on the one hand, they require the shortest possible UV irradiation time in order to exhibit photocatalytic effects and, on the other hand, have a long relaxation time.
Es sind verschiedene Verfahren zum Abscheiden von photokatalytischen Titanoxid- Schichten bekannt. Zu einer ersten Gruppe gehören die so genannten Sol-Gel-Verfahren (DE 199 62 055 A1 , DE 102 35 803 A1 ). Hierbei wird zunächst eine Titanoxid-Bestandteile aufweisende Flüssigkeit bzw. Dispersion auf ein zu beschichtendes Objekt aufgetragen. Das Auftragen der Flüssigkeit/Dispersion kann beispielsweise durch Spritzen, Tauchen oder Streichen erfolgen. Daran anschließend wird die flüssige Schicht ausgetrocknet und bei Bedarf zusätzlich gehärtet. Mit Sol-Gel-Verfahren lassen sich hohe Beschichtungsraten erzielen. Nachteile ergeben sich daraus, dass derart hergestellte Schichten neben Titanoxid weitere Bestandteile aus der Flüssigkeit/Dispersion stammend aufweisen. Der Konzentrationsverlust von Titanoxid-Bestandteilen ist auch mit eingeschränkten photo- katalytischen Eigenschaften der abgeschiedenen Titanoxid-Schicht verbunden.Various methods for depositing photocatalytic titanium oxide layers are known. A first group includes the so-called sol-gel method (DE 199 62 055 A1, DE 102 35 803 A1). In this case, a liquid or dispersion comprising titanium oxide constituents is first applied to an object to be coated. The application of the liquid / dispersion can be carried out, for example, by spraying, dipping or brushing. Subsequently, the liquid layer is dried and additionally hardened if necessary. Sol-gel processes can achieve high coating rates. Disadvantages arise from the fact that layers produced in this way have, in addition to titanium oxide, other constituents originating from the liquid / dispersion. The loss of concentration of titanium oxide constituents is also associated with limited photocatalytic properties of the deposited titanium oxide layer.
Eine weitere bekannte Verfahrensgruppe zum Herstellen von photokatalytischen Titanoxid- Schichten bilden CVD-Verfahren. Aus WO 98/06675 ist ein drei Schritte umfassendes CVD- Verfahren zum Beschichten von Glasobjekten bekannt. In einem ersten Schritt wird ein Gasgemisch hergestellt, welches neben Titantetrachlorid eine sauerstoffhaltige organische Komponente umfasst. Nachfolgend wird dieses Gasgemisch auf eine Temperatur erhitzt, die unterhalb der Schwellentemperatur liegt, bei der sich das Titan aus dem Titan¬ tetrachlorid mit dem Sauerstoff aus der organischen Komponente zu Titanoxid verbindet. In einer Beschichtungskammer wird dieses Gasgemisch über die Schwellentemperatur erhitzt, wobei sich Titanoxid auf dem zu beschichtenden Glasobjekt abscheidet.Another known process group for producing photocatalytic titanium oxide layers form CVD processes. From WO 98/06675 a three-step CVD method for coating glass objects is known. In a first step, a gas mixture is prepared, which in addition to titanium tetrachloride comprises an oxygen-containing organic component. Subsequently, this gas mixture is heated to a temperature which is below the threshold temperature at which the titanium from the titanium tetrachloride combines with the oxygen from the organic component to titanium oxide. In a coating chamber, this gas mixture is heated above the threshold temperature, with titanium oxide depositing on the glass object to be coated.
Zum Abscheiden von photokatalytischen Titanoxid-Schichten sind ebenfalls Magnetron- Zerstäubungsverfahren bekannt [„Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering", O. Zywitzki et. al, Surface and Coatings Technology, 180-181 (2004) 538-543]. Gegenüber CVD-Verfahren und Sol-Gel- Verfahren lassen sich mit Magnetron-Zerstäubungsverfahren bessere photokatalytische Eigenschaften bei Titanoxid-Schichten realisieren. Ein Nachteil besteht jedoch in den geringen Beschichtungsraten, die unterhalb von 5 nm/s angesiedelt sind. Allen bekannten Verfahren zum Herstellen photokatalytischer Titanoxid-Schichten ist ge¬ mein, dass diese zu geringe Beschichtungsraten aufweisen und/oder Titanoxid-Schichten mit nur eingeschränkten photokatalytischen Wirkungen realisieren.Magnetron sputtering is also known for depositing photocatalytic titanium oxide layers [O. Zywitzki et al., Surface and Coatings Technology, 180-181 (2004) 538] In contrast to CVD processes and sol-gel processes, magnetron sputtering processes can be used to achieve better photocatalytic properties in titanium oxide layers, but one drawback is the low coating rates, which are below 5 nm / s. All known processes for the preparation of photocatalytic titanium oxide layers have ge that they have too low coating rates and / or realize titanium oxide layers with only limited photocatalytic effects.
Der Erfindung liegt daher das technische Problem zugrunde ein Verfahren zu schaffen, mit dem photokatalytische Titanoxid-Schichten mit einer Beschichtungsrate von mindestens 20 nm/s abgeschieden werden können. Die abgeschiedenen Titanoxid-Schichten sollen gegenüber dem Stand der Technik eine bessere photokatalytische Wirkung erzielen, eine kürzere UV-Bestrahlungszeit zum Auslösen der photokatalytischen Wirkung benötigen sowie eine längere Relaxationszeit der photokatalytischen Wirkung nach einer UV- Bestrahlung aufweisen.The invention is therefore based on the technical problem of providing a method with which photocatalytic titanium oxide layers can be deposited at a deposition rate of at least 20 nm / s. The deposited titanium oxide layers should achieve a better photocatalytic effect compared to the prior art, require a shorter UV irradiation time to trigger the photocatalytic effect and have a longer relaxation time of the photocatalytic effect after UV irradiation.
Die Lösung des technischen Problems ergibt sich durch die Gegenstände mit den Merk¬ malen des Patentanspruchs 1. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The solution of the technical problem results from the articles with the features of claim 1. Further advantageous embodiments of the invention will become apparent from the dependent claims.
Erfindungsgemäß wird eine photokatalytische Titanoxid-Schicht auf mindestens einem Objekt mittels Hochrate-Elektronenstrahlbedampfung in einer Vakuumkammer abgeschie¬ den, indem in der Vakuumkammer eine sauerstoffhaltige Atmosphäre erzeugt wird; ein überwiegend Ti-Bestandteile aufweisendes Material mittels eines Elektronenstrahls ver¬ dampft wird; das Abscheiden von einem Plasma unterstützt wird, wobei das Plasma mittels diffuser Bogenentladung auf der Oberfläche des als Kathode geschalteten zu verdampfen¬ den Materials erzeugt wird; die Beschichtungsrate mindestens 20 nm/s beträgt; die Objekt¬ temperatur während des Abscheidens zwischen 100 0C und 500 0C gehalten wird und die Titanoxid-Schicht kristallin und überwiegend als Anatas-Phase abgeschieden wird.According to the invention, a photocatalytic titanium oxide layer is deposited on at least one object by means of high-rate electron beam vapor deposition in a vacuum chamber by generating an oxygen-containing atmosphere in the vacuum chamber; a predominantly Ti constituent material is evaporated by means of an electron beam; the deposition is supported by a plasma, the plasma being generated by means of a diffuse arc discharge on the surface of the material to be vaporized connected as a cathode; the coating rate is at least 20 nm / s; Objekt¬ the temperature is maintained during deposition is between 100 0 C and 500 0 C, and the titanium oxide layer crystalline and predominantly anatase phase is deposited as.
Unter photokatalytischen Titanoxid-Schichten im Erfindungssinn sind nicht nur reine Titanoxid-Schichten zu verstehen, sondern auch Dotierungselemente aufweisende Titanoxid-Schichten. Objekte, die mit dem erfindungsgemäßen Verfahren beschichtet werden können, bestehen beispielsweise aus Glas (Architekturglasscheiben, Displays), Metall (Fassadenelemente, Halbzeuge in Band- oder Plattenform), Keramik (Fliesen, Kacheln) oder Kunststoff (Kunststoffverglasungen, Folien). Zu beschichtende Objekte können aber auch aus anderen Materialien bestehen und Oberflächenschichten aus mindestens einer der zuvor beispielhaft genannten Materialien aufweisen. Ein wesentlicher Schritt des erfindungsgemäßen Verfahrens ist das Erzeugen eines Plasmas mittels diffuser Bogenentladung. Dabei wird ein auf der Oberfläche des Ti-Verdampfungs- materials auftreffender hochenergetischer Elektronenstrahl derart schnell und hochfrequent periodisch abgelenkt, dass zumindest ein Teil der Oberfläche des zu verdampfenden Ti- Materials quasi gleichmäßig erhitzt und letztendlich verdampft wird. Gleichzeitig wird das zu verdampfende Ti-Material, welches sich beispielsweise in einem Tiegel befindet, als Kathode einer stromstarken Bogenentladung geschaltet. Es bildet sich ein sogenannter diffuser Bogen aus, der im Wesentlichen im Bereich der vom Elektronenstrahl erhitzten Oberfläche des Verdampfungsmaterials brennt. Gegenüber einer Kaltkathoden-Bogen- entladung, bei welcher ein noch nicht einmal 1 mm2 großer Fußpunkt mit extrem hoher Stromdichte ausgebildet wird, hat eine diffuse Bogenentladung eine diffuse und flächenmäßige Ausdehnung auf dem Verdampfungsgut, welche im Wesentlichen der quasi gleichmäßig erhitzten Oberfläche des Verdampfungsgutes entspricht. Dadurch wird ein wesentlicher Anteil des erzeugten Ti-Metalldampfes ionisiert und somit insgesamt ein hoher lonisierungsgrad erreicht, was zum Ausbilden einer photokatalytischen Titanoxid-Schicht mit gegenüber dem Stand der Technik verbesserten Eigenschaften beiträgt. Der Einsatz der diffusen Bogenentladung hat weiterhin den Vorteil, dass diese keine Spritzer emittiert und somit für eine großflächige plasmaaktivierte Bedampfung besonders geeignet ist.Photocatalytic titanium oxide layers in the sense of the invention not only mean pure titanium oxide layers but also titanium oxide layers having doping elements. Objects which can be coated by the method according to the invention consist, for example, of glass (architectural glass panes, displays), metal (façade elements, semi-finished products in strip or plate form), ceramics (tiles, tiles) or plastic (plastic glazings, foils). However, objects to be coated can also consist of other materials and have surface layers of at least one of the materials exemplified above. An essential step of the method according to the invention is the generation of a plasma by means of a diffuse arc discharge. In this case, a high-energy electron beam incident on the surface of the Ti vaporization material is periodically deflected in such a fast and high-frequency manner that at least part of the surface of the Ti material to be vaporized is quasi-uniformly heated and ultimately vaporized. At the same time, the Ti material to be vaporized, which is located, for example, in a crucible, is switched as the cathode of a high-current arc discharge. It forms a so-called diffuse arc, which burns substantially in the area heated by the electron beam surface of the evaporation material. Compared to a cold cathode arc discharge, in which a not even 1 mm 2 large base is formed with extremely high current density, a diffuse arc discharge has a diffuse and areal extent on the Evampfungsgut, which essentially corresponds to the quasi-uniformly heated surface of the evaporating material , As a result, a substantial proportion of the generated Ti metal vapor is ionized and thus a high degree of ionization is achieved overall, which contributes to the formation of a photocatalytic titanium oxide layer with improved properties compared to the prior art. The use of the diffuse arc discharge has the further advantage that it does not emit any spatter and is therefore particularly suitable for large-scale plasma-activated vapor deposition.
Vorteilhaft ist es auch, wenn Sauerstoff derart in eine Vakuumkammer eingelassen wird, dass stöchiometrische Titanoxid-Schichten abgeschieden werden, weil diese Schichten die kristallinen Phasen Anatas und/oder Rutil in hohen Konzentrationen aufweisen. Hierfür ist ein Sauerstoff partialdruck innerhalb der Vakuumkammer von 5x10"4 mbar bis 1x10"2 mbar geeignet.It is also advantageous if oxygen is introduced into a vacuum chamber in such a way that stoichiometric titanium oxide layers are deposited because these layers have the crystalline phases anatase and / or rutile in high concentrations. For this purpose, an oxygen partial pressure within the vacuum chamber of 5x10 "4 mbar to 1x10 " 2 mbar is suitable.
Bei einer weiteren Ausführungsform erfolgt das Abscheiden einer Titanoxidschicht vorzugs¬ weise bei einer Objekttemperatur in einem Bereich von 200 0C bis 300 0C, weil die Titan¬ oxidschicht bei diesen Temperaturen überwiegend als Anatas-Phase abgeschieden wird.In another embodiment, the deposition of a titanium oxide layer is performed preferred wise at an object temperature in a range from 200 0 C to 300 0 C, because the oxide layer at these temperatures Titan¬ predominantly anatase phase is deposited.
Auch das Anlegen einer negativen Biasspannung in einem Bereich von 50 V bis 300 V an ein zu beschichtendes Objekt, durch welche ionisierte Ti-Dampf- bzw. Sauerstoffteilchen zur Oberfläche des Objekts hin beschleunigt werden, wirkt sich vorteilhaft auf die Schicht¬ eigenschaften wie Dichte, Brechungsindex und chemische Beständigkeit einer Titanoxid- Schicht aus. Diese negative Biasspannung kann beispielsweise gegenüber einem Tiegel, in welchem sich das zu verdampfende Ti-Material befindet, oder gegenüber einer Anode geschaltet werden. Als Biasspannung kann eine Gleichspannung bzw. eine mittelfrequent oder hochfrequent gepulste Spannung an das zu beschichtende Objekt angelegt werden. Die Anwendung von Pulsbias wirkt sich besonders vorteilhaft für die Stabilität der Prozess- führung aus.The application of a negative bias voltage in a range of 50 V to 300 V to an object to be coated, through which ionized Ti vapor or oxygen particles are accelerated towards the surface of the object, has an advantageous effect on the layer properties, such as density, Refractive index and chemical resistance of a titanium oxide layer. This negative bias voltage can, for example, with respect to a crucible, in which the Ti material to be evaporated is located, or with respect to an anode be switched. As a bias voltage, a DC voltage or a medium-frequency or high-frequency pulsed voltage can be applied to the object to be coated. The application of Pulsbias has a particularly advantageous effect on the stability of the process control.
Um ein Mindestmaß an Plasmaaktivierung zu erwirken, ist ein Bogenstrom der diffusen Bogenentladung zur Oberfläche des Verdampfungsmaterials von mindestens 100 A auszu¬ bilden. Während beim Abscheiden von photokatalytischen Titanoxid-Schichten beispiels¬ weise mittels Magnetron-Sputtern maximale Abscheideraten von etwa 5 nm/s erzielbar sind, ermöglicht das erfindungsgemäße Verfahren Abscheideraten von mehreren hundert nm/s. Sehr gute Schichteigenschaften werden bei Abscheideraten in einem Bereich von 30 nm/s bis 120 nm/s und bei Schichtdicken von 10 nm bis 1 μm, vorzugsweise 20 nm bis 100 nm erzielt.In order to obtain a minimum of plasma activation, an arc current of the diffuse arc discharge to the surface of the evaporation material of at least 100 A aus¬ form. While maximum deposition rates of about 5 nm / s can be achieved, for example, by means of magnetron sputtering during the deposition of photocatalytic titanium oxide layers, the method according to the invention enables deposition rates of several hundred nm / s. Very good layer properties are achieved at deposition rates in a range of 30 nm / s to 120 nm / s and at layer thicknesses of 10 nm to 1 μm, preferably 20 nm to 100 nm.
Beim Beschichten von Substratmaterialien, wie beispielsweise Glas, kann es zur Diffusion von Elementen aus dem Substrat in die Titanoxid-Schicht kommen, so dass die Titanoxid- Schicht derart verändert wird, dass die photokatalytischen Eigenschaften der Titanoxid- Schicht beeinträchtigt werden. Deshalb wird bei einer weiteren Ausführungsform zwischen einem zu beschichtenden Objekt und der darauf aufzutragenden Titanoxid-Schicht mindes- tens eine zusätzliche Schicht abgeschieden, die als Diffusionsbarriere wirkt. Auf diese Weise kann die Diffusion von Elementen aus dem Substrat (beispielsweise Kalium bei einem Glas¬ substrat) in die Titanoxid-Schicht wirksam unterbunden werden. Derartige als Diffusions¬ barriere wirkende Schichten bestehen vorteilhafter Weise aus SiO2 und weisen eine Schicht¬ dicke in einem Bereich von 10 nm bis 200 nm auf.When coating substrate materials, such as glass, elements from the substrate may diffuse into the titanium oxide layer, such that the titanium oxide layer is altered such that the photocatalytic properties of the titanium oxide layer are impaired. Therefore, in a further embodiment, at least one additional layer is deposited between an object to be coated and the titanium oxide layer to be applied thereon, which acts as a diffusion barrier. In this way, the diffusion of elements from the substrate (for example potassium in the case of a glass substrate) into the titanium oxide layer can be effectively prevented. Such layers acting as a diffusion barrier advantageously comprise SiO 2 and have a layer thickness in the range from 10 nm to 200 nm.
Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels näher erläutert.The invention will be explained in more detail below with reference to a preferred embodiment.
Die einzige Figur zeigt schematisch eine Einrichtung, mit welcher das erfindungsgemäße Verfahren ausgeführt werden kann. In einer Vakuumkammer 1 ist ein Verdampfertiegel 2 angeordnet, in welchem als Verdampfungsmaterial 3 Titan verdampft werden soll. An¬ geschlossen an die Vakuumkammer 1 ist eine Hochleistungs-Axial-Elektronenstrahlkanone 4, welche einen Elektronenstrahl 5 erzeugt, der mittels einer nicht dargestellten elektro¬ magnetischen Umlenkeinrichtung auf die Oberfläche des im Verdampfertiegel 2 befind- liehen Verdampfungsmaterials 3 abgelenkt wird und somit das Verdampfungsmaterial 3 erhitzt und letztendlich verdampft. Über dem Verdampfertiegel 3 ist eine Elektrode 6 an¬ geordnet, die den Dampfraum umschließt und gegenüber dem Verdampfertiegel 3 auf eine positive Spannung gelegt werden kann. Ein über der Elektrode 6 auf einer Transport¬ einrichtung 7 bewegtes Objekt 8 aus Glas wird mit dem verdampften Material beschichtet.The single figure shows schematically a device with which the method according to the invention can be carried out. In a vacuum chamber 1, an evaporator crucible 2 is arranged, in which is to be evaporated as the evaporation material 3 titanium. An¬ closed to the vacuum chamber 1 is a high-power axial electron gun 4, which generates an electron beam 5, which is deflected by means of a not shown elektro¬ magnetic deflection on the surface of the evaporator crucible 2 located in the evaporation evaporating material 3 and thus the evaporation material. 3 heated and finally evaporated. Above the vaporizer crucible 3, an electrode 6 is arranged, which encloses the vapor space and can be placed opposite to the vaporizer crucible 3 to a positive voltage. An object 8 made of glass moved over the electrode 6 on a transport device 7 is coated with the evaporated material.
Mittels der Elektronenstrahlkanone 4 wird der hochenergetische Elektronenstrahl 5 mit einer Leistung von etwa 50 kW schnell, hochfrequent und periodisch derart abgelenkt, dass zumindest ein Teil der Oberfläche des Verdampfungsmaterials 3 quasi gleichmäßig erhitzt und verdampft wird. Eine zwischen Elektrode 6 und Verdampfertiegel 2 mittels einer Stromversorgungseinrichtung 9 angelegte Gleichspannung von etwa 30 V bewirkt das Ausbilden einer so genannten diffusen Bogenentladung mit einem Strom von etwa 300 A, welche im Wesentlichen auf der mittels Elektronenstrahl 5 quasi gleichmäßig erhitzten Oberfläche des Verdampfungsmaterials 3 brennt. Dadurch wird ein hoher lonisierungsgrad des Dampfes erzielt. Eine mittels Stromversorgungseinrichtung 10 an das Objekt 8 an- gelegte Biasspannung von -100 V bewirkt das Beschleunigen der ionisierten Dampfteilchen zur Oberfläche des Objekts 8.By means of the electron beam gun 4, the high-energy electron beam 5 with a power of about 50 kW is rapidly, high-frequency and periodically deflected in such a way that at least part of the surface of the evaporation material 3 is quasi-uniformly heated and vaporized. A DC voltage of approximately 30 V applied between electrode 6 and evaporator crucible 2 by means of a power supply device 9 causes the formation of a so-called diffuse arc discharge with a current of approximately 300 A, which essentially burns on the surface of the evaporation material 3 which is quasi-uniformly heated by means of electron beam 5. As a result, a high degree of ionization of the vapor is achieved. A bias voltage of -100 V applied to the object 8 by means of a power supply device 10 causes the ionized vapor particles to accelerate to the surface of the object 8.
Durch Einlass von Sauerstoff mittels eines Gaseinlasssystems 1 1 in die Vakuumkammer 1 während der Titanverdampfung wird eine 400 nm dicke, stöchiometrische TiO2-Schicht auf dem Objekt 8 mit einer stationären Beschichtungsrate von etwa 70 nm/s abgeschieden. Das Objekt 8 wird dabei auf einer Temperatur von etwa 250 °C gehalten.By introducing oxygen through a gas inlet system 11 into the vacuum chamber 1 during titanium evaporation, a 400 nm stoichiometric TiO 2 layer is deposited on the object 8 at a steady state deposition rate of about 70 nm / sec. The object 8 is held at a temperature of about 250 ° C.
Die mit dem erfindungsgemäßen Verfahren auf dem Objekt 8 abgeschiedene TiO2-Schicht weist gegenüber photokatalytischen TiO2-Schichten, die nach bekannten Verfahren her- gestellt wurden, deutlich verbesserte photokatalytische Eigenschaften auf. Dies wurde durch Versuchsanordnungen messtechnisch bestätigt.The TiO 2 layer deposited on the object 8 using the method according to the invention has markedly improved photocatalytic properties compared to photocatalytic TiO 2 layers which have been prepared by known processes. This was confirmed metrologically by experimental arrangements.
Bei einer ersten Versuchsanordnung, bei der hydrophile Eigenschaften untersucht wurden, standen folgende drei Glasproben, die jeweils mit einer photokatalytischen TiO2-Deckschicht versehen waren, zum Vergleich:In a first experimental setup in which hydrophilic properties were investigated, the following three glass samples, each provided with a photocatalytic TiO 2 cover layer, were compared:
Probe 1 eine im Handel erworbene Glasscheibe mit einer nach einem CVD-Verfahren hergestellten photokatalytischen TiO2-Schicht,Sample 1 is a commercially available glass sheet having a photocatalytic TiO 2 layer produced by a CVD method,
Probe 2 eine Glasscheibe mit einer photokatalytischen TiO2-Schicht, die mittels Magnetron-Zerstäuben abgeschieden wurde, Probe 3 eine Glasscheibe mit einer nach dem erfindungsgemäßen Verfahren abge¬ schiedenen photokatalytischen TiOrSchicht.Sample 2 a glass sheet with a photocatalytic TiO 2 layer which was deposited by means of magnetron sputtering, Sample 3 a glass sheet with a abge¬ by the novel abge¬ photocatalytic TiO r layer.
Zum Charakterisieren der photoinduzierten Hydrophilität wurde der Kontaktwinkel eines Wassertropfens, der jeweils mit einer feinen Kanüle auf die Proben aufgebracht wurde, gemessen. Aus der Breite und der Höhe eines Wassertropfens kann unter Annahme eines Kugelsegments der Kontaktwinkel mit der Oberfläche einer Probe berechnet werden. Je kleiner ein ermittelter Kontaktwinkel ist, umso besser sind die hydrophilen Eigenschaften einer Probenoberfläche. Ein Kontaktwinkel von 0° entspricht einer vollständigen Benetzbar¬ keit einer Probenoberfläche, welche somit optimale hydrophile Eigenschaften aufweist.To characterize the photoinduced hydrophilicity, the contact angle of a water drop, each of which was applied to the samples with a fine cannula, was measured. From the width and height of a water drop, the contact angle with the surface of a sample can be calculated assuming a spherical segment. The smaller a detected contact angle, the better the hydrophilic properties of a sample surface. A contact angle of 0 ° corresponds to a complete wettability of a sample surface, which thus has optimum hydrophilic properties.
Zu Beginn wurden alle drei Proben, die mehrwöchig im Dunkeln lagerten, einer gründlichen Reinigung unterzogen. Anschließend wurde bei allen drei Proben eine Kontaktwinkel¬ messung durchgeführt und somit ein Ausgangswert ermittelt. Mit einer UV-A-Lampe mit einem Wellenlängenbereich von 315 bis 380 nm wurden die drei Proben unter gleichen Bedingungen bestrahlt. Dabei ergab sich an den Proben eine Bestrahlungsstärke von 0,5 mW/cm2.Initially, all three samples, which were stored in the dark for several weeks, were thoroughly cleaned. Subsequently, a contact angle measurement was carried out for all three samples and thus an initial value was determined. With a UV-A lamp with a wavelength range of 315-380 nm, the three samples were irradiated under the same conditions. This resulted in an irradiance of 0.5 mW / cm 2 on the samples.
Nach ausgewählten Zeitabständen wurden an den Proben erneut Kontaktwinkelmessungen durchgeführt. Die Messergebnisse der Kontaktwinkel sind in Tab. 1 dargestellt.After selected time intervals, contact angle measurements were again made on the samples. The measurement results of the contact angles are shown in Tab.
Figure imgf000009_0001
Figure imgf000009_0001
Tab. 1Tab. 1
Aus Tab. 1 ist ersichtlich, dass bei TiO2-Schichten, die nach dem erfindungsgemäßen Ver¬ fahren hergestellt wurden, bereits bei einer Messung nach einer 15-minütigen Bestrahlung mit UV-A optimale hydrophile Eigenschaften ermittelt wurden, wohingegen bei der mittels CVD-Verfahren hergestellten Probe 1 diese optimalen Eigenschaften erst bei einer Messung nach 45 min Bestrahlung nachgewiesen werden konnten. Des Weiteren wurde das Relaxationsverhalten der hydrophilen Eigenschaften der Glas¬ probenoberflächen untersucht. Nach einer einheitlichen UV-A-Bestrahlungsdauer, nach der alle drei Proben einen Kontaktwinkel von 0° aufwiesen, wurden die Proben im Dunkeln gelagert und nach bestimmten Zeitabständen abermals ein zugehöriger Kontaktwinkel und somit das hydrophile Verhalten der Proben ermittelt. Die Ergebnisse dieser Kontaktwinke I- messungen sind in Tab. 2 dargestellt.From Table 1 it can be seen that in the case of TiO 2 layers which were produced by the process according to the invention, optimum hydrophilic properties were already determined during a measurement after a 15-minute irradiation with UV-A, whereas in the case of Procedure produced sample 1 these optimal properties could only be detected in a measurement after 45 min irradiation. Furthermore, the relaxation behavior of the hydrophilic properties of the glass sample surfaces was investigated. After a uniform UV-A irradiation time, after all three samples had a contact angle of 0 °, the samples were stored in the dark and determined after certain time intervals again an associated contact angle and thus the hydrophilic behavior of the samples. The results of these contact angle measurements are shown in Tab.
Figure imgf000010_0001
Figure imgf000010_0001
Tab. 2Tab. 2
Während Probe 1 schon nach 3 h und Probe 2 nach 6 h keine optimalen hydrophilen Eigen¬ schaften mehr aufwiesen, wurden bei Probe 3, die mit dem erfindungsgemäßen Verfahren hergestellt wurde, erst nach einer Relaxationszeit von 10 h ein Kontaktwinkel größer 0° ermittelt.While sample 1 had no optimum hydrophilic properties even after 3 h and sample 2 after 6 h, a contact angle greater than 0 ° was determined for sample 3, which was produced by the process according to the invention, only after a relaxation time of 10 h.
Bei einer zweiten Versuchsanordnung wurde beim Abscheiden einer photokatalytischen TiO2-Schicht mittels Vakuumverdampfen der Einfluss der diffusen Bogenentladung auf Eigenschaften der abgeschiedenen TiO2-Schicht untersucht. Gegenstand der Untersuchung war hierbei zum einen die Fähigkeit einer TiO2-Schicht, bei UV-Bestrahlung organische Substanzen zu zersetzen und zum anderen die Schichteigenschaften Dichte und Brechungsindex.In a second experimental setup, the deposition of a photocatalytic TiO 2 layer by means of vacuum evaporation was used to investigate the influence of the diffuse arc discharge on the properties of the deposited TiO 2 layer. The subject of the investigation was the ability of a TiO 2 layer to decompose organic substances under UV irradiation and the layer properties of density and refractive index.
Bei der zweiten Versuchsanordnung standen folgende zwei Glasproben, die jeweils mit einer photokatalytischen TiO2-Deckschicht versehen waren, zum Vergleich: Probe 4 eine Glasscheibe, die mittels Vakuumbedampfen ohne Unterstützung einer diffusen Bogenentladung beschichtet wurde, Probe 5 eine Glasscheibe, die mittels des erfindungsgemäßen Verfahrens beschichtet wurde. Untersuchungen bezüglich der Dichte der abgeschiedenen TiO2-Schichten erbrachten bei Probe 4 Werte von 3,0 g/cm3 und bei Probe 5 Werte von 3,85 g/cm3. Für den Brechungsindex wurden bei Probe 4 Werte von 2,1 und bei Probe 5 von 2,5 ermittelt.In the second test arrangement, the following two glass samples, each provided with a photocatalytic TiO 2 cover layer, were for comparison: sample 4 a glass pane which was coated by means of vacuum vapor deposition without the aid of a diffuse arc discharge, sample 5 a glass pane which was produced by means of the process according to the invention was coated. Studies on the density of the deposited TiO 2 layers yielded values of 3.0 g / cm 3 for Sample 4 and 3.85 g / cm 3 for Sample 5. For the refractive index, values of 2.1 and 2.5 of sample 5 were determined for sample.
Des Weiteren wurden beide Proben jeweils mit einem Tropfen einer Lösung benetzt, die eine Konzentration von 0,01 mmol/l der Substanz „Methylen blau" aufwies. Anschließend wurden beide Proben unter gleichen Bedingungen mit einer UV-A-Lampe gemäß der ersten Versuchsanordnung bestrahlt. Der Zersetzungsprozess der organischen Bestandteile der Versuchslösung konnte aufgrund der Färbung der Lösung mit bloßem Auge verfolgt werden.Furthermore, both samples were each wetted with a drop of a solution having a concentration of 0.01 mmol / L of the substance "methylene blue." Subsequently, both samples were irradiated under the same conditions with a UV-A lamp according to the first experimental set-up The decomposition process of the organic components of the test solution could be followed by the color of the solution with the naked eye.
Bei Probe 4 wurde das vollständige Zersetzen der organischen Bestandteile nach 72 Stunden beobachtet, bei Probe 5 bereits nach 48 Stunden. Es konnte somit nachgewiesen werden, dass sich beim Abscheiden einer photokatalytischen TiO2-Schicht mittels Vakuum- verdampfen eine Plasmaunterstützung basierend auf einer diffusen Bogenentladung positiv auf Eigenschaften der abgeschiedenen TiO2-Schicht auswirkt.For sample 4, complete decomposition of the organic components was observed after 72 hours, for sample 5 already after 48 hours. It was therefore possible to demonstrate that plasma deposition based on a diffuse arc discharge has a positive effect on the properties of the deposited TiO 2 layer when a photocatalytic TiO 2 layer is deposited by means of vacuum evaporation.
Die wesentlichen Vorteile des erfindungsgemäßen Verfahrens sind somit zum einen die aus dem Vakuumbedampfen herrührenden hohen Beschichtungsraten und zum anderen die gegenüber dem Stand der Technik verbesserten Eigenschaften von Titanoxid-Schichten. Dies betrifft sowohl die photokatalytischen Eigenschaften wie die Fähigkeit des Zersetzens organischer Partikel und die Hydrophilie als auch andere Schichteigenschaften wie beispiels¬ weise Dichte, Brechungsindex und chemische Beständigkeit. The main advantages of the process according to the invention are thus, on the one hand, the high coating rates resulting from vacuum vapor deposition and, on the other hand, the properties of titanium oxide layers that are improved over the prior art. This applies both to the photocatalytic properties such as the ability of decomposing organic particles and the hydrophilicity and other layer properties such as density, refractive index and chemical resistance.

Claims

Patentansprüche claims
1 . Verfahren zum Abscheiden einer photokatalytischen Titanoxid-Schicht auf mindestens einem Objekt (8) mittels Hochrate-Elektronenstrahlbedampfung in einer Vakuum- kammer (1), dadurch gekennzeichnet, dass1 . Method for depositing a photocatalytic titanium oxide layer on at least one object (8) by means of high-rate electron beam vapor deposition in a vacuum chamber (1), characterized in that
- in der Vakuumkammer (1 ) eine sauerstoffhaltige Atmosphäre erzeugt wird;- In the vacuum chamber (1) an oxygen-containing atmosphere is generated;
- ein überwiegend Ti-Bestandteile aufweisendes Material (3) mittels eines Elektronenstrahls (5) verdampft wird;- A predominantly Ti constituents exhibiting material (3) by means of an electron beam (5) is evaporated;
- das Abscheiden von einem Plasma unterstützt wird, wobei das Plasma mittels diffuser Bogenentladung auf der Oberfläche des als Kathode geschalteten zu ver¬ dampfenden Materials (3) erzeugt wird;the deposition of a plasma is assisted, the plasma being generated by means of a diffuse arc discharge on the surface of the material (3) to be vaporized connected as the cathode;
- die Beschichtungsrate mindestens 20 nm/s beträgt;the coating rate is at least 20 nm / s;
- die Objekttemperatur während des Abscheidens zwischen 100 0C und 500 0C ge¬ halten wird und - die Titanoxid-Schicht kristallin und überwiegend als Anatas-Phase abgeschieden wird.- The object temperature during the deposition between 100 0 C and 500 0 C ge keep ge - and the titanium oxide layer is deposited in crystalline and predominantly as anatase phase.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sauerstoff¬ konzentration in der Vakuumkammer (1 ) derart eingestellt wird, dass eine stöchio- metrische Titanoxid-Schicht auf dem Objekt (8) abgeschieden wird.2. The method according to claim 1, characterized in that the Sauerstoff¬ concentration in the vacuum chamber (1) is set such that a stoichiometric titanium oxide layer on the object (8) is deposited.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an das Objekt (8) eine negative Biasspannung von 50 V bis 300 V angelegt wird.3. The method according to any one of the preceding claims, characterized in that a negative bias voltage of 50 V to 300 V is applied to the object (8).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Biasspannung als Gleichspannung oder als mittelfrequent oder hochfrequent gepulste Spannung an¬ gelegt wird4. The method according to claim 3, characterized in that the bias voltage is applied as a DC voltage or as a medium-frequency or high-frequency pulsed voltage an¬
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Vakuumkammer (1 ) ein Sauerstoffpartialdruck von 5x10"4 mbar bis5. The method according to any one of the preceding claims, characterized in that in the vacuum chamber (1) an oxygen partial pressure of 5x10 "4 mbar to
1x10"2 mbar erzeugt wird.1x10 "2 mbar is generated.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Plasmaaktivierung ein Bogenstrom von mindestens 100 A eingestellt wird. 6. The method according to any one of the preceding claims, characterized in that in the plasma activation, a arc current of at least 100 A is set.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Beschichtungsraten in einem Bereich von 30 nm/s bis 120 nm/s ausgebildet werden.7. The method according to any one of the preceding claims, characterized in that coating rates are formed in a range of 30 nm / s to 120 nm / s.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Objekttemperatur während des Abscheidens vorzugsweise zwischen 200 0C und 300 0C gehalten wird.8. The method according to any one of the preceding claims, characterized in that the object temperature during the deposition is preferably maintained between 200 0 C and 300 0 C.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Schichtdicken von 10 nm bis 1 μm und vorzugsweise von 20 nm bis 100 nm ab¬ geschieden werden.9. The method according to any one of the preceding claims, characterized in that layer thicknesses of 10 nm to 1 .mu.m and preferably from 20 nm to 100 nm are ab¬ separated.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Objekt und der photokatalytischen Titanoxid-Schicht eine Zwischenschicht als Diffusionsbarriere abgeschieden wird.10. The method according to any one of the preceding claims, characterized in that between the object and the photocatalytic titanium oxide layer, an intermediate layer is deposited as a diffusion barrier.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Diffusionsbarriere eine SiO2-Schicht abgeschieden wird. 1 1. A method according to claim 10, characterized in that a SiO 2 layer is deposited as a diffusion barrier.
PCT/EP2005/009129 2004-09-03 2005-08-24 Method for depositing photocatalytic titanium oxide layers WO2006027106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529329A JP4847957B2 (en) 2004-09-03 2005-08-24 Method for depositing a photocatalytic titanium oxide layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004042650A DE102004042650B4 (en) 2004-09-03 2004-09-03 Process for depositing photocatalytic titanium oxide layers
DE102004042650.3 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006027106A1 true WO2006027106A1 (en) 2006-03-16

Family

ID=35385907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009129 WO2006027106A1 (en) 2004-09-03 2005-08-24 Method for depositing photocatalytic titanium oxide layers

Country Status (5)

Country Link
JP (1) JP4847957B2 (en)
KR (1) KR20070048723A (en)
CN (1) CN101018882A (en)
DE (1) DE102004042650B4 (en)
WO (1) WO2006027106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419857B2 (en) 2009-03-31 2013-04-16 United Technologies Corporation Electron beam vapor deposition apparatus and method of coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051439A1 (en) 2009-10-30 2011-05-05 Gottfried Wilhelm Leibniz Universität Hannover Producing metallic conductive coating or partial coating made of metal on coated substrate, comprises applying metal coating made of an ionic solution at coated region on semiconductor surface of substrate, using light irradiation
DE102010023418A1 (en) * 2010-06-11 2011-12-15 Uhde Gmbh Single or multi-sided substrate coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958194A (en) * 1997-09-18 1999-09-28 Glazier; Alan N. Gas permeable elastomer contact lens bonded with titanium and/or oxides thereof
US20020107144A1 (en) * 1994-10-31 2002-08-08 Akira Fujishima Illuminating devices and window glasses employing titanium dioxide photocatalysts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258023B2 (en) * 1994-10-31 2002-02-18 財団法人神奈川科学技術アカデミー Titanium oxide photocatalyst structure and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107144A1 (en) * 1994-10-31 2002-08-08 Akira Fujishima Illuminating devices and window glasses employing titanium dioxide photocatalysts
US5958194A (en) * 1997-09-18 1999-09-28 Glazier; Alan N. Gas permeable elastomer contact lens bonded with titanium and/or oxides thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
METZNER C ET AL: "Plasma-activated electron beam deposition with diffuse cathodic vacuum arc discharge (SAD): a technique for coating strip steel", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 86-87, no. 1-3, 15 December 1996 (1996-12-15), pages 769 - 775, XP002330053, ISSN: 0257-8972 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419857B2 (en) 2009-03-31 2013-04-16 United Technologies Corporation Electron beam vapor deposition apparatus and method of coating

Also Published As

Publication number Publication date
JP4847957B2 (en) 2011-12-28
DE102004042650A1 (en) 2006-03-23
DE102004042650B4 (en) 2007-07-19
KR20070048723A (en) 2007-05-09
CN101018882A (en) 2007-08-15
JP2008511434A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
DE69418542T2 (en) Process for the production of functional coatings
DE102008008517B4 (en) Antimicrobial finish of titanium and titanium alloys with silver
EP0285745B1 (en) Process and apparatus for vacuum coating by means of an electric arc discharge
DE2614951B2 (en) Method of manufacturing a liquid crystal cell
WO1986007051A1 (en) Process for removing metallic ions from items made of glass or ceramic materials
EP2102381A1 (en) Antimicrobial material, and a method for the production of an antimicrobial material
DE3150591A1 (en) METHOD FOR PRODUCING METAL COATINGS BY SPRAYING ION COATING
EP2150633B1 (en) Method for coating a substrate
DE3627151A1 (en) METHOD AND DEVICE FOR REACTIVELY EVAPORATING METAL COMPOUNDS
DE102007025151A1 (en) Coating method comprises producing plasma jet from process gas and introducing precursor material into it, coating being deposited from jet on to substrate or existing coating on it and substrate being heated
DE102008028542A1 (en) Method and apparatus for depositing a layer on a substrate by means of a plasma-enhanced chemical reaction
DE102006038780A1 (en) Method and device for producing a coating
DE2422157A1 (en) METHOD FOR GLASS SUBSTRATE CLEANING
DE102012011277B4 (en) A method of forming closed sheets of graphene on the surface of a substrate and substrate coated with the method
WO2006027106A1 (en) Method for depositing photocatalytic titanium oxide layers
DE102006015591B3 (en) Organic material with a catalytically coated surface and process for its production
EP0438627B1 (en) Arc-evaporator with several evaporation crucibles
DE10118763A1 (en) Production of ceramic (mixed) metal oxide layers on substrate made from glass, ceramic, glass-ceramic, iron or other metals comprise coating substrate with an intermediate layer, applying ceramic (mixed) metal oxide layers using anodization
DE102007041544A1 (en) Method of making DLC layers and doped polymers or diamond-like carbon layers
DE102016104128A1 (en) Method for coating a component surface, coated component and use of a precursor material
DE3925085C1 (en)
DE102017205417A1 (en) Process for forming a layer formed with polycrystalline or monocrystalline diamond
DE102008028140B3 (en) Process for producing a transparent and conductive metal oxide layer by pulsed, high-ionization magnetron sputtering
DE102010011192B4 (en) Process for the surface treatment of substrates
DE102004016436B3 (en) Process of manufacturing self-cleaning window glass or glass building facade involves atomised application of silicon agent to titanium oxide surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077003220

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580029338.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007529329

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase