EP2609612B1 - Microfocus x-ray tube for a high-resolution x-ray apparatus - Google Patents

Microfocus x-ray tube for a high-resolution x-ray apparatus Download PDF

Info

Publication number
EP2609612B1
EP2609612B1 EP10749795.0A EP10749795A EP2609612B1 EP 2609612 B1 EP2609612 B1 EP 2609612B1 EP 10749795 A EP10749795 A EP 10749795A EP 2609612 B1 EP2609612 B1 EP 2609612B1
Authority
EP
European Patent Office
Prior art keywords
cooling chamber
ray tube
microfocus
ray
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10749795.0A
Other languages
German (de)
French (fr)
Other versions
EP2609612A1 (en
Inventor
Andreas Schmitt
Wolfgang Sperner
Eberhard Neuser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Digital Solutions GmbH
Original Assignee
GE Sensing and Inspection Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Sensing and Inspection Technologies GmbH filed Critical GE Sensing and Inspection Technologies GmbH
Publication of EP2609612A1 publication Critical patent/EP2609612A1/en
Application granted granted Critical
Publication of EP2609612B1 publication Critical patent/EP2609612B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1216Cooling of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1266Circulating fluids flow being via moving conduit or shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the invention relates to a microfocus X-ray tube for a high-resolution X-ray device comprising a housing, an electron beam source for generating an electron beam and a focusing lens for focusing the electron beam onto a target.
  • Such X-ray tubes are known, for example, for high-resolution computed tomography devices.
  • micro-computed tomography enables volume reconstruction with very high spatial resolution (voxel size) down to the sub-micron range. Since the measurement of all the X-ray projections required for high-resolution reconstruction takes several hours on the rule, thermally induced shifts in the sample projections on the detector create significant problems. Although it is known to compensate for these shifts using software-based algorithms. However, the resolution improvement achievable thereby is limited.
  • the critical component is the X-ray tube, because it is not possible to fix the tube in the focal spot on a thermally insensitive manipulator; It always remains a thermally sensitive (usually metallic) connection over the tube housing between the focus and the attachment the tube on the manipulator, which without further action causes the focus position of the X-ray tube shifts significantly over the duration of the measurement.
  • a common way to keep the focus position of the X-ray tube as constant as possible over the entire measurement period is to heat the tube to operating temperature and wait for a thermal equilibrium to set before starting the scans.
  • a thermal equilibrium due to the considerable mass of the X-ray tube and the associated high heat capacity, it takes several hours until the thermal equilibrium sets in. Furthermore, the thermal equilibrium is disturbed by any change in the parameters of the tube, which causes additional significant waiting times.
  • US 2 608 664 A describes an X-ray tube for an X-ray device comprising a housing, an electron beam source for generating an electron beam, a focusing lens for focusing the electron beam on a target and a cooling chamber for cooling water, which is substantially U-shaped in cross-section and surrounds the target from three sides, to cool this.
  • EP 0 096 824 A1 describes a generic microfocus X-ray tube with a housing, an electron beam source, a focusing lens and a cooling chamber for a cooling liquid, which is positioned on an end face of a target to cool it.
  • the object of the invention is to provide a microfocus X-ray tube, which makes it possible to obtain data in a shorter time with a higher resolution in industrial applications.
  • the invention solves this problem with a microfocus X-ray tube having the features of the independent claim 1.
  • Particularly preferred embodiments of the invention are the subject of the dependent claims.
  • the cooling chamber according to the invention is substantially rotationally symmetrical, annular. This allows the substantially rotationally symmetric temperature distribution in the tube, which predominantly is generated by rotationally symmetric heat input, in particular due to the energy dissipation in the electron optics and the absorption of thermal energy over the surface of the tube housing, are maintained even when the tube is not in thermal equilibrium.
  • lateral shifts of the focus ie shifts in the focal plane arranged perpendicular to the axis of rotation, can be very effectively prevented.
  • axial thermal displacements of the focal point Due to the essentially rotationally symmetrical cooling according to the invention, essentially only axial thermal displacements of the focal point remain. These have less serious effects on the spatial resolution on the detector. Furthermore, as required, axial thermal displacements of the focal point can be achieved by means of increased cooling power, i. a suitably designed cooling pump to be effectively prevented.
  • the invention is advantageously delimited from a particular helically arranged around the axis of rotation cooling line, where in particular in the axial end regions significant deviations from the rotational symmetry of the cooling occur.
  • the cross-sectional area of the cooling chamber in a longitudinal cross section is at least five times, more preferably at least ten times as large as the cross-sectional area of cooling lines to be connected to the cooling chamber.
  • This feature contributes to a particularly efficient cooling due to the largest possible cooling volume in the cooling chamber for a given size.
  • the clear inner dimensions of the cooling chamber in a longitudinal cross section are preferably greater than the wall thicknesses of the cooling chamber, so that as much of the available installation space as the coolant volume can be used.
  • the cooling chamber is annularly cylindrical, wherein a radial inner wall and a radial outer wall of the cooling chamber are cylindrically shaped.
  • This shape allows a particularly efficient cooling due to a maximum cooling volume for a given size, and is also advantageous in terms of manufacturing technology.
  • an inlet and an outlet for the cooling medium in the circumferential direction of the tube are offset from each other, more preferably offset by at least 90 °, even more preferably offset by 180 °, i. arranged opposite each other with respect to the tube axis. This arrangement can contribute to the most uniform possible flow through the entire cooling chamber volume.
  • the microcomputer tomography apparatus shown includes an x-ray system 10 configured to receive a set of x-ray projections of a sample 13.
  • the X-ray system 10 comprises a microfocus X-ray tube 11 which emits X-ray radiation 14 from a focal point or focus 16 of the X-ray tube 11, an X-ray imaging detector 12 and a sample holder 20 which is preferably arranged to rotate the sample 13 about a vertical axis
  • the X-ray detector 12 is preferably an area detector, in particular a flat-panel detector, but a line detector is also possible.
  • a set of X-ray projections of the sample 13 is obtained, for example, by stepwise rotating the sample holder 20 by a defined small angle step and recording an X-ray projection at each rotation angle.
  • the X-ray system 10 is not limited to a rotation of the sample holder 20 about a vertical axis. Alternatively, for example, the X-ray tube 11 and the X-ray detector 12 may be rotated around the fixed sample 13.
  • the X-ray projections are read out of the X-ray detector 12 and transmitted to a computer device 41 where reconstructed three-dimensional volume data of the sample 13 are calculated from the recorded set of X-ray projections by means of a basically known reconstruction algorithm and displayed, for example, on a screen 42.
  • the computing device 41 may, as in Fig. 1 also be arranged to control the X-ray source 11, the sample holder 20 and the X-ray detector 12; Alternatively, a separate control device may be provided.
  • the microfocus X-ray tube 11 comprises a cathode element 15, a Wehnelt cylinder 21, an anode 19, a focusing lens 22 preferably embodied as an electromagnetic lens, and an electron beam target 23. Furthermore, a further electromagnetic lens 25 may be provided, preferably as a condenser lens is arranged to align the electron beam 24 approximately parallel or to produce an intermediate image; However, the condenser lens 25 is not mandatory.
  • the microfocus X-ray tube 11 further expediently comprises a deflection unit (not shown) for adjusting the beam position.
  • the microfocus X-ray tube 11 is set up so that the minimum focus or focal spot on the target 23 is less than or equal to 10 .mu.m, preferably less than or equal to 4 .mu.m, even more preferably less than or equal to 2 .mu.m.
  • the microfocus X-ray tube 11 further includes a housing 34 that may be composed of multiple sections.
  • a housing section 35 accommodating the cathode element 15 and forming the anode 19
  • the housing 36 surrounding the coil 33 is advantageously free of thermally insulating, in particular non-metallic, shields or layers which would hinder the setting of a thermal equilibrium.
  • the x-ray tube 11 comprises an annular cooling chamber 30, which has an inlet 31 and an outlet 32, which are connectable via coolant lines 38 with a coolant pump, not shown, to a cooling circuit.
  • a liquid coolant in particular water or oil
  • the heat sources mentioned arise for example due to the impact of the electron beam 24 on the target 23, the energy dissipation in the electron optics 22 and the absorption of thermal energy across the surface of the tube housing 34.
  • the cooling chamber 30 is annularly closed in itself, as best of the Figures 3 and 6 is apparent.
  • the liquid-flow-through interior of the cooling chamber 30 circumferentially completely continuous.
  • inlet 31 and outlet 32 are preferably offset by 180 ° from each other, ie, arranged opposite one another, as in FIG Fig. 3 shown to allow the cooling chamber 30 is flowed through as uniform as possible and forms no preferential flow direction for the cooling medium.
  • a radial partition wall 48 is provided, which interrupts the liquid-flow-through interior of the cooling chamber 30 at a circumferential location.
  • inlet 31 and outlet 32 are expediently arranged in the region of the dividing wall 48 on opposite sides thereof in order to achieve a complete flow through the cooling chamber 30.
  • inlet and outlet can also be arranged substantially without circumferential offset, but instead axially offset.
  • FIG. 6 illustrates that the inventive feature "substantially rotationally symmetrical” means: rotationally symmetrical apart from inlets and outlets 31, 32 for the coolant, any partitions 48 in the cooling chamber and optionally further, the rotational symmetry not significantly interfering functional elements.
  • the terms axial, radial and rotationally symmetric in the context of this application refer to the longitudinal axis of the tube 11, which is defined by the central axis of the electron beam 24 between the cathode 15 and the target 23.
  • the cooling chamber 30 is arranged around the tube housing 34, in particular around the housing section 36 surrounding the focusing lens 22.
  • the cooling chamber 30 extends predominantly axially, ie, its axial extent is preferably at least twice as large as its radial extent.
  • the axial extent of the cooling chamber 30 can be adapted to the axial extent of the coil 33 of the focusing lens 22.
  • the cooling chamber 30 is disposed in the tube housing 34.
  • the cooling chamber 30 is arranged outside on the housing section 36 surrounding the focusing lens 22, in this case in the middle housing section 37.
  • the cooling chamber 30 in the housing section 36 surrounding the focusing lens 22 is arranged directly next to the coil 33.
  • the cooling chamber 30 extends predominantly radially, ie its radial extent is preferably at least 50% greater than its axial extent.
  • the radial extent of the cooling chamber 30 may be adapted to the radial extent of the coil 33 of the focusing lens 22.
  • the cooling chamber 30 is located adjacent to the coil 33 of the focusing lens 22 because it is a main heat source in the tube 11.
  • the cooling chamber has the preferred shape of a ring cylinder.
  • the radial outer wall 45 and the radial inner wall 46 of the cooling chamber 30 are thus cylindrical in shape.
  • the side walls 47 required for forming a closed cooling chamber 30 are preferably disk-shaped.
  • the walls 45, 46, 47 forming the cooling chamber are preferably made of a material having a good thermal conductivity of at least 50 W / mK, in particular of a material based on aluminum, copper and / or brass.
  • the cross-sectional area of the cooling chamber 30 in a longitudinal cross-section is more than ten times greater than the cross-sectional area of cooling conduits 38 to be connected to the cooling chamber 30 via the ports 31, 32.
  • the flow rate of the cooling medium in the cooling chamber 30 is therefore preferably more than ten times smaller than in the with the cooling chamber 30 via the terminals 31, 32 to be connected cooling lines 38.
  • the clear inner dimensions of the cooling chamber 30 in a longitudinal cross-section are significantly larger than the wall thickness of the walls 45 to 47, so that as much of the available space as Coolant volume is available. The aforementioned features contribute to efficient cooling due to the largest possible cooling volume in the cooling chamber 30 at a given size.
  • the invention is not limited to a coolant inlet 31, a coolant outlet 32 and optionally a partition wall 48. Further embodiments with a plurality of coolant inlets 31, a plurality of coolant outlets 32 and / or a plurality of partition walls 48 are conceivable.
  • the tube 11 may have a plurality of cooling chambers 30, which may be arranged, for example, axially offset from one another.
  • the cooling chamber 30 has been described above in connection with a tube 11 with transmission target. However, the cooling chamber 30 can readily be used in a tube 11 as an alternative Direct beam geometry, ie with reflection target, be used advantageously.
  • the tube 11 has been described above for the preferred use in a CT device. However, other applications for industrial X-ray inspection or X-ray measurement of components are conceivable. In general, the X-ray tube 11 can be advantageously used in a high-resolution X-ray device with an imaging detector.

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

Die Erfindung betrifft eine Mikrofokus-Röntgenröhre für eine hochauflösende Röntgenvorrichtung umfassend ein Gehäuse, eine Elektronenstrahlquelle zur Erzeugung eines Elektronenstrahls und eine Fokussierlinse zur Fokussierung des Elektronenstrahl auf ein Target.The invention relates to a microfocus X-ray tube for a high-resolution X-ray device comprising a housing, an electron beam source for generating an electron beam and a focusing lens for focusing the electron beam onto a target.

Derartige Röntgenröhren sind beispielsweise für hochauflösende Computertomografievorrichtungen bekannt.Such X-ray tubes are known, for example, for high-resolution computed tomography devices.

Aufgrund von Fortschritten in der Detektortechnologie, der Rechner- und Speicherkapazitäten sowie der gesteigerten Auflösung von Mikrofokus-Röntgenröhren ermöglicht die Mikro-Computertomografie Volumenrekonstruktion mit einer sehr hohen Ortsauflösung (Voxelgröße) bis in den sub-Mikrometer-Bereich. Da die Messung sämtlicher Röntgenprojektionen, die für eine Rekonstruktion mit hoher Auflösung benötigt werden, in der Re gel mehrere Stunden dauert, bereiten thermisch verursachte Verschiebungen der Probenprojektionen auf dem Detektor erhebliche Probleme. Es ist zwar bekannt, diese Verschiebungen mithilfe von Software-basierten Algorithmen zu kompensieren. Jedoch ist die dadurch erzielbare Auflösungsverbesserung begrenzt.With advances in detector technology, computational and storage capacities, and increased resolution of microfocus X-ray tubes, micro-computed tomography enables volume reconstruction with very high spatial resolution (voxel size) down to the sub-micron range. Since the measurement of all the X-ray projections required for high-resolution reconstruction takes several hours on the rule, thermally induced shifts in the sample projections on the detector create significant problems. Although it is known to compensate for these shifts using software-based algorithms. However, the resolution improvement achievable thereby is limited.

Die kritische Komponente ist dabei die Röntgenröhre, weil es nicht möglich ist, die Röhre im Brennfleck an einem thermisch unempfindlichen Manipulator zu befestigen; es verbleibt immer eine thermisch empfindliche (in der Regel metallische) Verbindung über das Röhrengehäuse zwischen dem Fokus und der Befestigung der Röhre an dem Manipulator, was ohne weitere Maßnahmen dazu führt, dass sich die Fokusposition der Röntgenröhre über die Messdauer erheblich verschiebt.The critical component is the X-ray tube, because it is not possible to fix the tube in the focal spot on a thermally insensitive manipulator; It always remains a thermally sensitive (usually metallic) connection over the tube housing between the focus and the attachment the tube on the manipulator, which without further action causes the focus position of the X-ray tube shifts significantly over the duration of the measurement.

Eine übliche Maßnahme, die Fokusposition der Röntgenröhre über die gesamte Messdauer so konstant wie möglich zu halten, besteht darin, die Röhre auf Betriebstemperatur aufzuheizen und zu warten, bis sich ein thermisches Gleichgewicht eingestellt hat, bevor die Scans gestartet werden. Allerdings dauert es aufgrund der erheblichen Masse der Röntgenröhre und der damit verbundenen großen Wärmekapazität etliche Stunden, bis sich das thermische Gleichgewicht einstellt. Des Weiteren wird das thermische Gleichgewicht durch jede Parameteränderung der Röhre erneut gestört, was zusätzliche erhebliche Wartezeiten verursacht.A common way to keep the focus position of the X-ray tube as constant as possible over the entire measurement period is to heat the tube to operating temperature and wait for a thermal equilibrium to set before starting the scans. However, due to the considerable mass of the X-ray tube and the associated high heat capacity, it takes several hours until the thermal equilibrium sets in. Furthermore, the thermal equilibrium is disturbed by any change in the parameters of the tube, which causes additional significant waiting times.

US 2 608 664 A beschreibt eine Röntgenröhre für eine Röntgenvorrichtung mit einem Gehäuse, einer Elektronenstrahlquelle zur Erzeugung eines Elektronenstrahls, einer Fokussierlinse zur Fokussierung des Elektronenstrahls auf ein Target und einer Kühlkammer für Kühlwasser, die im Querschnitt im Wesentlichen U-förmig ausgebildet ist und das Target von drei Seiten umgibt, um dieses zu kühlen. US 2 608 664 A describes an X-ray tube for an X-ray device comprising a housing, an electron beam source for generating an electron beam, a focusing lens for focusing the electron beam on a target and a cooling chamber for cooling water, which is substantially U-shaped in cross-section and surrounds the target from three sides, to cool this.

EP 0 096 824 A1 beschreibt eine gattungsgemäße Mikrofokus-Röntgenröhre mit einem Gehäuse, einer Elektronenstrahlquelle, einer Fokussierlinse und einer Kühlkammer für eine Kühlflüssigkeit, die an einer Stirnfläche eines Targets positioniert ist, um dieses zu kühlen. EP 0 096 824 A1 describes a generic microfocus X-ray tube with a housing, an electron beam source, a focusing lens and a cooling chamber for a cooling liquid, which is positioned on an end face of a target to cool it.

PUGH D J et al.: "An electron source for a microfocus X-ray tube incorporating a single pole magnetic lens and novel focusing system", DEVELOPMENTS IN ELECTRON MICROSCOPY AND ANALYSIS 1 9771 2-1 4, September 1977 GLASGOW, UK , beschreibt eine gattungsgemäße Mikrofokus-Röntgenröhre, bei der die Spulen der Fokussierlinse wassergekühlt sind. Kühlwasser wird den Fokussierspulen axial durch ein die Fokussierspulen haltendes Gehäuse zugeführt. Ein Kühlmantel aus Kupfer wird weiterhin offenbart. PUGH DJ et al .: "An electron source for a microfocus X-ray tube incorporating a single pole magnetic lens and novel focusing system", DEVELOPMENTS IN ELECTRON MICROSCOPY AND ANALYSIS 1 9771 2-1 4, September 1977 GLASGOW, UK describes a generic microfocus X-ray tube in which the coils of the focusing lens are water cooled. Cooling water is supplied to the focus coils axially through a housing holding the focus coils. A cooling jacket made of copper is further disclosed.

SIMONS et al.: "Quantitative characterization of coal by means of microfocal X-ray computed microtomography (CMT) and color image analysis (CIA)", INTERNATIONAL JOURNAL OF COAL GEOLOGY, ELSEVIER, AMSTERDAM, NL, Bd. 34, Nr. 1-2, Oktober 1997 , beschreibt eine weitere Mikrofokus-Röntgenröhre, die ebenfalls wassergekühlte Fokussierspulen (elektromagnetische Linsen) aufweist. Eine Kühlkammer und nähere Details hierzu sind der Druckschrift nicht entnehmbar. SIMONS et al .: "Quantitative characterization of coal by means of microfocal X-ray computed microtomography (CMT) and color image analysis (CIA)", INTERNATIONAL JOURNAL OF COAL GEOLOGY, ELSEVIER, AMSTERDAM, NL, Vol. 34, No. 1 -2, October 1997 , describes another microfocus X-ray tube which also has water-cooled focusing coils (electromagnetic lenses). A cooling chamber and more details on this are the reference not removable.

Die Aufgabe der Erfindung besteht darin, eine Mikrofokus-Röntgenröhre bereitzustellen, die es ermöglicht, in der industriellen Anwendung Daten in kürzerer Zeit mit einer höheren Auflösung zu erhalten.The object of the invention is to provide a microfocus X-ray tube, which makes it possible to obtain data in a shorter time with a higher resolution in industrial applications.

Die Erfindung löst diese Aufgabe mit einer Mikrofokus-Röntgenröhre mit den Merkmalen des unab-hängigen Anspruchs 1. Besonders bevorzugte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche.The invention solves this problem with a microfocus X-ray tube having the features of the independent claim 1. Particularly preferred embodiments of the invention are the subject of the dependent claims.

Aufgrund der Kühlung der Röntgenröhre mittels des durch die Kühlkammer strömenden Kühlmediums wird thermisch verursachten Verschiebungen der Fokusposition entgegengewirkt. Ein entscheidendes Merkmal ist dabei, dass die Kühlkammer erfindungsgemäß im Wesentlichen rotationssymmetrisch, ringförmig ausgebildet ist. Dadurch kann die im Wesentlichen rotationssymmetrische Temperaturverteilung in der Röhre, die überwiegend durch rotationssymmetrischen Wärmeeintrag insbesondere aufgrund der Energiedissipation in der Elektronenoptik und der Absorption thermischer Energie über die Oberfläche des Röhrengehäuses erzeugt wird, auch dann aufrechterhalten werden, wenn sich die Röhre nicht im thermischen Gleichgewicht befindet. Durch die Aufrechterhaltung der rotationssymmetrischen Temperaturverteilung in der Röhre können seitliche Verschiebungen des Fokus, d.h. Verschiebungen in der senkrecht zur Rotationsachse angeordneten Fokusebene, sehr wirksam unterbunden werden. Da diese Verschiebungen in der Fokusebene einen großen Einfluss auf die Ortsauflösung auf dem Detektor haben, kann erfindungsgemäß eine signifikante Steigerung der Ortsauflösung in der Volumenrekonstruktion erreicht werden. Auf eine Vorwärmung der Röhre und Warten auf Einstellen des thermischen Gleichgewichts kann verzichtet werden, was die Messdauer insgesamt erheblich reduziert.Due to the cooling of the X-ray tube by means of the cooling medium flowing through the cooling chamber thermally induced shifts of the focus position is counteracted. A decisive feature is that the cooling chamber according to the invention is substantially rotationally symmetrical, annular. This allows the substantially rotationally symmetric temperature distribution in the tube, which predominantly is generated by rotationally symmetric heat input, in particular due to the energy dissipation in the electron optics and the absorption of thermal energy over the surface of the tube housing, are maintained even when the tube is not in thermal equilibrium. By maintaining the rotationally symmetric temperature distribution in the tube, lateral shifts of the focus, ie shifts in the focal plane arranged perpendicular to the axis of rotation, can be very effectively prevented. Since these shifts in the focal plane have a great influence on the spatial resolution on the detector, a significant increase of the spatial resolution in the volume reconstruction can be achieved according to the invention. It is not necessary to preheat the tube and wait for the thermal equilibrium to be set, which considerably reduces the measuring time overall.

Aufgrund der erfindungsgemäßen im Wesentlichen rotationssymmetrischen Kühlung verbleiben im Wesentlichen lediglich axiale thermische Verschiebungen des Fokuspunkts. Diese haben weniger gravierende Auswirkungen auf die Ortsauflösung auf dem Detektor. Des Weiteren können, soweit erforderlich, axiale thermische Verschiebungen des Fokuspunkts mittels einer erhöhten Kühlleistung, d.h. einer entsprechend ausgelegten Kühlpumpe, wirksam unterbunden werden.Due to the essentially rotationally symmetrical cooling according to the invention, essentially only axial thermal displacements of the focal point remain. These have less serious effects on the spatial resolution on the detector. Furthermore, as required, axial thermal displacements of the focal point can be achieved by means of increased cooling power, i. a suitably designed cooling pump to be effectively prevented.

Durch die ringförmige Kühlkammer ist die Erfindung vorteilhaft abgegrenzt von einer insbesondere schraubenförmig um die Rotationsachse angeordneten Kühlleitung, wo insbesondere in den axialen Endbereichen erhebliche Abweichungen von der Rotationssymmetrie der Kühlung auftreten.Due to the annular cooling chamber, the invention is advantageously delimited from a particular helically arranged around the axis of rotation cooling line, where in particular in the axial end regions significant deviations from the rotational symmetry of the cooling occur.

Vorzugsweise ist die Querschnittsfläche der Kühlkammer in einem Längsquerschnitt mindestens fünfmal, weiter vorzugsweise mindestens zehnmal so groß wie die Querschnittsfläche von mit der Kühlkammer zu verbindenden Kühlleitungen. Dieses Merkmal trägt zu einer besonders effizienten Kühlung aufgrund eines größtmöglichen Kühlvolumens in der Kühlkammer bei gegebener Baugröße bei. Aus dem gleichen Grund sind vorzugsweise die lichten Innenabmessungen der Kühlkammer in einem Längsquerschnitt größer als die Wandstärken der Kühlkammer, damit möglichst viel von dem zur Verfügung stehenden Bauraum als Kühlmittelvolumen nutzbar ist.Preferably, the cross-sectional area of the cooling chamber in a longitudinal cross section is at least five times, more preferably at least ten times as large as the cross-sectional area of cooling lines to be connected to the cooling chamber. This feature contributes to a particularly efficient cooling due to the largest possible cooling volume in the cooling chamber for a given size. For the same reason, the clear inner dimensions of the cooling chamber in a longitudinal cross section are preferably greater than the wall thicknesses of the cooling chamber, so that as much of the available installation space as the coolant volume can be used.

Vorzugsweise ist die Kühlkammer ringzylindrisch geformt, wobei eine radiale Innenwand und eine radiale Außenwand der Kühlkammer zylindrisch geformt sind. Diese Form erlaubt eine besonders effiziente Kühlung aufgrund eines größtmöglichen Kühlvolumens bei gegebener Baugröße, und ist darüber hinaus auch fertigungstechnisch vorteilhaft.Preferably, the cooling chamber is annularly cylindrical, wherein a radial inner wall and a radial outer wall of the cooling chamber are cylindrically shaped. This shape allows a particularly efficient cooling due to a maximum cooling volume for a given size, and is also advantageous in terms of manufacturing technology.

Vorzugsweise sind ein Einlass und ein Auslass für das Kühlmedium in Umfangsrichtung der Röhre versetzt zueinander angeordnet, weiter vorzugsweise um mindestens 90° versetzt, noch weiter vorzugsweise um 180° versetzt, d.h. einander gegenüberliegend in Bezug auf die Röhrenachse angeordnet. Diese Anordnung kann zu einer möglichst gleichförmigen Durchströmung des gesamten Kühlkammervolumens beitragen.Preferably, an inlet and an outlet for the cooling medium in the circumferential direction of the tube are offset from each other, more preferably offset by at least 90 °, even more preferably offset by 180 °, i. arranged opposite each other with respect to the tube axis. This arrangement can contribute to the most uniform possible flow through the entire cooling chamber volume.

Die Erfindung wird im Folgenden anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren erläutert. Dabei zeigt

Fig. 1
eine schematische Darstellung eines Mikro-Computertomografiesystems;
Fig. 2
einen Längsquerschnitt durch eine Röntgenröhre in einer Ausführungsform, die als solche nicht zu der Erfindung, wie beansprucht, gehört;
Fig. 3
einen Querschnitt durch eine Röntgenröhre senkrecht zur Längsachse ;
Fig. 4
einen Längsquerschnitt durch eine Röntgenröhre in einer ersten Ausführungsform der Erfindung;
Fig. 5
einen Längsquerschnitt durch eine Röntgenröhre in einer weiteren Ausführungsform der Erfindung; und
Fig. 6
einen Querschnitt durch eine Röntgenröhre senkrecht zur Längsachse in einer zur Figur 3 alternativen Ausführungsform gemäß der Erfindung.
The invention will be explained below with reference to advantageous embodiments with reference to the accompanying figures. It shows
Fig. 1
a schematic representation of a micro-computer tomography system;
Fig. 2
a longitudinal cross-section through an X-ray tube in an embodiment which as such does not belong to the invention as claimed;
Fig. 3
a cross section through an x-ray tube perpendicular to the longitudinal axis;
Fig. 4
a longitudinal cross section through an X-ray tube in a first embodiment of the invention;
Fig. 5
a longitudinal cross-section through an X-ray tube in a further embodiment of the invention; and
Fig. 6
a cross section through an x-ray tube perpendicular to the longitudinal axis in a to FIG. 3 alternative embodiment according to the invention.

Die in Figur 1 gezeigte Mikro-Computertomografievorrichtung umfasst ein Röntgensystem 10, das zur Aufnahme eines Satzes von Röntgenprojektionen einer Probe 13 eingerichtet ist. Zu diesem Zweck umfasst das Röntgensystem 10 eine Mikrofokus-Röntgenröhre 11, die Röntgenstrahlung 14 ausgehend von einem Brennpunkt oder Fokus 16 der Röntgenröhre 11 emittiert, einen bildgebenden Röntgendetektor 12 und einen Probenhalter 20, der vorzugsweise zum Rotieren der Probe 13 um eine vertikale Achse eingerichtet ist. Der Röntgendetektor 12 ist vorzugsweise ein Flächendetektor, insbesondere ein flat panel-Detektor, jedoch ist auch ein Zeilendetektor möglich. Ein Satz von Röntgenprojektionen der Probe 13 wird beispielsweise durch schrittweises Rotieren des Probenhalters 20 um jeweils einen definierten kleinen Winkelschritt und Aufnahme einer Röntgenprojektion bei jedem Rotationswinkel erhalten. Das Röntgensystem 10 ist nicht auf eine Rotation des Probenhalters 20 um eine vertikale Achse beschränkt. Alternativ können beispielsweise die Röntgenröhre 11 und der Röntgendetektor 12 um die feststehende Probe 13 rotiert werden.In the FIG. 1 The microcomputer tomography apparatus shown includes an x-ray system 10 configured to receive a set of x-ray projections of a sample 13. For this purpose, the X-ray system 10 comprises a microfocus X-ray tube 11 which emits X-ray radiation 14 from a focal point or focus 16 of the X-ray tube 11, an X-ray imaging detector 12 and a sample holder 20 which is preferably arranged to rotate the sample 13 about a vertical axis , The X-ray detector 12 is preferably an area detector, in particular a flat-panel detector, but a line detector is also possible. A set of X-ray projections of the sample 13 is obtained, for example, by stepwise rotating the sample holder 20 by a defined small angle step and recording an X-ray projection at each rotation angle. The X-ray system 10 is not limited to a rotation of the sample holder 20 about a vertical axis. Alternatively, for example, the X-ray tube 11 and the X-ray detector 12 may be rotated around the fixed sample 13.

Die Röntgenprojektionen werden aus dem Röntgendetektor 12 ausgelesen und an eine Computervorrichtung 41 übermittelt, wo aus dem aufgenommenen Satz von Röntgenprojektionen mittels eines grundsätzlich bekannten Rekonstruktionsalgorithmus rekonstruierte dreidimensionale Volumendaten der Probe 13 errechnet und beispielsweise auf einem Bildschirm 42 dargestellt werden. Die Computervorrichtung 41 kann, wie in Fig. 1 gezeigt, ebenfalls zur Steuerung der Röntgenquelle 11, des Probenhalters 20 und des Röntgendetektors 12 eingerichtet sein; alternativ kann eine separate Steuervorrichtung vorgesehen sein.The X-ray projections are read out of the X-ray detector 12 and transmitted to a computer device 41 where reconstructed three-dimensional volume data of the sample 13 are calculated from the recorded set of X-ray projections by means of a basically known reconstruction algorithm and displayed, for example, on a screen 42. The computing device 41 may, as in Fig. 1 also be arranged to control the X-ray source 11, the sample holder 20 and the X-ray detector 12; Alternatively, a separate control device may be provided.

Die Mikrofokus-Röntgenröhre 11 umfasst ein Kathodenelement 15, einen Wehnelt-Zylinder 21, eine Anode 19, eine vorzugsweise als elektromagnetische Linse ausgeführte Fokussierlinse 22 und ein Elektronenstrahl-Target 23. Des Weiteren kann eine weitere elektromagnetische Linse 25 vorgesehen sein, die vorzugsweise als Kondensorlinse eingerichtet ist, um den Elektronenstrahl 24 näherungsweise parallel auszurichten oder um eine Zwischenabbildung zu erzeugen; die Kondensorlinse 25 ist jedoch nicht zwingend erforderlich. Die Mikrofokus-Röntgenröhre 11 umfasst weiterhin zweckmäßigerweise eine nicht gezeigte Ablenkeinheit zur Strahllagejustierung. Die Mikrofokus-Röntgenröhre 11 ist so eingerichtet, dass der minimale Fokus bzw. Brennfleck auf dem Target 23 kleiner oder gleich 10 µm, vorzugsweise kleiner oder gleich 4 µm, noch weiter vorzugsweise kleiner oder gleich 2 µm beträgt.The microfocus X-ray tube 11 comprises a cathode element 15, a Wehnelt cylinder 21, an anode 19, a focusing lens 22 preferably embodied as an electromagnetic lens, and an electron beam target 23. Furthermore, a further electromagnetic lens 25 may be provided, preferably as a condenser lens is arranged to align the electron beam 24 approximately parallel or to produce an intermediate image; However, the condenser lens 25 is not mandatory. The microfocus X-ray tube 11 further expediently comprises a deflection unit (not shown) for adjusting the beam position. The microfocus X-ray tube 11 is set up so that the minimum focus or focal spot on the target 23 is less than or equal to 10 .mu.m, preferably less than or equal to 4 .mu.m, even more preferably less than or equal to 2 .mu.m.

Die Mikrofokus-Röntgenröhre 11 umfasst des Weiteren ein Gehäuse 34, das aus mehreren Abschnitten zusammengesetzt sein kann. Insbesondere kann ein das Kathodenelement 15 aufnehmender und die Anode 19 bildender Gehäuseabschnitt 35, ein die Fokussierlinse 22 umgebender Gehäuseabschnitt 36 und gegebenenfalls ein dazwischen angeordneter mittlerer Gehäuseabschnitt 37, in dem beispielsweise die Kondensorlinse 25 angeordnet sein kann, vorgesehen sein. Das die Spule 33 umgebende Gehäuse 36 ist vorteilhafterweise frei von thermisch isolierenden, insbesondere nichtmetallischen Abschirmungen oder Schichten, die die Einstellung eines thermischen Gleichgewichts behindern würden.The microfocus X-ray tube 11 further includes a housing 34 that may be composed of multiple sections. In particular, a housing section 35 accommodating the cathode element 15 and forming the anode 19, a housing section 36 surrounding the focusing lens 22 and, if appropriate, a middle housing section 37 arranged therebetween, in which, for example, the condenser lens 25 can be arranged, can be provided. The housing 36 surrounding the coil 33 is advantageously free of thermally insulating, in particular non-metallic, shields or layers which would hinder the setting of a thermal equilibrium.

Die Röntgenröhre 11 umfasst eine ringförmige Kühlkammer 30, die einen Einlass 31 und einen Auslass 32 aufweist, die über Kühlmittelleitungen 38 mit einer nicht gezeigten Kühlmittelpumpe zu einem Kühlkreislauf verbindbar sind. Auf diese Weise kann ein flüssiges Kühlmittel, insbesondere Wasser oder Öl, durch die Kühlkammer 30 strömen, um dem Eintrag von Wärmeenergie aus verschiedenen internen und externen Wärmequellen und einer damit verbundenen Verschiebung des Fokuspunkts 16 relativ zu der Röhrenbefestigung 39 entgegenzuwirken. Die genannten Wärmequellen entstehen beispielsweise aufgrund des Auftreffens des Elektronenstrahls 24 auf dem Target 23, der Energiedissipation in der Elektronenoptik 22 und der Absorption thermischer Energie über die Oberfläche des Röhrengehäuses 34.The x-ray tube 11 comprises an annular cooling chamber 30, which has an inlet 31 and an outlet 32, which are connectable via coolant lines 38 with a coolant pump, not shown, to a cooling circuit. In this way, a liquid coolant, in particular water or oil, can flow through the cooling chamber 30 to counteract the introduction of heat energy from various internal and external heat sources and an associated displacement of the focal point 16 relative to the tube attachment 39. The heat sources mentioned arise for example due to the impact of the electron beam 24 on the target 23, the energy dissipation in the electron optics 22 and the absorption of thermal energy across the surface of the tube housing 34.

Die Kühlkammer 30 ist ringförmig in sich geschlossen, wie am besten aus den Figuren 3 und 6 ersichtlich ist. In der Ausführungsform gemäß Figur 3 ist der flüssigkeitsdurchströmte Innenraum der Kühlkammer 30 umlaufend vollständig durchgängig. In dieser Ausführungsform sind Einlass 31 und Auslass 32 vorzugsweise um 180° versetzt zueinander, d.h. einander gegenüberliegend angeordnet, wie in Fig. 3 gezeigt, damit die Kühlkammer 30 möglichst gleichförmig durchströmt wird und sich keine Vorzugsfließrichtung für das Kühlmedium ausbildet.The cooling chamber 30 is annularly closed in itself, as best of the Figures 3 and 6 is apparent. In the embodiment according to FIG. 3 is the liquid-flow-through interior of the cooling chamber 30 circumferentially completely continuous. In this embodiment, inlet 31 and outlet 32 are preferably offset by 180 ° from each other, ie, arranged opposite one another, as in FIG Fig. 3 shown to allow the cooling chamber 30 is flowed through as uniform as possible and forms no preferential flow direction for the cooling medium.

In der Ausführungsform gemäß Figur 6 ist dagegen in der Kühlkammer 30 eine radiale Trennwand 48 vorgesehen, die den flüssigkeitsdurchströmten Innenraum der Kühlkammer 30 an einer Umfangsstelle unterbricht. In diesem Fall sind Einlass 31 und Auslass 32 zweckmäßigerweise im Bereich der Trennwand 48 auf entgegengesetzten Seiten derselben angeordnet, um eine vollständige Durchströmung der Kühlkammer 30 zu erreichen. In diesem Ausführungsbeispiel können Einlass und Auslass auch im Wesentlichen ohne Umfangsversatz, sondern stattdessen axial versetzt angeordnet sein.In the embodiment according to FIG. 6 On the other hand, in the cooling chamber 30, a radial partition wall 48 is provided, which interrupts the liquid-flow-through interior of the cooling chamber 30 at a circumferential location. In this case, inlet 31 and outlet 32 are expediently arranged in the region of the dividing wall 48 on opposite sides thereof in order to achieve a complete flow through the cooling chamber 30. In this embodiment, inlet and outlet can also be arranged substantially without circumferential offset, but instead axially offset.

Die Ausführungsform gemäß Figur 6 verdeutlicht, dass das erfindungsgemäße Merkmal "im Wesentlichen rotationssymmetrisch" bedeutet: rotationssymmetrisch abgesehen von Ein- und Auslässen 31, 32 für das Kühlmittel, etwaigen Trennwänden 48 in der Kühlkammer und gegebenenfalls weiteren, die Rotationssymmetrie nicht wesentlich störenden Funktionselementen. Die Begriffe axial, radial und rotationssymmetrisch beziehen sich im Rahmen dieser Anmeldung auf die Längsachse der Röhre 11, welche durch die Mittelachse des Elektronenstrahls 24 zwischen der Kathode 15 und dem Target 23 definiert ist.The embodiment according to FIG. 6 illustrates that the inventive feature "substantially rotationally symmetrical" means: rotationally symmetrical apart from inlets and outlets 31, 32 for the coolant, any partitions 48 in the cooling chamber and optionally further, the rotational symmetry not significantly interfering functional elements. The terms axial, radial and rotationally symmetric in the context of this application refer to the longitudinal axis of the tube 11, which is defined by the central axis of the electron beam 24 between the cathode 15 and the target 23.

In der Ausführungsform gemäß Figur 2, die nicht zu der Erfindung, wie beansprucht, gehört, ist die Kühlkammer 30 um das Röhrengehäuse 34, insbesondere um den die Fokussierlinse 22 umgebenden Gehäuseabschnitt 36 angeordnet. In dieser Ausführungsform erstreckt sich die Kühlkammer 30 überwiegend axial, d.h. ihre axiale Erstreckung ist vorzugsweise mindestens doppelt so groß wie ihre radiale Erstreckung. Beispielsweise kann die axiale Erstreckung der Kühlkammer 30 an die axiale Erstreckung der Spule 33 der Fokussierlinse 22 angepasst sein.In the embodiment according to FIG. 2 which does not belong to the invention as claimed, the cooling chamber 30 is arranged around the tube housing 34, in particular around the housing section 36 surrounding the focusing lens 22. In this embodiment, the cooling chamber 30 extends predominantly axially, ie, its axial extent is preferably at least twice as large as its radial extent. For example, can the axial extent of the cooling chamber 30 to be adapted to the axial extent of the coil 33 of the focusing lens 22.

In den Ausführungsformen gemäß Figur 4 und 5, die Ausführungsformen der Erfindung darstellen, ist die Kühlkammer 30 in dem Röhrengehäuse 34 angeordnet. In der in Figur 4 gezeigten Variante ist die Kühlkammer 30 außen an dem die Fokussierlinse 22 umgebenden Gehäuseabschnitt 36, hier in dem mittleren Gehäuseabschnitt 37, angeordnet. In der in Figur 5 gezeigten Variante ist die Kühlkammer 30 in dem die Fokussierlinse 22 umgebenden Gehäuseabschnitt 36 unmittelbar neben der Spule 33 angeordnet. In beiden Ausführungsformen erstreckt sich die Kühlkammer 30 überwiegend radial, d.h. ihre radiale Erstreckung ist vorzugsweise um mindestens 50% größer als ihre axiale Erstreckung. Beispielsweise kann die radiale Erstreckung der Kühlkammer 30 an die radiale Erstreckung der Spule 33 der Fokussierlinse 22 angepasst sein.In the embodiments according to FIGS. 4 and 5 , which illustrate embodiments of the invention, the cooling chamber 30 is disposed in the tube housing 34. In the in FIG. 4 In the variant shown, the cooling chamber 30 is arranged outside on the housing section 36 surrounding the focusing lens 22, in this case in the middle housing section 37. In the in FIG. 5 In the variant shown, the cooling chamber 30 in the housing section 36 surrounding the focusing lens 22 is arranged directly next to the coil 33. In both embodiments, the cooling chamber 30 extends predominantly radially, ie its radial extent is preferably at least 50% greater than its axial extent. For example, the radial extent of the cooling chamber 30 may be adapted to the radial extent of the coil 33 of the focusing lens 22.

In den Ausführungsbeispielen gemäß Figuren 4 und 5 ist die Kühlkammer 30 benachbart zu der Spule 33 der Fokussierlinse 22 angeordnet, da diese eine Hauptwärmequelle in der Röhre 11 darstellt.In the embodiments according to FIGS. 4 and 5 For example, the cooling chamber 30 is located adjacent to the coil 33 of the focusing lens 22 because it is a main heat source in the tube 11.

In den Ausführungsformen gemäß Figuren 3 bis 6 weist die Kühlkammer die bevorzugte Form eines Ringzylinders auf. Die radiale Außenwand 45 und die radiale Innenwand 46 der Kühlkammer 30 sind demnach zylindrisch geformt. Die zur Bildung einer geschlossenen Kühlkammer 30 erforderlichen Seitenwände 47 sind vorzugsweise scheibenförmig.In the embodiments according to FIGS. 3 to 6 For example, the cooling chamber has the preferred shape of a ring cylinder. The radial outer wall 45 and the radial inner wall 46 of the cooling chamber 30 are thus cylindrical in shape. The side walls 47 required for forming a closed cooling chamber 30 are preferably disk-shaped.

Die die Kühlkammer bildenden Wände 45, 46, 47 bestehen vorzugsweise aus einem Material mit einer guten Wärmeleitfähigkeit von mindestens 50 W/mK, insbesondere aus einem Material auf der Grundlage von Aluminium, Kupfer und/oder Messing.The walls 45, 46, 47 forming the cooling chamber are preferably made of a material having a good thermal conductivity of at least 50 W / mK, in particular of a material based on aluminum, copper and / or brass.

Wie aus den Figuren 4 und 5 ersichtlich ist, ist die Querschnittsfläche der Kühlkammer 30 in einem Längsquerschnitt mehr als zehnmal so groß wie die Querschnittsfläche von mit der Kühlkammer 30 über die Anschlüsse 31, 32 zu verbindenden Kühlleitungen 38. Die Fließgeschwindigkeit des Kühlmediums in der Kühlkammer 30 ist daher vorzugsweise mehr als zehnmal kleiner als in den mit der Kühlkammer 30 über die Anschlüsse 31, 32 zu verbindenden Kühlleitungen 38. Die lichten Innenabmessungen der Kühlkammer 30 in einem Längsquerschnitt sind erheblich größer als die Wandstärken der Wände 45 bis 47, damit möglichst viel von dem zur Verfügung stehenden Bauraum als Kühlmittelvolumen nutzbar ist. Die vorgenannten Merkmale tragen zu einer effizienten Kühlung aufgrund größtmöglichen Kühlvolumens in der Kühlkammer 30 bei gegebener Baugröße bei.Like from the FIGS. 4 and 5 As can be seen, the cross-sectional area of the cooling chamber 30 in a longitudinal cross-section is more than ten times greater than the cross-sectional area of cooling conduits 38 to be connected to the cooling chamber 30 via the ports 31, 32. The flow rate of the cooling medium in the cooling chamber 30 is therefore preferably more than ten times smaller than in the with the cooling chamber 30 via the terminals 31, 32 to be connected cooling lines 38. The clear inner dimensions of the cooling chamber 30 in a longitudinal cross-section are significantly larger than the wall thickness of the walls 45 to 47, so that as much of the available space as Coolant volume is available. The aforementioned features contribute to efficient cooling due to the largest possible cooling volume in the cooling chamber 30 at a given size.

Die Erfindung ist nicht auf einen Kühlmitteleinlass 31, einen Kühlmittelauslass 32 und gegebenenfalls eine Trennwand 48 beschränkt. Es sind weitere Ausführungsformen mit einer Mehrzahl von Kühlmitteleinlässen 31, einer Mehrzahl von Kühlmittelauslässen 32 und/oder einer Mehrzahl von Trennwänden 48 denkbar.The invention is not limited to a coolant inlet 31, a coolant outlet 32 and optionally a partition wall 48. Further embodiments with a plurality of coolant inlets 31, a plurality of coolant outlets 32 and / or a plurality of partition walls 48 are conceivable.

Die Röhre 11 kann eine Mehrzahl von Kühlkammern 30 aufweisen, die beispielsweise axial versetzt zueinander angeordnet sein können.The tube 11 may have a plurality of cooling chambers 30, which may be arranged, for example, axially offset from one another.

Die Kühlkammer 30 wurde vorstehend im Zusammenhang mit einer Röhre 11 mit Transmissionstarget beschrieben. Die Kühlkammer 30 kann jedoch ohne Weiteres alternativ in einer Röhre 11 mit Direktstrahlgeometrie, d.h. mit Reflektionstarget, vorteilhaft eingesetzt werden.The cooling chamber 30 has been described above in connection with a tube 11 with transmission target. However, the cooling chamber 30 can readily be used in a tube 11 as an alternative Direct beam geometry, ie with reflection target, be used advantageously.

Die Röhre 11 wurde vorstehend für die bevorzugte Anwendung in einer CT-Vorrichtung beschrieben. Es sind jedoch andere Anwendungen für die industrielle Röntgenprüfung oder Röntgenvermessung von Bauteilen denkbar. Im Allgemeinen kann die Röntgenröhre 11 vorteilhaft in einer hochauflösenden Röntgenvorrichtung mit einem bildgebenden Detektor verwendet werden.The tube 11 has been described above for the preferred use in a CT device. However, other applications for industrial X-ray inspection or X-ray measurement of components are conceivable. In general, the X-ray tube 11 can be advantageously used in a high-resolution X-ray device with an imaging detector.

Claims (8)

  1. Microfocus X-ray tube (11) for a high-resolution X-ray device, comprising a housing (34), an electron beam source (15) for generating an electron beam (14), and a focusing lens (22) comprising a coil (33) for focusing the electron beam (24) onto a target (23), wherein the housing (34) has a housing section (36) surrounding the focusing lens (22), and the X-ray tube (11) has an essentially rotationally-symmetrical, annular cooling chamber (30) that is configured for the passage of a liquid cooling medium,
    characterized in that
    the cooling chamber (30) is arranged in the housing, outside on the housing section (36) surrounding the focusing lens, (22), next to the focusing lens, (22) or in the housing section (36), surrounding the focusing lens, immediately next to the coil (33),
    wherein the cooling chamber (30) extends predominantly in a radial manner, wherein the radial extension of the cooling chamber (30) is adapted to the radial extension of the coil (33) of the focusing lens (22).
  2. Microfocus X-ray tube according to claim 1, wherein the cross-sectional area of the cooling chamber (30) in a longitudinal cross-section is at least five times as large as a cross-sectional area of cooling ducts (38) to be connected to the cooling chamber (30).
  3. Microfocus X-ray tube according to one of the preceding claims, wherein the clear internal dimensions of the cooling chamber (30) in a longitudinal cross-section are greater than the wall thicknesses of the cooling chamber walls (45-47).
  4. Microfocus X-ray tube according to one of the preceding claims, wherein the cooling chamber (30) has the shape of a ring cylinder.
  5. Microfocus X-ray tube according to one of the preceding claims, wherein the microfocus X-ray tube has an inlet (31) and an outlet (32) for the liquid cooling medium, and wherein the inlet (31) and the outlet (32) are arranged offset from one another in a circumferential direction of the cooling chamber (30).
  6. Microfocus X-ray tube according to one of the preceding claims, wherein the microfocus X-ray tube has an inlet (31) and an outlet (32) for the liquid cooling medium, and wherein the inlet (31) and the outlet (32) are arranged opposite each other with respect to the tube axis.
  7. Microfocus X-ray tube according to one of the preceding claims, wherein walls (45-47) forming the cooling chamber (30) are made of a material having a thermal conductivity of at least 50 W/mK.
  8. Microfocus X-ray tube according to one of the preceding claims, wherein the walls (45-47) forming the cooling chamber (30) consist of a material based upon aluminum, copper, and/or brass.
EP10749795.0A 2010-08-27 2010-08-27 Microfocus x-ray tube for a high-resolution x-ray apparatus Active EP2609612B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/005273 WO2012025136A1 (en) 2010-08-27 2010-08-27 Microfocus x-ray tube for a high-resolution x-ray apparatus

Publications (2)

Publication Number Publication Date
EP2609612A1 EP2609612A1 (en) 2013-07-03
EP2609612B1 true EP2609612B1 (en) 2019-11-13

Family

ID=43904027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10749795.0A Active EP2609612B1 (en) 2010-08-27 2010-08-27 Microfocus x-ray tube for a high-resolution x-ray apparatus

Country Status (5)

Country Link
US (1) US9153408B2 (en)
EP (1) EP2609612B1 (en)
JP (1) JP5675987B2 (en)
CN (1) CN103189955A (en)
WO (1) WO2012025136A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051594A1 (en) * 2011-10-04 2013-04-11 株式会社ニコン X-ray device, x-ray irradiation method, and manufacturing method for structure
WO2014064748A1 (en) * 2012-10-22 2014-05-01 株式会社島津製作所 X-ray tube device
CN103367083A (en) * 2013-07-10 2013-10-23 杭州电子科技大学 Small-beam-spot X-ray equipment
CN103578886B (en) * 2013-11-12 2016-08-17 陆振民 electromagnetic wave generating device
CN107209944B (en) * 2014-08-16 2021-08-10 Fei公司 Correction of beam hardening artifacts in sample micro-tomography imaging in containers
CN105047509B (en) * 2015-07-24 2017-03-29 中国科学院电工研究所 The focusing arrangement of big beam deflection target practice X-ray source with microbeam
EP3389055A1 (en) * 2017-04-11 2018-10-17 Siemens Healthcare GmbH X-ray device for generating high-energy x-ray radiation
DE102018107952B4 (en) * 2018-04-04 2024-01-04 Comet Ag Aperture holder for an objective aperture of an X-ray tube, objective aperture and X-ray tube
CN109087838A (en) * 2018-06-19 2018-12-25 广州市昊志影像科技有限公司 A kind of Microfocus X-ray X-ray tube based on carbon nano tube field-emission
US11721515B2 (en) * 2021-01-22 2023-08-08 Hamamatsu Photonics K.K. X-ray module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096824A1 (en) * 1982-06-16 1983-12-28 feinfocus Verwaltungs GmbH & Co. KG Fine focus X-ray tube and method for the production of a finely focused electron emission from an X-ray filament cathode

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL16090C (en) * 1924-06-18
US1917099A (en) 1929-10-18 1933-07-04 Gen Electric x-ray tube
US2356645A (en) * 1943-02-08 1944-08-22 Gen Electric X Ray Corp X-ray tube
BE474550A (en) * 1945-09-18
JP2920390B2 (en) 1989-11-08 1999-07-19 株式会社日立製作所 Electronic lens cooling system
US6249569B1 (en) * 1998-12-22 2001-06-19 General Electric Company X-ray tube having increased cooling capabilities
JP2001006592A (en) 1999-06-24 2001-01-12 Nikon Corp Manufacture of cooling device, charged particle beam exposure device and semiconductor device
US6438207B1 (en) * 1999-09-14 2002-08-20 Varian Medical Systems, Inc. X-ray tube having improved focal spot control
US6580780B1 (en) * 2000-09-07 2003-06-17 Varian Medical Systems, Inc. Cooling system for stationary anode x-ray tubes
US6430263B1 (en) * 2000-12-01 2002-08-06 Koninklijke Philips Electronics, N.V. Cold-plate window in a metal-frame x-ray insert
JP3880897B2 (en) 2002-07-18 2007-02-14 株式会社東芝 Rotating anode X-ray tube
JP3950389B2 (en) * 2002-08-14 2007-08-01 浜松ホトニクス株式会社 X-ray tube
DE10320361B3 (en) * 2003-05-07 2004-12-16 Siemens Ag Rotating piston X-ray radiator, has cathode and anode fixed in vacuum tube, and rotary guide body coaxially arranged between vacuum tube and coolant housing which rotates at intermediate frequency to reduce rotational power requirements
US6852982B1 (en) 2003-07-14 2005-02-08 Fei Company Magnetic lens
EP1691394A4 (en) * 2003-10-17 2009-12-23 Toshiba Kk X-ray apparatus
WO2005069343A2 (en) * 2004-01-13 2005-07-28 Koninklijke Philips Electronics, N.V. X-ray tube cooling collar
ATE451822T1 (en) * 2004-01-13 2009-12-15 Koninkl Philips Electronics Nv LIQUID FLOW SENSOR FOR X-RAY TUBES
US6977991B1 (en) * 2004-01-13 2005-12-20 Siemens Aktiengesellschaft Cooling arrangement for an X-ray tube having an external electron beam deflector
WO2005069341A2 (en) * 2004-01-13 2005-07-28 Koninklijke Philips Electronics, N.V. Composite frame for x-ray tubes
DE102005049270B4 (en) * 2005-10-14 2012-02-16 Siemens Ag Rotary piston tube with a coolant flowing through the cooling device and use of the cooling liquid
DE102005049455B4 (en) * 2005-10-15 2007-11-22 Ziehm Imaging Gmbh Heat exchanger for a single-boiler generator of an X-ray diagnostic device with a rotary anode tube with glass housing
JP3887395B2 (en) 2005-11-25 2007-02-28 株式会社東芝 X-ray generator
FR2895831B1 (en) * 2006-01-03 2009-06-12 Alcatel Sa COMPACT SOURCE WITH VERY BRILLIANT X-RAY BEAM
JP2007294420A (en) * 2006-03-29 2007-11-08 Toshiba Corp Rotating anode x-ray tube apparatus
US7520672B2 (en) * 2006-03-31 2009-04-21 General Electric Company Cooling assembly for an X-ray tube
JP4908341B2 (en) * 2006-09-29 2012-04-04 株式会社東芝 Rotating anode type X-ray tube device
US7508916B2 (en) * 2006-12-08 2009-03-24 General Electric Company Convectively cooled x-ray tube target and method of making same
EP1970935B1 (en) 2007-03-14 2011-01-12 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Lens coil cooling of a magnetic lens
JP5363721B2 (en) 2007-11-15 2013-12-11 株式会社日立製作所 Cooling device for charged particle beam equipment
DE102008038582A1 (en) * 2008-08-21 2010-02-25 Siemens Aktiengesellschaft X-ray
US8009805B2 (en) * 2009-06-09 2011-08-30 General Electric Company Rotating union for a liquid cooled rotating X-ray target
US8009806B2 (en) * 2009-07-13 2011-08-30 General Electric Company Apparatus and method of cooling a liquid metal bearing in an x-ray tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096824A1 (en) * 1982-06-16 1983-12-28 feinfocus Verwaltungs GmbH & Co. KG Fine focus X-ray tube and method for the production of a finely focused electron emission from an X-ray filament cathode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LOPES R T ET AL: "Evaluation of a Microtomography System with an X-ray Microfocus Tube", APPLIED RADIATION AND ISOTOPES, ELSEVIER, OXFORD, GB, vol. 48, no. 10-12, 12 October 1997 (1997-10-12), pages 1437 - 1442, XP004101732, ISSN: 0969-8043, DOI: 10.1016/S0969-8043(97)00256-X *
PUGH D J ET AL: "An electron source for a microfocus X-ray tube incorporating a single pole magnetic lens and novel focusing system", DEVELOPMENTS IN ELECTRON MICROSCOPY AND ANALYSIS 197712-14 SEPT. 1977 GLASGOW, UK, UK, 12 September 1977 (1977-09-12), pages 29 - 32, XP009193427, ISBN: 0-85498-127-6 *
SIMONS ET AL: "Quantitative characterization of coal by means of microfocal X-ray computed microtomography (CMT) and color image analysis (CIA)", INTERNATIONAL JOURNAL OF COAL GEOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 34, no. 1-2, 1 October 1997 (1997-10-01), pages 69 - 88, XP005876044, ISSN: 0166-5162, DOI: 10.1016/S0166-5162(97)00011-6 *

Also Published As

Publication number Publication date
US9153408B2 (en) 2015-10-06
US20130208870A1 (en) 2013-08-15
CN103189955A (en) 2013-07-03
JP2013538421A (en) 2013-10-10
WO2012025136A1 (en) 2012-03-01
JP5675987B2 (en) 2015-02-25
EP2609612A1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
EP2609612B1 (en) Microfocus x-ray tube for a high-resolution x-ray apparatus
EP1852709B1 (en) Cooled NMR probe head with flexible cooled coupler
DE102004018765A1 (en) Stationary computed tomography system with compact X-ray source assembly
DE102012002633B4 (en) Thermal management systems and arrangements for grazing incidence collectors for EUV lithography and EUV lithography system
EP2473298B1 (en) Roller and roller assembly for a continuous casting device
DE102010049953A1 (en) Arrangement with devices for integrated cooling and / or heating and a method for integrated heating or cooling
DE102010029080B4 (en) Tempering device for an NMR sample tube and method for controlling the temperature of an NMR sample tube
DE202010017348U1 (en) Cooling device for a usable at elevated ambient temperature sensor
DE1564967A1 (en) Nuclear reactor fuel assembly
DE102013227060A1 (en) Shooting frame for the gantry of a computer tomograph, as well as gantry and computer tomograph with such a rotating frame
DE102013107736A1 (en) X-ray inspection device for material testing and method for generating high-resolution projections of a test specimen by means of X-rays
DE102005060242B4 (en) Method and structure for reducing the electrical stress on high-voltage insulators in X-ray tubes
DE2911718A1 (en) ULTRASOUND DETECTOR
EP2935152B1 (en) Thermal shielding device
DE102016218772A1 (en) Improved tempering of an NMR MAS rotor
DE102007008349B4 (en) Arrangement for X-ray computed tomography
DE102012217567A1 (en) Cooling device for cooling gantry of computer tomography utilized in e.g. medical engineering, has coolant spacer comprising line sections that run in tangential direction of rotor, where line sections are arranged parallel to each other
DE1149831B (en) Pipe system for removing heat from nuclear reactors
DE102018222625A1 (en) Heatsink for an electric motor, electric motor and method for cooling the motor
DE102010054816B3 (en) Rod anode for microfocus X-ray tube utilized for examination of electrical components, has carrier with passage connecting supply channel with discharge channel, where passage runs transverse to longitudinal axis of base body
DE2726195C3 (en) Magnetic objective lens for particle beam devices operating under vacuum, in particular objective lens for electron microscopes
DE102012217739A1 (en) Cooling device for gantry of computer tomography, The rotor has refrigerant line which is integrated in rotating frame that is rotatably mounted relative to gantry housing
DE102019219551A1 (en) Sensor arrangement
EP3881088B1 (en) Controlling the temperature of an nmr sample tube
DE102021117606A1 (en) RECEIVER DEVICE FOR SOLAR RADIATION WITH A TANK FOR HEATING A HEAT TRANSFER MEDIUM IN A SOLAR THERMAL POWER PLANT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1202537

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016371

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016371

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200827

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200827

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1202537

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 14

Ref country code: DE

Payment date: 20230720

Year of fee payment: 14