JP5363721B2 - Cooling device for charged particle beam equipment - Google Patents

Cooling device for charged particle beam equipment Download PDF

Info

Publication number
JP5363721B2
JP5363721B2 JP2007296990A JP2007296990A JP5363721B2 JP 5363721 B2 JP5363721 B2 JP 5363721B2 JP 2007296990 A JP2007296990 A JP 2007296990A JP 2007296990 A JP2007296990 A JP 2007296990A JP 5363721 B2 JP5363721 B2 JP 5363721B2
Authority
JP
Japan
Prior art keywords
cooling
flow path
flow
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007296990A
Other languages
Japanese (ja)
Other versions
JP2009123555A (en
Inventor
功 松井
研 原田
哲也 明石
秀孝 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Ltd filed Critical Hitachi High Technologies Corp
Priority to JP2007296990A priority Critical patent/JP5363721B2/en
Publication of JP2009123555A publication Critical patent/JP2009123555A/en
Application granted granted Critical
Publication of JP5363721B2 publication Critical patent/JP5363721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子線装置の冷却装置に関する。   The present invention relates to a cooling device for a charged particle beam device.

荷電粒子線装置には、例えば電子やイオンなどの荷電粒子線を収束もしくは結像するための電磁レンズが用いられている。このような電磁レンズは磁場を発生させるための電磁コイルと磁場を集中させるための磁路より構成されている。   In the charged particle beam apparatus, for example, an electromagnetic lens for converging or imaging charged particle beams such as electrons and ions is used. Such an electromagnetic lens includes an electromagnetic coil for generating a magnetic field and a magnetic path for concentrating the magnetic field.

このうちの電磁コイルには、20A近い電流を常時流す場合があり、ジュール熱による発熱が伴う。この発熱を冷却するために各電磁コイルの近傍には冷却装置が備えられたり、さらには特許文献1で開示されたようなコイル線材自体に冷却のための工夫が施されている。   Of these coils, a current close to 20 A may be constantly applied, and heat generation due to Joule heat is accompanied. In order to cool this heat generation, a cooling device is provided in the vicinity of each electromagnetic coil, and the coil wire itself disclosed in Patent Document 1 is devised for cooling.

また、荷電粒子線装置において高真空を得るために一般的に用いられる油拡散ポンプは真空オイルを加熱蒸散させ、そのオイル蒸気の運動により真空排気を行うため、真空油を高温まで加熱するヒーターを備えている。   In addition, an oil diffusion pump that is generally used to obtain a high vacuum in a charged particle beam apparatus heats and evaporates vacuum oil and evacuates it by the movement of the oil vapor. Therefore, a heater that heats the vacuum oil to a high temperature is provided. I have.

このように、荷電粒子線装置には複数の発熱源が存在しており、それらに対する複数の冷却装置が設置されている。これらの冷却装置として最も一般的なものは、毎分1〜2リットルの冷却水を流す冷却板を熱源に密着させ、冷却水と熱源との間での熱交換を行う水冷式冷却板型の機構のものである。
特許第2967966号明細書 特許第3231342号明細書
Thus, the charged particle beam device has a plurality of heat sources, and a plurality of cooling devices are installed for them. The most common of these cooling devices is a water-cooled cooling plate type in which a cooling plate for flowing 1 to 2 liters of cooling water per minute is brought into close contact with the heat source and heat exchange is performed between the cooling water and the heat source. Of the mechanism.
Japanese Patent No. 2967966 Japanese Patent No. 3231342

上記のように冷却媒体を流して発熱源の冷却を行う場合、冷却媒体が冷却装置内を流れるとき、あるいは冷却装置への流入もしくは流出時に流路内部で攪拌作用を起こし乱れた流れ(乱流)となって荷電粒子線装置全体へ振動を与える場合がある。   When cooling the heat source by flowing the cooling medium as described above, the turbulent flow (turbulent flow) occurs when the cooling medium flows in the cooling device, or when the cooling medium flows into or out of the cooling device, causing a stirring action inside the flow path. ) To give vibration to the entire charged particle beam device.

ナノテクノロジーにおける加工・計測装置の主役と目される荷電粒子線装置は、電子顕微鏡に代表されるように極端に振動を嫌う装置であり、冷却媒体がその流路で発生させる振動は、装置自身が振動源となっているにもかかわらず、冷却媒体が前述のとおり装置にとって必要不可欠なものであるため、対策への要求が高まっている。   Charged particle beam devices, which are considered to play a leading role in nanotechnology processing and measurement devices, are devices that are extremely hated from vibration, as represented by electron microscopes. However, since the cooling medium is indispensable for the apparatus as described above, there is an increasing demand for countermeasures.

とりわけ、透過型電子顕微鏡に於いては、原子レベルの結晶格子像(高分解能像)の観察時には、冷却媒体の流れが引き起こす振動が観察の妨げと認識されるレベルに至っている。   In particular, in a transmission electron microscope, at the time of observing an atomic level crystal lattice image (high resolution image), the vibration caused by the flow of the cooling medium has reached a level that is recognized as a hindrance to the observation.

本発明は、上記実情を鑑みてなされたものであって、その目的は、冷却媒体の乱流による振動発生を抑止あるいは発生する振動を低減しつつ効率的に冷却を行うことのできる荷電粒子線装置のための冷却装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a charged particle beam that can efficiently perform cooling while suppressing generation of vibration due to turbulent flow of a cooling medium or reducing generated vibration. It is to provide a cooling device for the device.

上記目的を達成するために、本発明の一態様に係る荷電粒子線装置の冷却装置は、円周状を成す冷却媒体流路を持ち、円周面と垂直をなしかつ円周の動径方向と垂直をなす方向の流路の大きさ(以下、この大きさを流路の「深さ」という)が円周の中心からの動径方
向距離に応じて連続的かつ一様に大きく(深く)なる構造をとることを特徴としている。この構造は、冷却媒体(流水)にかかる圧力(水圧)が一定のとき、流路内の動径方向の位置に依らず、どの部分でも一定の水量が流れるように、流路の断面積、流路長(すなわち流水抵抗)を検討した結果である。なお、冷却媒体として水以外の流体を用いることができるが、以下では水を例に説明する。
In order to achieve the above object, a cooling device for a charged particle beam device according to an aspect of the present invention has a circumferential coolant flow path, is perpendicular to a circumferential surface, and is a radial direction of the circumference. The size of the channel in the direction perpendicular to the center (hereinafter referred to as the “depth” of the channel) is continuously and uniformly large (deeply) according to the radial distance from the center of the circumference. ). In this structure, when the pressure (water pressure) applied to the cooling medium (running water) is constant, the cross-sectional area of the flow path is such that a constant amount of water flows in any part regardless of the position in the radial direction in the flow path. It is the result of examining the flow path length (that is, flowing water resistance). In addition, although fluids other than water can be used as a cooling medium, below, water is demonstrated to an example.

さらに、中心を一にし、半径を異にする円周状の複数の冷却媒体流路を成す場合は、全ての流路において、その深さが円周の中心から動径方向の距離に応じて一様に深くなる構造をとることを特徴としている。これも流路内の動径方向の位置に依らず、かつ、各流路に依らず一定の流水量が得られるように、流路の断面積、流路長(すなわち流水抵抗)を検討した結果である。   Furthermore, when forming a plurality of circumferential coolant flow paths with the same center and different radii, the depth of all the flow paths depends on the radial distance from the center of the circumference. It is characterized by a uniform deep structure. This also examined the cross-sectional area of the flow path and the flow path length (that is, the flow resistance) so that a constant flow rate could be obtained regardless of the position in the radial direction in the flow path and regardless of the flow path. It is a result.

このような一定の水圧にて冷却水が流され、水圧に応じた一定の流水量が得られることにより、振動を抑止するための流水条件(流水速度や流量など)を満たし、かつ十分な冷却効果が確保できる。   Cooling water is flowed at such a constant water pressure, and a constant amount of water flow according to the water pressure is obtained, so that the water flow conditions (flow rate, flow rate, etc.) for suppressing vibration are satisfied and sufficient cooling is performed. An effect can be secured.

また、上述の様に複数の流路を持つ構成の場合、単位時間当たりの流水量一定という前提の下では、流路が長くなる半径の大きな円周状の流路ほど、冷却媒体が流れる方向と垂直の流路の断面積(以下、単に「流路の断面積」という)を大きくすることにより、流体力学的観点より乱流の発生に伴う振動の抑止を考慮した流路構成を実現することができる。この単位時間当たりの流水量一定という条件は、冷却効果と相反するものではなく、振動抑止と冷却効果の確保は両立するものである。   Also, in the case of a configuration having a plurality of flow paths as described above, the direction of the cooling medium flows in a circumferential flow path with a larger radius with a longer flow path on the assumption that the amount of flowing water per unit time is constant. By increasing the cross-sectional area of the vertical flow path (hereinafter simply referred to as “the cross-sectional area of the flow path”), a flow path configuration that takes into account the suppression of vibration associated with the occurrence of turbulent flow from a hydrodynamic point of view is realized. be able to. This condition that the amount of flowing water per unit time is constant does not conflict with the cooling effect, and vibration suppression and securing of the cooling effect are compatible.

流水による冷却では、冷却水は冷却板を長い時間流れるほど昇温される。すなわち、入水温と出水温には温度差が発生する。発熱体の発熱量や流れる水量にも依存するが、一般的にはこの温度差は20℃程度となる。そのため、冷却板には温度勾配が生じている。この温度勾配は、荷電粒子線装置自体に歪を発生させる原因ともなり、冷却水温の変化や装置自体、もしくは装置周辺の環境温度の変化を通じて、荷電粒子線のビームドリフト、電子顕微鏡の場合は観察像のドリフトとして悪影響を及ぼす。   In cooling by flowing water, the temperature of the cooling water increases as it flows through the cooling plate for a long time. That is, a temperature difference occurs between the incoming water temperature and the outgoing water temperature. Generally, this temperature difference is about 20 ° C., although it depends on the amount of heat generated by the heating element and the amount of flowing water. Therefore, a temperature gradient is generated in the cooling plate. This temperature gradient can cause distortion in the charged particle beam device itself, and it can be observed through changes in the cooling water temperature and the ambient temperature of the device itself or the surrounding environment. It has an adverse effect as image drift.

そこで、上記のごとく複数の流路を設け、各流路に流す冷却媒体の流れの方向を流路毎に逆転させることは、冷却板の温度勾配の解消、それを通じてビーム、もしくは像ドリフトの解消に効果が期待される。さらには、冷却水の温度が変化しても温度分布が均一のため装置歪の影響は、現われ難いと期待される。   Therefore, providing a plurality of flow paths as described above and reversing the flow direction of the cooling medium flowing through each flow path for each flow path eliminates the temperature gradient of the cooling plate, thereby eliminating the beam or image drift. Expected to be effective. Furthermore, since the temperature distribution is uniform even if the temperature of the cooling water changes, it is expected that the influence of the device distortion will hardly appear.

複数の流路をもつ冷却板の構成の場合、各流路に十分な断面積が確保されるならば、各流路の断面形状は縦に扁平な形状(円周の動径方向に短く、冷却板の垂直方向に長い)が望ましい。これは流路内の動径方向の位置の違いによる流路長の差が小さくなり、振動の元となる乱流の発生が抑止されると共に、円管と比較して流路の表面積が増大し冷却板と冷却媒体との熱交換が容易になり良好な冷却効率が期待されるからである。   In the case of a cooling plate configuration having a plurality of flow paths, if a sufficient cross-sectional area is secured in each flow path, the cross-sectional shape of each flow path is a vertically flat shape (short in the radial direction of the circumference, Long in the vertical direction of the cooling plate) is desirable. This reduces the difference in flow path length due to the difference in radial position in the flow path, suppresses the generation of turbulent flow that causes vibration, and increases the surface area of the flow path compared to a circular pipe. This is because heat exchange between the cooling plate and the cooling medium is facilitated and good cooling efficiency is expected.

このような冷却媒体流路を内在する冷却板は、溝部を有する本体と溝部を覆う蓋部から構成され、上記の流路は溝部と蓋部とによって規定される構成とすることができる。このとき、溝部の深さを一定とし、蓋部の厚さを、円周状流路の円周の中心からの動径方向距離に応じて一様に変化させることにより、各流路の深さを調整する構成とすることができる。   The cooling plate having such a cooling medium flow path is constituted by a main body having a groove part and a cover part covering the groove part, and the above-mentioned flow path can be defined by the groove part and the cover part. At this time, the depth of each channel is made constant by changing the depth of the groove part uniformly and changing the thickness of the lid part according to the radial distance from the center of the circumference of the circumferential channel. It can be set as the structure which adjusts thickness.

このように蓋の厚さによって流路の深さを調整するのが有効なのは、本体側に発熱体が位置する場合である。この構成の場合、冷却媒体と発熱体との間の冷却板本体の厚さを位置によらず一定とすることができ、冷却効率を位置によらず一定とすることができる。ま
た、冷却板本体よりも蓋部の加工の方が容易な場合には、製造工程が容易となる。
Thus, it is effective to adjust the depth of the flow path according to the thickness of the lid when the heating element is located on the main body side. In the case of this configuration, the thickness of the cooling plate main body between the cooling medium and the heating element can be made constant regardless of the position, and the cooling efficiency can be made constant regardless of the position. Further, when the lid portion is easier to process than the cooling plate main body, the manufacturing process is facilitated.

また、逆に上記蓋部の厚さを一定とし、上記冷却板本体の溝部の深さを、円周状流路の円周の中心からの動径方向距離に応じて一様に変化させることにより、各流路の深さを調整する構成とすることができる。   Conversely, the thickness of the lid is made constant, and the depth of the groove of the cooling plate body is changed uniformly according to the radial distance from the center of the circumference of the circumferential channel. Thus, the depth of each flow path can be adjusted.

このように蓋の厚さが一定で本体側流路の溝の深さを調整する構成が有効なのは、蓋側に発熱体が位置する場合である。この構成により、冷却媒体と発熱体との間の冷却板蓋部の厚さを各位置によらず一定とすることができ、結果として冷却効率を位置によらず一定とすることができる。また、蓋部よりも冷却板本体の加工の方が容易な場合には、製造工程が容易となる。   The configuration in which the thickness of the lid is constant and the groove depth of the main body side channel is adjusted in this way is effective when the heating element is located on the lid side. With this configuration, the thickness of the cooling plate lid between the cooling medium and the heating element can be made constant regardless of the position, and as a result, the cooling efficiency can be made constant regardless of the position. Further, when the processing of the cooling plate main body is easier than the lid portion, the manufacturing process is facilitated.

このように、蓋部と本体部と分離して加工することができれば、発熱体との距離の調整だけで無く、各々の部位の厚さを調整することが可能で、それぞれの部位に必要なだけの厚さを確保し、機械的に十分な強度を得ることができる。   Thus, if the lid part and the main body part can be processed separately, not only the distance to the heating element but also the thickness of each part can be adjusted, which is necessary for each part. Only a sufficient thickness can be ensured and a sufficient mechanical strength can be obtained.

なお、上記の説明で「円周面と垂直をなしかつ円周の動径方向と垂直をなす方向の流路の大きさ」のことを流路の「深さ」と呼んでいるが、これは説明の便宜のためであり、この表現は本発明に係る冷却装置の配置方法等に何らの限定を加えるものではない。つまり、流路の円周面が水平面と等しい構成以外に、円周面が鉛直面となるような構成やその他の構成を採用しても構わない。   In the above description, “the size of the flow path in the direction perpendicular to the circumferential surface and perpendicular to the radial direction of the circumference” is called the “depth” of the flow path. This is for convenience of explanation, and this expression does not limit the method of arranging the cooling device according to the present invention. That is, in addition to the configuration in which the circumferential surface of the flow path is equal to the horizontal plane, a configuration in which the circumferential surface is a vertical surface or other configurations may be employed.

本発明によれば、乱流による振動を低減しつつ効率的に冷却を行うことのできる荷電粒子線装置のための冷却装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cooling device for charged particle beam apparatuses which can cool efficiently, reducing the vibration by a turbulent flow.

以下に図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。   Exemplary embodiments of the present invention will be described in detail below with reference to the drawings.

なお、本実施形態では最も振動に敏感な透過型電子顕微鏡を念頭に置き、冷却装置は鏡体の電磁コイルに対するものを中心に説明を行う。そのため、電磁コイルはその伝導線の巻軸が鉛直方向で、冷却板は巻面に密着し水平に配置される形状であることを前提とする。従って、以後説明の中で、縦、横、深さなど鉛直方向を基準にした用語を便宜上用いるが、その方位、方向は上記の配置を前提としたものである。しかし、この用語、用法はあくまでも便宜上のものであって、本発明の本質には、上下、左右などの空間的な方位は何らかかわりがない。   In the present embodiment, the transmission electron microscope that is most sensitive to vibration is taken into consideration, and the cooling device will be described focusing on the electromagnetic coil of the mirror body. Therefore, it is assumed that the electromagnetic coil has a shape in which the winding axis of the conductive wire is in the vertical direction and the cooling plate is in close contact with the winding surface and is disposed horizontally. Therefore, in the following description, terms based on the vertical direction such as vertical, horizontal, and depth will be used for convenience, but the orientation and direction are based on the above arrangement. However, this terminology and usage are for convenience only, and the essence of the present invention does not involve any spatial orientation such as up and down, left and right.

(第1の実施形態)
図1に本実施形態に係る電磁コイルの構成を示す。
(First embodiment)
FIG. 1 shows a configuration of an electromagnetic coil according to this embodiment.

〔全体的な構成〕
電磁コイルは、導電性線材に電気的被覆絶縁を施した線材料を巻きつけたもので、通常は電気的に良導体の銅が用いられる。先述のとおり電子顕微鏡の場合には電磁コイルには20Aもの電流を流す場合があり、ジュール熱による発熱は避けられずコイルの冷却は必
要不可欠な技術項目である。
[Overall configuration]
An electromagnetic coil is obtained by wrapping a conductive wire material with a wire material that is electrically coated and insulated. Usually, copper, which is an electrically good conductor, is used. As described above, in the case of an electron microscope, a current of 20 A may flow through an electromagnetic coil. Heat generation due to Joule heat is inevitable, and cooling of the coil is an indispensable technical item.

図1では、電磁コイル2とコイル上下の冷却装置(冷却板)11から構成される電子レンズの一部を示している。電子レンズとして機能させるためには、図に示された部位以外に磁気回路が必要であるが、本発明とは関係が無いため図1では割愛して描いていない。上述のように、この電磁コイル2はジュール熱によって発熱するものであり、本発明にお
ける荷電粒子線装置の発熱部位に相当する。そして、電磁コイル2の上下の面に接触して2つの冷却板11が配置される。この冷却板11と電磁コイル2との間で熱交換を行うことで、電磁コイル2の冷却を行う。
In FIG. 1, a part of an electronic lens composed of an electromagnetic coil 2 and a cooling device (cooling plate) 11 above and below the coil is shown. In order to function as an electron lens, a magnetic circuit is required in addition to the portion shown in the figure, but since it is not related to the present invention, it is not drawn in FIG. As described above, the electromagnetic coil 2 generates heat due to Joule heat, and corresponds to a heat generating portion of the charged particle beam apparatus according to the present invention. Then, two cooling plates 11 are arranged in contact with the upper and lower surfaces of the electromagnetic coil 2. The electromagnetic coil 2 is cooled by exchanging heat between the cooling plate 11 and the electromagnetic coil 2.

本発明では単一の冷却板を単一の冷却装置と考えており、電磁コイルをヒーターに置き換えれば、直ちに先述の油拡散ポンプの例示図となる。また、図1は冷却板を水平に設置した例となっているがこれは一例であり、電磁コイルの磁場の発生方向により、空間的方向は任意である。   In the present invention, a single cooling plate is considered as a single cooling device, and if the electromagnetic coil is replaced with a heater, the above-described oil diffusion pump is immediately illustrated. Further, FIG. 1 shows an example in which the cooling plate is installed horizontally, but this is an example, and the spatial direction is arbitrary depending on the generation direction of the magnetic field of the electromagnetic coil.

さらに図1では、冷却板11が、冷却媒体流路15を含む冷却板本体部11aと冷却媒体流路の断面形状を規定する蓋部12から構成される様態を示している。冷却板本体部11aと蓋部12は、Oリング13およびボルト14にて固定される。また、導電線材により巻きつけられたコイル2を固定するためのエポキシ樹脂モールド材9も描かれているが、モールド材9は電磁コイルに必須の部品ではない。   Further, FIG. 1 shows a state in which the cooling plate 11 includes a cooling plate main body portion 11 a including the cooling medium flow path 15 and a lid portion 12 that defines a cross-sectional shape of the cooling medium flow path. The cooling plate body 11 a and the lid 12 are fixed by an O-ring 13 and a bolt 14. Moreover, although the epoxy resin molding material 9 for fixing the coil 2 wound by the conductive wire material is drawn, the molding material 9 is not an essential component for the electromagnetic coil.

冷却媒体の流路15となる溝部は、冷却板本体部11aの外側周面に設けられた冷却媒体が流入する冷却媒体流入口16および冷却媒体が流出する出口17と連通される。図1では電磁コイルで発生する磁場を変化させたときに発生する、誘導起電力による冷却板本体中、もしくは蓋部の周回電流を考慮する必要がない電磁レンズ、あるいは電気的絶縁性材料により作られた冷却板本体部11aおよび蓋部12を想定しているため、特許文献2で開示された誘導起電力による周回電流を抑止するための絶縁性スリットは必要なく、冷却媒体流路は冷却板を周回する円周状に任意に構成することが可能である。仮に、誘導起電力による周回電流を抑止するための絶縁性スリットが必要とされる場合には、その絶縁スリットを冷却水流入口16と冷却媒体流出口17の間に設けることで、冷却媒体流路を円周状とすることができる。   The groove portion serving as the cooling medium flow path 15 communicates with the cooling medium inlet port 16 into which the cooling medium flows and the outlet port 17 through which the cooling medium flows out, which are provided on the outer peripheral surface of the cooling plate body 11a. In FIG. 1, it is made of an electromagnetic lens or an electrically insulative material that does not need to consider the circulating current in the cooling plate body due to the induced electromotive force or the lid portion generated when the magnetic field generated by the electromagnetic coil is changed. Since the cooling plate body 11a and the lid 12 are assumed, the insulating slit for suppressing the circulating current due to the induced electromotive force disclosed in Patent Document 2 is not necessary, and the cooling medium flow path is the cooling plate. It can be arbitrarily configured in a circular shape that circulates. If an insulating slit for suppressing the circulating current due to the induced electromotive force is required, the insulating slit is provided between the cooling water inlet 16 and the cooling medium outlet 17 to thereby provide a cooling medium flow path. Can be circumferential.

なお、本実施形態では冷却板本体部11aに溝部を設けて冷却媒体流路とする構成を採用しているが、その他の構成を採用しても良い。例えば、冷却板本体とこの冷却板本体に熱的に良接続される流路用板とから冷却板を作成し、流路用板に冷却媒体流路を設ける構成としても構わない。   In this embodiment, the cooling plate main body 11a is provided with a groove portion to form a cooling medium flow path, but other configurations may be adopted. For example, a cooling plate may be created from a cooling plate body and a flow path plate that is thermally connected to the cooling plate body, and a cooling medium flow path may be provided on the flow path plate.

次に、本実施形態に係る冷却装置における冷却水流路系統について説明する。図11は、冷却水流路系統図を示すものである。冷却水循環装置26から流れる冷却水は配管25を通じて冷却水流入口16から冷却板11に流入する。冷却板11より下流側に、流量調節バルブ23および流量計24が設けられており、流量調節バルブ23を調節することによって、循環する流水の流量を調整することが可能である。なお、バルブ22は流水の循環をオン/オフするためのバルブである。   Next, the cooling water flow path system in the cooling device according to the present embodiment will be described. FIG. 11 shows a cooling water flow path system diagram. The cooling water flowing from the cooling water circulation device 26 flows into the cooling plate 11 from the cooling water inlet 16 through the pipe 25. A flow rate adjusting valve 23 and a flow meter 24 are provided on the downstream side of the cooling plate 11. By adjusting the flow rate adjusting valve 23, the flow rate of the circulating water can be adjusted. The valve 22 is a valve for turning on / off circulation of running water.

流量調節バルブ23ではバルブの開度を調整することで流量を調整するが、流量調整バルブ23において流路の断面が変わるため、ここで乱流が発生しやすい。流量調節バルブ23を冷却板11の下流側には位置することで、流量調節バルブ23で乱流が発生した場合であっても、その乱流が冷却板11に流入することを防ぐことができる。したがって、冷却板11の振動を防止することが可能となる。   In the flow rate adjusting valve 23, the flow rate is adjusted by adjusting the opening of the valve. However, since the cross section of the flow path in the flow rate adjusting valve 23 changes, turbulent flow is likely to occur here. By positioning the flow rate adjusting valve 23 on the downstream side of the cooling plate 11, even when turbulent flow is generated in the flow rate adjusting valve 23, the turbulent flow can be prevented from flowing into the cooling plate 11. . Therefore, it is possible to prevent the cooling plate 11 from vibrating.

〔流路形状〕
図2は、冷却媒体を流す流路の形状が見やすいように、冷却装置単体(1つの冷却板)11のみを示している。図2に示すように、流路となる溝部15は、円周状の流路でありその深さは円周の中心からの動径方向距離が大きくなるのに応じて深くなるように構成されている。このような構成にすることによって、一定の圧力のもと、冷却媒体の流量を冷却板11中の円周状を成す冷却流路内のどの位置でもほぼ均一にすることが可能となり、
冷却効率の均一化を図ることができる。また、後述するが、振動源となる冷却媒体の流れの乱れ(乱流)の発生を抑止できる流路構成をとることが可能となる。なお、図1、2をはじめとする冷却媒体流路の形状を説明する図において、流路がなす円周の中心と流路が存する冷却板の中心とが一致するように描いているが、これは描画の便宜上のものであって本発明の実施においての構成はこの限りではない。
[Flow channel shape]
FIG. 2 shows only the cooling device alone (one cooling plate) 11 so that the shape of the flow path through which the cooling medium flows can be easily seen. As shown in FIG. 2, the groove 15 serving as a flow path is a circumferential flow path, and the depth thereof is configured to increase as the radial distance from the center of the circumference increases. ing. By adopting such a configuration, it becomes possible to make the flow rate of the cooling medium substantially uniform at any position in the cooling flow path that forms a circumferential shape in the cooling plate 11 under a constant pressure,
Uniform cooling efficiency can be achieved. Further, as will be described later, it is possible to adopt a flow path configuration that can suppress the occurrence of turbulence (turbulent flow) in the flow of the cooling medium serving as the vibration source. In addition, in the figure explaining the shape of the cooling medium flow path including FIGS. 1 and 2, the center of the circumference formed by the flow path is drawn so that the center of the cooling plate where the flow path exists coincides. This is for the convenience of drawing, and the configuration in the implementation of the present invention is not limited to this.

以下、電流・電圧・電気抵抗をモデルに、流路を流れる水流量、水圧、流路の断面形状などの関係を検討する。   In the following, the relationship between the flow rate of water flowing through the flow path, the water pressure, the cross-sectional shape of the flow path, etc. will be examined using current, voltage, and electrical resistance as models.

まず、水流抵抗R(r)が、電気抵抗と同様に式(1)のように表されると仮定する。ここで、Sは管の内断面積、l(r)は流路長、ρは水流抵抗率とも呼ぶべき係数であり冷却媒体の粘性、管の内壁の表面状態(撥水性など)、管の形状・構造などに関係する定数である。   First, it is assumed that the water flow resistance R (r) is expressed as shown in Expression (1) in the same manner as the electric resistance. Here, S is the inner cross-sectional area of the pipe, l (r) is the flow path length, ρ is a coefficient that should also be called water flow resistivity, the viscosity of the cooling medium, the surface condition of the inner wall of the pipe (water repellency, etc.), It is a constant related to shape and structure.

Figure 0005363721
Figure 0005363721

この流路に水圧Pがかかったとき、単位時間あたりの流水量Iと水流抵抗Rとの間には、電気系のオームの法則と同様の関係(式(2))が成立していると仮定できる。   When the water pressure P is applied to this flow path, a relationship similar to Ohm's law of the electric system (formula (2)) is established between the flow rate I per unit time and the flow resistance R. I can assume.

Figure 0005363721
Figure 0005363721

一般に、冷却水は冷却水槽などの水源から1本または数本の主配管にて取水され、分岐された後、装置の各冷却板へ回される。冷却板にて熱交換(装置の冷却)を行った後、再び1本または数本の配管にまとめられて排水、または循環のため冷却水槽などに戻される。したがって、各冷却板の配管にかかる水圧は一定とみなしてよい。むしろ、各冷却管の水圧を個別にコントロールするには別途の工夫が必要となる。そこで、本実施形態では流路の各位置において、あるいは複数の流路から構成される場合は各流路においても、流路にかかる水圧Pは一定であるという前提で説明を行う。   In general, cooling water is taken from one or several main pipes from a water source such as a cooling water tank, branched, and then sent to each cooling plate of the apparatus. After performing heat exchange (cooling of the apparatus) on the cooling plate, it is collected again into one or several pipes and returned to a cooling water tank or the like for drainage or circulation. Therefore, the water pressure applied to the piping of each cooling plate may be considered constant. Rather, a separate device is required to control the water pressure of each cooling pipe individually. Therefore, in the present embodiment, the description will be made on the assumption that the water pressure P applied to the flow path is constant at each position of the flow path, or in the case of a plurality of flow paths.

図3のように、冷却流路が冷却板中のある点を中心として、半径rをもった円周上にそって周回する様に構成されているときの流路長l(r)は式(3)で表される。ここでは入出水路の配置のために角度θだけ周回路は円周に不足している。なお、rexは冷却板の外側の半径である。 As shown in FIG. 3, the flow path length l (r) when the cooling flow path is configured to circulate along a circumference having a radius r around a certain point in the cooling plate is expressed by the equation It is represented by (3). Here, the circumference circuit is insufficient in the circumference by an angle θ due to the arrangement of the water inlet / outlet water channel. Note that r ex is a radius outside the cooling plate.

Figure 0005363721
Figure 0005363721

さて、冷却水流による振動を防止するためには、流路内を流れる冷却水に撹拌(乱流)が生じてはならない。そして、この条件の下で、流路の各部において等価な冷却効率が必
要となる。図1,2に示すように、本実施形態に係る冷却板の流路は1本の幅の広い流路であるが、これを仮想的な細管に区切って考えた場合、上記の要求を満たすためには、各仮想細管での単位時間あたりの水流量は等しいことが望ましい。
In order to prevent vibration due to the cooling water flow, stirring (turbulent flow) should not occur in the cooling water flowing in the flow path. Under this condition, equivalent cooling efficiency is required in each part of the flow path. As shown in FIGS. 1 and 2, the flow path of the cooling plate according to the present embodiment is a single wide flow path. However, when this is divided into virtual narrow tubes, the above requirement is satisfied. Therefore, it is desirable that the water flow rate per unit time in each virtual capillary is equal.

ここで、仮想細管は深さh(r)の矩形とすると、動径方向の単位距離あたりの水流抵抗Rは式(1)と同様に次の式(4)のように表される。   Here, assuming that the virtual thin tube is a rectangle having a depth h (r), the water flow resistance R per unit distance in the radial direction is represented by the following equation (4) as in the equation (1).

Figure 0005363721
Figure 0005363721

すると、上記のように各仮想細管での単位時間あたりの水流量が等しくなるためには、各仮想細管での水流抵抗Rが一定となるように、流路の深さh(r))を変化させる形状
とすればよい。すなわち、水流抵抗を動径方向半径rに依存しない定数(R=const)として式(3)と式(4)から、流路の深さh(r)についての関係式、式(5)を得る。
Then, in order to make the water flow rate per unit time equal in each virtual capillary as described above, the flow path depth h (r)) is set so that the water flow resistance R in each virtual capillary is constant. The shape may be changed. That is, the water flow resistance is a constant (R 0 = const) that does not depend on the radius r in the radial direction, and the relational expression about the flow path depth h (r) is obtained from Expression (3) and Expression (4), Expression (5) Get.

Figure 0005363721
Figure 0005363721

すなわち、流路の深さは動径方向距離に応じて単調増加に深くなればよいことがわかる。図4に流路の断面と式(5)の関係を図示する。   That is, it can be seen that the depth of the flow path only needs to be monotonously increased in accordance with the radial distance. FIG. 4 illustrates the relationship between the cross section of the flow path and the equation (5).

なお、式(5)の定数A,Bが定まらなければ具体的な流路形状の設計は出来ないが、これは例えば、冷却板と冷却水循環装置を継ぐ配管の水流抵抗と一致するように定めればよい。例えば、継ぎ配管の半径をr、流路長をlとすると、水流抵抗は式(1)と同様に式(6)のようになるので、定数A,Bはそれぞれ式(7)のように定めればよい。 It should be noted that the specific flow path shape cannot be designed unless the constants A and B in Equation (5) are determined, but this is determined to match the water flow resistance of the pipe connecting the cooling plate and the cooling water circulation device, for example. Just do it. For example, assuming that the radius of the joint pipe is r p and the flow path length is l p , the water flow resistance is expressed by equation (6) as in equation (1). What should be determined.

Figure 0005363721
Figure 0005363721

Figure 0005363721
Figure 0005363721

いずれにしても、図1、2に示すような1本の流路を有する冷却装置において、一定の圧力のもと、流路をなす円周の中心からの動径方向半径rに対して単調増加に流路の深さh(r)を定めれば、流路内のどの位置においても水流量を一定にすることが可能となり、冷却効率の均一化を図ることができる。後述するが、これによりさらに、水流による振動源となる乱流の発生を抑止できる流路構成をとることが可能となる。   In any case, in the cooling device having one flow path as shown in FIGS. 1 and 2, monotonous with respect to the radial radius r from the center of the circumference forming the flow path under a constant pressure. If the flow path depth h (r) is determined to increase, the water flow rate can be made constant at any position in the flow path, and the cooling efficiency can be made uniform. As will be described later, this makes it possible to further adopt a flow path configuration capable of suppressing the generation of turbulent flow that becomes a vibration source due to water flow.

(第2の実施形態)
図5に第2の実施形態に係る冷却装置の構成を示す。本実施形態では、幅の短い複数の流路18〜21を設けている。複数の流路18〜21のそれぞれは、中心が一致し半径の異なる円の円周上にそって周回する構造である。
(Second Embodiment)
FIG. 5 shows the configuration of the cooling device according to the second embodiment. In the present embodiment, a plurality of short flow paths 18 to 21 are provided. Each of the plurality of flow paths 18 to 21 has a structure that circulates along the circumference of a circle having the same center and different radii.

図5では、第1の実施形態と異なり、蓋部12の厚さを一定とし、冷却板本体部11aの溝部の深さを変えることで流路の深さを変えている。ただし、複数の流路を備える本実施形態においても、第1の実施形態と同様に溝部の深さを一定として、蓋部の厚さを変えることで流路の深さを調整してもよい。   In FIG. 5, unlike the first embodiment, the thickness of the cover 12 is constant, and the depth of the channel is changed by changing the depth of the groove of the cooling plate body 11a. However, also in the present embodiment including a plurality of flow paths, the depth of the flow path may be adjusted by changing the thickness of the lid part while keeping the depth of the groove part constant as in the first embodiment. .

本実施形態においても、第1の実施形態と同様に、各流路の各位置における水流量を一定とすることによって、配水管の分岐点・合流点での渦などの流れの乱れや、流れの滞りの発生を抑止し、乱流による振動の発生を防止することができる。そのため、本実施形態においても、上記と同様に流路の深さを流路がなす円周の中心からの動径方向距離に応じて、全流路について連続的かつ一様に深くなる構成としている。図6に、本実施形態における流路の断面形状を示す。この構成によっても、上記第1の実施形態で説明した理由と同じ理由により、各位置における水流量を等しくすることができる。   Also in the present embodiment, as in the first embodiment, the flow rate of water at each position of each flow path is made constant so that flow turbulence such as vortices at the branching / merging points of the water distribution pipes and flow The occurrence of stagnation can be suppressed and the occurrence of vibration due to turbulent flow can be prevented. Therefore, in this embodiment as well, as described above, the depth of the flow path is configured to be continuously and uniformly deep for all the flow paths according to the radial distance from the center of the circumference formed by the flow paths. Yes. In FIG. 6, the cross-sectional shape of the flow path in this embodiment is shown. Also with this configuration, the water flow rate at each position can be made equal for the same reason as described in the first embodiment.

このように冷却媒体の流路を複数にすることで、冷却板と冷却媒体とが接する面積が拡大するため、熱交換効率を促進することが可能となる。   By using a plurality of cooling medium flow paths in this manner, the area where the cooling plate and the cooling medium are in contact with each other is increased, and thus the heat exchange efficiency can be promoted.

(第3の実施形態)
第3の実施形態も上記第2の実施形態と同様に複数の流路を備える。図7に本実施形態における各流路の断面形状を示す。図7に示すように、各流路の断面形状は矩形であり、動径方向の幅は一定で、深さも1つの流路内では一定で、各々の流路については動径方向の位置に対して単調に増加するように構成されている。すなわち、各流路の断面積が、流路がなす円周の中心から流路までの動径方向距離に応じて一様に増加するように形成されている。なお、各流路と流路がなす円周の中心との距離は、流路がなす円周の中心から各流路の動径方向の中心位置として定義すればよい。
(Third embodiment)
The third embodiment also includes a plurality of channels as in the second embodiment. FIG. 7 shows a cross-sectional shape of each flow path in the present embodiment. As shown in FIG. 7, the cross-sectional shape of each flow path is a rectangle, the width in the radial direction is constant, the depth is also constant within one flow path, and each flow path is at a position in the radial direction. On the other hand, it is configured to increase monotonously. That is, the cross-sectional area of each flow path is formed so as to increase uniformly according to the radial distance from the center of the circumference formed by the flow path to the flow path. The distance between each channel and the center of the circumference formed by the channels may be defined as the center position in the radial direction of each channel from the center of the circumference formed by the channels.

各流路における水流抵抗Rは、式(1)のように表せる。ここで水圧Pが一定という前提の下、各流路における水流量が一定となるように水流抵抗Rが流路のなす円周の中心からの動径方向距離rに依らず一定の値Rとなるための条件を求める。式(1)と式(3
)から、そのための条件は流路の水流の流れる方向に垂直な断面積S(r)に対して次のように表せる。
The water flow resistance R in each channel can be expressed as shown in Equation (1). Here, on the assumption that the water pressure P is constant, the water flow resistance R is a constant value R 0 regardless of the radial distance r from the center of the circumference formed by the flow path so that the water flow rate in each flow path is constant. Find the conditions for Equation (1) and Equation (3
Therefore, the condition for this can be expressed as follows with respect to the cross-sectional area S (r) perpendicular to the flow direction of the water flow in the channel.

Figure 0005363721
Figure 0005363721

すなわち、各流路の断面積S(r)を流路のなす円周の中心からの動径方向距離rに対して単調に大きくすることで、各流路における水流量を一定とすることができる。   That is, the water flow rate in each flow path can be made constant by monotonically increasing the cross-sectional area S (r) of each flow path relative to the radial distance r from the center of the circumference formed by the flow paths. it can.

なお、図7では各流路の断面形状を矩形としているが、これは一例であり、断面積が流路のなす円周の中心からの動径方向距離rに対して単調に増加する形状であれば、断面形状を円やその他の形状としてもよい。また、第2の実施形態で示した流路の深さが流路のなす円周の中心からの動径方向距離rに対して単調に深くなる流路形状(図6)も、式(8)に示すような断面積が動径方向距離rに対して単調に増加する形状の一例である。   In addition, although the cross-sectional shape of each flow path is made into the rectangle in FIG. 7, this is an example and it is a shape where the cross-sectional area increases monotonously with respect to the radial direction distance r from the center of the circumference formed by the flow path. If present, the cross-sectional shape may be a circle or other shapes. The channel shape (FIG. 6) in which the depth of the channel shown in the second embodiment is monotonously deeper with respect to the radial distance r from the center of the circumference formed by the channel is also expressed by the equation (8). ) Is an example of a shape in which the cross sectional area monotonously increases with respect to the radial distance r.

本実施形態においても、上記第2の実施形態と同様の効果を得ることができる。但し、第2の実施形態とは異なり、各流路における水流量は等しくなるが、1つの流路内での水流量については考慮の対象外であるため、断面形状によっては、水流量は動径方向の位置によって異なってしまう可能性がある。   Also in this embodiment, the same effect as the second embodiment can be obtained. However, unlike the second embodiment, the water flow rate in each flow path is equal, but the water flow rate in one flow path is out of consideration, so the water flow rate may vary depending on the cross-sectional shape. It may be different depending on the radial position.

そこで図8に示すように、断面形状が縦に扁平な複数の流路を備えることが好ましい。ここで、縦に扁平とは、流路の深さh(r)が断面形状の動径方向の幅Δrに比べて大きいことをいう。   Therefore, as shown in FIG. 8, it is preferable to provide a plurality of channels whose cross-sectional shape is vertically flat. Here, “vertically flat” means that the depth h (r) of the flow path is larger than the radial width Δr of the cross-sectional shape.

このように動径方向の幅を小さくすることで、動径方向の位置による水流量の変化の影響が小さくなる。したがって、動径方向の位置で水流量が異なることによって乱流が生じることを抑制することができる。また、扁平形状とすることで、断面積に対する冷却水が冷却板へ接触する面積を大きくすることができる。したがって、冷却効率の向上を図ることができる。   By reducing the radial width in this way, the influence of the change in the water flow rate due to the radial position is reduced. Therefore, it can suppress that a turbulent flow arises because a water flow rate differs in the position of a radial direction. Moreover, by setting it as a flat shape, the area where the cooling water with respect to a cross-sectional area contacts a cooling plate can be enlarged. Therefore, the cooling efficiency can be improved.

なお図9に示すように、流路の深さが流路のなす円周の中心からの動径方向距離rに対して単調に増加するようにしつつ、断面形状を縦に扁平にすれば、1つの冷却流路中での位置による水流量の差を小さくすることができ、1つの冷却流路中での位置による水流量の差によって生じる乱流の影響を排除しつつ、冷却効率の向上を図ることができる。   As shown in FIG. 9, if the cross-sectional shape is vertically flattened while the depth of the flow path monotonously increases with respect to the radial distance r from the center of the circumference formed by the flow path, The difference in water flow rate depending on the position in one cooling channel can be reduced, and the efficiency of cooling is improved while eliminating the influence of turbulent flow caused by the difference in water flow rate depending on the position in one cooling channel. Can be achieved.

(第4の実施形態)
第4の実施形態は、複数の流路を備える上記第2、3の実施形態において、図10に示すように冷却水を流す方向を流路によって異なるように構成する。冷却水が流れるにしたがって、冷却水は冷却板との熱交換によって温度が上昇する。したがって、流路上流では冷却水の水温は低いが下流に行くにつれて温度が上昇し、冷却効率が落ちてしまう。また、冷却水流の上流側と下流側との温度差によって冷却板内に温度勾配が生じてしまうが、この冷却板内の温度差は、荷電粒子線装置自体の部分的温度差となり、荷電粒子線のビームドリフトの原因となる。
(Fourth embodiment)
In the second and third embodiments having a plurality of flow paths, the fourth embodiment is configured such that the direction in which the cooling water flows is different depending on the flow paths as shown in FIG. As the cooling water flows, the temperature of the cooling water rises due to heat exchange with the cooling plate. Therefore, the temperature of the cooling water is low in the upstream of the flow path, but the temperature rises as it goes downstream, and the cooling efficiency decreases. In addition, a temperature gradient is generated in the cooling plate due to the temperature difference between the upstream side and the downstream side of the cooling water flow. This temperature difference in the cooling plate becomes a partial temperature difference of the charged particle beam device itself, and the charged particles Causes beam drift of the wire.

そこで、各流路に流す冷却水の方向を変えることで、冷却板の温度を冷却板の位置によらずほぼ均一に保つことが可能となる。したがって、温度差に起因する荷電粒子線の温度ドリフトへの影響を低減することができ、本実施形態を電子顕微鏡の電子レンズに使用す
る場合には、より高分解能観察に良好な条件を確保することができる。
Therefore, by changing the direction of the cooling water flowing through each flow path, the temperature of the cooling plate can be kept substantially uniform regardless of the position of the cooling plate. Therefore, the influence on the temperature drift of the charged particle beam due to the temperature difference can be reduced, and when this embodiment is used for the electron lens of an electron microscope, favorable conditions are ensured for higher resolution observation. be able to.

なお、隣接する流路毎に反対方向に冷却水を流すことが好適であるが、いくつかの流路毎に冷却水を流す方向を変える構成としてもよい。   In addition, although it is suitable to flow a cooling water in the opposite direction for every adjacent flow path, it is good also as a structure which changes the direction which flows a cooling water for every several flow paths.

(層流条件についての検討)
上記の説明では、各流路における水流量を一定とするための流路形状について説明した。しかしながら、水流量一定というのは乱流の発生を防止するために好ましい条件ではあるものの、乱流を防止するための必要十分条件ではない。たとえば、水流量を過度に大きくしてしまうと上記のような流路形状であっても乱流が生じてしまう。そこで、冷却水に乱流が生じず層流となるための条件について考察する。
(Examination of laminar flow conditions)
In the above description, the flow channel shape for keeping the water flow rate in each flow channel constant has been described. However, although the constant water flow rate is a preferable condition for preventing the occurrence of turbulent flow, it is not a necessary and sufficient condition for preventing turbulent flow. For example, if the water flow rate is excessively increased, turbulent flow will occur even if the flow path shape is as described above. Therefore, the conditions for a laminar flow without generating a turbulent flow in the cooling water will be considered.

流れの状態を表す無次元の指標の1つにレイノルズ数がある。レイノルズ数の定義は次
式で与えられる。
One of the dimensionless indicators of the flow state is the Reynolds number. The definition of the Reynolds number is given by

Figure 0005363721
Figure 0005363721

ここで、Uは流体の代表速さ、Lはその流れにおける代表長さ、νは流体の動粘性係数、μは流体の粘度、ηは流体の密度である。何をその流れにおける「代表」とするかは種々の決め方があるが、着目している現象に関連して定めるのが通例である。例えば、円管のレイノルズ数では、Uを断面平均流速、Lを管直径(管内径)とする。   Here, U is the representative velocity of the fluid, L is the representative length in the flow, ν is the kinematic viscosity coefficient of the fluid, μ is the viscosity of the fluid, and η is the density of the fluid. There are various ways of determining what is the “representative” in the flow, but it is usually determined in relation to the phenomenon of interest. For example, in the Reynolds number of a circular pipe, U is the cross-sectional average flow velocity, and L is the pipe diameter (tube inner diameter).

レイノルズ数が0〜2000を層流、3000以上を乱流と見なすのが一般的である。一般的にはRe=2300を層流と乱流の境界値とすることが多いが、実際には層流と乱流とを分ける明確な閾値があるわけではない。ただし、いずれにせよ、レイノルズ数を小さくすることで層流を実現できるので、レイノルズ数を用いた検討を行う。   A Reynolds number of 0 to 2000 is generally regarded as laminar flow and 3000 or more is regarded as turbulent flow. In general, Re = 2300 is often used as a boundary value between laminar flow and turbulent flow, but there is actually no clear threshold value for separating laminar flow and turbulent flow. However, in any case, laminar flow can be realized by reducing the Reynolds number, so studies using the Reynolds number are performed.

管の内径を変化させず圧力を高めて流水量Iを増加させたとき、流体の流速Uが増大する。つまり、Lは変化せずUが増大するのでレイノルズ数が増大し、乱流を発生させて冷却管の振動が大きくなることがわかる。一方、管の内径を大きくするが流速は減少しないように流水量を調整した場合にも、Uが一定でLが増大するのでレイノルズ数は増大する。すなわち、管内を流れる流速が大きい場合、また管の内径が大きい場合にはレイノルズ数が大きくなり、乱流を発生させやすいことがわかる。しかし、一般的な水流冷却の場合にはこのモデルではなく、管の内径を大きくした場合でも流水量はあまり増やさないので流速は減少することが多い。レイノルズ数の増減については、水流量を含めた検討が必要である。   When the flow rate I is increased by increasing the pressure without changing the inner diameter of the pipe, the fluid flow rate U increases. In other words, L does not change and U increases, so the Reynolds number increases, generating turbulence and increasing the vibration of the cooling pipe. On the other hand, when the amount of flowing water is adjusted so that the inner diameter of the pipe is increased but the flow velocity is not reduced, the Reynolds number increases because U is constant and L increases. That is, when the flow velocity flowing through the pipe is large or when the inner diameter of the pipe is large, the Reynolds number increases, and it can be seen that turbulent flow is likely to occur. However, in the case of general water flow cooling, this model is not used, and even when the inner diameter of the pipe is increased, the flow rate does not increase so much and the flow velocity often decreases. Regarding the increase and decrease of the Reynolds number, it is necessary to consider including the water flow rate.

流速Uと単位時間あたりの流水量Iの間には、管の断面積Sとを用いて、以下の関係が成り立つ。   Between the flow velocity U and the flowing water amount I per unit time, the following relationship is established using the cross-sectional area S of the pipe.

Figure 0005363721
Figure 0005363721

また、円管の場合には管内径Lと断面積Sの間には以下の関係が成り立つ。   In the case of a circular pipe, the following relationship is established between the pipe inner diameter L and the cross-sectional area S.

Figure 0005363721
Figure 0005363721

円管の場合のレイノルズ数を式(10)、式(11)を用いて表すと、以下のようになる。   The Reynolds number in the case of a circular pipe is expressed as follows using equations (10) and (11).

Figure 0005363721
Figure 0005363721

すなわち、単位時間あたりの流水量Iを一定とした場合には、管の断面積Sを大きくしたときにレイノルズ数が減少し、管の振動も抑制されることがわかる。また、式(12)が意味するところは、流水量を減少させることはレイノルズ数の減少に1次に効果があり、管の断面積の増加は1/2次の効果となる。つまり、流水量の減少の方が効果は大きい。したがって、振動の抑制には、装置の耐熱性能が許す範囲内で流水量を減少させることが好ましい。   That is, when the amount of flowing water I per unit time is constant, the Reynolds number decreases when the cross-sectional area S of the pipe is increased, and the vibration of the pipe is also suppressed. Further, the expression (12) means that reducing the amount of flowing water has a first-order effect in reducing the Reynolds number, and an increase in the cross-sectional area of the pipe has a half-order effect. In other words, reducing the amount of running water is more effective. Therefore, in order to suppress vibration, it is preferable to reduce the amount of flowing water within the range allowed by the heat resistance performance of the apparatus.

さて、式(12)をみると、水流量Iが一定であり、管の断面積Sも一定であればレイノルズ数は一定となる。すなわち、所定の水流量Iと断面積Sを定めれば、複数の流路を備える場合に半径が大きくなるにつれて、第2、第3の実施形態のように流路の断面積を大きくする必要がないようにも見える。   Now, looking at equation (12), if the water flow rate I is constant and the cross-sectional area S of the pipe is also constant, the Reynolds number is constant. That is, if the predetermined water flow rate I and the cross-sectional area S are determined, the cross-sectional area of the flow path needs to be increased as the radius increases when a plurality of flow paths are provided as in the second and third embodiments. Looks like there is no.

しかしながら、レイノルズ数はその定義からも明らかなように、管の断面を流れる流体の性質をあらわす指標であり、流体の流れの方向に対しては何も示していない。本発明のごとく流路のなす円周の中心からの動径方向距離の増大とともに流路長が増大する場合には、乱流を発生する機会も多くなる。そのため、流路の長い管ほど断面積を大きくし、予めレイノルズ数を小さくしておくことは合理的である。この観点からも、上記第2、第3の実施形態の構成(例えば図6、7、8、9)は有効なものである。   However, the Reynolds number is an index representing the nature of the fluid flowing through the cross section of the tube, as is clear from its definition, and does not indicate anything about the direction of fluid flow. When the flow path length increases with an increase in the radial distance from the center of the circumference of the flow path as in the present invention, the chance of generating turbulence increases. Therefore, it is reasonable to increase the cross-sectional area and decrease the Reynolds number in advance for a tube having a longer flow path. Also from this viewpoint, the configurations of the second and third embodiments (for example, FIGS. 6, 7, 8, and 9) are effective.

管の断面形状が円形でない場合には、その形状にも依存するが、管内壁との摩擦や流体間の摩擦の効果がレイノルズ数を減少させる。これを考慮すると、同じ断面積の管の場合には、扁平形の方がレイノルズ数は小さくなる。このとき流れの代表長さLは、小さい方の管幅となる。   When the cross-sectional shape of the tube is not circular, the effect of friction with the inner wall of the tube and friction between the fluids decreases the Reynolds number, depending on the shape. Considering this, in the case of a tube having the same cross-sectional area, the Reynolds number is smaller in the flat shape. At this time, the representative length L of the flow is the smaller tube width.

図8、9に示すように管幅Δr(一定)、深さh(r)で、深さhはrに応じて単調増加に深くなり、h(r)>Δrを満たすような縦に扁平な矩形の複数の管を配列する場合について検討する。このとき管断面の代表長さLは管幅Δrである(L=Δr)。流速Uと単位時間あたりの流水量Iの関係式(11)が成立しているので、レイノルズ数は次のように表せる。   As shown in FIGS. 8 and 9, the tube width Δr (constant) and the depth h (r), the depth h increases monotonically according to r, and is flattened vertically so as to satisfy h (r)> Δr. Consider the case of arranging multiple rectangular tubes. At this time, the representative length L of the tube cross section is the tube width Δr (L = Δr). Since the relational expression (11) between the flow velocity U and the flowing water amount I per unit time is established, the Reynolds number can be expressed as follows.

Figure 0005363721
Figure 0005363721

すでに述べたように、縦に扁平な管の断面形状は、管内の内側rinと外側routでの流路長の差(すなわちΔr)が小さいため、そもそも流路の動径方向の距離rによらず、「水流抵抗Rが一定である」という条件を満足しやすい構造である。また、管幅Δrが深さh(r)と比較して十分に小さい場合には、各配管での深さはその管の代表深さhr
みなして十分である。
As already described, the cross-sectional shape of a vertically flat tube has a small difference in flow path length (ie, Δr) between the inner side r in and the outer side r out in the tube. Regardless of this, the structure easily satisfies the condition that the water flow resistance R is constant. Also, if enough compared to the tube width Δr depth h (r) smaller, the depth of each pipe is sufficient regarded as representative depth h r of the tube.

扁平形状の冷却管は、管の単位長さあたりの体積に対する表面積が大きい。すなわち流体が冷却板に接する面積が大きいため熱交換効率が良好であり、冷却管としての十分な機能が実現できる。もっとも、管幅を過度に小さくして、流体と管内壁との摩擦の影響が管全体にわたって顕著になってしまうと式(3)の関係は成立しなくなるので、管幅は流体が管内壁との摩擦の影響を受ける距離よりも十分に大きくする必要がある。   The flat cooling pipe has a large surface area relative to the volume per unit length of the pipe. That is, since the area where the fluid contacts the cooling plate is large, the heat exchange efficiency is good, and a sufficient function as a cooling pipe can be realized. However, if the effect of friction between the fluid and the inner wall of the pipe becomes significant over the entire pipe if the pipe width is made excessively small, the relationship of formula (3) does not hold. It is necessary to make it sufficiently larger than the distance affected by the friction.

以上の結果から、冷却管の断面形状は、式(8)を満たし、かつ断面積が小さな複数の管とするのがよいことがわかる。すなわち、図8や図9に示す構成が好ましいことがわかる。管の数については、冷却板内に充填される冷却水全体の容量が十分に大きく、単位時間あたりの流量は大きいが、断面流水速度は遅い(ゆっくりと流れる)という条件を満たす様に設計することが望まれる。   From the above results, it can be seen that the cross-sectional shape of the cooling pipe should satisfy the formula (8) and be a plurality of pipes having a small cross-sectional area. That is, it can be seen that the configuration shown in FIGS. 8 and 9 is preferable. The number of pipes is designed so that the capacity of the whole cooling water filled in the cooling plate is sufficiently large and the flow rate per unit time is large, but the cross-sectional flow rate is slow (slowly flows). It is desirable.

第1の実施形態に係る電磁コイルおよび冷却装置の構成を示す図である。It is a figure which shows the structure of the electromagnetic coil and cooling device which concern on 1st Embodiment. 第1の実施形態における冷却板の構成を示す図である。It is a figure which shows the structure of the cooling plate in 1st Embodiment. 冷却流路の形状を説明する図である。It is a figure explaining the shape of a cooling channel. 第1の実施形態における冷却流路の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the cooling flow path in 1st Embodiment. 第2の実施形態における冷却装置の構成を示す図である。It is a figure which shows the structure of the cooling device in 2nd Embodiment. 第2の実施形態における冷却流路の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the cooling flow path in 2nd Embodiment. 第3の実施形態における冷却流路の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the cooling flow path in 3rd Embodiment. 第3の実施形態における冷却流路の断面形状の別の例を示す図である。It is a figure which shows another example of the cross-sectional shape of the cooling flow path in 3rd Embodiment. 第3の実施形態における冷却流路の断面形状のさらに別の例を示す図である。It is a figure which shows another example of the cross-sectional shape of the cooling flow path in 3rd Embodiment. 第4の実施形態における冷却装置の構成を示す図である。It is a figure which shows the structure of the cooling device in 4th Embodiment. 本実施形態における冷却装置の冷却水流路系統を示す図である。It is a figure which shows the cooling water flow path system of the cooling device in this embodiment.

符号の説明Explanation of symbols

2 電磁コイル
9 エポキシ樹脂モールド材
11 冷却板
11a 冷却板本体部
12 蓋部
13 Oリング
14 ボルト
15 冷却媒体流路(溝部)
16 冷却媒体流入口
17 冷却媒体流出口
18〜21 複数の冷却流路
22 流水の循環をオン/オフするためのバルブ
23 流量調節バルブ
24 流量計
25 配管
26 冷却水循環装置
2 Electromagnetic coil 9 Epoxy resin molding material 11 Cooling plate 11a Cooling plate main body 12 Lid 13 O-ring 14 Bolt 15 Cooling medium flow path (groove)
DESCRIPTION OF SYMBOLS 16 Cooling medium inflow port 17 Cooling medium outflow port 18-21 Several cooling flow path 22 Valve for turning on / off circulation of flowing water 23 Flow control valve 24 Flowmeter 25 Piping 26 Cooling water circulation apparatus

Claims (14)

荷電粒子線装置における冷却装置であって、前記荷電粒子線装置の発熱部位に接触して配置される冷却板と、前記冷却板に冷却水を供給し回収する冷却水循環装置とを備え、
該冷却板には冷却媒体を流すための円周状の流路が設けられており、該円周面と垂直を成しかつ該円周の動径方向と垂直を成す方向の該流路の大きさが、該円周の中心からの動径方向距離に応じて一様に大きくなるとともに、該流路の水流抵抗と該流路に接続され前記冷却水循環装置との間を繋ぐ継ぎ配管の水流抵抗が一致する様に構成されていることを特徴とする荷電粒子線装置における冷却装置。
A cooling device in a charged particle beam device , comprising: a cooling plate disposed in contact with a heat generating portion of the charged particle beam device; and a cooling water circulation device for supplying and recovering cooling water to the cooling plate ,
The cooling plate is provided with a circumferential flow path for flowing a cooling medium, and the flow path of the flow path in a direction perpendicular to the circumferential surface and perpendicular to the radial direction of the circumference is provided. The size of the joint pipe that uniformly increases in accordance with the radial distance from the center of the circumference and that connects the water flow resistance of the flow path and the cooling water circulation device connected to the flow path. cooling device in the charged particle beam apparatus characterized by being constructed such that the water flow resistance match.
前記冷却板に設けられた冷却媒体の流れる流路が、中心を一にしかつ半径を異にする複数の円周状の構成をなし、該円周面と垂直を成しかつ該円周の動径方向と垂直を成す方向の各流路の大きさが、全流路について前記中心からの動径方向距離に応じて連続的かつ一様に大きくなる様に構成されていることを特徴とする請求項1に記載の荷電粒子線装置における冷却装置。   The flow path of the cooling medium provided in the cooling plate has a plurality of circumferential configurations with the same center and different radii, perpendicular to the circumferential surface and moving around the circumference. The size of each flow path in the direction perpendicular to the radial direction is configured to be continuously and uniformly increased according to the radial direction distance from the center for all flow paths. The cooling device in the charged particle beam apparatus according to claim 1. 前記複数の流路内の冷却媒体の流れる向きが、流路毎に異なることを特徴とする請求項2に記載の荷電粒子線装置における冷却装置。   The cooling device for a charged particle beam apparatus according to claim 2, wherein the flow direction of the cooling medium in the plurality of flow paths is different for each flow path. 荷電粒子線装置における冷却装置であって、前記荷電粒子線装置の発熱部位に接触して配置される冷却板と、前記冷却板に冷却水を供給し回収する冷却水循環装置とを備え、
該冷却板には冷却媒体を流すための中心を一にしかつ半径を異にする複数の円周状の流路が設けられており、冷却媒体が流れる方向と垂直の該流路の断面積が該円周の中心からの動径方向距離に応じて一様に大きくなるとともに、各々の該流路の水流抵抗と各々の該流路に接続され前記冷却水循環装置との間を繋ぐ各々の継ぎ配管の水流抵抗が一致する様に構成されていることを特徴とする荷電粒子線装置における冷却装置。
A cooling device in a charged particle beam device , comprising: a cooling plate disposed in contact with a heat generating portion of the charged particle beam device; and a cooling water circulation device for supplying and recovering cooling water to the cooling plate ,
The cooling plate is provided with a plurality of circumferential flow paths having a single center for flowing the cooling medium and different radii, and a cross-sectional area of the flow path perpendicular to the flow direction of the cooling medium is provided. Each joint that increases uniformly according to the radial distance from the center of the circumference and connects between the water flow resistance of each of the flow paths and the cooling water circulation device connected to each of the flow paths. cooling device in the charged particle beam apparatus characterized by the flow resistance of the pipe is constructed such that match.
前記各流路の断面形状が、前記円周面と垂直を成しかつ前記円周の動径方向と垂直を成す方向に大きく、前記円周の動径方向に短い扁平な形状であることを特徴とする請求項4に記載の荷電粒子線装置における冷却装置。   The cross-sectional shape of each of the flow paths is a flat shape that is large in a direction perpendicular to the circumferential surface and perpendicular to the radial direction of the circumference and short in the radial direction of the circumference. The cooling device in the charged particle beam apparatus according to claim 4, wherein the cooling apparatus is a charged particle beam apparatus. 前記複数の流路内の冷却媒体の流れる向きが、流路毎に異なることを特徴とする請求項4もしくは請求項5に記載の荷電粒子線装置における冷却装置。   The cooling device in the charged particle beam apparatus according to claim 4 or 5, wherein a flow direction of the cooling medium in the plurality of flow paths is different for each flow path. 前記冷却板は、溝部を有する本体と前記溝部を覆う蓋部とから構成され、前記円周状流路は溝部と蓋部とによって規定されるものであり、前記溝部の前記円周面と垂直を成しかつ前記円周の動径方向と垂直を成す方向の大きさが一定で、前記蓋部の前記円周面内の厚さが前記円周の中心からの動径方向距離に応じて変化することを特徴とする請求項1から請求項6のいずれかに記載の荷電粒子線装置における冷却装置。   The cooling plate includes a main body having a groove and a lid that covers the groove, and the circumferential channel is defined by the groove and the lid, and is perpendicular to the circumferential surface of the groove. And the thickness in the direction perpendicular to the radial direction of the circumference is constant, and the thickness of the lid portion in the circumferential surface depends on the radial direction distance from the center of the circumference. It changes, The cooling device in the charged particle beam apparatus in any one of Claims 1-6 characterized by the above-mentioned. 前記冷却板は、溝部を有する本体と前記溝部を覆う蓋部とから構成され、前記円周状流路は溝部と蓋部とによって規定されるものであり、前記蓋部の前記円周面内の厚さが一定で、前記溝部の前記円周面と垂直を成しかつ前記円周の動径方向と垂直を成す方向の大きさが前記円周の中心からの動径方向距離に応じて変化することを特徴とする請求項1から請求項6のいずれかに記載の荷電粒子線装置における冷却装置。   The cooling plate is composed of a main body having a groove portion and a lid portion covering the groove portion, and the circumferential flow path is defined by the groove portion and the lid portion, and within the circumferential surface of the lid portion. The thickness of the groove portion is perpendicular to the circumferential surface of the groove and the size in the direction perpendicular to the radial direction of the circumference depends on the radial distance from the center of the circumference. It changes, The cooling device in the charged particle beam apparatus in any one of Claims 1-6 characterized by the above-mentioned. 荷電粒子線装置における冷却装置であって、前記荷電粒子線装置の発熱部位に接触して配置される冷却板と、前記冷却板に冷却水を供給し回収する冷却水循環装置とを備え、
該冷却板には冷却媒体を流すための円周状の流路が設けられており、該円周面と垂直を成しかつ該円周の動径方向と垂直を成す方向の該流路の大きさが、該円周の中心からの動径方向距離に応じて一様に大きくなるとともに、
該円周の中心からの動径方向半径をr、
半径rの位置の前記流路の深さをh(r)とするとともに、
円周率をπ、
流路が周回に不足している角度をθ、
冷却板の外側の半径をrex
前記冷却水循環装置との間を繋ぐ継ぎ配管の半径をrp
前記冷却水循環装置との間の流路長をlpとするときに、
流路の深さh(r)が下記式(14)を満たすように構成されている
ことを特徴とする荷電粒子線装置における冷却装置。
Figure 0005363721
A cooling device in a charged particle beam device , comprising: a cooling plate disposed in contact with a heat generating portion of the charged particle beam device; and a cooling water circulation device for supplying and recovering cooling water to the cooling plate ,
The cooling plate is provided with a circumferential flow path for flowing a cooling medium, and the flow path of the flow path in a direction perpendicular to the circumferential surface and perpendicular to the radial direction of the circumference is provided. The size increases uniformly according to the radial direction distance from the center of the circumference,
The radial radius from the center of the circumference is r,
The depth of the flow path of the position of the radius r with a h (r),
Pi is π,
The angle at which the flow path is insufficient to orbiting theta,
The radius of the outside of the cooling plate r ex,
The radius of the joint pipe connecting the cooling water circulation device is r p ,
When the flow path length between the cooling water circulation device is l p ,
Cooling device in the charged particle beam apparatus characterized by the flow channel depth h (r) is configured so as to satisfy the following equation (14).
Figure 0005363721
前記冷却板に設けられた冷却媒体の流れる流路が、中心を一にしかつ半径を異にする複数の円周状の構成をなし、該円周面と垂直を成しかつ該円周の動径方向と垂直を成す方向の各流路の大きさが、全流路について前記中心からの動径方向距離に応じて連続的かつ一様に大きくなる様に構成されていることを特徴とする請求項9に記載の荷電粒子線装置における冷却装置。   The flow path of the cooling medium provided in the cooling plate has a plurality of circumferential configurations with the same center and different radii, perpendicular to the circumferential surface and moving around the circumference. The size of each flow path in the direction perpendicular to the radial direction is configured to be continuously and uniformly increased according to the radial direction distance from the center for all flow paths. The cooling device in the charged particle beam device according to claim 9. 前記複数の流路内の冷却媒体の流れる向きが、前記流路毎に異なることを特徴とする請求項10に記載の荷電粒子線装置における冷却装置。 The cooling device in the charged particle beam device according to claim 10, wherein the flow direction of the cooling medium in the plurality of flow paths is different for each of the flow paths. 荷電粒子線装置における冷却装置であって、前記荷電粒子線装置の発熱部位に接触して配置される冷却板と、前記冷却板に冷却水を供給し回収する冷却水循環装置とを備え、
該冷却板には冷却媒体を流すための中心を一にしかつ半径を異にする複数の円周状の流路が設けられており、冷却媒体が流れる方向と垂直の該流路の断面積が該円周の中心からの動径方向距離に応じて一様に大きくなるとともに、
該円周の中心から動径方向半径をr、
半径rの位置の流路の深さをh(r)とするとともに、
円周率をπ、
流路が周回に不足している角度をθ、
冷却板の外側の半径をrex
前記冷却水循環装置との間を繋ぐ継ぎ配管の半径をrp
前記冷却水循環装置との間の流路長をlpとするときに、
流路の深さh(r)が下記数式(14)を満たすように構成されている
ことを特徴とする荷電粒子線装置における冷却装置。
Figure 0005363721
A cooling device in a charged particle beam device , comprising: a cooling plate disposed in contact with a heat generating portion of the charged particle beam device; and a cooling water circulation device for supplying and recovering cooling water to the cooling plate ,
The cooling plate is provided with a plurality of circumferential flow paths having a single center for flowing the cooling medium and different radii, and a cross-sectional area of the flow path perpendicular to the flow direction of the cooling medium is provided. While uniformly increasing according to the radial distance from the center of the circumference,
The radial radius from the center of the circumference is r,
The depth of the flow path of the position of the radius r with a h (r),
Pi is π,
The angle at which the flow path is insufficient to orbiting theta,
The radius of the outside of the cooling plate r ex,
The radius of the joint pipe connecting the cooling water circulation device is r p ,
When the flow path length between the cooling water circulation device is l p ,
A cooling device in a charged particle beam device, wherein the flow path depth h (r) satisfies the following mathematical formula (14).
Figure 0005363721
前記各流路の断面形状が、前記円周面と垂直を成しかつ前記円周の動径方向と垂直を成す方向に大きく、前記円周の動径方向に短い扁平な形状であることを特徴とする請求項12に記載の荷電粒子線装置における冷却装置。   The cross-sectional shape of each of the flow paths is a flat shape that is large in a direction perpendicular to the circumferential surface and perpendicular to the radial direction of the circumference and short in the radial direction of the circumference. The cooling device in the charged particle beam apparatus according to claim 12, wherein the cooling apparatus is a charged particle beam apparatus. 前記複数の流路内の冷却媒体の流れる向きが、前記流路毎に異なることを特徴とする請求項12もしくは請求項13に記載の荷電粒子線装置における冷却装置。 The cooling device in the charged particle beam apparatus according to claim 12 or 13, wherein a flow direction of the cooling medium in the plurality of flow paths is different for each of the flow paths.
JP2007296990A 2007-11-15 2007-11-15 Cooling device for charged particle beam equipment Expired - Fee Related JP5363721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296990A JP5363721B2 (en) 2007-11-15 2007-11-15 Cooling device for charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296990A JP5363721B2 (en) 2007-11-15 2007-11-15 Cooling device for charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2009123555A JP2009123555A (en) 2009-06-04
JP5363721B2 true JP5363721B2 (en) 2013-12-11

Family

ID=40815488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296990A Expired - Fee Related JP5363721B2 (en) 2007-11-15 2007-11-15 Cooling device for charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP5363721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153408B2 (en) 2010-08-27 2015-10-06 Ge Sensing & Inspection Technologies Gmbh Microfocus X-ray tube for a high-resolution X-ray apparatus
EP3088749B1 (en) * 2014-06-24 2019-10-30 Shincron Co., Ltd. Oil diffusion pump and oil vapor generator used therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1415269A1 (en) * 1985-03-25 1988-08-07 Сумское Производственное Объединение "Электрон" Electron microscope
JPS63200443A (en) * 1987-02-13 1988-08-18 Shimadzu Corp Magnetic lens cooling device
JP2617349B2 (en) * 1989-04-20 1997-06-04 株式会社日立製作所 Electronic lens cooling system
JP2920390B2 (en) * 1989-11-08 1999-07-19 株式会社日立製作所 Electronic lens cooling system
JPH11145227A (en) * 1997-11-04 1999-05-28 Orion Mach Co Ltd Temperature adjusting device of tester for semiconductor wafer

Also Published As

Publication number Publication date
JP2009123555A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US10964577B2 (en) Electrostatic chuck
US11041923B2 (en) Directly coolable multifilament conductor
JP2017045792A (en) Coil device
CN107810372A (en) The electromagnetism pumping of particulate disperse system
JP2000051180A (en) Coil system of mr device
KR101716294B1 (en) Circulation cooling and heating device
JP5363721B2 (en) Cooling device for charged particle beam equipment
JP2005144165A (en) Heat management apparatus and use of the same
CN110268217A (en) Liquid-cooling system for heat-producing device
US20120097381A1 (en) Heat sink
JP2012057872A (en) Cooling device using ehd fluid
Mukherjee et al. Nucleate pool boiling performance of water/titania nanofluid: Experiments and prediction modeling
CN103177643B (en) Experimental apparatus for researching microstructure and magnetic field relation of magnetic fluid
JP4330477B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
JP6383540B2 (en) Spinning molding equipment
US11098966B2 (en) Header tank for heat exchanger
CN111341539A (en) Transformer and transformer winding thereof
JP5361171B2 (en) Electromagnetic coil
KR101951721B1 (en) A faraday cup comprising a cooling channel and a manufacturing method thereof
JP2017532999A (en) Combined shim and bore cooling assembly
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
KR101395801B1 (en) Motor cooling device
Werneke Microjet array impingement heat transfer crossflow effects in single-phase and flow boiling
JP5566418B2 (en) Heating device with cooler
Yang et al. Study on flow field of oil‐cooling permanent magnet synchronous motor with hairpin winding using porous medium model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees