EP2641884A1 - Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium - Google Patents
Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium Download PDFInfo
- Publication number
- EP2641884A1 EP2641884A1 EP12160647.9A EP12160647A EP2641884A1 EP 2641884 A1 EP2641884 A1 EP 2641884A1 EP 12160647 A EP12160647 A EP 12160647A EP 2641884 A1 EP2641884 A1 EP 2641884A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixture
- cement
- clinker
- aluminous
- calcination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/32—Aluminous cements
- C04B7/323—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/16—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
- Y02P40/121—Energy efficiency measures, e.g. improving or optimising the production methods
Definitions
- the invention relates to a process for preparing hydraulic binders comprising a mixture of clinker, or cement, sulfo-aluminous and calcium sulphates, and whose rehydration mainly produces primary ettringite.
- the invention also relates to the hydraulic binders obtained and the use of these hydraulic binders in the cement industry.
- the invention relates to the technical field of the cement industry and more particularly the composite cementitious compositions derived from a mixture of clinker, or cement, sulfo-aluminous and calcium sulphates.
- Composite hydraulic binders based on calcium sulphate and clinker, or sulpho-aluminous cements, are well known in the prior art.
- the patent document FR 2.868.772 (LY VANNA ) describes for example such a composition in which the sulpho-alumina clinker is dosed at a level of 20% to 60% by weight relative to the total weight of the composition to improve consistent with the moisture resistance properties of calcium sulphate.
- An object of the invention is to increase the yield of primary ettringite obtained by the rehydration of a hydraulic binder comprising a mixture of clinker, or cement, sulfo-aluminous and calcium sulphates.
- Another object of the invention is to provide a process for preparing hydraulic binders comprising a mixture of clinker, or cement, sulpho-aluminous and calcium sulphates, simple to implement and not requiring a lot of energy .
- Yet another object of the invention is to provide a simple and inexpensive industrial installation to be implemented to implement this method.
- the invention also aims to provide a hydraulic binder having good mechanical performance.
- the solution proposed by the invention is a process for the preparation of hydraulic binders comprising a mixture of clinker, or cement, sulpho-aluminous and calcium sulphates, and whose rehydration mainly produces primary ettringite, said process comprising a remarkable step of injecting into a conduit, the mixture of clinker, or cement, sulfo-aluminous and calcium sulphates in the form of powdered powder, said conduit being traversed by a hot air preferably turbulent, saturated with steam vapor, water, having a temperature between 250 ° C and 700 ° C and a speed preferably between 8 m / s and 40 m / s.
- Another aspect of the invention relates to the use of hydraulic binders obtained by the process according to one of the preceding characteristics, for the preparation of a concrete or mortar type material.
- the clinker, or cement, sulfo-aluminous (C 4 A 3 ⁇ ) and calcium sulphates (C ⁇ H 2 ), are respectively stored in separate silos 1a and 1b.
- C 4 A 3 ⁇ is a mixture of limestone, bauxite and calcium sulphate heated to around 1300 ° C then brutally cooled and ground.
- the C 4 A 3 ⁇ is formed mainly of yeelimite (50% to 68% by weight relative to the total weight of the clinker or cement, noted hereinafter p / p clinker or cement), and Belite (10% at 20% w / w clinker or cement).
- C 4 A 3 ⁇ may also include other components such as ferrite, perovskite, mayenite, calcium ferroaluminate, etc. The proportion of these other components ranges from 0% to 20% w / w clinker or cement.
- the C ⁇ H 2 are advantageously based on natural gypsum, synthetic gypsum (in particular sulphogypsum, phosphogypsum, borogypsum, titanogypsum) or hemihydrate ( ⁇ or ⁇ ) calcium sulphate, natural or synthetic anhydride (especially fluoroanhydrite, phosphoanhydrite) anhydrite III, and other types of by-products of the same type and mixtures thereof.
- natural gypsum synthetic gypsum (in particular sulphogypsum, phosphogypsum, borogypsum, titanogypsum) or hemihydrate ( ⁇ or ⁇ ) calcium sulphate, natural or synthetic anhydride (especially fluoroanhydrite, phosphoanhydrite) anhydrite III, and other types of by-products of the same type and mixtures thereof.
- synthetic gypsum in particular sulphogypsum, phosphogypsum,
- the C 4 A 3 ⁇ and C ⁇ H 2 may be mixed with at least one of the following family components: portland cement, calcium hydroxides, ferroaluminous cement, mineral fillers (pozzolana, limestone, silica fume, marble), slag, lime (aerial, hydraulic, live), calcium carbonate, polycarboxylate, perlite, vermiculite, metakaolin or other chemical additives of rheology.
- This post-calcination mixture is intended to improve the physicochemical reaction that takes place in the following process and / or to improve the properties of the hydraulic binder and in particular the mechanical resistance to compression, fire resistance, etc.
- These other components are stored in an independent silo 1 c.
- a metering hopper 2 associated with a mixer 3 makes it possible to prepare the mixture intended to undergo the aeration calcination treatment.
- the mixture is dosed in the following proportions: C 4 to 3 ⁇ between 20% and 90% w / w mixture ; C ⁇ H 2 between 20% and 75% w / w mixture ; other components between 0% and 20% w / w mixture .
- the Applicant has found that the best results were obtained when the mixture included a larger mass of C 4 A 3 ⁇ than C ⁇ H 2 .
- a mixture containing about 65% to 75% w / w mixture of C 4 A 3 ⁇ , about 25% to 35% w / w mixture of C ⁇ H 2 , and less than 5% w / w mixture of the other components, will have good mechanical properties.
- the particle size of the mixture to be treated is between 20 ⁇ m and 25 mm depending on the nature of the C ⁇ H 2 used (natural, synthetic or hemihydrated), so that said mixture is in the form of a powdery powder.
- One or more of the compounds of the mixture can be premixed to reach this particle size.
- the mixture is then directed to a volumetric dosing screw 4 configured to inject said mixture into the aeration calcining circuit 5 at a pre-programmed feed rate ranging from 5 tons / hour to 40 tons / hour. Any other means of injecting the mixture into the conduit 5, and suitable for those skilled in the art, can be used.
- the conduit 5 may be straight or not.
- the two majority components of the mixture (C 4 A 3 ⁇ and C ⁇ H 2 ) are chemically interacted under the action of a thermodynamic shock, inside a conduit 5 in which a high velocity fluid charged with superheated steam. More particularly, the mixture is injected into the duct, where circulates a stream of turbulent hot air, saturated with water vapor, having a temperature of between 250 ° C. and 700 ° C. and a speed of between 8 m / s and 40 m / s.
- these different actions act simultaneously and in synergy to cause significant stresses on the particles of C 4 A 3 ⁇ and C ⁇ H 2 .
- These constraints cause the transformation of the crystalline mesh parameters, the new crystalline phases having a homogeneous and compact cement matrix. More particularly, these new highly reactive phases considerably improve the kinetics of rehydration of the hydraulic binders as well as manufactured and optimize, during their rehydration, the formation of the stable primary ettringitic phases in the short term.
- the particles of C 4 A 3 ⁇ and C ⁇ H 2 undergo morphological transformations that drastically increase their hydraulic performance, resulting in very high early and ultimate strengths of up to 100 MPa.
- the heating can be carried out directly or indirectly by flash calcination processes, rotary kilns, cooking pots or any other equivalent calcination device.
- the preferred heating device is advantageously a flash calciner consisting of an air turbine 60 associated with a burner 61.
- the flow of hot air generated can vary from 5000 m 3 / h to 100 000 m 3 / h.
- the dehydration of C ⁇ H 2 is controlled according to the desired performances for the hydraulic binder.
- the best results are obtained when the H 2 O content is between 0% and 5% w / w c ⁇ H 2 .
- the vaporization of the H 2 O molecules can advantageously cause the bursting, or even the micronization, of the C ⁇ H 2 particles.
- the mixture is thus heated in line 5 for a time varying from a few seconds to several hours.
- the atmosphere saturated with water vapor makes it possible, even at temperatures of the order of 700 ° C, not to overcap the particles of C 4 A 3 ⁇ and C ⁇ H 2 .
- the flow rate of the hot air flow, its speed, its temperature, its water vapor pressure, the pressure in the duct 5 and the heating time depend on several factors, mainly the type of mixture to be treated, its flow rate. injection, the particle size of its particles, and the heating method employed. These different calcination parameters are controlled and regulated by an electronic management unit that controls the entire installation.
- hydraulic binders suitable for all ranges of constructions, from the simplest to the most efficient: screeds, breeze blocks, panels, lightweight concretes, high performance concretes, technical mortars, coatings, grouts, waste stabilization, heavy metals processing, nuclear packages, composites, etc.
- the duct 5 can be configured so that the particles of C 4 A 3 ⁇ and C ⁇ H 2 impact the walls of said duct during their displacement.
- the duct 5 is advantageously of substantially toroidal shape so that at each change of direction, the particles impact the walls.
- the conduit 5 may be perfectly toroidal or have straight portions before the changes of direction.
- the conduit 5 may have any other configuration allowing the particles to impact the walls, for example, shaped conduits of 'L' or 'U'. By impacting on the walls, the particles of C 4 A 3 ⁇ and C ⁇ H 2 will not only be modified, but also burst, which allows to micronize said particles and reduce the particle size between 5 microns and 50 microns.
- the outlet orifice 50 of the duct 5 is kept under vacuum (for example from 20 mbar to 300 mbar) by the action of an extractor tail fan (not shown ).
- the outlet orifice 50 is preferably provided with a gravimetric selector 51 allowing the evacuation of the particles as soon as they have reached a required particle size and possibly a specific surface required.
- the particles thus evacuated are then perfectly homogenized.
- the electronic management unit makes it possible to control and adjust this particle size downstream of the duct 5.
- the output particle size is for example set between 10 microns and 200 microns and a specific surface of Blain between 0.35 m 2 / g and 12 m 2 / g.
- the outlet 50 of the duct 5 is connected to a means 7 for separating the water vapor particles C 4 A 3 ⁇ and C ⁇ H 2 .
- a means 7 for separating the water vapor particles C 4 A 3 ⁇ and C ⁇ H 2 is a cyclonic filter in which the solid particles are directed downwards and the water vapor upwards.
- the cyclonic filter is advantageously associated with a dry air filter bag battery.
- the recovered water vapor is directed, via a conduit 81, to a heat exchanger 80. In order to improve the energy efficiency of the installation, it is possible to supply the turbine 60 with air previously heated by the exchanger 80.
- the brutal cooling of the hot particles in contact with the cold walls acts as a thermal quenching that freezes and stabilizes the crystalline structure of the C 4 A 3 ⁇ and C ⁇ H 2 particles.
- Any other thermal quenching device known to those skilled in the art can be disposed downstream of the duct 5. It is for example possible to directly inject a cold dry air flow on the hot particles of C 4 A 3 ⁇ and C ⁇ H 2 .
- the mixture is then directed to a tank 10 for storing it before packaging.
- the Applicant has found that the anhydrite III particles possibly obtained by the dehydration of C ⁇ H 2 , all retain their metastability, including after cooling by a tough quenching. With certain storage and conditioning precautions, the metastability of the binders obtained has little effect on their performance over time.
- an overpressure device is used to prevent any introduction of external humid air.
- This overpressure device consists of a dry air compressor arranged with humidity sensors so as to pressurize the transport ducts and the entire installation. Any other equivalent overpressure device suitable for those skilled in the art can be used.
- the hydraulic binders obtained form, by addition of water in a suitable amount, a binder paste capable of hardening. They are used in particular for the preparation of a concrete or mortar type material but are more generally adapted for all uses in the cement industry and plaster industry sectors. After hydration, the amount of primary ettringite obtained after 24 hours is greater than 70%, and can reach 90% after 72 hours.
- the dosages required for the manufacture of concretes or mortars are similar to those required with traditional cements. In practice, dosages range from 250 Kg / m 3 of water to 480 Kg / m 3 of water, depending on the type of concrete and the desired performance.
- the method that is the subject of the invention makes it possible to reduce CO 2 emissions by at least 35% compared with conventional methods, thereby reducing manufacturing costs by 20% to 40%.
- the Carbonne assessment of the installation is between 0.2 Kg CO2 / Kg binder binder and 0.3 Kg CO2 / Kg binder, so it is possible to classify the binders thus manufactured in the category "environmental binders" , in particular in mixtures whose content of C 4 A 3 ⁇ is minor relative to C ⁇ H 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
L'invention concerne un procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, et dont la réhydratation produit majoritairement de l'ettringite primaire, ledit procédé comprenant une étape consistant à injecter dans un conduit de calcination aéraulique, le mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium sous forme de poudre pulvérulente, ledit conduit étant traversé par un flux d'air chaud turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse comprise entre 8 m/s et 40 m/s.
Description
- L'invention a pour objet un procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, et dont la réhydratation produit majoritairement de l'ettringite primaire.
- L'invention a également pour objet les liants hydrauliques obtenus ainsi que l'utilisation de ces liants hydrauliques dans l'industrie cimentaire.
- Elle a encore pour objet une installation industrielle permettant la mise en oeuvre d'un tel procédé.
- L'invention concerne le domaine technique de l'industrie cimentaire et plus particulièrement les compositions cimentaires composites issues d'un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium.
- Les liants hydrauliques composites à base de sulfate de calcium et de clinker, ou ciments, sulfo-alumineux sont bien connus de l'art antérieur. Le document brevet
FR 2.868.772 (LY VANNA - La réhydratation d'un liant hydraulique de ce type produit de l'ettringite. L'équation d'hydratation est la suivante :
C4A3Ŝ + 2CŜH2 + 34H → C6A Ŝ3H32 + 2AH3
(sulfoaluminate de calcium + sulfate de calcium + eau → ettringite + gibbsite)
où C = CaO ; A = Al2O3 ; Ŝ= SO3 ; H = H2O ; S= SiO2, selon la notation cimentière. - L'ettringite formée pendant les premières minutes suivant le contact du liant avec l'eau, ou ettringite primaire, est non nocive et permet de réguler la prise du matériau. La majorité de l'ettringite primaire est généralement formée au bout de 24 heures. Ensuite, de l'ettringite secondaire, ou ettringite différée, peut apparaître. Cette ettringite secondaire est nocive car elle peut provoquer un gonflement et à terme, une désagrégation du matériau durci.
- La réhydratation des liants hydrauliques composites connus de l'art antérieur, ne produit que 50 % à 60 % d'ettringite primaire. Ce faible rendement est vraisemblablement dû à une cinétique de réhydratation relativement lente.
- Un objectif de l'invention est d'augmenter le rendement d'ettringite primaire obtenue par la réhydratation d'un liant hydraulique comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium.
- Un autre objectif de l'invention est de proposer un procédé permettant de préparer des liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, simple à mettre en oeuvre et ne nécessitant pas beaucoup d'énergie.
- Encore un autre objectif de l'invention est de proposer une installation industrielle simple et peu coûteuse à réaliser permettant de mettre en oeuvre ce procédé.
- L'invention a également comme objectif de proposer un liant hydraulique ayant de bonnes performances mécaniques.
- La solution proposée par l'invention est un procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, et dont la réhydratation produit majoritairement de l'ettringite primaire, ledit procédé comprenant une étape remarquable consistant à injecter dans un conduit, le mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium sous forme de poudre pulvérulente, ledit conduit étant traversé par un flux d'air chaud préférentiellement turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse préférentiellement comprise entre 8 m/s et 40 m/s.
- De cette manière, les deux composants majoritaires (C4A3Ŝ et CŜH2) soumis aux forces cinétiques et aux chocs thermiques induits par le flux d'air chaud, sont homogénéisés et interagissent dés le début de la déshydratation des composants CŜH2. Les composants C4A3Ŝ et CŜH2 subissent des transformations morphologiques qui accroissent radicalement leurs performances hydrauliques, entrainant des résistances précoces et finales très élevées (30 MPa à 100 MPa). La demanderesse a en effet constaté de manière surprenante que les nouvelles phases composites ainsi créées présentent des morphologies cristallines spécifiques (avec des cristaux compacts), offrant des performances physico-chimiques et des cinétiques de réhydratation propices à la formation des phases majoritaires ettringitiques primaires stables dès le plus jeune âge, la formation d'ettringite secondaire étant nulle ou quasi nulle.
- D'autres étapes remarquables du procédé objet de l'invention sont listées ci-dessous, chacune de ces étapes pouvant être considérée seule ou en combinaison, indépendamment de l'étape remarquable définie ci-dessus :
- on applique une contrainte mécanique sur les particules de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, de manière à modifier leur structure cristalline ;
- on évacue du conduit les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, dès qu'elles ont atteint une granulométrie requise ;
- on refroidit le mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, après l'étape de calcination aéraulique ;
- on injecte dans le conduit de calcination aéraulique, une masse plus importante de clinker, ou de ciment, sulfo-alumineux que de sulfates de calcium ;
- on mélange le clinker, ou le ciment, sulfo-alumineux et les sulfates de calcium, avec au moins l'un des composants de la famille suivante : ciment portland, hydroxydes de calcium, ciment ferro-alumineux, fillers minéraux (pouzzolane, calcaire, fumée de silice), laitier, chaux (hydraulique, aérienne), carbonate de calcium, polycarboxylate, perlite, vermiculite, metakaolin ; cette étape de mélange étant réalisée avant l'étape de calcination aéraulique ;
- on mélange les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, avec d'autres fillers actifs ou adjuvants, cette étape de mélange étant réalisée après l'étape de calcination aéraulique.
- Un autre aspect de l'invention concerne l'utilisation de liants hydrauliques obtenus par le procédé conforme à l'une des caractéristiques précédentes, pour la préparation d'un matériau de type béton ou mortier.
- Encore un autre aspect de l'invention concerne une installation pour la mise en oeuvre du procédé conforme à l'une des caractéristiques précédentes, ladite installation comportant :
- un conduit de calcination aéraulique traversé par un flux d'air chaud turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse comprise entre 8 m/s et 40 m/s,
- un moyen pour injecter dans le conduit de calcination aéraulique, un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium sous forme de poudre pulvérulente.
- D'autres caractéristiques remarquables de l'installation objet de l'invention sont listées ci-dessous, chacune de ces caractéristiques pouvant être considérée seule ou en combinaison, indépendamment des caractéristiques remarquables définies ci-dessus :
- une unité de gestion électronique permet de contrôler et de régler :
- o le débit, la vitesse, la température et la tension de vapeur d'eau du flux d'air chaud traversant le conduit de calcination aéraulique,
- o le débit d'injection du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium,
- o la pression dans ledit conduit,
- o la granulométrie des particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, en amont et en aval dudit conduit ;
- le conduit est configuré de manière à ce que les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, impactent les parois dudit conduit lors de leur déplacement ;
- le conduit de calcination aéraulique est de forme sensiblement toroïdale ;
- le clinker, ou le ciment, sulfo-alumineux et les sulfates de calcium sont préalablement stockés dans des silos distincts, une trémie doseuse associée à un mélangeur permettant de préparer le mélange destiné à être injecté dans le conduit de calcination aéraulique ;
- un moyen pour séparer le fluide chargé de vapeur d'eau et les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, est disposé en aval du conduit de calcination aéraulique ;
- un moyen pour refroidir les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, est disposé en aval du moyen de séparation.
- D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite à titre d'exemple indicatif et non limitatif, en regard du dessin annexé sur lequel la
figure 1 représente schématiquement un mode préféré de réalisation de l'installation objet de l'invention. - En se rapportant à la figure annexée, le clinker, ou ciment, sulfo-alumineux (C4A3Ŝ) et de les sulfates de calcium (CŜH2), sont respectivement stockés dans des silos distincts 1a et 1 b.
- Le C4A3Ŝ est un mélange de calcaire, de bauxite et de sulfate de calcium porté à environ 1300°C puis brutalement refroidi et broyé. Préférentiellement, le C4A3Ŝ est formée majoritairement de yeelimite (50 % à 68 % en poids par rapport au poids total du clinker ou du ciment, noté ci-après p/pclinker ou ciment), et de belite (10 % à 20 % p/pclinker ou ciment). Le C4A3Ŝ peut également comporter d'autres composants tels que ferrite, perovskite, mayénite, ferro-aluminate de calcium, etc. La proportion de ces autres composants varie de 0 % à 20 % p/pclinker ou ciment.
- Les CŜH2 sont avantageusement à base de gypse naturel, de gypse de synthèse (notamment sulfogypse, phosphogypse, borogypse, titanogypse) ou d'hémihydrate (α ou β) de sulfate de calcium, d'anhydrites naturelle ou de synthèse (notamment fluoroanhydrite, phosphoanhydrite) l'anhydrite III, et autres types de sous-produits du même type ainsi que leurs mélanges. L'utilisation du terme sulfates de calcium dans la suite de la description recouvre tous les types de sulfate de calcium cités ci-dessus.
- Les C4A3Ŝ et CŜH2 peuvent être mélangés avec au moins l'un des composants de la famille suivante : ciment portland, hydroxydes de calcium, ciment ferro-alumineux, fillers minéraux (pouzzolane, calcaire, fumée de silice, poudre de marbre), laitier, chaux (aérienne, hydraulique, vive), carbonate de calcium, polycarboxylate, perlite, vermiculite, metakaolin ou autres additifs chimiques de rhéologies. Ce mélange post-calcination vise à améliorer la réaction physico-chimique qui se déroule dans la suite du procédé et/ou permettent d'améliorer les propriétés du liant hydraulique et notamment les résistances mécaniques à la compression, tenue au feu, etc. Ces autres composants sont stockés dans un silo indépendant 1 c.
- Une trémie doseuse 2 associée à un mélangeur 3 (par exemple à tambour), permet de préparer le mélange destiné à subir le traitement de calcination aéraulique. En pratique, le mélange est dosé dans les proportions suivantes : C4A3Ŝ compris entre 20 % et 90 % p/pmélange ; CŜH2 compris entre 20 % et 75 % p/pmélange ; autres composants compris entre 0 % et 20 % p/pmélange. La demanderesse a pu constater que les meilleurs résultats étaient obtenus lorsque le mélange comprenait une masse plus importante de C4A3Ŝ que de CŜH2. Un mélange contenant environ 65 % à 75 % p/pmélange de C4A3Ŝ, environ 25 % à 35 % p/pmélange de CŜH2, et moins de 5 % p/pmélange des autres composants, aura de bonnes propriétés mécaniques.
- La granulométrie du mélange à traiter est comprise entre 20 µm et 25 mm selon la nature des CŜH2 utilisés (naturels, de synthèses ou hémihydratés), de sorte que ledit mélange se présente sous la forme d'une poudre pulvérulente. Un ou plusieurs des composés du mélange peuvent être préalablement broyés pour atteindre cette granulométrie.
- Le mélange est ensuite dirigé vers une vis doseuse volumétrique 4 configurée pour injecter ledit mélange dans le circuit de calcination aéraulique 5 suivant un débit d'alimentation préalablement programmé variant de 5 tonnes/heure à 40 tonnes/heure. Tout autre moyen d'injection du mélange dans le conduit 5, et convenant à l'homme du métier, peut être utilisé. Le conduit 5 peut être droit ou non.
- Conformément à l'invention, on fait interagir chimiquement les deux composants majoritaires du mélange (C4A3Ŝ et CŜH2) sous l'action d'un choc thermo-dynamique, à l'intérieur d'un conduit 5 où circule un fluide à grande vitesse chargé en vapeur surchauffée. Plus particulièrement, le mélange est injecté dans le conduit, où circule un flux d'air chaud turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse comprise entre 8 m/s et 40 m/s.
- Les particules de C4A3Ŝ et de CŜH2 interagissent chimiquement sous l'action conjuguée :
- de la vapeur d'eau saturée,
- du choc thermique induit par la température du flux d'air chaud,
- des chocs mécaniques et de l'homogénéisation des échanges thermiques induits par les turbulences cinétiques du flux d'air.
- En plus d'assurer la cohésion du liant hydraulique, ces différentes actions agissent simultanément et en synergie pour occasionner d'importantes contraintes sur les particules de C4A3Ŝ et de CŜH2. Ces contraintes entraînent la transformation des paramètres de mailles cristallines, les nouvelles phases cristallines présentant une matrice cimentaire homogène et compacte. Plus particulièrement, ces nouvelles phases très réactives améliorent considérablement la cinétique de réhydratation des liants hydrauliques ainsi fabriqués et optimisent, lors de leur réhydratation, la formation des phases ettringitiques primaires stables à court terme. En outre, les particules de C4A3Ŝ et de CŜH2 subissent des transformations morphologiques qui accroissent radicalement leurs performances hydrauliques, entraînant des résistances précoces et finales très élevées pouvant atteindre 100 MPa.
- On pourra réaliser le chauffage de manière directe ou indirecte, par des procédés de calcination flash, des fours rotatifs, des chaudrons de cuisson ou tout autre dispositif de calcination équivalent. De manière préférée, le dispositif de chauffage préféré est avantageusement un calcinateur flash constitué d'une turbine à air 60 associée à un brûleur 61. Le débit d'air chaud généré peut varier de 5000 m3/h à 100000 m3/h.
- Pendant la calcination aéraulique, la déshydratation du CŜH2 est contrôlée en fonction des performances recherchées pour le liant hydraulique. Les meilleurs résultats sont obtenus lorsque la teneur en H2O est comprise entre 0 % et 5 % p/pcŝH2. La vaporisation des molécules d' H2O peut avantageusement provoquer l'éclatement, voire la micronisation des particules de CŜH2.
- Le mélange est ainsi chauffé dans le conduit 5 pendant un temps variant de quelques secondes à plusieurs heures. L'atmosphère saturée en vapeur d'eau permet, même à des températures de l'ordre de 700°C, de ne pas surcuire les particules de C4A3Ŝ et de CŜH2. Le débit du flux d'air chaud, sa vitesse, sa température, sa tension en vapeur d'eau, la pression dans le conduit 5 et le temps de chauffage, dépendent de plusieurs facteurs dont principalement le type de mélange à traiter, son débit d'injection, la granulométrie de ses particules, et le procédé de chauffage employé. Ces différents paramètres de calcination sont contrôlés et réglés par une unité de gestion électronique qui pilote l'ensemble de l'installation. Ils permettent de formuler des liants hydrauliques adaptés à toutes les gammes de matériaux de constructions, des plus simples aux plus performants : chapes, parpaings, panneaux, bétons légers, bétons haute performance, mortiers techniques, enduits, coulis, stabilisation des déchets, traitement de métaux lourds, colisages nucléaires, composites, etc.
- Il est envisageable d'accroître davantage les contraintes mécaniques appliquées aux particules de C4A3Ŝ et de CŜH2 et modifier leur structure cristalline, notamment en les densifiant, pour améliorer la cinétique de réhydratation et augmenter le rendement de formation d'ettringite primaire stable. Pour ce faire, le conduit 5 peut être configuré de manière à ce que les particules de C4A3Ŝ et de CŜH2 impactent les parois dudit conduit lors de leur déplacement. Le conduit 5 est avantageusement de forme sensiblement toroïdale de manière à ce qu'à chaque changement de direction, les particules impactent les parois. Le conduit 5 peut être parfaitement toroïdal ou comporter des portions droites avant les changements de direction. Le conduit 5 peut avoir toute autre configuration permettant aux particules d'impacter sur les parois, par exemple, des conduits en forme de `L' ou de 'U'. En impactant sur les parois, les particules de C4A3Ŝ et de CŜH2 vont non seulement être modifiées, mais également s'éclater, ce qui permet de microniser lesdites particules et de réduire la granulométrie entre 5 µm et 50 µm.
- Pour évacuer automatiquement les particules après l'étape de calcination aéraulique, l'orifice de sortie 50 du conduit 5 est maintenu en dépression (par exemple de 20 mbar à 300 mbar) par l'action d'un ventilateur de queue extracteur (non représenté). L'orifice de sortie 50 est préférentiellement pourvu d'un sélecteur gravimétrique 51 permettant l'évacuation des particules dès qu'elles ont atteint une granulométrie requise et éventuellement une surface spécifique requise. Les particules ainsi évacuées sont alors parfaitement homogénéisées. L'unité de gestion électronique permet de contrôler et de régler cette granulométrie en aval du conduit 5. La granulométrie de sortie est par exemple réglée entre 10 µm et 200 µm et une surface spécifique de Blain comprise entre 0.35 m2/g et 12 m2/g.
- Conformément à l'installation représentée sur la figure annexée, la sortie 50 du conduit 5 est reliée à un moyen 7 pour séparer la vapeur d'eau des particules de C4A3Ŝ et de CŜH2. En pratique, il s'agit d'un filtre cyclonique dans lequel les particules solides sont dirigées vers le bas et la vapeur d'eau vers le haut. Le filtre cyclonique est avantageusement associé à une batterie de filtres à manches à nettoyage pneumatique à air sec. Avantageusement, la vapeur d'eau récupérée est dirigée, via un conduit 81, vers un échangeur thermique 80. Dans le but d'améliorer le rendement énergétique de l'installation, il est possible d'alimenter la turbine 60 par de l'air préalablement chauffé par l'échangeur 80.
- Dans le but de figer et stabiliser la structure cristalline des particules de C4A3Ŝ et de CŜH2, il est avantageux de les refroidir après l'étape de calcination aéraulique, par exemple en ramenant leur température à moins de 70°C. En pratique, un refroidissement indirect s'opère par le passage du mélange composite dans une vis d'Archimède 9 dont les parois sont refroidies par de l'eau ou de l'air réfrigéré. Cette vis 9 est disposée à la sortie du séparateur 7. Le mélange composite rentrant dans la vis 9 est à une température inférieure à 120°C du fait des échanges thermiques successifs par contact avec les différents équipements. Toutefois, en calorifugeant ces équipements, il est possible de conserver le mélange à une température de l'ordre de 300°C. Le refroidissement brutal des particules chaudes au contact des parois froides, agit comme une trempe thermique qui fige et stabilise la structure cristalline des particules de C4A3Ŝ et de CŜH2. Tout autre dispositif de trempe thermique connu de l'homme du métier peut être disposé en aval du conduit 5. Il est par exemple envisageable d'injecter directement un flux d'air sec froid sur les particules chaudes de C4A3Ŝ et de CŜH2.
- Le mélange est ensuite dirigé vers un réservoir 10 permettant de le stocker avant son conditionnement.
- Il est également possible de parachever le mélange en introduisant d'autres fillers actifs ou adjuvants aux qualités spécifiques adaptées aux usages envisagés pour les liants. On peut par exemple ajouter des fluidifiants, des retardants, des fibres minérales et/ou végétales, des fillers calcaires, des fillers pouzzolaniques, des metakaolins, des cendres volantes, des fumées de silice, des additifs chimiques de rhéologies, des silices, des ciments Portland, des ciments sulfo-alumineux, des ciments ferro-alumineux, des ciments sidérurgiques, de la chaux, etc. Ces différents composants sont respectivement stockés dans des silos distincts 11 a, 11 b, 11 c. Une trémie doseuse 12 associée à un mélangeur 13 (par exemple à tambour), permet de préparer les mélanges finaux qui seront stockés dans des silos distincts 14a, 14b.
- La demanderesse a pu constater que les particules d'anhydrite III éventuellement obtenues par la déshydratation du CŜH2, conservent toutes leur métastabilité, y compris après refroidissement par une trempe brutale. Moyennant certaines précautions de stockage et de conditionnement, la métastabilité des liants obtenus affecte peu leurs performances dans le temps.
- Il est toutefois avantageux de conserver une atmosphère sèche dans l'ensemble de l'installation (hygrométrie de l'air inférieure à 10 %, préférentiellement comprise entre 0 et 5 %) depuis la sortie des silos de stockage 1a, 1b et 1c jusqu'au réservoir 10 inclus. Pour contrôler cette hygrométrie, on utilise un dispositif de surpression pour éviter toute introduction d'air humide extérieur. Ce dispositif de surpression consiste en un compresseur d'air sec agencé avec des capteurs d'humidité de manière à pressuriser les conduits de transport et l'ensemble de l'installation. Tout autre dispositif de surpression équivalent convenant à l'homme du métier peut être utilisé. On peut également utiliser des extracteurs d'humidité agencés avec des contrôleurs d'hygrométrie.
- Les liants hydrauliques obtenus forment, par addition d'eau en quantité appropriée, une pâte liante susceptible de durcir. Ils sont notamment utilisés pour la préparation d'un matériau de type béton ou mortier mais sont plus généralement adaptés pour tous les usages dans les secteurs de l'industrie du ciment et de l'industrie du plâtre. Après hydratation, la quantité d'ettringite primaire obtenue au bout de 24 heures est supérieure à 70 %, et peut atteindre 90 % au bout de 72 heures. Les dosages requis pour la fabrication de bétons ou mortiers sont similaires à ceux requis avec les ciments traditionnels. En pratique, les dosages varient de 250 Kg /m3 d'eau à 480 Kg /m3 d'eau, en fonction du type de béton et des performances recherchées.
- La préparation et la fabrication de tels liants permettent d'accroître radicalement les performances des ciments traditionnels en leur conférant des caractéristiques et des performances spécifiques, dont notamment :
- hautes résistances mécaniques en flexion et compression (30 MPa à 100 MPa) au jeune âge et à terme (préfabrication rapide), ces performances étant supérieures à celles des ciments portland et supérieures ou égales à celles des ciments sulfo-alumineux,
- accroissement des résistances en milieu humide et immergé,
- réduction des gonflements et des retraits,
- rhéologie auto-compactante et auto-lissante,
- amélioration des comportements au feu et aux chocs thermiques,
- réduction des phénomènes de lixiviation,
- résistance aux effluents selvatiques et aux borates,
- adhérence renforcée sur pratiquement tous supports,
- résistance aux acides et aux bactéries,
- mise en oeuvre simplifiée par températures extrêmes (-10°C à + 50°C),
- applications spécifiques dans le conditionnement des déchets nucléaires,
- applications pour le compactage des déchets industriels et métaux lourds,
- accélérations des rotations industrielles et temps de séchage,
- applications dans le génie civil maritime et milieux humides,
- compatibilité avec tous les granulats existants pour les bétons et mortiers,
- applications thermiques, acoustiques et coupe-feu.
- En outre, le procédé objet de l'invention permet de réduire d'au moins 35 % les émissions CO2 par rapport aux procédés traditionnels, réduisant de fait les coûts de fabrication de 20% à 40%. Le bilan Carbonne de l'installation est compris entre 0,2 KgCO2/Kgliant de liant et 0,3 KgCO2/Kgliant, de sorte qu'il est possible de classer les liants ainsi fabriqués dans la catégorie « liants environnementaux », en particulier dans les mélanges dont la teneur en C4A3Ŝ est minoritaire par rapport au CŜH2.
- Les essais sont réalisés sur des mortiers normalisés : 1350 g de sable + 450 g de liant + 225 g d'eau, et les résistances calculées à 3 heures et 28 jours.
- liant n°1 : anhydrites solubles métastables 60% p/pliant + hemihydrate 10% p/pliant + clinker CSA 30% p/pliant : Résistance de 49 MPa à 85 MPa et 30 MPa en 3 heures.
- liant n°2 : anhydrites solubles métastables 70% p/pliant + hemihydrate 10% p/pliant + hydroxyde de calcium 20% p/pliant : Resistances de 45 MPa à 50 MPa et 29 MPa en 3 heures.
- liant n°3: anhydrites solubles métastables 20% p/pliant + anhydrites insolubles 50% p/pliant + clinker CSA 30% p/pliant : Résistances de 45 MPa à 70 MPa et 32 MP en 3 heures.
- liant n°4 : hemihydrate 10% p/pliant + sulfo-gypse 60% p/pliant + clinker CSA 30% p/pliant : Résistances de 33 MPa à 43 MPa et 20 MPa en 3 heures.
- liant n°5: anhydrites solubles métastables 30% p/pliant + cendres volantes 30% p/pliant + clinker CSA 40% p/pliant: Résistances de 55 MPa à 85 MPa et 30 MPa en 3 heures.
- liant n°6 : anhydrites solubles métastables 30% p/pliant + clinker CSA 70% p/pliant: Résistances de 60MPa à 100 MPa et 30 MPa en 3 heures.
- liant n°7 : hemihydrate 70% p/pliant + clinker CSA 30% p/pliant: Résistances 35 MPa à 55 MPa et 25 MPa à 3 heures.
- liant n°8 : anhydrites solubles métastables 25% p/pliant + ciment CSA 75% p/pliant: Résistances de 45 MPa à 80 MPa et 30 MPa à 3 heures.
- liant n°9 : anhydrites insolubles 70% p/pliant + Al2O3 vermiculite SF 30% p/pliant: Résistances de 15 MPa à 25 MPa et 10 MPa à 3 heures.
liant n°10: anhydrites solubles métastables 20% p/pliant + fillers photocatalytiques TiO2 45% p/pliant + clinker CSA 25% p/pliant : Résistance de 25 MPa à 50 MPa et 15 MPa à 3 heures.
Claims (15)
- Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, et dont la réhydratation produit majoritairement de l'ettringite primaire, se caractérisant par le fait que ledit procédé comprenant une étape consistant à injecter dans un conduit (5) de calcination aéraulique, le mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium sous forme de poudre pulvérulente, ledit conduit étant traversé par un flux d'air chaud turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse comprise entre 8 m/s et 40 m/s.
- Procédé selon la revendication 1, comprenant une étape consistant à appliquer une contrainte mécanique sur les particules de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, de manière modifier leur structure cristalline.
- Procédé selon l'une des revendications précédentes, consistant à évacuer du conduit (5) les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, dès qu'elles ont atteint une granulométrie requise.
- Procédé selon l'une des revendications précédentes, consistant à refroidir le mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, après l'étape de calcination aéraulique.
- Procédé selon l'une des revendications précédentes, consistant à injecter dans le conduit (5) de calcination aéraulique, une masse plus importante de clinker, ou de ciment, sulfo-alumineux que de sulfates de calcium.
- Procédé selon l'une des revendications précédentes, consistant, à mélanger le clinker, ou le ciment, sulfo-alumineux et les sulfates de calcium, avec au moins l'un des composants de la famille suivante : ciment portland, hydroxydes de calcium, ciment ferro-alumineux, fillers minéraux, laitier, chaux, carbonate de calcium, polycarboxylate, perlite, vermiculite, metakaolin ; cette étape de mélange étant réalisée avant l'étape de calcination aéraulique.
- Procédé selon l'une des revendications précédentes, consistant à mélanger les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, avec d'autres fillers actifs ou adjuvants, cette étape de mélange étant réalisée après l'étape de calcination aéraulique.
- Utilisation de liants hydrauliques obtenus par le procédé conforme à l'une des revendications 1 à 7, pour la préparation d'un matériau de type béton ou mortier.
- Installation pour la mise en oeuvre du procédé conforme à la revendication 1, comportant :- un conduit (5) de calcination aéraulique traversé par un flux d'air chaud turbulent, saturé en vapeur d'eau, ayant une température comprise entre 250°C et 700°C et une vitesse comprise entre 8 m/s et 40 m/s,- un moyen (4) pour injecter dans ledit conduit, un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium sous forme de poudre pulvérulente.
- Installation selon la revendication 9, comprenant une unité de gestion électronique permettant de contrôler et de régler :- le débit, la vitesse, la température et la tension de vapeur d'eau du flux d'air chaud traversant le conduit (5) de calcination aéraulique,- le débit d'injection du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium,- la pression dans ledit conduit,- la granulométrie des particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, en amont et en aval dudit conduit.
- Installation selon l'une des revendications 9 ou 10, dans laquelle le conduit (5) de calcination aéraulique est configuré de manière à ce que les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, impactent les parois dudit conduit lors de leur déplacement.
- Installation selon la revendication 11, dans laquelle le conduit (5) de calcination aéraulique est de forme sensiblement toroïdale.
- Installation selon l'une des revendications 9 à 12, dans laquelle le clinker, ou le ciment, sulfo-alumineux et les sulfates de calcium sont préalablement stockés dans des silos distincts (1a, 1b), une trémie doseuse (2) associée à un mélangeur (3) permettant de préparer le mélange destiné à être injecté dans le conduit (5) de calcination aéraulique.
- Installation selon l'une des revendications 9 à 13, dans laquelle un moyen (7) pour séparer le fluide chargé de vapeur d'eau et les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, est disposé en aval du conduit (5) de calcination aéraulique.
- Installation selon la revendication 14, dans laquelle un moyen (9) pour refroidir les particules du mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium, est disposé en aval du moyen de séparation (7).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12160647.9A EP2641884A1 (fr) | 2012-03-21 | 2012-03-21 | Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium |
PCT/IB2013/000466 WO2013140234A1 (fr) | 2012-03-21 | 2013-03-21 | Procede de preparation de liants hydrauliques comprenant un melange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12160647.9A EP2641884A1 (fr) | 2012-03-21 | 2012-03-21 | Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2641884A1 true EP2641884A1 (fr) | 2013-09-25 |
Family
ID=48325780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12160647.9A Withdrawn EP2641884A1 (fr) | 2012-03-21 | 2012-03-21 | Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2641884A1 (fr) |
WO (1) | WO2013140234A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015104466A1 (fr) | 2014-01-10 | 2015-07-16 | Greenmade Development Limited | Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3074799B1 (fr) * | 2017-12-12 | 2022-10-07 | Electricite De France | Composition de beton sacrificiel et son procede de fabrication |
CN112645617B (zh) * | 2021-01-15 | 2022-03-04 | 济南大学 | 一种含c7a5m矿物的镁铝酸盐水泥材料 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217143A (en) * | 1979-04-09 | 1980-08-12 | Joseph J. Coney | Process for plant scale production of cement with mechanical compounding |
EP0103119A1 (fr) * | 1982-08-16 | 1984-03-21 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Mélange de liants constitué de matériaux pouzzolaniques, sulfatiques, calcigènes et riches en aluminates |
SU1296537A1 (ru) * | 1985-06-04 | 1987-03-15 | Краснодарский политехнический институт | Способ активации мелкого минерального заполнител бетона |
DE3843625A1 (de) * | 1988-06-24 | 1989-12-28 | Rhein Westfael Elect Werk Ag | Verfahren zur herstellung eines nach dem anmachen mit wasser schnellerstarrenden hydraulischen bindemittels |
US6083465A (en) * | 1999-03-11 | 2000-07-04 | National Gypsum Properties, Llc | Method and apparatus for continuously calcining gypsum |
FR2868772A1 (fr) | 2004-02-17 | 2005-10-14 | Vanna Ly | Sulfates de calcium hydrofuges par du clinker sulfo-alumineux |
WO2007000501A1 (fr) * | 2005-06-27 | 2007-01-04 | Gypsmix Sarl | Procede de fabrication d'une composition a base de sulfo-aluminate de calcium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5743728A (en) * | 1995-08-15 | 1998-04-28 | Usg Corporation | Method and system for multi-stage calcining of gypsum to produce an anhydrite product |
EP2004319B8 (fr) * | 2006-03-31 | 2015-07-22 | Calix Ltd | Système et procédé de calcination de minéraux |
UA103890C2 (uk) * | 2008-02-19 | 2013-12-10 | Юнайтед Стейтс Джипсум Компані | Спосіб та пристрій для кальцинування гіпсу під тиском |
FR2933971B1 (fr) * | 2008-07-15 | 2012-01-13 | Jean Couturier | Procede de fabrication d'un ciment mono sulfonate aluminate et liant ainsi obtenu |
-
2012
- 2012-03-21 EP EP12160647.9A patent/EP2641884A1/fr not_active Withdrawn
-
2013
- 2013-03-21 WO PCT/IB2013/000466 patent/WO2013140234A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217143A (en) * | 1979-04-09 | 1980-08-12 | Joseph J. Coney | Process for plant scale production of cement with mechanical compounding |
EP0103119A1 (fr) * | 1982-08-16 | 1984-03-21 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Mélange de liants constitué de matériaux pouzzolaniques, sulfatiques, calcigènes et riches en aluminates |
SU1296537A1 (ru) * | 1985-06-04 | 1987-03-15 | Краснодарский политехнический институт | Способ активации мелкого минерального заполнител бетона |
DE3843625A1 (de) * | 1988-06-24 | 1989-12-28 | Rhein Westfael Elect Werk Ag | Verfahren zur herstellung eines nach dem anmachen mit wasser schnellerstarrenden hydraulischen bindemittels |
US6083465A (en) * | 1999-03-11 | 2000-07-04 | National Gypsum Properties, Llc | Method and apparatus for continuously calcining gypsum |
FR2868772A1 (fr) | 2004-02-17 | 2005-10-14 | Vanna Ly | Sulfates de calcium hydrofuges par du clinker sulfo-alumineux |
WO2007000501A1 (fr) * | 2005-06-27 | 2007-01-04 | Gypsmix Sarl | Procede de fabrication d'une composition a base de sulfo-aluminate de calcium |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 198740, Derwent World Patents Index; AN 1987-283629, XP002682187, CHERNYKH V.F.; ET.AL.: "Method for activating fine mineral aggregate for concrete" * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015104466A1 (fr) | 2014-01-10 | 2015-07-16 | Greenmade Development Limited | Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations |
Also Published As
Publication number | Publication date |
---|---|
WO2013140234A1 (fr) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111556858B (zh) | 用于增强水泥质产品中的机械强度和co2存储的方法 | |
CN103570286B (zh) | 一种用于古建筑修复的混凝土 | |
EP2514727B1 (fr) | Composition de béton de calcaire activé par un alcali et utilisation de la composition dans le coulage de béton | |
CN108147705B (zh) | 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用 | |
WO2015104466A1 (fr) | Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations | |
FR2997944A1 (fr) | Materiaux de construction isolant a base d’addition vegetale | |
EA025034B1 (ru) | Заместитель клинкера на основе обожженной глины | |
CN102936115B (zh) | 一种水泥基灌浆料的生产方法 | |
CA3161526A1 (fr) | Procede de fabrication de ciments sursulfates | |
CN101454256B (zh) | 亚稳态可溶性硬石膏ⅲ的稳定化方法、稳定化可溶性硬石膏ⅲ基水硬性粘结料的制备方法、得到的水硬性粘结料、该粘结料的用途以及实施该方法的工业设备 | |
EP2641884A1 (fr) | Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium | |
AU2006322373A1 (en) | Method for stabilising metastable soluble anhydrite III, method for producing a hydraulic binder based thereon, the obtained hydraulic binder, the uses thereof and an industrial plant for carrying out said method | |
CN102924004A (zh) | 一种干粉砂浆的生产方法 | |
EP2173680B1 (fr) | Installation de production d'un liant sulfatique multicomposants à hautes performances mécaniques, à partir de gypse et/ou de ses dérivés, procédé de fabrication d'un tel liant et liant ainsi obtenu | |
JP3672518B2 (ja) | セメント混和材、セメント組成物及びそれを用いたコンクリート | |
CN104261757A (zh) | 一种免烧结轻骨料及其制备方法 | |
KR101300867B1 (ko) | 정수 슬러지를 이용한 매스 콘크리트 조성물 및 이의 제조방법 | |
FR2952635A1 (fr) | Procede et installation pour la fabrication d'un liant sulfatique a hautes resistances mecaniques precoces, resistant a l'eau et le liant ainsi obtenu | |
JP4028966B2 (ja) | セメント系組成物の製造方法 | |
JP4630539B2 (ja) | モルタル・コンクリート用膨張材及びコンクリート | |
JP7355690B2 (ja) | 尿素を含むモルタルまたはコンクリート組成物 | |
JP7115677B2 (ja) | 水硬性組成物及び水硬性硬化体 | |
FR2947258A1 (fr) | Procede d'obtention en voie seche de sulfate de calcium anhydre sous forme beta anhydrite iii a partir d'hemihydrate de sulfate de calcium. | |
JP2018131359A (ja) | 水中不分離性コンクリート用膨張材、水中不分離性コンクリート組成物およびその硬化体 | |
JP2023180864A (ja) | 高強度コンクリート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140326 |