EP2608875B1 - Vorrichtung und verfahren zur gasdispergierung - Google Patents
Vorrichtung und verfahren zur gasdispergierung Download PDFInfo
- Publication number
- EP2608875B1 EP2608875B1 EP11723393.2A EP11723393A EP2608875B1 EP 2608875 B1 EP2608875 B1 EP 2608875B1 EP 11723393 A EP11723393 A EP 11723393A EP 2608875 B1 EP2608875 B1 EP 2608875B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zone
- zones
- gas
- mixing elements
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000006185 dispersion Substances 0.000 title description 16
- 238000002156 mixing Methods 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 28
- 230000003068 static effect Effects 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 description 40
- 239000012530 fluid Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000002352 blister Diseases 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2323—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4314—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
- B01F25/43141—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4316—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
- B01F25/43161—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
- B01F25/4334—Mixers with a converging cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/82—Combinations of dissimilar mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/82—Combinations of dissimilar mixers
- B01F33/821—Combinations of dissimilar mixers with consecutive receptacles
Definitions
- the invention relates to an apparatus and a method for dispersing gas in a liquid.
- the dispersion of gases in liquid media is widely used in the chemical industry, for example in hydrogenations, chlorinations or oxidations.
- the oxygen input is essential.
- a dispersion of gas takes place in a liquid medium.
- gases are dispersed in highly viscous liquids to produce, for example, creams, foam rubber or chocolate with an air-filled porous structure (eg described in US Pat WO02 / 13618A2 ).
- the goal of a gas dispersion is the introduction of gas into a fluid, preferably in the form of small bubbles as possible, to produce the largest possible interface between gaseous and liquid phase.
- static mixers examples include SMX mixers (cf. US4062524 ) or SMXL mixer (cf., for example, patent specification US5520460 ) called. They consist of two or more mutually perpendicular lattices of parallel metal strips which are interconnected at their crossing points and employed at an angle to the main flow direction of the mixed material to divide the liquid into partial streams and mix.
- a single mixing element is unsuitable as a mixer, since a mixing takes place only along a preferred direction transverse to the main flow direction. Therefore, usually several mixing elements, which are each rotated by 90 ° to each other, arranged one behind the other.
- the object is to provide an apparatus and a method for dispersing gas in a liquid, to enable a more effective gas dispersion than described in the prior art.
- a smaller average bubble size should be achieved at the mixer outlet with the same mixer length.
- a smaller average bubble size should be achieved at the mixer outlet with the same pressure loss over the entire mixer.
- a first subject of the present invention is therefore an apparatus according to claim 1 for the dispersion of gas into a liquid having a number n of successive zones Z 1 , Z 2 , ..., Z n with static mixing elements, each zone Z i a Length L i and an effective diameter D i , characterized in that the individual zones are designed so that the normalized to the respective ratio L i / D i mechanical energy input E i , which acts on the gas-liquid mixture, in Flow direction increases from zone to zone, where n is an integer greater than or equal to 3 and i is an index that passes through the integer from 1 to the number n of the zones.
- Another object of the present invention is a method for dispersing gas into a liquid in which gas and liquid are conveyed together by a mixing device and thereby a number n of successive Z zones Z 1 , Z 2 , ..., Z n flow through with static mixing elements, each zone Z i has a length L i and an effective diameter D i , characterized in that normalized to the respective ratio L i / D i mechanical energy input E i , which acts on the gas-liquid mixture increases in the flow direction from zone to zone, where n is an integer greater than or equal to 3 and i is an index which is the integer from 1 to the number n of Passes through zones.
- Liquid is generally understood here to mean a medium which can be conveyed through the device according to the invention. This may, for example, also be a melt or a dispersion (eg emulsion or suspension).
- the term fluid is used.
- the fluid is preferably of higher viscosity, ie it has a viscosity between 2 mPas and 10,000,000 mPas, more preferably between 1,000 mPas and 1,000,000 mPas (measured in a cone-plate viscometer according to DIN 53019 at a shear rate of 1 s -1 ).
- a mixer consists of a series of modular mixing elements. To increase the mixing effect, the number of mixing elements in a mixer can be increased. Usually, the mixing elements are introduced into a tube to form a static mixer. It should be noted that the present invention is not limited to mixers constructed from an array of modular mixing elements but is also applicable to mixers in a compact design.
- the device according to the invention is characterized in that it has a number n of contiguous zones, where n is an integer greater than or equal to 3.
- n is an integer greater than or equal to 3.
- Each zone Z i has a length L i and a cross-sectional area A i .
- i is an index that traverses the integer from 1 to the number n of zones.
- the length L i of a zone Z i corresponds to the length of the mixing elements arranged one behind the other in this zone; the cross-sectional area A i corresponds to the cross-sectional area of the mixing elements present in the zone Z i .
- an effective diameter D i 4 ⁇ A i ⁇
- the effective diameter D i corresponds in a circular cross section to the diameter of the circle.
- the effective diameter D i corresponds to the diameter of a circle having an area corresponding to the cross-sectional area.
- the ratio L i / D i is a characteristic characteristic of the respective zone Z i .
- a mixing element has internal structures and channels between these structures. If a fluid is conveyed through a mixing element, the structures and channels cause the fluid to be divided, distributed, sheared and, if necessary, fluidized into partial flows, thus mixing the partial flows with one another.
- the mean diameter of a channel is subsequently abbreviated by the letter d i .
- the ratio d i / D i between the mean channel diameter d i and the effective diameter D i of the mixing elements in a zone Z i is also a characteristic index for the respective zone Z i .
- the parameter a i denotes the open cross-sectional area, more precisely the projection surface of the free cross-section. This results, for example, from Fig. 1a the open cross-sectional area a i of the sum of the projection areas of the individual free cross-sectional areas of the open channels, through which the fluid can flow (equation 3).
- the parameter m is a counting parameter
- N is the number of individual free cross-sectional areas.
- the static mixers used in the prior art for gas dispersion have mixing internals that are consistent throughout the length of the mixer.
- the length L corresponds to the length of the mixer and whose effective diameter D corresponds to the effective diameter of the mixer.
- the length L can be increased.
- the mechanical energy input E abs is according to equation (4) proportional to the pressure loss, where V ⁇ is the volume flow of the fluid.
- the pressure loss ⁇ p and thus the mechanical energy input can be increased in the same way by reducing the effective diameter D.
- the device according to the invention is characterized by a number n of zones.
- Each zone Z i is characterized by a specific mechanical energy input E i , which is registered in a fluid flowing through the respective zone.
- the specific mechanical energy input E i is the mechanical energy input E abs normalized to the characteristic L i / D i .
- E 1 ⁇ E 2 ⁇ ... ⁇ E n . e e Section ⁇ D L
- the number n of zones in a device according to the invention is not limited. It can run to infinity if the zones become infinitesimally small and there is a continuously increasing specific energy input along the length of the device, as might be the case, for example, with a conically narrowing tube.
- a particularly preferred embodiment of the device according to the invention is characterized in that there is a first zone Z 0 , which makes a higher specific energy input than the subsequent in the flow direction zone Z 1 ( E 0 > E 1 ).
- further zones Z 2 to Z n follow on the zone Z 1 , with the following for the corresponding specific energy inputs E 1 to E n : E 1 ⁇ E 2 ⁇ ... ⁇ E n .
- the device according to the invention has a number n of mixing zones, which are arranged one behind the other, wherein the mean channel diameter d i in the mixing zones in the flow direction is smaller. Smaller channels produce a higher pressure loss per length, which is equivalent to increasing specific energy input.
- This embodiment preferably comprises a cylindrical tube into which mixing elements are introduced.
- the effective diameter D i of the mixing elements is preferably constant over the entire tube length, while the mean channel diameter d i in successive zones in the flow direction is smaller.
- mixing elements of the same type are used, eg SMX mixers with different characteristic numbers d / D.
- this embodiment comprises a cylindrical tube into which mixing elements are introduced, which have an increasingly smaller effective diameter D i in the flow direction.
- the mixing elements whose outer diameter is smaller than the inner diameter of the tube are preferably enclosed by a jacket tube whose outer diameter corresponds approximately to the inner diameter of the tube in order to be able to bring it into the tube.
- transition jacketed pipes are preferably present, which have a conically tapering in the direction of the mixing element with a small diameter inner diameter.
- the device according to the invention has in each zone Z i an arrangement of mixing elements of different types, which cause an increasing pressure loss in the same direction in the flow direction in each zone Z i for the same ratio L i / D i .
- the mixing elements are introduced into a cylindrical tube. They preferably have the same effective diameter D i .
- the device according to the invention is suitable for the dispersion of gas in a liquid, for example for introducing a towing gas into a polymer melt or for foaming liquid media.
- the gas may be added with tubes or thin capillaries, preferably in the flow direction before the static mixer cascade. Furthermore, the gas may also be added through a porous body.
- a porous body may comprise, for example, the following geometries: a frit and / or a porous, sintered body and / or a single or multi-layer sieve.
- the porous body may, for example, be in the form of a cylinder, in the form of a cuboid, a sphere or a cube or in conical form, e.g. as a cone, be formed. These devices ensure a fine predispersion of the gas and possibly also for a distribution of the gas over the cross section.
- the capillary or the porous body has a mean effective internal hole diameter of preferably 0.1-500 .mu.m, preferably 1 - 200 .mu.m, particularly preferably 10-90 .mu.m.
- Porous bodies which may be used are, for example, porous sintered bodies of metal, such as frit bodies used in chromatography, for example the sintered bodies of Mott Corporation (Farmington, USA).
- wound wire mesh can be used, for example, the wound wire mesh from Fuji Filter Manufacturing Co., Ltd. (Tokyo, Japan), trade name: Fujiloy ®.
- sieves or multi-layer fabrics can be used, such as the metal wire mesh composite panels of the company Haver & Boecker wire weaving (Oelde, Germany), trade name: Haver Porostar.
- the effective diameter D i of the holes inserted in the porous sintered bodies or wires or wound wire meshes is preferably 1-500 ⁇ m, more preferably 2-200 ⁇ m, most preferably 10-90 ⁇ m.
- Fig. 1 shows examples of three different static mixers (No.1, No. 2 and No. 3): Fig. 1 (a) from above, Fig. 1 (b) from the side (sectional drawing) and Fig. 1 (c) in the arrangement after installation in a pipe or housing.
- the indications for wi and bi denote the length and width of the projected cross section of the free flow channels.
- Di denotes the clear diameter and DM the outer diameter of the static mixing elements.
- Li denotes the entire length of a geometrically uniform mixer section and li the length of a single mixing element.
- No. 1 illustrates a Kenics mixer.
- No.2 shows a commercial SMX static mixer with or without an outer ring.
- No. 3 shows a mixer with web structure and outer ring (FIG. DE 29923895U1 and EP1189686B1 ).
- Fig. 2 shows three different examples (A, B and C) of variants static mixer, with individual zones (characterized by the lengths L 1 , L 2 , L 3 ), characterized in that on the respective ratio L i / D i of the individual zones normalized mechanical energy input E i increases in the flow direction of a fluid which flows through the respective zone Z i .
- the flow direction is indicated by the thick arrow.
- Fig. 2B shows an embodiment with a cylindrical tube, in which mixing elements are introduced, in which the effective diameter D i over the entire tube length is constant, while the mean channel diameter d i in successive zones in the flow direction is smaller.
- Mixing elements of the same type are used, eg SMX mixers with different characteristic numbers d / D.
- Fig. 2C shows an arrangement of mixing elements of different types, which cause an increasing pressure loss at the same ratio L i / D i in the flow direction in each zone Z i .
- a Kenics mixer shown in the first zone of length L1 .
- an SMX mixer In the second zone of length L2 is an SMX mixer.
- the third zone of length L3 there is also an SMX mixer with smaller effective diameters D i compared to the mixer in the second zone.
- Fig. 3A shows a device according to the invention with three zones and a premixer and a gas metering via a capillary. Before the premixer is the area where the fluid is metered (L) and a device for metering gases (G) via a capillary (Ca).
- Fig. 3B shows a gas metering by means of porous sintered body (the mixer behind it is not shown here).
- the premixer In front of the premixer is the area where the fluid is metered (L) and a device for gas metering (G) via a porous sintered body (PS), which is located within the flow cross section.
- L metered
- G gas metering
- PS porous sintered body
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Colloid Chemistry (AREA)
Description
- Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit.
- Die Dispergierung von Gasen in flüssigen Medien findet in der chemischen Industrie beispielsweise bei Hydrierungen, Chlorierungen oder Oxidationen eine breite Anwendung. Bei Fermentationen und der aeroben Abwasserreinigung ist der Sauerstoffeintrag von wesentlicher Bedeutung. Auch bei der Schaumerzeugung findet eine Dispergierung von Gas in einem flüssigen Medium statt. In der Lebensmitteltechnik werden Gase in hochviskosen Flüssigkeiten dispergiert, um z.B. Cremes, Schaumgummi oder Schokolade mit luftgefüllter poröser Struktur herzustellen (z.B. beschrieben in
WO02/13618A2 - Das Ziel einer Gasdispergierung ist der Eintrag von Gas in ein Fluid, vorzugsweise in Form von möglichst kleinen Bläschen, um eine möglichst große Grenzfläche zwischen gasförmiger und flüssiger Phase herzustellen. Je größer die Phasengrenzfläche ist, desto höher ist nach dem ersten Fick'schen Gesetz der Stofftransport zwischen Gas und Flüssigkeit.
- Die Gasdispergierung erfolgt dabei häufig in zwei Schritten:
- 1. Einbringen des Gases in die Flüssigkeit in Form von Blasen
- 2. Zerteilen der Blasen
- Die Art des Einbringens, im Allgemeinen über Düsen, Fritten oder Lochplatten, bestimmt die Größenverteilung der Primärblasen. In dem Artikel "Gasdispergierung in Flüssigkeiten durch Düsen bei hohen Durchsätzen" aus Chemie-Ingenieur-Technik, 28. Jahrgang 1956, Nr 6, Seiten 389 - 395 wird beispielsweise beschrieben, welchen Einfluss Parameter wie Düsenweite, Gasdurchsatz, Viskosität und Grenzflächenspannung auf die Größenverteilung von Gasblasen, die beim Hineinschießen eines Gasstrahls in eine Flüssigkeit aus einer Düse entstehen, haben.
Das Zerteilen der Blasen kann beispielsweise mittels eines dynamischen oder statischen Mischers erfolgen. Während bei dynamischen Mischern die Homogenisierung einer Mischung durch bewegte Organe wie z.B. Rührer erreicht wird, wird bei statischen Mischern die Strömungsenergie des Fluids ausgenutzt: eine Fördereinheit (z.B. eine Pumpe) drückt die Flüssigkeit durch ein mit statischen Mischereinbauten versehenes Rohr, wobei die der Hauptströmungsachse folgende Flüssigkeit in Teilströme aufgeteilt wird, die je nach Art der Einbauten gedehnt, geschert, miteinander verwirbelt und vermischt werden. Der Vorteil bei der Verwendung von statischen Mischern liegt u. a. darin, dass keine beweglichen Teile vorhanden sind. - Einen Überblick über verschiedene Typen von statischen Mischern gibt zum Beispiel der Artikel " Statische Mischer und ihre Anwendungen", M. H. Pahl und E. Muschelknautz, Chem.-Ing.-Techn. 52 (1980) Nr. 4, S. 285-291. Als Beispiele für statische Mischer seien SMX-Mischer (vgl. Patentschrift
US4062524 ) oder SMXL-Mischer (vgl. z.B. PatentschriftUS5520460 ) genannt. Sie bestehen aus zwei oder mehr zueinander senkrecht stehenden Gittern von parallelen Blechstreifen, die an ihren Kreuzungspunkten miteinander verbunden und in einem Winkel gegen die Hauptströmungsrichtung des Mischgutes angestellt sind, um die Flüssigkeit in Teilströme zu teilen und zu mischen. Ein einzelnes Mischelement ist als Mischer ungeeignet, da eine Durchmischung nur entlang einer Vorzugsrichtung quer zur Hauptströmungsrichtung erfolgt. Deshalb werden üblicherweise mehrere Mischelemente, die jeweils zueinander um 90° verdreht sind, hintereinander angeordnet. - Die Verwendung statischer Mischer zur Dispergierung von Gas in einer Flüssigkeit ist bekannt. In
WO2005/103115A1 wird zum Beispiel die Verwendung eines statischen Mischers in einem Verfahren zur Herstellung von Polycarbonat nach dem Umesterungsverfahren beschrieben. Um Monomere und andere flüchtige Bestandteile aus dem Polycarbonat zu entfernen, wird der Polymerschmelze ein Schäumungsmittel zugesetzt. Durch anschließende Druckerniedrigung entweicht das Schäumungsmittel unter Aufschäumen der Schmelze. Der Schaum bewirkt eine starke Oberflächenvergrößerung, die vorteilhaft für die Entgasung, d.h. die Entfernung flüchtiger Bestandteile ist. Als Schäumungsmittel wird bevorzugt ein inertes Gas wie z.B. Stickstoff eingesetzt, das mittels eines statischen Mischers, z.B. eines SMX-Mischers, in die Schmelze eingebracht und dispergiert wird.
InUS2005/0094482A1 undUS5480589 sind statische Mischer zur Dispergierung von Gasen zur Herstellung geschlossenzelliger Schäume beschrieben. Ein stufenförmiger Aufbau zur Erhöhung der Effektivität der Gasdispergierung ist nicht beschrieben. - Bei der Dispergierung von Gas in eine Flüssigkeit sind im Allgemeinen größere Mischerlängen nötig als bei der Dispergierung von Flüssigkeiten.
- Dokument
US-A-5 605 399 offenbart eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1. - Ausgehend vom Stand der Technik stellt sich die Aufgabe, eine Vorrichtung und ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit bereitzustellen, um eine effektivere Gasdispergierung als nach dem Stand der Technik beschrieben zu ermöglichen. Im Vergleich zum Stand der Technik soll bei gleicher Mischerlänge eine kleinere mittlere Blasengröße am Mischeraustritt erzielt werden. Alternativ soll bei gleichem Druckverlust über den gesamten Mischer eine kleinere mittlere Blasengröße am Mischeraustritt erzielt werden.
- Überraschend wurde gefunden, dass ein statischer Mischer, bei dem in Fließrichtung ein steigender spezifischer Energieeintrag vorliegt, über eine besonders effektive Dispergierwirkung verfügt. Es lassen sich mit Hilfe eines solchen Mischers bei vergleichbarem Gesamtdruckverlust kleinere Gasblasen erzeugen als mit einem statischen Mischer, bei dem der Energieeintrag über die Länge des Mischers konstant ist. Es lassen sich mit Hilfe eines solchen Mischers ebenfalls bei gleicher Gesamtmischerlänge kleinere Gasblasen erzeugen als mit einem statischen Mischer, bei dem der Energieeintrag über die Länge des Mischers konstant ist.
- Ein erster Gegenstand der vorliegenden Erfindung ist daher eine Vorrichtung gemäß Anspruch 1 zur Dispergierung von Gas in eine Flüssigkeit mit einer Anzahl n an aufeinander folgenden Zonen Z1, Z2,..., Zn mit statischen Mischelementen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass die einzelnen Zonen so ausgeführt sind, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
- Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit, bei dem Gas und Flüssigkeit gemeinsam durch eine Mischvorrichtung gefördert werden und dabei eine Anzahl n an aufeinander folgenden Zonen Z1, Z2,...,Zn mit statischen Mischelementen durchströmen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
- Unter Flüssigkeit wird hier allgemein ein Medium verstanden, das durch die erfindungsgemäße Vorrichtung gefördert werden kann. Dabei kann es sich beispielsweise auch um eine Schmelze oder eine Dispersion (z.B. Emulsion oder Suspension) handeln. Im Folgenden wird auch der Begriff Fluid verwendet. Das Fluid ist dabei vorzugsweise höherviskos, d.h. es weist eine Viskosität zwischen 2 mPas und 10.000.000 mPas, besonders bevorzugt zwischen 1000 mPas und 1.000.000 mPas auf (gemessen in einem Kegel-Platte-Viskosimeter nach DIN 53019 bei einem Schergefälle von 1 s-1).
- Um ein Gas oder Gasgemisch in dem Fluid zu dispergieren, wird mechanische Energie in das Gemisch eingetragen. Dieser Energieeintrag wird durch statische Mischelemente realisiert. In der Mischtechnik ist die Verwendung von modularen Systemen üblich. Ein Mischer setzt sich aus einer Reihe von modularen Mischelementen zusammen. Zur Erhöhung der Mischwirkung kann die Zahl der Mischelemente in einem Mischer erhöht werden. Üblicherweise werden die Mischelemente zur Ausbildung eines statischen Mischers in ein Rohr eingebracht. Es sei daraufhingewiesen, dass die vorliegende Erfindung nicht auf Mischer beschränkt ist, die aus einer Anordnung modularer Mischelemente aufgebaut sind, sondern auch auf Mischer in kompakter Bauform Anwendung findet.
- Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus, dass sie über eine Anzahl n an aneinandergrenzenden Zonen verfügt, wobei n eine ganze Zahl größer oder gleich 3 ist. In jeder Zone liegen statische Mischelemente vor. Jede Zone Z i weist eine Länge Li und eine Querschnittsfläche Ai auf. Dabei ist i ein Index, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft. Die Länge Li einer Zone Z i entspricht der Länge der hintereinander angeordneter Mischelemente in dieser Zone; die Querschnittsfläche Ai entspricht der Querschnittsfläche der in der Zone Z i vorliegenden Mischelemente.
-
- Der effektive Durchmesser Di entspricht bei einem kreisförmigen Querschnitt dem Durchmesser des Kreises. Bei einem nicht-kreisförmigen (z.B. rechteckigem) Querschnitt entspricht der effektive Durchmesser Di dem Durchmesser eines Kreises mit einer Fläche, die der Querschnittsfläche entspricht.
- Das Verhältnis Li /Di ist eine für die jeweilige Zone Z i charakteristische Kennzahl.
- Ein Mischelement verfügt über innere Strukturen und Kanäle zwischen diesen Strukturen. Wird ein Fluid durch ein Mischelement gefördert, so bewirken die Strukturen und Kanäle, dass das Fluid in Teilströme aufgeteilt, verteilt, geschert und ggf. verwirbelt wird und so die Teilströme miteinander vermischt werden. Der mittlere Durchmesser eines Kanals wird nachfolgend mit dem Buchstaben di abgekürzt. Unter einem mittleren Kanaldurchmesser di wird der über alle Kanäle arithmetisch gemittelte effektive Kanaldurchmesser verstanden, wobei sich der effektive Kanaldurchmesser analog dem effektiven Durchmesser einer Zone Z i nach Gleichung 1 berechnen lässt.
- Das Verhältnis di /Di zwischen dem mittleren Kanaldurchmesser di und dem effektiven Durchmesser Di der Mischelemente in einer Zone Z i ist ebenfalls eine charakteristische Kennzahl für die jeweilige Zone Z i . Der Parameter ai bezeichnet dabei die offene Querschnittsfläche, genauer die Projektionsfläche des freien Querschnitts. So ergibt sich beispielsweise aus
Fig. 1a die offene Querschnittsfläche ai aus der Summe der Projektionsflächen der einzelnen freien Querschnittsflächen der offenen Kanäle, durch die das Fluid durchströmen kann (Gleichung 3). - Der Parameter m ist dabei ein Zählparameter, N ist die Anzahl der einzelnen freien Querschnittsflächen.
- Die nach dem Stand der Technik zur Gasdispergierung eingesetzten statischen Mischer verfügen über Mischeinbauten, die über die Länge des Mischers gleichbleibend sind. Hier liegt nur eine einzige Zone vor, deren Länge L der Länge des Mischers und dessen effektiver Durchmesser D dem effektiven Durchmesser des Mischers entspricht. Um die Dispergierwirkung eines solchen Mischers zu erhöhen, kann beispielsweise die Länge L erhöht werden. Mit der Länge des Mischers steigt der Druckverlust Δp über den Mischer linear an. Der mechanische Energieeintrag Eabs ist gemäß Gleichung (4) proportional zum Druckverlust, wobei V̇ der Volumenstrom des Fluids ist.
- Der Druckverlust Δp und damit der mechanische Energieeintrag lässt sich in gleicher Weise auch durch eine Reduzierung des effektiven Durchmessers D erhöhen.
- Die erfindungsgemäße Vorrichtung zeichnet sich durch eine Anzahl n an Zonen aus. Jede Zone Z i ist durch einen spezifischen mechanischen Energieeintrag Ei charakterisiert, der in ein Fluid, das die jeweilige Zone durchströmt, eingetragen wird. Der spezifische mechanische Energieeintrag Ei ist der auf die Kennzahl Li /Di normierte mechanische Energieeintrag Eabs . Dabei ist erfindungsgemäß E 1 < E 2 < ... < En .
- Die Zahl n der Zonen in einer erfindungsgemäßen Vorrichtung ist nicht limitiert. Sie kann gegen unendlich laufen, wenn die Zonen infinitesimal klein werden und ein kontinuierlich steigender spezifischer Energieeintrag über die Länge der Vorrichtung vorliegt, wie es z.B. bei einem konisch enger werdenden Rohr der Fall sein könnte.
- Es ist denkbar, dass vor oder hinter den Zonen Z1 bis Z n weitere Zonen existieren, die frei wählbare spezifische Energieeinträge aufweisen.
- So ist eine besonders bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung dadurch gekennzeichnet, dass es eine erste Zone Z0 gibt, die einen höheren spezifischen Energieeintrag leistet als die in Fließrichtung nachfolgende Zone Z1 (E 0>E1 ). Erfindungsgemäß folgen auf die Zone Z1 weitere Zonen Z2 bis Zn, wobei für die entsprechenden spezifischen Energieeinträge E 1 bis En gilt: E 1 <E 2 <...<En .
- Überraschend wurde festgestellt, dass durch eine solche Anordnung von Zonen durch die Zone Z0 Primärblasen erzeugt werden, die in den darauffolgenden Zonen weniger stark zur Koaleszenz neigen und somit eine effektivere Dispergierung erreicht wird.
- In einer bevorzugten Ausführungsform verfügt die erfindungsgemäße Vorrichtung über eine Anzahl n an Mischzonen, die hintereinander angeordnet sind, wobei der mittlere Kanaldurchmesser di in den Mischzonen in Fließrichtung kleiner wird. Durch kleinere Kanäle wird ein höherer Druckverlust pro Länge erzeugt, der gleichbedeutend mit einem zunehmenden spezifischen Energieeintrag ist.
- Bevorzugt umfasst diese Ausführungsform ein zylinderförmiges Rohr, in das Mischelemente eingebracht sind. Der effektive Durchmesser Di der Mischelemente ist dabei bevorzugt über die gesamte Rohrlänge konstant, während der mittlere Kanaldurchmesser di in aufeinanderfolgenden Zonen in Fließrichtung kleiner wird. Es gilt D 1 = D 2 =... = Dn und d 1 > d 2 > ... > dn.
- Bevorzugt werden Mischelemente des gleichen Typs verwendet, z.B. SMX-Mischer mit unterschiedlichen Kennzahlen d/D.
-
- Bevorzugt umfasst diese Ausführungsform ein zylinderförmiges Rohr, in das Mischelemente eingebracht sind, die in Fließrichtung einen zunehmend kleineren effektiven Durchmesser Di besitzen.
- Die Mischelemente, deren Außendurchmesser kleiner ist als der Innendurchmesser des Rohres sind dabei bevorzugt mit einem Mantelrohr umschlossen, dessen Außendurchmesser annähernd dem Innendurchmesser des Rohres entspricht, um sie passend in das Rohr einbringen zu können. An den Übergangsstellen von einem Mischelement mit einem großen Durchmesser zu einem Mischelement mit einem kleinen Durchmesser sind bevorzugt Übergangsmantelrohre vorhanden, die über einen in Richtung des Mischelements mit kleinem Durchmesser konisch verjüngendem Innendurchmesser verfügen. Diese Übergangsmantelrohre können einstückig mit den Mantelrohren verbunden oder separat ausgeführt sein.
- In einer weiteren bevorzugten Ausführungsform verfügt die erfindungsgemäße Vorrichtung in jeder Zone Z i über eine Anordnung von Mischelementen unterschiedlichen Typs, die bei gleichem Verhältnis Li /Di in Fließrichtung in jeder Zone Z i einen zunehmenden Druckverlust verursachen.
- Bevorzugt sind die Mischelemente in ein zylinderförmiges Rohr eingebracht. Sie verfügen bevorzugt über den gleichen effektiven Durchmesser Di.
- Sollten die Außendurchmesser der Typen von Mischelementen variieren, so ist es denkbar, diejenigen Mischelemente, deren Außendurchmesser kleiner ist als der Innendurchmesser des Rohres, mit einem Mantelrohr bzw. Ring zu umschließen, dessen Außendurchmesser annähernd dem Innendurchmesser des Rohres entspricht, um sie passend in das Rohr einbringen zu können. Auch die oben beschriebene Verwendung von Übergangsmantelrohren ist hier vorteilhaft.
- Es ist denkbar, die verschiedenen aufgeführten Ausführungsformen miteinander zu kombinieren.
- Die erfindungsgemäße Vorrichtung eignet sich zur Dispergierung von Gas in einer Flüssigkeit, z.B. zum Eintrag eines Schleppgases in eine Polymerschmelze oder zum Aufschäumen von flüssigen Medien.
- Das Gas kann mit Röhrchen oder dünnen Kapillaren, die sich vorzugsweise in Fließrichtung vor der Statikmischerkaskade befinden, zugegeben werden. Weiterhin kann das Gas auch durch einen porösen Körper zugegeben werden. Ein poröser Körper kann beispielsweise folgende Geometrien umfassen: eine Fritte und/oder einen porösen, gesinterten Körper und/oder ein ein- oder mehrlagiges Sieb.
- Der poröse Körper kann beispielsweise in Form eines Zylinders, in Form eines Quaders, einer Kugel oder eines Würfels oder in konischer Form, z.B. als Kegel, ausgeformt sein. Diese Vorrichtungen sorgen für eine feine Vordispergierung des Gases sowie ggf. auch für eine Verteilung des Gases über den Querschnitt.
- Die Kapillare bzw. der poröse Körper weist einen mittleren effektiven Lochinnendurchmesser von vorzugsweise 0,1-500 µm, bevorzugt 1 - 200 µm, besonders bevorzugt 10-90 µm auf.
- Als poröse Körper können beispielsweise poröse Sinterkörper aus Metall zum Einsatz kommen, wie Frittenkörper, welche in der Chromatographie verwendet werden, z.B. die Sinterkörper der Fa. Mott Corporation (Farmington, USA). Weiterhin können gewickelte Drahtgewebe zum Einsatz kommen, beispielsweise die gewickelten Drahtgewebe der Fa. Fuji Filter Manufacturing Co., Ltd. (Tokyo, Japan), Handelsname: Fujiloy®. Weiterhin können Siebe oder mehrlagige Gewebe zum Einsatz kommen, wie z.B. die Metall-Drahtgewebe-Verbundplatten der Fa. Haver & Boecker Drahtweberei (Oelde, Deutschland), Handelsname: Haver Porostar.
- Diese Vorrichtungen dienen der Verteilung des Gases über den Rohrquerschnitt und einer für die Gasdispergierung günstigen Vordispergierung über die engen Poren. Der effektive Durchmesser Di der in den porösen Sinterkörpern oder Sieben oder gewickelten Drahtgeweben eingesetzten Löchern beträgt bevorzugt 1-500 µm, besonders bevorzugt 2-200 µm, ganz besonders bevorzugt 10-90 µm.
- Die Erfindung wird nachstehend anhand von Beispielen näher erläutert ohne sie jedoch hierauf zu beschränken.
-
Fig. 1 zeigt Bespiele von drei unterschiedlichen statischen Mischern (No.1, No. 2 und No. 3):Fig. 1(a) von oben,Fig. 1(b) von der Seite (Schnittzeichnung) undFig. 1 (c) in der Anordnung nach Einbau in ein Rohr oder Gehäuse. Die Angaben für wi und bi bezeichnen die Länge bzw. Breite des projizierten Querschnitts der freien Strömungskanäle. Di bezeichnet den lichten Durchmesser und DM den Außendurchmesser der statischen Mischelemente. Li bezeichnet die gesamte Länge eines geometrisch gleichförmigen Mischerabschnitts und li die Länge eines einzelnen Mischelements. - No. 1 stellt einen Kenics-Mischer dar. No.2 zeigt einen handelsüblichen SMX-Statikmischer ohne bzw. mit äußerem Ring. No. 3 zeigt einen Mischer mit Stegstruktur und äußerem Ring (
DE 29923895U1 undEP1189686B1 ). -
Fig. 2 zeigt drei verschiedene Beispiele (A, B und C) von Varianten Statikmischer, mit einzelnen Zonen (gekennzeichnet durch die Längenangaben L1, L2, L3), dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di der einzelnen Zonen normierte mechanische Energieeintrag Ei auf ein Fluid, das die jeweilige Zone Z i durchströmt, in Fließrichtung zunimmt. Die Fließrichtung wird durch den dicken Pfeil angegeben. -
-
Fig. 2B zeigt eine Ausführungsform mit einem zylinderförmigen Rohr, in das Mischelemente eingebracht sind, bei denen der effektive Durchmesser Di über die gesamte Rohrlänge konstant ist, während der mittlere Kanaldurchmesser d i in aufeinanderfolgenden Zonen in Fließrichtung kleiner wird. Es gilt D 1 = D 2 = D 3 und d 1 > d 2 > d3 . Es werden Mischelemente des gleichen Typs verwendet, z.B. SMX-Mischer mit unterschiedlichen Kennzahlen d/D. -
Fig. 2C zeigt eine Anordnung von Mischelementen unterschiedlichen Typs, die bei gleichem Verhältnis Li /Di in Fließrichtung in jeder Zone Z i einen zunehmenden Druckverlust verursachen. Als Beispiel ist hier in der ersten Zone mit der Länge L1 ein Kenics-Mischer dargestellt. In der zweiten Zone mit der Länge L2 befindet sich ein SMX-Mischer. In der dritten Zone mit der Länge L3 befindet sich ebenfalls ein SMX-Mischer mit geringeren effektiven Durchmesser Di im Vergleich zu dem Mischer in der zweiten Zone. -
Fig. 3A zeigt eine erfindungsgemäße Vorrichtung mit drei Zonen und einem Vormischer sowie einer Gasdosierung über eine Kapillare. Vor dem Vormischer befindet sich der Bereich, bei dem das Fluid dosiert wird (L) sowie eine Vorrichtung zur Dosierung von Gasen (G) über eine Kapillare (Ca). -
Fig. 3B zeigt eine Gasdosierung mittels porösem Sinterkörper (der dahinter liegende Mischer ist hier nicht eingezeichnet). Vor dem Vormischer befindet sich der Bereich, bei dem das Fluid dosiert wird (L) und eine Vorrichtung zur Gasdosierung (G) über einen porösen Sinterkörper (PS), welcher sich innerhalb des Strömungsquerschnitts befindet.
Claims (8)
- Vorrichtung zur Dispergierung von Gas in eine Flüssigkeit mit einer Anzahl n an aufeinander folgenden Zonen Z1, Z2,..., Zn mit statischen Mischelementen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, wobei
die einzelnen Zonen so ausgeführt sind, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf eine Flüssigkeit wirkt in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft , dadurch gekennzeichnet, dass
die in den Zonen Z1 bis Zn vorliegenden Mischelemente dasselbe Verhältnis di /Di aufwesen, wobei di der mittlere Durchmesser ist, und einen in Fließrichtung von Zone zu Zone zunehmend geringeren effektiven Durchmesser Di aufweisen. - Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der mittlere Kanaldurchmesser di in den in Fließrichtung aufeinander folgenden Zonen Z1 bis Zn kleiner wird.
- Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zonen Z1 bis Zn über Mischelemente unterschiedlichen Typs verfügen, die bei gleichem Verhältnis Li /Di in Fließrichtung von Zone zu Zone einen zunehmenden Druckverlust verursachen.
- Vorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass es eine erste Zone Z0 gibt, die einen höheren spezifischen Energieeintrag Eo leistet als die in Fließrichtung nachfolgende Zone Z1.
- Vorrichtung nach einem der Ansprüche 1 bis 4, weiterhin umfassend ein Röhrchen oder eine dünne Kapillare zur Zuführung von Gas in die Vorrichtung, dadurch gekennzeichnet, dass das Röhrchen oder die dünne Kapillare vor der Anordnung aus Mischelementen angebracht ist.
- Vorrichtung nach einem der Ansprüche 1 bis 4, weiterhin umfassend einen porösen oder siebförmigen Körper zur Zuführung von Gas in die Vorrichtung, dadurch gekennzeichnet, dass der Körper vor der Anordnung aus Mischelementen angebracht ist.
- Verfahren zur Dispergierung von Gas in eine Flüssigkeit, bei dem Gas und Flüssigkeit gemeinsam durch eine Mischvorrichtung nach einem der Ansprüche 1 bis 6 gefördert werden und dabei eine Anzahl n an aufeinander folgenden Zonen Z1, Z2,...,Zn mit statischen Mischelementen durchströmen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Flüssigkeit eine Viskosität zwischen 2 mPas und 10.000.000 mPas, besonders bevorzugt zwischen 1000 mPas und 1.000.000 mPas aufweist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010039700A DE102010039700A1 (de) | 2010-08-24 | 2010-08-24 | Vorrichtung und Verfahren zur Gasdispergierung |
PCT/EP2011/058135 WO2012025264A1 (de) | 2010-08-24 | 2011-05-19 | Vorrichtung und verfahren zur gasdispergierung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2608875A1 EP2608875A1 (de) | 2013-07-03 |
EP2608875B1 true EP2608875B1 (de) | 2015-01-21 |
Family
ID=44385315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11723393.2A Active EP2608875B1 (de) | 2010-08-24 | 2011-05-19 | Vorrichtung und verfahren zur gasdispergierung |
Country Status (8)
Country | Link |
---|---|
US (1) | US9440201B2 (de) |
EP (1) | EP2608875B1 (de) |
CN (1) | CN103249476B (de) |
CA (1) | CA2809082A1 (de) |
DE (1) | DE102010039700A1 (de) |
ES (1) | ES2535187T3 (de) |
SG (1) | SG188250A1 (de) |
WO (1) | WO2012025264A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9132393B1 (en) * | 2012-04-28 | 2015-09-15 | Michael Ross | Foam generator for mixing air and washing chemicals to create foam |
CA3029840C (en) * | 2016-07-05 | 2023-09-26 | Ineos Americas, Llc | Method and apparatus for recovering absorbing agents in acid gas treatment |
DE102016114898A1 (de) * | 2016-08-11 | 2018-02-15 | Ceracon Gmbh | Vorrichtung und Verfahren zum Schäumen eines viskosen Materials |
US11206853B2 (en) | 2017-04-12 | 2021-12-28 | Gaia Usa, Inc. | Apparatus and method for generating and mixing ultrafine gas bubbles into a high gas concentration aqueous solution |
CA3120242A1 (en) | 2018-06-01 | 2019-12-05 | Gaia Usa, Inc. | Apparatus in the form of a unitary, single-piece structure configured to generate and mix ultra-fine gas bubbles into a high gas concentration aqueous solution |
DE102019200823A1 (de) * | 2019-01-23 | 2020-07-23 | Rampf Holding Gmbh & Co. Kg | Mischvorrichtung |
CN109908712B (zh) * | 2019-04-24 | 2024-04-02 | 攀钢集团钛业有限责任公司 | 用于四氯化钛吸收的气液混合器 |
DE102020106987A1 (de) | 2020-03-13 | 2021-09-16 | Herrenknecht Aktiengesellschaft | Schaumerzeugungsstruktur und Schaumerzeugungsmodul mit einer Schaumerzeugungsstruktur |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062524A (en) | 1973-06-06 | 1977-12-13 | Bayer Aktiengesellschaft | Apparatus for the static mixing of fluid streams |
US4674888A (en) | 1984-05-06 | 1987-06-23 | Komax Systems, Inc. | Gaseous injector for mixing apparatus |
DE59104667D1 (de) * | 1990-08-23 | 1995-03-30 | Sulzer Chemtech Ag | Statische Laminar-Mischeinrichtung, Zumischvorrichtung, sowie Verwendung von Mischeinrichtung und Zumischvorrichtung. |
US5435061A (en) | 1992-02-24 | 1995-07-25 | Koch Engineering Company, Inc. | Method of manufacturing a static mixing unit |
US5480589A (en) | 1994-09-27 | 1996-01-02 | Nordson Corporation | Method and apparatus for producing closed cell foam |
US5605399A (en) | 1995-10-17 | 1997-02-25 | Komax Systems, Inc. | Progressive motionless mixer |
US6102561A (en) * | 1998-01-05 | 2000-08-15 | Komax Systems, Inc. | Device for enhancing heat transfer and uniformity of a fluid stream with layers of helical vanes |
DE29923895U1 (de) | 1998-03-27 | 2001-05-23 | Bayer Ag, 51373 Leverkusen | Statischer Mischer |
DE19813600A1 (de) | 1998-03-27 | 1999-09-30 | Bayer Ag | Statischer Scheibenmischer |
US6027241A (en) * | 1999-04-30 | 2000-02-22 | Komax Systems, Inc. | Multi viscosity mixing apparatus |
US6394644B1 (en) | 1999-06-21 | 2002-05-28 | Koch-Glitsch, Inc. | Stacked static mixing elements |
FR2812793B1 (fr) | 2000-08-11 | 2003-05-30 | Gervais Danone Sa | Procede de fabrication d'un produit alimentaire aere et produit ainsi obtenu |
JP3794687B2 (ja) * | 2002-08-23 | 2006-07-05 | 株式会社山武 | マイクロ乳化器 |
US20050094482A1 (en) | 2003-10-31 | 2005-05-05 | Nordson Corporation | Method and apparatus for producing closed cell foam |
DE102004019295A1 (de) | 2004-04-21 | 2005-12-01 | Bayer Materialscience Ag | Verfahren zur Herstellung von Polycarbonat |
WO2010066457A1 (en) * | 2008-12-10 | 2010-06-17 | Technische Universiteit Eindhoven | Static mixer comprising a static mixing element, method of mixing a fluid in a conduit and a formula for designing such a static mixing element |
-
2010
- 2010-08-24 DE DE102010039700A patent/DE102010039700A1/de not_active Withdrawn
-
2011
- 2011-05-19 CN CN201180051376.XA patent/CN103249476B/zh active Active
- 2011-05-19 CA CA2809082A patent/CA2809082A1/en not_active Abandoned
- 2011-05-19 ES ES11723393.2T patent/ES2535187T3/es active Active
- 2011-05-19 WO PCT/EP2011/058135 patent/WO2012025264A1/de active Application Filing
- 2011-05-19 EP EP11723393.2A patent/EP2608875B1/de active Active
- 2011-05-19 SG SG2013012521A patent/SG188250A1/en unknown
- 2011-05-19 US US13/818,370 patent/US9440201B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103249476B (zh) | 2016-02-10 |
US9440201B2 (en) | 2016-09-13 |
SG188250A1 (en) | 2013-05-31 |
CN103249476A (zh) | 2013-08-14 |
US20130215710A1 (en) | 2013-08-22 |
ES2535187T3 (es) | 2015-05-06 |
CA2809082A1 (en) | 2012-03-01 |
DE102010039700A1 (de) | 2012-03-01 |
EP2608875A1 (de) | 2013-07-03 |
WO2012025264A1 (de) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2608875B1 (de) | Vorrichtung und verfahren zur gasdispergierung | |
EP0956151B1 (de) | Verfahren und vorrichtung zur herstellung eines dispersen gemisches | |
EP2403633B1 (de) | Koaxialer kompaktstatikmischer sowie dessen verwendung | |
EP0861121B1 (de) | Verfahren zur herstellung von dispersionen und zur durchführung chemischer reaktionen mit disperser phase | |
DE69917433T2 (de) | Verfahren und vorrichtung zum herstellen von flüssigdispersen systemen in flüssigkeiten | |
DE4433744C2 (de) | Vorrichtung zum Vermischen von Medien zur Erzeugung flüssiger Systeme | |
DE3851106T2 (de) | Vorrichtung zum Mischen fliessfähiger Medien. | |
EP1280598A2 (de) | Kavitationsmischer | |
EP0644271A1 (de) | Verfahren zur herstellung eines frei dispersen systems und einrichtung zur durchführung des verfahrens | |
DE1557118B2 (de) | ||
EP0758918A1 (de) | Verfahren und vorrichtung zur durchführung chemischer reaktionen mittels mikrostruktur-mischung | |
EP1278593B1 (de) | Statisches mischelement | |
EP2368625A1 (de) | Verfahren und Vorrichtung zur Dispergierung | |
DE10206083B4 (de) | Verfahren zum Erzeugen monodisperser Nanotropfen sowie mikrofluidischer Reaktor zum Durchführen des Verfahrens | |
EP0472491A1 (de) | Statische Laminar-Mischeinrichtung, Zumischvorrichtung, sowie Verwendung von Mischeinrichtung und Zumischvorrichtung | |
EP3520990A2 (de) | Verfahren und vorrichtung zum extrudieren und homogenisieren von ringförmigen extrudaten | |
WO2004098758A1 (de) | Dispergiervorrichtung | |
DE60311667T2 (de) | Fluidbehandlungsvorrichtung mit ringförmigen strömungswegen, system und verfahren | |
DE102006036815B4 (de) | Emulgiereinrichtung und Verfahren zur Bildung einer Emulsion | |
WO2011116893A1 (de) | Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit | |
WO2011116892A1 (de) | Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit | |
DE102012104053B3 (de) | Emulgiervorrichtung | |
DE202023105655U1 (de) | Einsatz für Cross-Flow-Membran-Emulgierungsanordnung | |
EP1343589A2 (de) | Vorrichtung und verfahren zur stofftrennung | |
WO1999007461A1 (de) | Kreuzbalkenmischdüse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130325 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140806 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011005722 Country of ref document: DE Effective date: 20150226 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 708890 Country of ref document: AT Kind code of ref document: T Effective date: 20150315 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2535187 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150506 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150421 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150421 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150521 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011005722 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20151022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150519 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011005722 Country of ref document: DE Owner name: COVESTRO DEUTSCHLAND AG, DE Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150519 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: COVESTRO DEUTSCHLAND AG, DE Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20160922 AND 20160928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: COVESTRO DEUTSCHLAND AG; DE Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: BAYER INTELLECTUAL PROPERTY GMBH Effective date: 20160810 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: COVESTRO DEUTSCHLAND AG, DE Effective date: 20161115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: BAYER MATERIALSCIENCE AG Effective date: 20170125 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110519 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 708890 Country of ref document: AT Kind code of ref document: T Effective date: 20160519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160519 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: COVESTRO DEUTSCHLAND AG Effective date: 20171219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210428 Year of fee payment: 11 Ref country code: FR Payment date: 20210426 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210426 Year of fee payment: 11 Ref country code: GB Payment date: 20210422 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502011005722 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0003040000 Ipc: B01F0023200000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220502 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220603 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220502 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220519 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230418 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230601 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230520 |