EP2621611A2 - Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium - Google Patents

Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium

Info

Publication number
EP2621611A2
EP2621611A2 EP11761629.2A EP11761629A EP2621611A2 EP 2621611 A2 EP2621611 A2 EP 2621611A2 EP 11761629 A EP11761629 A EP 11761629A EP 2621611 A2 EP2621611 A2 EP 2621611A2
Authority
EP
European Patent Office
Prior art keywords
oxide
composition
cerium oxide
cerium
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11761629.2A
Other languages
German (de)
English (en)
Inventor
Julien Hernandez
Emmanuel Rohart
Rui Jorge Coelho Marques
Deborah Jayne Harris
Clare Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Magnesium Elektron Ltd
Original Assignee
Rhodia Operations SAS
Magnesium Elektron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS, Magnesium Elektron Ltd filed Critical Rhodia Operations SAS
Publication of EP2621611A2 publication Critical patent/EP2621611A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a process for treating a gas containing nitrogen oxides (NOx) using as catalyst a composition based on cerium oxide and niobium oxide.
  • NOx nitrogen oxides
  • One known method for this treatment is the SCR process in which NOx reduction is performed by ammonia or a precursor of ammonia such as urea.
  • the SCR process allows an efficient treatment of the gases but nevertheless its effectiveness at low temperature remains to be improved.
  • the catalytic systems currently used for the implementation of this process are often effective only for temperatures above 250 ° C. It would therefore be advantageous to have catalysts that can have significant activity at temperatures of 250 ° C or lower.
  • the object of the invention is therefore to provide more efficient catalysts for SCR catalysis.
  • the process of the invention is a process for treating a gas containing nitrogen oxides (NOx) in which a reduction reaction of NOx is carried out with a nitrogen reducing agent and is characterized in that
  • the catalyst used in this reduction reaction is a catalytic system containing a cerium oxide-based composition which comprises niobium oxide with the following proportions by weight: - niobium oxide of 2 to 20%;
  • rare earth is understood to mean the elements of the group consisting of yttrium and the elements of the Periodic Table with an atomic number inclusive of between 57 and 71.
  • specific surface is meant the specific surface B.E.T. determined by nitrogen adsorption in accordance with ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in "The Journal of the American Society, 60, 309 (1938)".
  • the calcinations mentioned in the description are calcinations under air unless otherwise indicated.
  • the duration of calcination which is indicated for a temperature corresponds to the duration of the plateau at this temperature.
  • composition of the catalytic system of the invention is characterized first of all by the nature and the proportions of its constituents.
  • it is based on cerium and niobium, these elements being present in the composition generally in the form of oxides. These elements are also present in the specific proportions given above.
  • the cerium oxide of the composition can be stabilized, by "stabilized” here means stabilization of the specific surface, by at least one rare earth other than cerium, in oxide form.
  • This rare earth may be more particularly yttrium, neodymium, lanthanum or praseodymium.
  • the stabilizing rare earth oxide content is generally at most 20%, preferably when the rare earth is lanthanum, more preferably at most 15% and preferably at most 10% by weight.
  • the minimum stabilizing rare earth oxide content is that from which the stabilizing effect is felt and is generally at least 1%, more preferably at least 2%. This content is expressed as rare earth oxide relative to the mass of the stabilized rare earth cerium oxide-oxide complex.
  • the cerium oxide can also be stabilized, always stabilizing in the sense of the specific surface, by an oxide chosen from silica, alumina and titanium oxide.
  • the content of this stabilizing oxide can be at most 10% and more particularly at most 5%.
  • the minimum content may be at least 1%. This content is expressed as stabilizing oxide relative to the weight of the stabilizing cerium oxide-oxide complex.
  • the composition of the catalytic system of the invention comprises three constituent elements, again in the form of oxides, which are cerium, niobium and zirconium.
  • niobium oxide from 2 to 20%
  • the minimum proportion of zirconium oxide in the case of this second embodiment of the invention is preferably at least 10%, more preferably at least 15%.
  • the maximum content of zirconium oxide may more particularly be at most 40% and even more particularly at most 30%.
  • the composition of the catalytic system of the invention also contains at least one oxide of an element M chosen from the group comprising tungsten, molybdenum, iron, copper and silicon. , aluminum, manganese, titanium, vanadium and rare earths other than cerium, with the following proportions by mass:
  • niobium oxide from 2 to 20%
  • oxide of the element M up to 20%
  • This element M can in particular act as a stabilizer of the surface of the mixed oxide of cerium and zirconium or improve the reducibility of the composition.
  • This element M can in particular act as a stabilizer of the surface of the mixed oxide of cerium and zirconium or improve the reducibility of the composition.
  • the maximum proportion of oxide of element M in the case of rare earths and tungsten may more particularly be at most 15% and even more particularly at most 10% by weight of oxide of element M ( rare earth and / or tungsten).
  • the minimum content is at least 1%, plus especially at least 2%, the contents given above being expressed relative to the whole oxide of cerium oxide of zirconium oxide of the element M.
  • the oxide content of the element M may more particularly be at most 10% and even more particularly at most 5%.
  • the minimum content may be at least 1%. This content is expressed as the oxide of the element M with respect to the whole cerium oxide-zirconium oxide and oxide of the element M.
  • the element M may be more particularly ryttrium, lanthanum, praseodymium and neodymium.
  • the proportion of niobium oxide may be more particularly between 3% and 15% and even more particularly between 5% and 10%.
  • the cerium content may be at least 65%, more particularly at least 70% and even more particularly at least 75% and that of niobium between 2 and 12% and more particularly between 2 and 10%.
  • the compositions according to this variant have high acidity and reducibility.
  • the cerium oxide content may be at least 60%, more particularly at least 65%, and that in zirconium oxide in a proportion by mass of at most 25%, more particularly between 15% and 25%.
  • the proportion of niobium may even more particularly be less than 10% and for example between a minimum value which may be 2%, 4% or even 5% and a maximum value strictly less than 10%. 10% for example of at most 9% and more particularly at most 8% and even more particularly at most 7%.
  • This niobium content is expressed in weight of niobium oxide relative to the mass of the entire composition.
  • the compositions of the invention according to the first mode may comprise in addition to oxides of at least one metal M 'selected from the group comprising vanadium, copper, manganese, tungsten and iron in a proportion which may be between 1 and 10%, more particularly between 1% and 5%. %, more preferably between 1 and 3%, proportion expressed by weight of oxide of the metal relative to the entire composition.
  • metal M 'selected from the group comprising vanadium, copper, manganese, tungsten and iron in a proportion which may be between 1 and 10%, more particularly between 1% and 5%. %, more preferably between 1 and 3%, proportion expressed by weight of oxide of the metal relative to the entire composition.
  • compositions of the catalytic system of the invention finally have a sufficiently stable specific surface area, that is to say sufficiently high at high temperature, so that they are used in the field of catalysis.
  • the compositions according to the first embodiment have a specific surface after calcination for 4 hours at 800 ° C. which is at least 15 m 2 / g.
  • this surface under the same conditions, is generally at least 20 m 2 / g.
  • the compositions of the catalytic system of the invention may have an area of up to about 55 m 2 / g still under the same calcination conditions.
  • compositions of the catalytic system of the invention in the case where they contain a quantity of niobium of at least 10%, and according to an advantageous embodiment, may have a specific surface after calcination for 4 hours at 800 ° C. which is at least 35 m 2 / g, more particularly at least 40 m 2 / g.
  • compositions of the catalytic system of the invention may have a surface after calcination at 900 ° C. for 4 hours which is at least 10 m 2 / g. Under the same calcination conditions they can have surface areas of up to about 30 m 2 / g.
  • compositions of the catalyst system of the invention have high acidity which can be measured by a method of TPD analysis, which will be described later, and which is at least 5.10 "2, more preferably at least 6.10" 2 and even more particularly at least 7.10 -2 , this acidity being expressed in ml of ammonia (TPN: normal temperature and pressure) per m 2 (BET measurement) of product
  • TPN normal temperature and pressure
  • BET measurement m 2 of ammonia
  • compositions of the catalytic system of the invention also have significant reducibility properties. These properties can be measured by the programmed temperature reduction measurement method (TPR) which will be described later.
  • TPR programmed temperature reduction measurement method
  • the compositions of the system Catalyst of the invention have a reducibility of at least 15, this reducibility being expressed in ml of hydrogen (TPN) per g of product.
  • compositions may be in the form of a solid solution of the niobium oxides, the stabilizing element in the case of the first embodiment, zirconium and the element M or M 'in the cerium oxide for the other modes.
  • zirconium we then observe in this case the presence of a single phase X-ray diffraction corresponding to the cubic phase of cerium oxide.
  • the stability of this solid solution is such that its presence can be observed on compositions which may have been calcined up to 900 ° C., 4 hours.
  • the invention also relates to the case where the compositions consist essentially of oxides of the abovementioned elements, cerium, niobium and, where appropriate, zirconium and element M or M '.
  • consists essentially it is meant that the composition in question contains only the oxides of the abovementioned elements and that it contains no oxide of another functional element, that is to say capable of having a positive influence on the reducibility and / or the acidity and / or the stability of the composition.
  • the composition may contain elements such as impurities which may notably come from its preparation process, for example raw materials or starting reagents used.
  • compositions of the catalyst system of the invention may be prepared by the known impregnation process.
  • a cerium oxide or a mixed oxide of cerium and zirconium prepared beforehand by a solution comprising a niobium compound, for example an oxalate or an oxalate of niobium and ammonium, is impregnated.
  • a solution is used for the impregnation which contains a compound of this element M or M' in addition to the niobium compound.
  • the element M or M ' may also be present in the starting cerium oxide which is impregnated.
  • the dry impregnation consists in adding to the product to be impregnated a volume of an aqueous solution of the impregnant element which is equal to the pore volume of the solid to be impregnated.
  • Cerium oxide or mixed oxide of cerium and zirconium must have specific surface properties which make it suitable for use in catalysis. Thus this surface must be stable, ie it must have a value sufficient for such use even at high temperature.
  • Such oxides are well known.
  • For the cerium oxides use may be made in particular of those described in patent applications EP 0153227, EP 0388567 and EP 0300852.
  • compositions of the catalyst system of the invention may also be prepared by a second method which will be described below.
  • This process comprises the following steps:
  • the first step of this process involves a suspension of a niobium hydroxide.
  • This suspension can be obtained by reacting a niobium salt, such as a chloride, with a base, such as ammonia, to obtain a niobium hydroxide precipitate.
  • a niobium salt such as potassium or sodium niobate with an acid such as nitric acid to obtain a niobium hydroxide precipitate.
  • This reaction can be done in a mixture of water and alcohol such as ethanol.
  • the hydroxide thus obtained is washed by any known means and is then resuspended in water in the presence of a peptizing agent such as nitric acid.
  • the second step (b1) of the process comprises mixing the suspension of niobium hydroxide with a solution of a cerium salt.
  • This solution may also contain a zirconium salt and also the element M or M 'in the case of the preparation of a composition which further comprises a zirconium oxide or the oxide of this element M or M .
  • These salts can be selected from nitrates, sulphates, acetates, chlorides, cerium-ammoniacal nitrate.
  • zirconium salts By way of example of zirconium salts, mention may be made of zirconium sulphate, zirconyl nitrate or zirconyl chloride. Zirconyl nitrate is most commonly used.
  • oxidizing agent for example hydrogen peroxide
  • the different salts of the solution are present in the stoichiometric proportions necessary to obtain the desired final composition.
  • the mixture formed from the niobium hydroxide suspension and the solution of the salts of the other elements is brought into contact with a basic compound.
  • Hydroxide products can be used as base or basic compound. Mention may be made of alkali or alkaline earth hydroxides. It is also possible to use secondary, tertiary or quaternary amines. However, amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations. We can also mention urea.
  • the basic compound may more particularly be used in the form of a solution.
  • the reaction between the above mixture and the basic compound is preferably continuous in a reactor. This reaction is done by continuously introducing the mixture and the basic compound and continuously withdrawing also the product of the reaction.
  • the precipitate which is obtained is separated from the reaction medium by any conventional solid-liquid separation technique such as, for example, filtration, decantation, spinning or centrifugation.
  • This precipitate can be washed and then calcined at a temperature sufficient to form the oxides, for example at least 500 ° C.
  • compositions of the catalytic system of the invention may be further prepared by a third method which comprises the following steps:
  • a liquid mixture containing a cerium compound and, where appropriate, a zirconium compound and the M or M 'element is prepared for the preparation of the compositions containing the oxide zirconium and / or an oxide of the element M or M ';
  • the cerium compound may be a cerium III or cerium compound
  • the compounds are preferably soluble compounds such as salts. What has been said above for the salts of cerium, zirconium and the element M or M 'also applies here. It is the same for the nature of the basic compound.
  • the different compounds of the starting mixture of the first step are present in the stoichiometric proportions necessary to obtain the desired final composition.
  • the liquid medium of the first stage is usually water.
  • the starting mixture of the first step can be indifferently obtained either from compounds initially in the solid state which will be introduced later in a water tank for example, or even directly from solutions of these compounds and then mixing, in any order, said solutions.
  • the order of introduction of the reagents into the second step (b2) may be arbitrary, the basic compound may be introduced into the mixture or vice versa or the reagents may be introduced simultaneously into the reactor.
  • the addition can be carried out all at once, gradually or continuously, and it is preferably carried out with stirring.
  • This operation can be conducted at a temperature between room temperature (18-25 ° C) and the reflux temperature of the reaction medium, the latter can reach 120 ° C for example. It is preferably conducted at room temperature.
  • the ripening is done by heating the middle.
  • the temperature at which the medium is heated is at least 40 ° C, more preferably at least 60 ° C and even more preferably at least 100 ° C.
  • the medium is thus maintained at a constant temperature for a period of time which is usually at least 30 minutes and more particularly at least 1 hour.
  • the ripening can be carried out at atmospheric pressure or optionally at a higher pressure and at a temperature above 100 ° C. and in particular between 100 ° C. and 150 ° C.
  • the next step (c2) of the process consists in mixing the suspension obtained at the end of the preceding step with a solution of a niobium salt.
  • Niobium salt that may be mentioned niobium chloride, niobate potassium or sodium and especially here niobium oxalate and niobium oxalate and ammonium.
  • This mixture is preferably at room temperature.
  • steps of the process (d2) and (e2) consist in separating the solid from the suspension obtained in the preceding step, optionally washing this solid and then calcining it. These steps proceed in a manner identical to that described above for the second method.
  • the third method may have a variant in which the compound of this element M or M' is not present in the stage ( a2).
  • the compound of the element M or M ' is then added to step (c2) either before or after mixing with the niobium solution or at the same time.
  • compositions of the catalyst system of the invention which are based on the oxides of cerium, niobium and zirconium and optionally an oxide of the element M may also be prepared by a fourth process which will be described below. below.
  • This process comprises the following steps:
  • the first step of the process consists in preparing a mixture in a liquid medium of a zirconium compound and a cerium compound and, where appropriate, of the element M.
  • the various compounds of the mixture are present in the necessary stoichiometric proportions to obtain the desired final composition.
  • the liquid medium is usually water.
  • the compounds are preferably soluble compounds. This can be in particular salts of zirconium, cerium and element M as described above.
  • the mixture can be indifferently obtained either from compounds initially in the solid state which will subsequently be introduced into a water tank for example, or even directly from solutions of these compounds and then mixed in any order of said solutions.
  • the temperature at which this heat treatment, also called thermohydrolysis, is carried out is greater than 100 ° C. It can thus be between 100 ° C. and the critical temperature of the reaction medium, in particular between 100 and 350 ° C., preferably between 100 and 200 ° C.
  • the heating operation can be carried out by introducing the liquid medium into a closed chamber (autoclave-type closed reactor), the necessary pressure then resulting only from the sole heating of the reaction medium (autogenous pressure).
  • autogenous pressure the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa). It is of course also possible to exert an external pressure which is added to that subsequent to heating.
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the treatment is not critical, and can thus vary within wide limits, for example between 1 and 48 hours, preferably between 2 and 24 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • the reaction medium thus obtained is brought to a basic pH. This operation is performed by adding to the medium a base such as for example an ammonia solution.
  • basic pH is meant a pH value greater than 7 and preferably greater than 8.
  • the product as recovered can then be subjected to washes, which are then operated with water or optionally with a basic solution, for example an ammonia solution.
  • the washing can be carried out by resuspension in water of the precipitate and maintenance of the suspension thus obtained at a temperature which can go up to 100 ° C.
  • the washed product can optionally be dried, for example in an oven or by atomization, and this at a temperature which can vary between 80 and
  • the process comprises a ripening (step c'3).
  • the ripening is done under the same conditions as those described above for the third method.
  • the ripening can also be carried out on a suspension obtained after putting the precipitate back into water.
  • the pH of this suspension can be adjusted to a value greater than 7 and preferably greater than 8.
  • the catalyst system used in the process of the invention contains a composition as described above, this composition being generally mixed with a material usually employed in the field of the catalyst system, that is to say a material chosen from among inert materials. thermally.
  • This material may thus be chosen from alumina, titanium oxide, cerium oxide, zirconium oxide, silica, spinels, zeolites, silicates, crystalline silicoaluminium phosphates, calcium phosphates and crystalline aluminum.
  • proportions between the composition and the inert material are those usually used in the technical field concerned herein and are well known to those skilled in the art.
  • these proportions can be between 2% and 20% and more particularly between 2% and 10%, expressed as mass of inert material relative to the inert material and composition.
  • the catalyst system used in the process of the invention may consist of the aforementioned mixture deposited on a substrate. More specifically, the mixture of the composition and the thermally inert material constitutes a coating (wash coat) with catalytic properties and this coating is deposited on a substrate of the type for example metal monolith, for example FerCralloy, or ceramic, for example in cordierite , of silicon carbide, of alumina titanate or of mullite.
  • a coating with catalytic properties and this coating is deposited on a substrate of the type for example metal monolith, for example FerCralloy, or ceramic, for example in cordierite , of silicon carbide, of alumina titanate or of mullite.
  • This coating is obtained by mixing the composition with the thermally inert material so as to form a suspension which can then be deposited on the substrate.
  • the catalyst system used in the process of the invention may be based on the composition as described above, this being used in an extruded form. It can thus be in the form of a monolith having a honeycomb structure or in the form of a monolith of particle filter type (partially closed channels).
  • the composition of the invention can be mixed with additives of known type to facilitate the extrusion and ensure the mechanical strength of the extruded.
  • additives may be chosen in particular from silica, alumina, clays, silicates, titanium sulphate and ceramic fibers, especially in generally used proportions, ie up to about 30% by weight. compared to the entire composition.
  • the invention also relates to a catalyst system which contains a zeolite in addition to the composition based on cerium and niobium oxides.
  • the zeolite may be natural or synthetic and may be of aluminosilicate, aluminophosphate or silicoaluminophosphate type.
  • a treated zeolite is preferably used to improve its hydrothermal stability.
  • treatment of this type may be mentioned (i) the dealumination by steam treatment and acid extraction using an acid or a complexing agent (for example EDTA - ethylenediaminetetraacetic acid); by treatment with an acid and / or a complexing agent; by treatment with a gas stream of SiCl 4 ; (ii) cation exchange using polyvalent cations such as La; and (iii) the use of phosphorus-containing compounds.
  • this zeolite may have an Si / Al atomic ratio of at least 10, more particularly at least 20.
  • the zeolite comprises at least one other element chosen from the group comprising iron, copper or cerium.
  • zeolite comprising at least one other element is meant a zeolite in the structure of which have been added by ion exchange, impregnation or isomorphous substitution one or more metals of the aforementioned type.
  • the metal content may be between about 1% and about 5%, content expressed as the weight of metal element relative to the zeolite.
  • aluminosilicate zeolites which may form part of the composition of the catalytic system of the invention are particularly suitable for those selected from the group comprising zeolites beta, gamma, ZSM 5 and ZSM 34.
  • zeolites those of the type SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
  • the mass percentage of zeolite relative to the total mass of the composition may vary from 10 to 70%, more preferably from 20 to 60% and even more preferably from 30 to 50%.
  • this zeolite variant of the catalytic system it is possible to perform a simple physical mixture of the composition based on the cerium and niobium oxides and the zeolite.
  • the gas treatment method of the invention is a SCR type process whose implementation is well known to those skilled in the art. It may be recalled that this process uses as reducing agent NOx a nitrogen reducing agent which may be ammonia, hydrazine or any suitable precursor of ammonia, such as ammonium carbonate, urea, ammonium carbamate, ammonium hydrogencarbonate, ammonium formate or organometallic compounds containing ammonia. Ammonia or urea may be more particularly chosen.
  • a first reaction can be represented by equation (1)
  • the method can be implemented for the treatment of a gas coming from an internal combustion engine (mobile or stationary), in particular from an engine of a motor vehicle, or gas coming from a gas turbine, from power stations operating on coal or fuel oil or any other industrial installation.
  • an internal combustion engine mobile or stationary
  • gas coming from a gas turbine from power stations operating on coal or fuel oil or any other industrial installation.
  • the method is used for treating the exhaust gas of a lean-burn internal combustion engine or a diesel engine.
  • the process can also be carried out using, in addition to the composition of the invention, another catalyst which is a catalyst for oxidation of the nitric oxide of the gas to nitrogen dioxide.
  • another catalyst which is a catalyst for oxidation of the nitric oxide of the gas to nitrogen dioxide.
  • the process is used in a system in which this oxidation catalyst is disposed upstream of the injection point of the nitrogen reductant in the exhaust gas.
  • This oxidation catalyst may comprise at least one platinum group metal, such as platinum, palladium or rhodium, on a support of the alumina, ceria, zirconia or titanium oxide type, for example, the catalyst / support assembly. being included in a coating (washcoat) on a substrate of the monolithic type in particular.
  • This example relates to the preparation of a composition comprising cerium oxide, zirconium oxide and niobium oxide in the following respective proportions by weight: 64% -26% -10%.
  • a suspension of niobium hydroxide is first prepared by the following method.
  • a solution of ammonia D is then prepared by introducing 1040 g of a solution (D1) of concentrated ammonia (29.8% of NH 3 ) in 6690 g of deionized water (D2).
  • a solution E is prepared by mixing 4250 g of deionized water (E1), 1640 g of a solution (E2) of cerium (III) nitrate (30.32% CeO 2 ), 1065 g of a solution ( E3) of zirconium oxynitrate (20.04% ZrO2), 195 g of a solution (E4) of hydrogen peroxide (50.30% of H2O2), 1935 g of suspension C (4.08% by weight), Nb 2 Os). This solution E is stirred.
  • the suspension is filtered, the solid product obtained is washed and calcined at 800 ° C. for 4 hours.
  • compositions of these examples are prepared in the same manner as in Example 1. Solutions D and E are prepared with the same compounds but with different proportions.
  • Example in the "Example” column for each example the numbers given below the example number correspond to the proportions their respective mass of cerium, zirconium and niobium oxides for the composition of the example in question;
  • D 2 amount of deionized water used in the preparation of the ammonia solution D;
  • This example relates to the preparation of a composition comprising cerium oxide, zirconium oxide and niobium oxide in the following respective proportions by weight: 72% -18% -10%.
  • a solution of niobium oxalate (V) and ammonium is prepared by hot dissolving 192 g of niobium (V) oxalate and ammonium in 300 g of deionized water. This solution is maintained at 50 ° C. The concentration of this solution is 14.2% in Nb 2 Os. This solution is then introduced onto a powder of a mixed oxide of cerium and zirconium (mass composition CeO 2 / ZrO 2 80/20, specific surface after calcination at 800 ° C. 4 hours of 59 m 2 / g) up to saturation of the pore volume.
  • the impregnated powder is then calcined at 800 ° C. (4 hour stage).
  • compositions of these examples are prepared in the same manner as in Example 1. Solutions D and E are prepared with the same compounds but with different proportions.
  • This example relates to the preparation of a composition comprising cerium oxide, zirconium oxide and niobium oxide in the following respective proportions by weight: 63% -27% -10%.
  • a solution of nitrates of zirconium and cerium IV is prepared by mixing 264 g of deionized water, 238 g of cerium (IV) nitrate solution (252 g / L in CeO 2 ) and 97 grams of sodium hydroxide solution. zirconium oxynitrate (261 g / l ZrO 2 ). The concentration of this solution is 120 g / l of oxide.
  • the suspension thus prepared is cured at 95 ° C. for 2 hours. The medium is then allowed to cool.
  • a solution of niobium oxalate (V) is prepared by hot dissolving 44.8 g of niobium oxalate (V) in 130 g of deionized water. This solution is maintained at 50 ° C. The concentration of this solution is 3.82% in Nb 2 O 5 .
  • the suspension is filtered and washed.
  • the cake is then introduced into an oven and calcined at 800 ° C. (4 hour stage).
  • This example concerns the preparation of a composition identical to that of Example 11.
  • a solution of nitrates of zirconium and cerium IV is prepared by mixing 451 g of deionized water, 206 g of cerium nitrate solution (IV) (252 g / l CeO 2) and 75 g of zirconium oxynitrate solution (288 g / l in ⁇ 1 2). The concentration of this solution is 80 g / l of oxide.
  • This solution of nitrates is introduced into an autoclave. The temperature is raised to 100 ° C. The medium is stirred at 100 ° C. for 1 hour. Let cool.
  • the suspension is transferred to a stirred reactor of 1.5 liters.
  • a solution of 6 mol / l of ammonia is introduced under stirring until a pH in the region of 9.5 is obtained.
  • the suspension is cured at 95 ° C for 2 hours.
  • the medium is then allowed to cool.
  • a solution of niobium oxalate (V) is prepared by hot dissolving 39 g of niobium oxalate (V) in 13 g of deionized water. This solution is maintained at 50 ° C. The concentration of this solution is 3.84% The solution of niobium oxalate (V) is introduced in 20 minutes on the cooled suspension. The pH is then raised to pH 9 by adding an ammonia solution (32% NH 3 ).
  • the suspension is filtered and washed.
  • the cake is then introduced into an oven and calcined at 800 ° C. (4 hour stage).
  • This example relates to the preparation of a composition comprising cerium oxide, zirconium oxide and niobium oxide in the following respective proportions by weight: 64% -27% -9%.
  • This example relates to the preparation of a composition comprising cerium oxide, zirconium oxide and niobium oxide in the following respective proportions by weight: 19% -78% -3%.
  • a solution of ammonia D is prepared as in Example 1 and with the same compounds but in the following proportions:
  • a solution E is also prepared as in Example 1 and with the same compounds but in the following proportions:
  • the acidity properties are measured by the TPD method which is described below.
  • the probe molecule used to characterize acid sites in TPD is ammonia.
  • the sample (100 mg) is heated to 500 ° C. under a stream of helium (30 ml / min) according to a rise in temperature of 20 ° C./min and is maintained at this temperature for 30 minutes in order to remove the vapor. water and avoid clogging the pores. Finally the sample is cooled to 100 ° C under a stream of helium at 10 ° C / min.
  • the sample is then subjected to a flux (30 ml / min) of ammonia (5% vol of NH 3 in helium at 100 ° C. at atmospheric pressure for 30 minutes (until saturation). subjected for a minimum of 1 hour to a stream of helium (30 ml / min).
  • TPD is conducted by raising the temperature by 10 ° C / min to 700 ° C.
  • the concentration of the desorbed species that is to say ammonia
  • the ammonia concentration during the desorption phase is deduced by calibrating the variation of the thermal conductivity of the gas flow measured at the outlet of the cell using a thermal conductivity detector (TCD).
  • TCD thermal conductivity detector
  • Table 3 the amounts of ammonia are expressed in ml (normal conditions of temperature and pressure) / m 2 (area at 800 ° C) of composition. The higher the amount of ammonia, the higher the surface acidity of the product.
  • the reducibility properties are measured by performing a programmed temperature reduction (TPR) on a Micromeritics Autochem 2. This meter measures the hydrogen consumption of a composition as a function of temperature.
  • TPR programmed temperature reduction
  • the experimental protocol consists in weighing 200 mg of the sample in a previously tared container. The sample is then introduced into a quartz cell containing in the bottom of the quartz wool. The sample is finally covered with quartz wool and positioned in the oven of the measuring device.
  • the temperature program is as follows:
  • thermocouple placed in the quartz cell above the sample. Hydrogen consumption during the reduction phase is deduced by calibrating the variation of the thermal conductivity of the gas stream measured at the outlet of the cell using a thermal conductivity detector (TCD).
  • TCD thermal conductivity detector
  • the hydrogen consumption is measured between 30 ° C and 900 ° C. It is reported in Table 1 in ml (normal conditions of temperature and pressure) of H 2 per g of product. The higher this hydrogen consumption, the better the properties of reducibility of the product (redox properties). Table 3
  • This example describes the catalytic properties of the compositions of the preceding examples in SCR catalysis. These properties are evaluated under the following conditions.
  • compositions used are those directly derived from the syntheses described in the examples previous, that is to say compositions that have been calcined at 800 ° C 4 hours.
  • compositions used are those of the preceding examples but after hydrothermal aging.
  • This hydrothermal aging consists of continuously circulating a synthetic gas mixture of air containing 10% by volume of H 2 O in a reactor containing the composition. During the circulation of the gas, the temperature of the reactor is brought to 750 ° C. for 16 hours to overcome it.
  • compositions are then evaluated in catalytic test.
  • the composition (90 mg) is passed over a synthetic gaseous mixture (30 L / h) representative of the catalysis process (Table 4).
  • the NOx conversion is monitored as a function of the temperature of the gas mixture.
  • Example No. 14B is a comparative example with a composition based on vanadium oxide on a support based on titanium oxide and tungsten. The proportions are in mass.
  • Example No. 14C is a comparative example with an aluminosilicate zeolite comprising iron. The proportions are in mass.
  • Example No. 14D is a comparative example with an aluminosilicate zeolite comprising copper. The proportions are in mass. It appears from Table 5 that the products according to the invention are more efficient than the comparative products, especially after aging.
  • This example illustrates the catalytic properties of the compositions according to the invention when they are used in a coating on a particle filter or else used in extruded form as described above.
  • compositions used are compositions having undergone the hydrothermal treatment described above.
  • compositions according to Examples 1, 14C and 14D are mixed in a mortar with a model soot (Carbon Black Cabot Eltex) in a mass proportion of 20% soot with 80% composition.
  • model soot Carbon Black Cabot Eltex
  • Thermogravimetric analysis is performed by circulating a flow of air (1 l / h) with a rise in ambient temperature at 900 ° C over 20 mg of the mixture prepared above.
  • the mass loss of the sample is measured between 250 ° C and 900 ° C. It is considered that the loss of mass in this temperature range corresponds to the oxidation of the soot.
  • the product of the invention makes it possible to reduce the ignition temperature by 90 ° C. and the light-off temperature by 70 ° C. relative to a combustion of soot without catalyst.
  • the products of the comparative examples have no catalytic effect on the oxidation of soot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

L'invention concerne un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx) dans lequel on réalise une réaction de réduction des NOx par un agent réducteur azoté et il est caractérisé en ce qu'on utilise comme catalyseur de cette réaction de réduction un système catalytique contenant une composition à base d'oxyde de cérium et qui comprend de l'oxyde de niobium dans une proportion en masse comprise entre 2 et 20%.

Description

PROCEDE DE TRAITEMENT D'UN GAZ CONTENANT DES OXYDES D'AZOTE (NOX) UTILISANT COMME CATALYSEUR UNE COMPOSITION A
BASE D'OXYDE DE CERIUM ET D'OXYDE DE NIOBIUM
La présente invention concerne un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx) utilisant comme catalyseur une composition à base d'oxyde de cérium et d'oxyde de niobium.
On sait que les moteurs des véhicules automobiles émettent des gaz contenant des oxydes d'azote (NOx) qui sont nocifs pour l'environnement. Il est donc nécessaire de traiter ces oxydes afin de les transformer en azote.
Une méthode connue pour ce traitement est le procédé SCR dans lequel la réduction des NOx est effectuée par de l'ammoniac ou un précurseur de l'ammoniac comme l'urée.
Le procédé SCR permet un traitement efficace des gaz mais néanmoins son efficacité à basse température reste à améliorer. Ainsi, les systèmes catalytiques utilisés actuellement pour la mise en œuvre de ce procédé ne sont souvent efficaces que pour des températures supérieures à 250°C. Il serait donc intéressant de disposer de catalyseurs qui puissent présenter une activité significative à des températures de 250°C ou inférieures.
Enfin, on cherche aussi des catalyseurs dont la résistance au vieillissement est améliorée.
L'objet de l'invention est donc de fournir des catalyseurs plus efficaces pour la catalyse SCR.
Dans ce but, le procédé de l'invention est un procédé de traitement d'un gaz contenant des oxydes d'azote (NOx) dans lequel on réalise une réaction de réduction des NOx par un agent réducteur azoté et il est caractérisé en ce qu'on utilise comme catalyseur de cette réaction de réduction un système catalytique contenant une composition à base d'oxyde de cérium et qui comprend de l'oxyde de niobium avec les proportions suivantes en masse : - oxyde de niobium de 2 à 20%;
le complément en oxyde de cérium.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. Pour la présente description on entend par terre rare les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
On entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Society, 60, 309 (1938)".
Les valeurs de surface spécifiques qui sont indiquées pour une température et une durée données correspondent, sauf indication contraire, à des calcinations sous air à un palier à cette température et sur la durée indiquée.
Les calcinations mentionnées dans la description sont des calcinations sous air sauf indication contraire. La durée de calcination qui est indiquée pour une température correspond à la durée du palier à cette température.
Les teneurs ou proportions sont données en masse et en oxyde
(notamment CeO2, Ln2O3, Ln désignant une terre rare trivalente, Pr6On dans le cas particulier du praséodyme, Nb2Os dans le cas du niobium) sauf indication contraire.
On précise aussi pour la suite de la description que, sauf indication contraire, dans les fourchettes de valeurs qui sont données, les valeurs aux bornes sont incluses.
La composition du système catalytique de l'invention se caractérise tout d'abord par la nature et les proportions de ses constituants. Ainsi, et selon un premier mode de réalisation, elle est à base de cérium et de niobium, ces éléments étant présents dans la composition généralement sous la forme d'oxydes. Ces éléments sont par ailleurs présents dans les proportions spécifiques qui ont été données plus haut.
L'oxyde de cérium de la composition peut être stabilisé, par « stabilisé » on entend ici stabilisation de la surface spécifique, par au moins une terre rare autre que le cérium, sous forme oxyde. Cette terre rare peut être plus particulièrement l'yttrium, le néodyme, le lanthane ou le praséodyme. La teneur en oxyde de terre rare stabilisant est généralement d'au plus 20%, de préférence lorsque la terre rare est le lanthane, plus particulièrement d'au plus 15% et de préférence d'au plus 10% en masse. La teneur minimale en oxyde de terre rare stabilisant est celle à partir de laquelle l'effet stabilisant se fait sentir et elle est généralement d'au moins 1 %, plus particulièrement d'au moins 2%. Cette teneur est exprimée en oxyde de la terre rare par rapport à la masse de l'ensemble oxyde de cérium-oxyde de terre rare stabilisant. L'oxyde de cérium peut être stabilisé aussi, stabilisation toujours au sens de la surface spécifique, par un oxyde choisi parmi la silice, l'alumine et l'oxyde de titane. La teneur en cet oxyde stabilisant peut être d'au plus 10% et plus particulièrement d'au plus 5%. La teneur minimale peut être d'au moins 1 %. Cette teneur est exprimée en oxyde de stabilisant par rapport à la masse de l'ensemble oxyde de cérium-oxyde stabilisant.
Selon un second mode de réalisation de l'invention, la composition du système catalytique de l'invention comprend trois éléments constitutifs, là aussi sous forme d'oxydes, qui sont le cérium, le niobium et le zirconium.
Les proportions respectives de ces éléments sont alors les suivantes :
- oxyde de cérium : au moins 50%;
- oxyde de niobium : de 2 à 20%;
- oxyde de zirconium : jusqu'à 48%.
La proportion minimale en oxyde de zirconium dans le cas de ce second mode de réalisation de l'invention est de préférence d'au moins 10%, plus particulièrement d'au moins 15%. La teneur maximale en oxyde de zirconium peut être plus particulièrement d'au plus 40% et encore plus particulièrement d'au plus 30%.
Selon un troisième mode de réalisation de l'invention la composition du système catalytique de l'invention contient en outre au moins un oxyde d'un élément M choisi dans le groupe comprenant le tungstène, le molybdène, le fer, le cuivre, le silicium, l'aluminium, le manganèse, le titane, le vanadium et les terres rares autres que le cérium, avec les proportions suivantes en masse :
- oxyde de cérium : au moins 50%;
- oxyde de niobium : de 2 à 20%;
- oxyde de l'élément M : jusqu'à 20%;
- le complément en oxyde de zirconium.
Cet élément M peut notamment jouer le rôle de stabilisant de la surface de l'oxyde mixte de cérium et de zirconium ou encore améliorer la réductibilité de la composition. Pour la suite de la description on doit comprendre que, si par souci de simplification on ne mentionne qu'un élément M, il est bien entendu que l'invention s'applique au cas où les compositions comprennent plusieurs éléments M.
La proportion maximale en oxyde de l'élément M dans le cas des terres rares et du tungstène peut être plus particulièrement d'au plus 15% et encore plus particulièrement d'au plus 10% en masse d'oxyde de l'élément M (terre rare et/ou tungstène). La teneur minimale est d'au moins 1 %, plus particulièrement d'au moins 2%, les teneurs données ci-dessus étant exprimées par rapport à l'ensemble oxyde de cérium-oxyde de zirconium- oxyde de l'élément M.
Dans le cas où M n'est ni une terre rare ni le tungstène, la teneur en l'oxyde de l'élément M peut être plus particulièrement d'au plus 10% et encore plus particulièrement d'au plus 5%. La teneur minimale peut être d'au moins 1 %. Cette teneur est exprimée en oxyde de l'élément M par rapport à l'ensemble oxyde de cérium-oxyde de zirconium et oxyde de l'élément M.
Dans le cas des terres rares, l'élément M peut être plus particulièrement ryttrium, le lanthane, le praséodyme et le néodyme.
Pour les différents modes de réalisation décrits ci-dessus, la proportion en oxyde de niobium peut être comprise plus particulièrement entre 3% et 15% et encore plus particulièrement entre 5% et 10%.
Dans le cas des compositions selon le second ou le troisième mode et selon une variante avantageuse, la teneur en cérium peut être d'au moins 65%, plus particulièrement d'au moins 70% et encore plus particulièrement d'au moins 75% et celle en niobium comprise entre 2 et 12% et plus particulièrement entre 2 et 10%. Les compositions selon cette variante présentent une acidité et une réductibilité élevées.
Dans le cas des compositions selon le second ou le troisième mode et selon une autre variante avantageuse, la teneur en oxyde de cérium peut être d'au moins d'au moins 60%, plus particulièrement d'au moins 65%, et celle en oxyde de zirconium dans une proportion en masse d'au plus 25%, plus particulièrement comprise entre 15% et 25%.
Toujours pour ces différents modes de réalisation la proportion en niobium peut être encore plus particulièrement inférieure à 10% et par exemple comprise entre une valeur minimale qui peut être de 2%, de 4% ou encore de 5% et une valeur maximale strictement inférieure à 10% par exemple d'au plus 9% et plus particulièrement d'au plus 8% et encore plus particulièrement d'au plus 7%. Cette teneur en niobium est exprimée en masse d'oxyde de niobium par rapport à la masse de l'ensemble de la composition. Les valeurs pour les proportions en niobium qui viennent d'être données, notamment celle strictement inférieure à 10% s'appliquent aux variantes avantageuses selon le second ou le troisième mode qui ont été décrites précédemment.
Selon une variante de l'invention, les compositions de l'invention selon le premeir mode, c'est-à-dire les compositions à base d'oxyde de cérium et d'oxyde de niobium et celles selon le deuxième mode peuvent comprendre en outre des oxydes d'au moins un métal M' choisi dans le groupe comprenant le vanadium, le cuivre, le manganèse, le tungstène et le fer dans une proportion qui peut être comprise entre 1 et 10%, plus particulièrement entre 1 % et 5%, plus préférentiellement entre 1 et 3%, proportion exprimée en poids d'oxyde du métal par rapport à l'ensemble de la composition. Ces compositions selon cette variante peuvent présenter une activité catalytique améliorée.
Les compositions du système catalytique de l'invention présentent enfin une surface spécifique suffisamment stable, c'est-à-dire suffisamment élevée à haute température, pour qu'elles soient utilisables dans le domaine de la catalyse.
Ainsi, généralement, les compositions selon le premier mode présentent une surface spécifique après calcination 4 heures à 800°C qui est d'au moins 15 m2/g. Pour les compositions selon le second et le troisième mode de réalisation cette surface, dans les mêmes conditions, est généralement d'au moins 20 m2/g. Pour les trois modes, les compositions du système catalytique de l'invention peuvent présenter une surface allant jusqu'à environ 55 m2/g toujours dans les mêmes conditions de calcination.
Les compositions du système catalytique de l'invention, dans le cas où elles contiennent une quantité de niobium d'au moins 10%, et selon un mode de réalisation avantageux, peuvent présenter une surface spécifique après calcination 4 heures à 800°C qui est d'au moins 35 m2/g, plus particulièrement d'au moins 40 m2/g.
Toujours pour les trois modes, les compositions du système catalytique de l'invention peuvent présenter une surface après calcination à 900°C 4 heures qui est d'au moins 10 m2/g. Dans les mêmes conditions de calcination elles peuvent avoir des surfaces surface allant jusqu'à environ 30 m2/g.
Les compositions du système catalytique de l'invention présentent une acidité élevée qui peut être mesurée par une méthode d'analyse TPD, qui sera décrite plus loin, et qui est d'au moins 5.10"2, plus particulièrement d'au moins 6.10"2 et encore plus particulièrement d'au moins 7.10"2, cette acidité étant exprimée en ml d'ammoniac (TPN : température et pression normales) par m2 (mesure BET) de produit. La surface prise en compte ici est la valeur exprimée en m2 de la surface spécifique du produit après calcination à 800°C 4 heures. Des acidités d'au moins environ 9,5.10"2 peuvent être obtenues.
Les compositions du système catalytique de l'invention présentent aussi des propriétés de réductibilité importantes. Ces propriétés peuvent être mesurées par la méthode de mesure de réduction en température programmée (TPR) qui sera décrite plus loin. Les compositions du système catalytique de l'invention présentent une réductibilité d'au moins 15, cette réductibilité étant exprimée en ml d'hydrogène (TPN) par g de produit.
Les compositions peuvent se présenter sous la forme d'une solution solide des oxydes du niobium, de l'élément stabilisant dans le cas du premier mode de réalisation, du zirconium et de l'élément M ou M' dans l'oxyde de cérium pour les autres modes. On observe alors dans ce cas la présence d'une phase unique en diffraction des rayons X correspondant à la phase cubique de l'oxyde de cérium. En général la stabilité de cette solution solide est telle que l'on peut observer sa présence sur des compositions qui peuvent avoir subi des calcinations jusqu'à des températures de 900°C, 4 heures.
L'invention concerne aussi le cas où les compositions consistent essentiellement en oxydes des éléments précités, cérium, niobium et, le cas échéant zirconium et élément M ou M'. Par « consiste essentiellement », on entend que la composition considérée ne contient que les oxydes des éléments précités et qu'il ne contient pas d'oxyde d'un autre élément fonctionnel, c'est à dire susceptible d'avoir une influence positive sur la réductibilité et/ou l'acidité et/ou la stabilité de la composition. Par contre, la composition peut contenir des éléments tels que des impuretés pouvant notamment provenir de son procédé de préparation, par exemple des matières premières ou des réactifs de départ utilisés.
Les compositions du système catalytique de l'invention peuvent être préparées par le procédé connu d'imprégnation. Ainsi, on imprègne un oxyde de cérium ou un oxyde mixte de cérium et de zirconium préalablement préparé par une solution comprenant un composé de niobium par exemple un oxalate ou un oxalate de niobium et d'ammonium. Dans le cas de la préparation d'une composition qui comprend en outre un oxyde de l'élément M ou M' on utilise pour l'imprégnation une solution qui contient un composé de cet élément M ou M' en plus du composé de niobium. L'élément M ou M' peut aussi être présent dans l'oxyde de cérium de départ que l'on imprègne.
On utilise plus particulièrement l'imprégnation à sec. L'imprégnation à sec consiste à ajouter au produit à imprégner un volume d'une solution aqueuse de l'élément imprégnant qui est égal au volume poreux du solide à imprégner.
L'oxyde de cérium ou l'oxyde mixte de cérium et de zirconium doit présenter des propriétés de surface spécifique qui le rendent apte à une utilisation en catalyse. Ainsi cette surface doit être stable, c'est à dire qu'elle doit présenter une valeur suffisante pour une telle utilisation même à température élevée. De tels oxydes sont bien connus. Pour les oxydes de cérium on peut utiliser notamment ceux décrits dans les demandes de brevet EP 0153227, EP 0388567 et EP 0300852. Pour les oxydes de cérium stabilisés par un élément comme les terres rares, le silicium, l'aluminium et le fer on peut utiliser les produits décrits dans EP 2160357, EP 547924, EP 588691 et EP 207857. Pour les oxydes mixtes de cérium et de zirconium avec éventuellement un élément M, notamment dans le cas où M est une terre rare, on peut mentionner comme produits qui conviennent pour la présente invention ceux décrits dans les demandes de brevet EP 605274, EP 1991354, EP 1660406, EP 1603657, EP 0906244 et EP 0735984. Pour la mise en œuvre de la présente invention, on pourra donc, si nécessaire, se référer à l'ensemble de la description des demandes de brevet mentionnées ci-dessus.
Les compositions du système catalytique de l'invention peuvent être préparées aussi par un second procédé qui va être décrit ci-dessous.
Ce procédé comprend les étapes suivantes :
- (a1 ) on mélange une suspension d'un hydroxyde de niobium avec une solution comprenant des sels de cérium et, le cas échéant de zirconium et de l'élément M;
- (b1 ) on met en présence le mélange ainsi formé avec un composé basique ce par quoi on obtient un précipité;
- (c1 ) on sépare le précipité du milieu réactionnel et on le calcine.
La première étape de ce procédé met en œuvre une suspension d'un hydroxyde de niobium. Cette suspension peut être obtenue en faisant réagir un sel de niobium, comme un chlorure, avec une base, comme de l'ammoniaque, pour obtenir un précipité d'hydroxyde de niobium. On peut aussi obtenir cette suspension par réaction d'un sel de niobium comme le niobiate de potassium ou de sodium avec un acide comme l'acide nitrique pour obtenir un précipité d'hydroxyde de niobium.
Cette réaction peut se faire dans un mélange d'eau et d'alcool comme de l'éthanol. L'hydroxyde ainsi obtenu est lavé par tout moyen connu et est ensuite remis en suspension dans de l'eau en présence d'un agent peptisant comme l'acide nitrique.
La deuxième étape (b1 ) du procédé consiste à mélanger la suspension d'hydroxyde de niobium avec une solution d'un sel de cérium. Cette solution peut contenir en outre un sel de zirconium et aussi de l'élément M ou M' dans le cas de la préparation d'une composition qui comprend en outre un oxyde de zirconium ou encore de l'oxyde de cet élément M ou M'. Ces sels peuvent être choisis parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri-ammoniacal.
A titre d'exemple de sels de zirconium, on peut ainsi citer le sulfate de zirconium, le nitrate de zirconyle ou le chlorure de zirconyle. Le nitrate de zirconyle est utilisé le plus généralement.
Lorsque l'on utilise un sel de cérium sous forme III, il est préférable d'introduire dans la solution des sels un agent oxydant, par exemple de l'eau oxygénée.
Les différents sels de la solution sont présents dans les proportions stœchiométriques nécessaires pour obtenir la composition finale désirée.
Le mélange formé à partir de la suspension d'hydroxyde de niobium et de la solution des sels des autres éléments est mis en présence d'un composé basique.
On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée. Le composé basique peut être plus particulièrement utilisé sous forme d'une solution.
La réaction entre le mélange précité et le composé basique se fait de préférence en continu dans un réacteur. Cette réaction se fait donc en introduisant en continu le mélange et le composé basique et en soutirant en continu aussi le produit de la réaction.
Le précipité qui est obtenu est séparé du milieu réactionnel par toute technique classique de séparation solide-liquide telle que par exemple filtration, décantation, essorage ou centrifugation. Ce précipité peut être lavé puis calciné à une température suffisante pour former les oxydes par exemple d'au moins 500°C.
Les compositions du système catalytique de l'invention peuvent être encore préparées par un troisième procédé qui comporte les étapes suivantes :
- (a2) dans une première étape on prépare un mélange en milieu liquide contenant un composé du cérium et, le cas échéant, un composé de zirconium et de l'élément M ou M' pour la préparation des compositions qui contiennent de l'oxyde de zirconium et/ou un oxyde de l'élément M ou M' ;
- (b2) on met en présence ledit mélange et un composé basique, ce par quoi on obtient une suspension contenant un précipité; - (c2) on mélange cette suspension avec une solution d'un sel de niobium;
- (d2) on sépare le solide du milieu liquide;
- (e2) on calcine ledit solide.
Le composé de cérium peut être un composé de cérium III ou de cérium
IV. Les composés sont de préférence des composés solubles tels que des sels. Ce qui a été dit plus haut pour les sels de cérium, de zirconium et de l'élément M ou M' s'applique aussi ici. Il en est de même pour la nature du composé basique. Les différents composés du mélange de départ de la première étape sont présents dans les proportions stœchiométriques nécessaires pour obtenir la composition finale désirée.
Le milieu liquide de la première étape est généralement l'eau.
Le mélange de départ de la première étape peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, des dites solutions.
L'ordre d'introduction des réactifs dans la deuxième étape (b2) peut être quelconque, le composé basique pouvant être introduit dans le mélange ou inversement ou encore les réactifs pouvant être introduits simultanément dans le réacteur.
L'addition peut être effectuée en une seule fois, graduellement ou en continu, et elle est de préférence réalisée sous agitation. Cette opération peut être conduite à une température comprise entre la température ambiante (18 - 25°C) et la température de reflux du milieu réactionnel, cette dernière pouvant atteindre 120°C par exemple. Elle est de préférence conduite à température ambiante.
Comme dans le cas du premier procédé, on peut noter qu'il est possible, notamment dans le cas de l'utilisation d'un composé de cérium III, d'ajouter soit au mélange de départ, soit lors de l'introduction du composé basique un agent oxydant tel que l'eau oxygénée.
A la fin de la deuxième étape (b2) d'addition du composé basique, on peut éventuellement maintenir encore le milieu de réaction sous agitation pendant quelque temps, et ceci afin de parfaire la précipitation.
II est aussi possible, à ce stade du procédé d'effectuer un mûrissement.
Celui-ci peut être réalisé directement sur le milieu réactionnel obtenu après la mise en présence avec le composé basique ou sur une suspension obtenue après remise dans l'eau du précipité. Le mûrissement se fait en chauffant le milieu. La température à laquelle est chauffé le milieu est d'au moins 40°C, plus particulièrement d'au moins 60°C et encore plus particulièrement d'au moins 100°C. Le milieu est maintenu ainsi à une température constante pendant une durée qui est habituellement d'au moins 30 minutes et plus particulièrement d'au moins 1 heure. Le mûrissement peut se faire à la pression atmosphérique ou éventuellement à une pression plus élevée et à une température supérieure à 100°C et comprise notamment entre 100°C et 150°C.
L'étape suivante (c2) du procédé consiste à mélanger la suspension obtenue à l'issue de l'étape précédente avec une solution d'un sel de niobium. Comme sel de niobium on peut citer le chlorure de niobium, le niobiate de potassium ou de sodium et tout particulièrement ici l'oxalate de niobium et l'oxalate de niobium et d'ammonium.
Ce mélange se fait de préférence à température ambiante.
Les étapes suivantes du procédé (d2) et (e2) consistent à séparer le solide de la suspension obtenue à l'étape précédente, à laver éventuellement ce solide puis à le calciner. Ces étapes se déroulent d'une manière identique à ce qui a été décrit plus haut pour le second procédé.
Dans le cas de la préparation de compositions qui contiennent de l'oxyde de l'élément M ou M' le troisième procédé peut présenter une variante dans laquelle le composé de cet élément M ou M' n'est pas présent dans l'étape (a2). Le composé de l'élément M ou M' est alors apporté à l'étape (c2) soit avant soit après le mélange avec la solution de niobium ou encore en même temps.
Enfin, les compositions du système catalytique de l'invention qui sont à base des oxydes de cérium, de niobium et de zirconium et éventuellement d'un oxyde de l'élément M peuvent être préparées aussi par un quatrième procédé qui va être décrit ci-dessous.
Ce procédé comporte les étapes suivantes :
- (a3) on prépare un mélange en milieu liquide contenant un composé du zirconium et un composé du cérium et, le cas échéant, de l'élément M;
- (b3) on chauffe ledit mélange à une température supérieure à 100°C;
- (c3) on amène le milieu réactionnel obtenu à l'issue du chauffage à un pH basique;
- (c'3) on effectue éventuellement un mûrissement du milieu réactionnel;
- (d3) on mélange ce milieu avec une solution d'un sel de niobium;
- (e3) on sépare le solide du milieu liquide;
- (f3) on calcine ledit solide. La première étape du procédé consiste à préparer un mélange en milieu liquide d'un composé du zirconium et d'un composé du cérium et, le cas échéant, de l'élément M. Les différents composés du mélange sont présents dans les proportions stœchiométriques nécessaires pour obtenir la composition finale désirée.
Le milieu liquide est généralement l'eau.
Les composés sont de préférence des composés solubles. Ce peut être notamment des sels de zirconium, de cérium et de l'élément M tels que décrits plus haut.
Le mélange peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, desdites solutions.
Le mélange initial étant ainsi obtenu, on procède ensuite, conformément à la deuxième étape (b3) de ce quatrième procédé, à son chauffage.
La température à laquelle est mené ce traitement thermique, aussi appelé thermohydrolyse, est supérieure à 100°C. Elle peut ainsi être comprise entre 100°C et la température critique du milieu réactionnel, en particulier entre 100 et 350°C, de préférence entre 100 et 200°C.
L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave), la pression nécessaire ne résultant alors que du seul chauffage du milieu réactionnel (pression autogène). Dans les conditions de températures données ci-dessus, et en milieux aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). Il est bien entendu également possible d'exercer une pression extérieure qui s'ajoute alors à celle consécutive au chauffage.
On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du traitement n'est pas critique, et peut ainsi varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif. A l'issue de cette deuxième étape, on amène le milieu réactionnel ainsi obtenu à un pH basique. Cette opération est effectuée en ajoutant au milieu une base telle que par exemple une solution d'ammoniaque.
Par pH basique on entend une valeur du pH supérieure à 7 et de préférence supérieure à 8.
Bien que cette variante ne soit pas préférée, il est possible d'introduire au mélange réactionnel obtenu à l'issue du chauffage, notamment au moment de l'addition de la base, l'élément M notamment sous la forme qui a été décrite plus haut.
A l'issue de l'étape de chauffage, on récupère un précipité solide qui peut être séparé de son milieu comme décrit précédemment.
Le produit tel que récupéré peut ensuite être soumis à des lavages, qui sont alors opérés à l'eau ou éventuellement avec une solution basique, par exemple une solution d'ammoniaque. Le lavage peut être effectué par remise en suspension dans l'eau du précipité et maintien de la suspension ainsi obtenue à une température qui peut aller jusqu'à 100°C. Pour éliminer l'eau résiduelle, le produit lavé peut éventuellement être séché, par exemple à l'étuve ou par atomisation, et ceci à une température qui peut varier entre 80 et
300°C, de préférence entre 100 et 200°C.
Selon une variante particulière de l'invention, le procédé comprend un mûrissement (étape c'3).
Le mûrissement se fait dans les mêmes conditions que celles qui ont été décrites plus haut pour le troisième procédé.
Le mûrissement peut aussi s'effectuer sur une suspension obtenue après remise dans l'eau du précipité. On peut ajuster le pH de cette suspension à une valeur supérieure à 7 et de préférence supérieure à 8.
Il est possible de faire plusieurs mûrissements. Ainsi, on peut remettre en suspension dans l'eau, le précipité obtenu après l'étape de mûrissement et éventuellement un lavage puis effectuer un autre mûrissement du milieu ainsi obtenu. Cet autre mûrissement se fait dans les mêmes conditions que celles qui ont été décrites pour le premier. Bien entendu, cette opération peut être répétée plusieurs fois.
Les étapes suivantes de ce quatrième procédé (d3) à (f3) c'est-à-dire le mélange avec la solution de sel de niobium, la séparation solide/liquide et la calcination, se font de la même manière que pour les étapes correspondantes du second et du troisième procédé. Ce qui a été décrit plus haut pour ces étapes s'applique donc ici. Le système catalytique utilisé dans le procédé de l'invention contient une composition telle que décrite précédemment, cette composition étant généralement mélangée avec un matériau employé habituellement dans le domaine de la formulation de catalyseur, c'est à dire un matériau choisi parmi les matériaux inertes thermiquement. Ce matériau peut être ainsi choisi parmi l'alumine, l'oxyde de titane, l'oxyde de cérium, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Les proportions entre la composition et le matériau inerte sont celles utilisées habituellement dans le domaine technique concerné ici et elles sont bien connues de l'homme du métier. A titre d'exemple, ces proportions peuvent être comprises entre 2% et 20% et plus particulièrement entre 2% et 10%, exprimées en masse de matériau inerte par rapport à l'ensemble matériau inerte et composition.
Généralement le système catalytique utilisé dans le procédé de l'invention peut être constitué par le mélange précité déposé sur un substrat. Plus précisément, le mélange de la composition et du matériau inerte thermiquement constitue un revêtement (wash coat) à propriétés catalytiques et ce revêtement est déposé sur un substrat du type par exemple monolithe métallique, par exemple FerCralloy, ou en céramique, par exemple en cordiérite, en carbure de silicium, en titanate d'alumine ou en mullite.
Ce revêtement est obtenu par mélange de la composition avec le matériau inerte thermiquement de manière à former une suspension qui peut être ensuite déposée sur le substrat.
Selon un autre mode de réalisation le système catalytique utilisé dans le procédé de l'invention peut être à base de la composition telle que décrite précédemment, celle-ci étant utilisée sous une forme extrudée. Elle peut se présenter ainsi sous la forme d'un monolithe ayant une structure de nid d'abeille ou sous la forme d'un monolithe de type filtre à particules (canaux en partie fermés). Dans ces deux cas la composition de l'invention peut être mélangée à des additifs de type connu pour faciliter l'extrusion et garantir la tenue mécanique de l'extrudé. De tels additifs peuvent être choisis notamment parmi la silice, l'alumine, les argiles, les silicates, le sulfate de titane, les fibres céramiques, notamment dans des proportions utilisées généralement, c'est à dire jusqu'à environ 30% en masse par rapport à l'ensemble de la composition.
L'invention concerne aussi un système catalytique qui contient une zéolithe en plus de la composition à base des oxydes de cérium et de niobium. La zéolithe peut être naturelle ou synthétique et elle peut être de type aluminosilicate, aluminophosphate ou silicoaluminophosphate.
On utilise de préférence une zéolithe ayant subi un traitement en vue d'améliorer sa stabilité hydrothermale. Comme exemple de traitement de ce type on peut mentionner (i) la déalumination par traitement à la vapeur et extraction acide utilisant un acide ou un agent complexant (par exemple EDTA - acide éthylènediaminetétracétique); par traitement avec un acide et/ou un complexant; par traitement par un courant gazeux de SiCI4; (ii) l'échange cationique par utilisation des cations polyvalents tels que La; et (iii) l'utilisation de composés contenant du phosphore.
Selon un autre mode de réalisation particulier de l'invention et dans le cas d'une zéolithe de type aluminosilicate, cette zéolithe peut présenter un rapport atomique Si/AI d'au moins 10, plus particulièrement d'au moins 20.
Selon un mode de réalisation plus particulier de l'invention, la zéolithe comprend au moins un autre élément choisi dans le groupe comprenant le fer, le cuivre ou le cérium.
Par zéolithe comprenant au moins un autre élément on entend une zéolithe dans la structure de laquelle ont été ajoutés par échange ionique, imprégnation ou substitution isomorphe un ou plusieurs métaux du type précité.
Dans ce mode de réalisation, la teneur en métal peut être comprise entre environ 1 % et environ 5%, teneur exprimée en masse d'élément métallique par rapport à la zéolithe.
On peut mentionner plus particulièrement comme zéolithes du type aluminosilicate pouvant rentrer dans la constitution de la composition du système catalytique de l'invention celles choisies dans le groupe comprenant les zéolithes bêta, gamma, ZSM 5 et ZSM 34. Pour les zéolithes de type aluminophosphate, on peut mentionner celles du type SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
Dans le système catalytique de l'invention le pourcentage massique de zéolithe par rapport à la masse totale de la composition peut varier de 10 à 70%, plus préférentiellement de 20 à 60% et encore plus préférentiellement de 30 à 50%.
Pour la mise en œuvre de cette variante avec zéolithe du système catalytique on peut effectuer un simple mélange physique de la composition à base des oxydes de cérium et de niobium et de la zéolithe.
Le procédé de traitement de gaz de l'invention est un procédé de type SCR dont la mise en œuvre est bien connue pour l'homme du métier. On peut rappeler que ce procédé utilise comme réducteur des NOx un agent réducteur azoté qui peut être l'ammoniac, l'hydrazine ou n'importe quel précurseur approprié de l'ammoniac, tel que le carbonate d'ammonium, l'urée, le carbamate d'ammonium, l'hydrogèno-carbonate d'ammonium, le formiate d'ammonium ou encore les composés organométalliques contenant de l'ammoniac. L'ammoniac ou l'urée peuvent être plus particulièrement choisis.
Plusieurs réactions chimiques peuvent être mises en œuvre dans le procédé SCR pour la réduction des NOx en azote élémentaire. On donne ci- dessous et à titre d'exemple seulement certaines des réactions susceptibles de se dérouler, l'ammoniac étant le réducteur.
Une première réaction peut être représentée par l'équation (1 )
4NO + 4NH3 + O2→ 4N2 + 6H2O (1 )
On peut mentionner en outre, la réaction de NO2 présent dans les NOx avec le NH3 selon l'équation (2).
3NO2 + 4NH3→ (7/2)N2 +6H2O (2)
De plus, la réaction entre NH3 et NO et NO2 peut être représentée par l'équation (3)
NO+NO2 +2NH3→ 2N2 +3H2O (3)
Le procédé peut être mis en œuvre pour le traitement d'un gaz provenant d'un moteur à combustion interne (mobile ou stationnaire) notamment d'un moteur d'un véhicule automobile, ou de gaz provenant d'une turbine à gaz, de centrales électriques fonctionnant au charbon ou au fuel ou de toute autre installation industrielle.
Selon un mode de réalisation particulier, le procédé est utilisé pour traiter le gaz d'échappement d'un moteur à combustion interne à mélange pauvre ou d'un moteur diesel.
Le procédé peut aussi être mis en œuvre en utilisant, outre la composition de l'invention, un autre catalyseur qui est un catalyseur d'oxydation du monoxyde d'azote du gaz en dioxyde d'azote. Dans un tel cas, le procédé est utilisé dans un système dans lequel ce catalyseur d'oxydation est disposé en amont du point d'injection du réducteur azoté dans le gaz d'échappement.
Ce catalyseur d'oxydation peut comprendre au moins un métal du groupe du platine, comme le platine, le palladium, ou le rhodium, sur un support de type alumine, cérine, zircone, oxyde de titane par exemple, l'ensemble catalyseur/support étant compris dans un revêtement (washcoat) sur un substrat de type monolithe notamment. Selon une variante avantageuse de l'invention et dans le cas d'un circuit d'échappement équipé d'un filtre à particules destiné à arrêter les particules carbonées ou suies engendrées par la combustion des divers combustibles, il est possible de mettre en œuvre le procédé de traitement de gaz de l'invention en disposant le système catalytique qui a été décrit plus haut sur ce filtre, par exemple sous forme d'un wash-coat déposé sur les parois du filtre. On observe que l'utilisation des compostions de l'invention selon cette variante permet en plus de diminuer la température à partir de laquelle démarre la combustion des particules
Des exemples vont maintenant être donnés.
Les exemples 1 à 14 qui suivent concernent la synthèse de compositions qui sont utilisées dans le procédé de l'invention. EXEMPLE 1
Cet exemple concerne la préparation d'une composition comprenant de l'oxyde de cérium, de l'oxyde de zirconium et de l'oxyde de niobium dans les proportions respectives suivantes en masse : 64%-26%-10%.
On prépare tout d'abord une suspension d'hydroxyde de niobium selon le procédé suivant.
Dans un réacteur de 5 litres équipé d'un agitateur et d'un condenseur, sont introduits 1200 g d'éthanol anhydre. Sous agitation 295 g de poudre de chlorure de niobium (V) sont ajoutés en 20 minutes. 625 g d'éthanol anhydre sont ensuite ajoutés. Le milieu est laissé au repos pendant 12 heures.
50 g d'eau désionisée sont introduits dans le réacteur et le milieu est porté à reflux à 70°C pendant 1 heure. On laisse refroidir. Cette solution est nommée A.
Dans un réacteur de 6 litres muni d'un agitateur, sont introduits 870 g de solution d'ammoniaque (29,8% en NH3). Sous agitation, on introduit en 15 minutes et simultanément toute la solution A et 2250 ml d'eau désionisée. La suspension est récupérée et lavée plusieurs fois par centrifugation. Le centrifugat est nommé B.
Dans un réacteur de 6 litres muni d'un agitateur, on introduit 2,4 litres d'une solution d'acide nitrique 1 mol/l. Sous agitation, le centrifugat B est introduit dans le réacteur. L'agitation est maintenue pendant 12 heures. Le pH est de 0,7. La concentration est de 4,08% en Nb2Os. Cette suspension est nommée C. On prépare ensuite une solution d'ammoniaque D en introduisant 1040 g d'une solution (D1 ) d'ammoniaque concentrée (29,8% en NH3) dans 6690 g d'eau désionisée (D2).
On prépare une solution E en mélangeant 4250 g d'eau désionisée (E1 ), 1640 g d'une solution (E2) de nitrate de cérium (III) (30,32% en CeO2), 1065 g d'une solution (E3) d'oxynitrate de zirconium (20,04% en ZrÛ2), 195 g d'une solution (E4) d'eau oxygénée (50,30% en H2O2), 1935 g de la suspension C (4,08% en Nb2Os). Cette solution E est mise sous agitation.
Dans un réacteur agité de 4 litres équipé d'une surverse, la solution D et la solution E sont ajoutées simultanément à un débit de 3,2 litres/heure. Après mise en régime de l'installation, le précipité est récupéré dans un fût. Le pH est stable et voisin de 9.
La suspension est filtrée, le produit solide obtenu est lavé et calciné à 800°C pendant 4 heures.
EXEMPLES 2 à 6
La préparation des compositions de ces exemples se fait de la même manière que dans l'exemple 1. Les solutions D et E sont préparées avec les mêmes composés mais avec des proportions différentes.
On donne dans le tableau 1 ci-dessous les conditions précises de préparation.
Tableau 1
Signification des abréviations du tableau :
- dans la colonne « Exemple » pour chaque exemple les nombres donnés en dessous du numéro d'exemple correspondent aux proportions respectives en masse d'oxydes de cérium, de zirconium et de niobium pour la composition de l'exemple concerné;
- D1 : quantité de solution d'ammoniaque concentrée (29,8% en NH3) utilisée dans la préparation de la solution d'ammoniaque D;
- D2 : quantité d'eau désionisée utilisée dans la préparation de la solution d'ammoniaque D;
- E1 : quantité d'eau désionisée utilisée dans la préparation de la solution
E;
- E2 : quantité de solution de nitrate de cérium (III) (30,32% en CeÛ2) utilisée dans la préparation de la solution E;
- E3 : quantité de solution d'oxynitrate de zirconium (20,04% en ZrÛ2) utilisée dans la préparation de la solution E;
- E4 : qunatité de solution d'eau d'eau oxygénée (50,30% en H2O2) utilisée dans la préparation de la solution E;
- C : quantité de suspension C (4,08% en Nb2Os) utilisée dans la préparation de la solution E.
EXEMPLE 7
Cet exemple concerne la préparation d'une composition comprenant de l'oxyde de cérium, de l'oxyde de zirconium et de l'oxyde de niobium dans les proportions respectives suivantes en masse : 72%-18%-10%.
On prépare une solution d'oxalate de niobium (V) et d'ammonium par dissolution à chaud de 192 g d'oxalate de niobium (V) et d'ammonium dans 300 g d'eau désionisée. Cette solution est maintenue à 50°C. La concentration de cette solution est 14,2% en Nb2Os. Cette solution est ensuite introduite sur une poudre d'un oxyde mixte de cérium et de zirconium (composition massique CeO2/ZrÛ2 80/20, surface spécifique après calcination à 800°C 4 heures de 59 m2/g) jusqu'à saturation du volume poreux.
La poudre imprégnée est ensuite calcinée à 800°C (palier de 4 heures).
EXEMPLES 8 à 10
La préparation des compositions de ces exemples se fait de la même manière que dans l'exemple 1. Les solutions D et E sont préparées avec les mêmes composés mais avec des proportions différentes.
On donne dans le tableau 2 ci-dessous les conditions précises de préparation. Tableau 2
Les abréviations ont la même signification que pour le tableau 1 .
EXEMPLE 1 1
Cet exemple concerne la préparation d'une composition comprenant de l'oxyde de cérium, de l'oxyde de zirconium et de l'oxyde de niobium dans les proportions respectives suivantes en masse : 63%-27%-10%.
Une solution de nitrates de zirconium et de cérium IV est préparée par mélange de 264 g d'eau désionisée, de 238 g de solution de nitrate de cérium (IV) (252 g/L en CeO2) et de 97 grammes de solution d'oxynitrate de zirconium (261 g/l en ZrO2). La concentration de cette solution est 120 g/l en oxyde.
Dans un réacteur agité de 1 ,5 I on introduit 373 g d'eau désionisée et 1 1 1 g de solution d'ammoniaque (32% en NH3). On introduit en 1 heure la solution de nitrates. Le pH final est voisin de 9,5.
La suspension ainsi préparée est mûrie à 95°C pendant 2 heures. On laisse ensuite refroidir le milieu.
Une solution d'oxalate de niobium (V) est préparée par dissolution à chaud de 44,8 g d'oxalate de niobium (V) dans 130 g d'eau désionisée. Cette solution est maintenue à 50°C. La concentration de cette solution est 3,82% en Nb2O5.
La solution d'oxalate de niobium (V) est introduite en 20 minutes sur la suspension refroidie.
La suspension est filtrée et lavée. Le gâteau est ensuite introduit dans un four et calciné à 800°C (palier de 4 heures).
EXEMPLE 12
Cet exemple concerne la préparation d'une composition identique à celle de l'exemple 1 1 .
Une solution de nitrates de zirconium et de cérium IV est préparée par mélange de 451 g d'eau désionisée, de 206 g de solution de nitrate de cérium (IV) (252 g/1 en CeÛ2) et de 75 g de solution d'oxynitrate de zirconium (288 g/1 en Ζ1 2). La concentration de cette solution est 80 g/1 en oxyde.
Cette solution de nitrates est introduite dans un autoclave. La température est montée à 100°C. Le milieu est maintenu sous agitation à 100°C pendant 1 heure. On laisse refroidir.
On transfère la suspension dans un réacteur agité de 1 ,5 I. On introduit sous agitation une solution d'ammoniaque 6 mol/l jusqu'à obtenir un pH voisin de 9,5.
La suspension est mûrie à 95°C pendant 2 heures. On laisse ensuite refroidir le milieu.
Une solution d'oxalate de niobium (V) est préparée par dissolution à chaud de 39 g d'oxalate de niobium (V) dans 1 13 g d'eau désionisée. Cette solution est maintenue à 50°C. La concentration de cette solution est 3,84% La solution d'oxalate de niobium (V) est introduite en 20 minutes sur la suspension refroidie. Le pH est ensuite remonté à pH 9 par ajout d'une solution d'ammoniaque (32% en NH3).
La suspension est filtrée et lavée. Le gâteau est ensuite introduit dans un four et calciné à 800°C (palier de 4 heures).
EXEMPLE 13
Cet exemple concerne la préparation d'une composition comprenant de l'oxyde de cérium, de l'oxyde de zirconium et de l'oxyde de niobium dans les proportions respectives suivantes en masse : 64%-27%-9%.
On procède de la même manière que dans l'exemple 12. Toutefois la solution d'oxalate de niobium (V) est préparée par dissolution à chaud de 35, 1 g d'oxalate de niobium (V) dans 1 13 g d'eau désionisée. La concentration de cette solution est 3,45% en Nb2Os. EXEMPLE COMPARATIF 14 A
Cet exemple concerne la préparation d'une composition comprenant de l'oxyde de cérium, de l'oxyde de zirconium et de l'oxyde de niobium dans les proportions respectives suivantes en masse : 19%-78%-3%.
On prépare une solution d'ammoniaque D comme dans l'exemple 1 et avec les mêmes composés mais dans les proportions suivantes :
- solution d'ammoniaque concentrée : 940 g
- eau désionisée : 6730 g On prépare aussi une solution E comme dans l'exemple 1 et avec les mêmes composés mais dans les proportions suivantes :
- eau désionisée : 5710 g
- solution de nitrate de cérium (III) : 2540 g
- solution d'eau oxygénée : 298 g
- suspension C : 625 g
On procède ensuite comme dans l'exemple 1 .
On mentionne dans le tableau 3 qui suit pour chacune des compositions des exemples ci-dessus :
- la surface spécifique BET après calcination 4 heures à 800°C et 900°C ;
- les propriétés d'acidité;
- les propriétés de réductibilité. Acidité
Les propriétés d'acidité sont mesurées par la méthode TPD qui est décrite ci-dessous.
La molécule sonde utilisée pour caractériser les sites acides en TPD est l'ammoniac.
- Préparation de l'échantillon :
L'échantillon (100 mg) est porté à 500°C sous flux d'hélium (30 ml/mn) selon une montée en température de 20°C/min et est maintenu à cette température durant 30 minutes afin d'enlever la vapeur d'eau et éviter ainsi d'obturer les pores. Finalement l'échantillon est refroidi jusqu'à 100°C sous flux d'hélium à raison de 10°C/min.
- Adsorption :
L'échantillon est ensuite soumis à un flux (30 ml/mn) d'ammoniac (5% vol de NH3 dans l'hélium à 100°C à pression atmosphérique pendant 30 minutes (jusqu'à saturation). L'échantillon est soumis durant 1 heure minimum à un flux d'hélium (30 ml/mn).
- Désorption :
La TPD est menée en effectuant une montée en température de 10°C/min jusqu'à atteindre 700°C.
Durant la montée en température on enregistre la concentration des espèces désorbées, c'est-à-dire de l'ammoniac. La concentration d'ammoniac lors de la phase de désorption est déduite grâce à la calibration de la variation de la conductivité thermique du flux gazeux mesurée en sortie de la cellule à l'aide d'un détecteur de conductivité thermique (TCD). Dans le tableau 3 les quantités d'ammoniac sont exprimées en ml (conditions normales de température et de pression)/m2 (surface à 800°C) de composition. Plus la quantité d'ammoniac est élevée plus l'acidité de surface du produit est élevée.
Réductibilité
Les propriétés de réductibilité sont mesurées en effectuant une réduction en température programmée (TPR) sur un appareil Micromeritics Autochem 2. Cet appareil permet de mesurer la consommation d'hydrogène d'une composition en fonction de la température.
Plus précisément, on utilise l'hydrogène comme gaz réducteur à 10% en volume dans l'argon avec un débit de 30 ml/mn. Le protocole expérimental consiste à peser 200 mg de l'échantillon dans un récipient préalablement taré. L'échantillon est ensuite introduit dans une cellule en quartz contenant dans le fond de la laine de quartz. L'échantillon est enfin recouvert de laine de quartz et positionné dans le four de l'appareil de mesure. Le programme de température est le suivant :
- montée en température de la température ambiante jusqu'à 900°C avec une rampe de montée à 20°C/mn sous H2 à 10%vol dans Ar.
Lors de ce programme, la température de l'échantillon est mesurée à l'aide d'un thermocouple placé dans la cellule de quartz au-dessus de l'échantillon. La consommation d'hydrogène lors de la phase de réduction est déduite grâce à la calibration de la variation de la conductivité thermique du flux gazeux mesurée en sortie de la cellule à l'aide d'un détecteur de conductivité thermique (TCD).
La consommation d'hydrogène est mesurée entre 30°C et 900°C. Elle est reportée dans le tableau 1 en ml (conditions normales de température et de pression) de H2 par g de produit. Plus cette consommation d'hydrogène est élevée meilleures sont les propriétés de réductibilité du produit (propriétés redox). Tableau 3
EXEMPLE 15
Cet exemple décrit les propriétés catalytiques des compositions des exemples précédents en catalyse SCR. Ces propriétés sont évaluées dans les conditions suivantes.
Dans une première série de mesures les compositions utilisées sont celles issues directement des synthèses décrites dans les exemples précédents, c'est-à-dire des compositions qui ont subi une calcination à 800°C 4 heures.
Dans une deuxième série de mesures les compositions utilisées sont celles des exemples précédents mais après vieillissement hydrothermal. Ce vieillissement hydrothermal consiste à faire circuler en continu un mélange gazeux synthétique d'air contenant 10% vol de H20 dans un réacteur contenant la composition. Pendant la circulation du gaz la température du réacteur est portée à 750°C pendant 16 heures en pallier.
Les compositions sont ensuite évaluées en test catalytique. Dans ce test, on fait passer sur la composition (90 mg) un mélange gazeux synthétique (30 L/h) représentatif du procédé de catalyse (tableau 4).
Tableau 4
Composition d'un mélange représentatif
On suit la conversion des NOx en fonction de la température du mélange gazeux.
Les résultats sont donnés en % de conversion des NOx (ici NO et NO2) dans le tableau 5 qui suit.
Tableau 5
L'exemple N°14B est un exemple comparatif avec une composition à base d'oxyde de vanadium sur un support à base d'oxyde de titane et de tungstène. Les proportions sont en masse.
L'exemple N°14C est un exemple comparatif avec une zéolithe de type aluminosilicate comprenant du fer. Les proportions sont en masse.
L'exemple N°14D est un exemple comparatif avec une zéolithe de type aluminosilicate comprenant du cuivre. Les proportions sont en masse. Il apparaît du tableau 5 que les produits selon l'invention sont plus performants que les produits comparatifs, tout particulièrement après vieillissement. EXEMPLE 16
Cet exemple illustre les propriétés catalytique des compositions selon l'invention lorsqu'elles sont mises en œuvre dans un revêtement sur un filtre à particules ou encore utilisées sous forme extrudée comme décrit plus haut.
Les compositions utilisées sont des compositions ayant subi le traitement hydrothermal décrit plus haut.
On mélange dans un mortier les compositions selon les exemples 1 , 14C et 14D avec une suie modèle (Carbon Black Cabot Eltex) dans une proportion en masse de 20% de suie avec 80% de composition.
On réalise une analyse thermogravimétrique (ATG) en faisant circuler un flux d'air (1 l/h) avec une montée de température de l'ambiante à 900°C sur 20 mg du mélange préparé précédemment. On mesure la perte de masse de l'échantillon entre 250°C et 900°C. On considère que la perte de masse dans cette gamme de température correspond à l'oxydation de la suie.
On donne dans le tableau 6 ci-dessous les résultats de l'analyse en indiquant la température d'amorçage de la combustion des suies et la température de « light-off » (T50%) pour laquelle 50% de la suie est oxydée.
Tableau 6
Le produit de l'invention (exemple N°1 ) permet de diminuer de 90°C la température d'amorçage et de 70°C la température de light-off par rapport à une combustion de la suie sans catalyseur.
Les produits des exemples comparatifs n'ont aucun effet catalytique vis- à-vis de l'oxydation des suies.

Claims

REVENDICATIONS
1 - Procédé de traitement d'un gaz contenant des oxydes d'azote (NOx) dans lequel on réalise une réaction de réduction des NOx par un agent réducteur azoté, caractérisé en ce qu'on utilise comme catalyseur de cette réaction de réduction un système catalytique contenant une composition à base d'oxyde de cérium et qui comprend de l'oxyde de niobium avec les proportions suivantes en masse :
- oxyde de niobium de 2 à 20%;
le complément en oxyde de cérium.
2- Procédé selon la revendication 1 , caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend en outre de l'oxyde de zirconium avec les proportions suivantes en masse :
- oxyde de cérium au moins 50%;
- oxyde de niobium de 2 à 20%;
- oxyde de zirconium jusqu'à 48%.
3- Procédé selon la revendication 2, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend en outre au moins un oxyde d'un élément M choisi dans le groupe comprenant le tungstène, le molybdène, le fer, le cuivre, le silicium, l'aluminium, le manganèse, le titane, le vanadium et les terres rares autres que le cérium, avec les proportions suivantes en masse :
- oxyde de cérium : au moins 50%;
- oxyde de niobium : de 2 à 20%;
- oxyde de l'élément M : jusqu'à 20%;
- le complément en oxyde de zirconium. 4- Procédé selon l'une des revendications précédentes, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend de l'oxyde de niobium dans une proportion en masse comprise entre 3% et 15%, plus particulièrement entre 5% et 10%. 5- Procédé selon l'une des revendications 2 à 4, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend de l'oxyde de cérium dans une proportion en masse d'au moins 65% et de l'oxyde de niobium dans une proportion en masse comprise entre 2 et 12% et plus particulièrement entre 2 et 10%.
6- Procédé selon la revendication 5, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend de l'oxyde de cérium dans une proportion en masse d'au moins 70% et plus particulièrement d'au moins 75%.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend de l'oxyde de niobium dans une proportion en masse inférieure à 10% et plus particulièrement comprise entre 2% et 10%, cette valeur étant exclue. 8- Procédé selon l'une des revendications 2 à 7, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend de l'oxyde de cérium dans une proportion en masse d'au moins 60%, plus particulièrement d'au moins 65%, et de l'oxyde de zirconium dans une proportion en masse d'au plus 25%, plus particulièrement comprise entre 15% et 25%.
9- Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la composition à base d'oxyde de cérium du système catalytique précité comprend un oxyde d'au moins un métal M' choisi dans le groupe comprenant le vanadium, le cuivre, le manganèse, le tungstène et le fer dans une proportion comprise entre 1 et 10%, plus préférentiellement entre 1 et 3%.
10- Procédé selon l'une des revendications précédentes, caractérisé en ce que le système catalytique précité contient en outre une zéolithe.
1 1 - Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise l'ammoniac ou l'urée comme agent réducteur azoté.
12- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on traite un gaz d'échappement d'un moteur d'un véhicule automobile. 13- Procédé selon la revendication 12, caractérisé en ce que le système catalytique précité est disposé sur un filtre à particules ou en ce qu'il est à base de la composition précitée, celle-ci étant sous une forme extrudée.
EP11761629.2A 2010-09-29 2011-09-28 Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium Withdrawn EP2621611A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003861A FR2965189A1 (fr) 2010-09-29 2010-09-29 Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium
PCT/EP2011/066908 WO2012041921A2 (fr) 2010-09-29 2011-09-28 Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium

Publications (1)

Publication Number Publication Date
EP2621611A2 true EP2621611A2 (fr) 2013-08-07

Family

ID=43896883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761629.2A Withdrawn EP2621611A2 (fr) 2010-09-29 2011-09-28 Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium

Country Status (9)

Country Link
US (1) US8734742B2 (fr)
EP (1) EP2621611A2 (fr)
JP (1) JP5771276B2 (fr)
KR (1) KR101990156B1 (fr)
CN (1) CN103153438B (fr)
CA (1) CA2807665C (fr)
FR (1) FR2965189A1 (fr)
RU (1) RU2541070C2 (fr)
WO (1) WO2012041921A2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962431B1 (fr) * 2010-07-07 2018-01-19 Rhodia Operations Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catlyse.
US9981256B2 (en) * 2011-12-02 2018-05-29 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
JP6101519B2 (ja) * 2013-03-13 2017-03-22 東京濾器株式会社 触媒ユニット
FR3003557B1 (fr) * 2013-03-19 2015-05-01 Rhodia Operations Composition a base d'oxyde de zirconium, de cerium, de niobium et d'etain, procede de preparation et utilisation en catalyse
KR20160104701A (ko) * 2013-12-30 2016-09-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 도핑된 세리아를 사용한 선택적 촉매 환원 과정
JP6180032B2 (ja) * 2014-08-04 2017-08-16 株式会社豊田中央研究所 複合金属酸化物及びその製造方法、並びに、その複合金属酸化物を用いた窒素酸化物分解触媒及びその窒素酸化物分解触媒を用いた窒素酸化物の分解方法
CN105126827B (zh) * 2015-09-10 2018-01-26 西南化工研究设计院有限公司 一种涂覆式低温烟气脱硝催化剂及其制备方法和应用
CN106111150A (zh) * 2016-06-16 2016-11-16 浙江三龙催化剂有限公司 船舶用脱硝催化剂
KR102675637B1 (ko) * 2017-10-03 2024-06-17 바스프 코포레이션 Scr 촉매 조성물, 촉매 및 이러한 촉매를 포함하는 촉매 시스템
FR3077566A1 (fr) 2018-02-02 2019-08-09 Rhodia Operations Procede de preparation d'un oxyde a base de cerium et/ou de zirconium
FR3077567A1 (fr) 2018-02-02 2019-08-09 Rhodia Operations Procede de preparation d'un oxyde a base de cerium et/ou de zirconium
CN110918084A (zh) * 2019-12-13 2020-03-27 中国科学院城市环境研究所 一种复合氧化物催化剂及其制备方法和用途
CN115845833B (zh) * 2021-09-23 2024-06-21 重庆理工大学 一种用于SCR降解的Nb-Ce-W脱硝催化剂制备方法及应用
CN115739173B (zh) * 2022-11-15 2024-05-17 昆明理工大学 一种结构稳定的脱硝催化剂及其制备方法和应用、整体式催化剂及其应用

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559754A1 (fr) 1984-02-20 1985-08-23 Rhone Poulenc Spec Chim Oxyde cerique a nouvelles caracteristiques morphologiques et son procede d'obtention
FR2584388B1 (fr) 1985-07-03 1991-02-15 Rhone Poulenc Spec Chim Composition a base d'oxyde cerique, sa preparation et ses utilisations
FR2617154B1 (fr) 1987-06-29 1990-11-30 Rhone Poulenc Chimie Procede d'obtention d'oxyde cerique et oxyde cerique a nouvelles caracteristiques morphologiques
FR2640954B1 (fr) 1988-12-23 1991-03-29 Rhone Poulenc Chimie
FR2684662B1 (fr) 1991-12-09 1994-05-06 Rhone Poulenc Chimie Composition a base d'oxyde cerique, preparation et utilisation.
FR2695574B1 (fr) 1992-09-15 1994-11-04 Rhone Poulenc Chimie Composition à base d'oxyde cérique, préparation et utilisation.
FR2699524B1 (fr) 1992-12-21 1995-02-10 Rhone Poulenc Chimie Composition à base d'un oxyde mixte de cérium et de zirconium, préparation et utilisation.
FR2714370B1 (fr) 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
FR2748740B1 (fr) 1996-05-15 1998-08-21 Rhone Poulenc Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium a haute surface specifique et a capacite elevee de stockage d'oxygene, procede de preparation et utilisation en catalyse
EP1046423B8 (fr) * 1999-04-23 2007-11-21 Umicore AG & Co. KG Catalyseur multi-couches de gaz d`échappement à base de métaux précieux et sa préparation
RU2192307C1 (ru) * 2001-04-05 2002-11-10 Институт катализа им. Г.К.Борескова СО РАН Катализатор, носитель катализатора, способы их получения (варианты) и способ очистки отходящих газов от оксидов азота
JP2003155448A (ja) * 2001-11-21 2003-05-30 Sumitomo Metal Mining Co Ltd 二液型光触媒塗料及び光触媒含有塗膜、光触媒含有塗膜の形成方法
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
FR2852592B1 (fr) 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur
JP4335583B2 (ja) * 2003-05-30 2009-09-30 バブコック日立株式会社 排ガス浄化用触媒とその製造方法
FR2859470B1 (fr) 2003-09-04 2006-02-17 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
RU2398629C2 (ru) 2006-02-17 2010-09-10 Родиа Операсьон Композиция на основе оксидов циркония, церия, иттрия, лантана и другого редкоземельного элемента, способ получения и применение в катализе
US20080095682A1 (en) 2006-10-19 2008-04-24 Kharas Karl C Ce-Zr-R-O CATALYSTS, ARTICLES COMPRISING THE Ce Zr R O CATALYSTS AND METHODS OF MAKING AND USING THE Ce-Zr-R-O CATALYSTS
US7527776B2 (en) * 2007-01-09 2009-05-05 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
US7767175B2 (en) * 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
FR2917646B1 (fr) 2007-06-20 2011-06-03 Anan Kasei Co Ltd Oxyde mixte a haute surface specifique de cerium et d'autre terre rare, procede de preparation et utilisation en catalyse
EP2368628A1 (fr) 2010-03-25 2011-09-28 Paul Scherrer Institut Catalyseur pour application DeNOx et procédé de réduction catalytique sélective d'oxydes d'azote
US8017097B1 (en) * 2010-03-26 2011-09-13 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
BR112012027087A2 (pt) * 2010-04-20 2016-07-26 Unicore Ag & Co Kg meteriais de óxidos mistos para redução catalítica seletiva de óxidos de nitrogênio em gases de exaustão
FR2962431B1 (fr) * 2010-07-07 2018-01-19 Rhodia Operations Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catlyse.
US9095816B2 (en) * 2010-11-16 2015-08-04 Umicore Ag & Co. Kg Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012041921A2 *

Also Published As

Publication number Publication date
JP5771276B2 (ja) 2015-08-26
RU2541070C2 (ru) 2015-02-10
KR101990156B1 (ko) 2019-06-17
KR20130062349A (ko) 2013-06-12
FR2965189A1 (fr) 2012-03-30
WO2012041921A2 (fr) 2012-04-05
RU2013119605A (ru) 2014-11-10
CN103153438B (zh) 2016-02-17
CA2807665C (fr) 2015-06-02
US8734742B2 (en) 2014-05-27
WO2012041921A3 (fr) 2012-05-24
US20130195743A1 (en) 2013-08-01
CA2807665A1 (fr) 2012-04-05
CN103153438A (zh) 2013-06-12
JP2013544628A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
CA2807665C (fr) Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base d'oxyde de cerium et d'oxyde de niobium
CA2800653C (fr) Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
EP2976300B1 (fr) Composition a base d'oxydes de zirconium, de cerium, de niobium et d'etain, procedes de preparation et utilisation en catalyse
CA2660002C (fr) Composition a reductibilite elevee a base d'un oxyde de cerium nanometrique sur un support, procede de preparation et utilisation comme catalyseur
EP2083936B1 (fr) Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
EP2288426B1 (fr) Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.
EP2571813B1 (fr) Composition a base de cerium, de zirconium et de tungstene, procede de preparation et utilisation en catalyse
EP2454196B1 (fr) Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
EP1660406B1 (fr) Composition a base d 'oxyde de cerium et d 'oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
FR2907445A1 (fr) Composition a acidite elevee a base d'oxyde de zirconium, d'oxyde de titane et d'oxyde de tungstene,procede de preparation et utilisation dans le traitement des gaz d'echappement
EP0802824A1 (fr) Composition catalytique a base d'oxyde de cerium et d'oxyde de manganese, de fer ou de praseodyme, son procede de preparation et son utilisation en catalyse postcombustion automobile
CA2827534A1 (fr) Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base de zirconium, de cerium et de niobium
EP2694204A1 (fr) Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse
WO2019224086A1 (fr) Catalyseur comprenant une zeolithe de type structural afx de tres haute purete et au moins un metal de transition pour la reduction selective de nox
EP2244983B1 (fr) Composition a base d'oxyde de zirconium, d'oxyde d'yttrium et d'oxyde de tungstene, procede de preparation et utilisation comme catalyseur ou support de catalyseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130308

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: JORGE COELHO MARQUES, RUI

Inventor name: ROHART, EMMANUEL

Inventor name: HERNANDEZ, JULIEN

Inventor name: JONES, CLARE

Inventor name: HARRIS, DEBORAH, JAYNE

17Q First examination report despatched

Effective date: 20160523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAGNESIUM ELEKTRON LIMITED

Owner name: RHODIA OPERATIONS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 53/94 20060101AFI20210325BHEP

Ipc: B01J 23/00 20060101ALI20210325BHEP

Ipc: B01J 23/20 20060101ALI20210325BHEP

Ipc: B01J 37/02 20060101ALI20210325BHEP

Ipc: F01N 3/20 20060101ALI20210325BHEP

Ipc: B01J 37/03 20060101ALI20210325BHEP

INTG Intention to grant announced

Effective date: 20210420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210831