EP2608875B1 - Vorrichtung und verfahren zur gasdispergierung - Google Patents

Vorrichtung und verfahren zur gasdispergierung Download PDF

Info

Publication number
EP2608875B1
EP2608875B1 EP11723393.2A EP11723393A EP2608875B1 EP 2608875 B1 EP2608875 B1 EP 2608875B1 EP 11723393 A EP11723393 A EP 11723393A EP 2608875 B1 EP2608875 B1 EP 2608875B1
Authority
EP
European Patent Office
Prior art keywords
zone
zones
gas
mixing elements
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11723393.2A
Other languages
English (en)
French (fr)
Other versions
EP2608875A1 (de
Inventor
Jens Hepperle
Jörg KIRCHHOFF
Klemens KOHLGRÜBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Publication of EP2608875A1 publication Critical patent/EP2608875A1/de
Application granted granted Critical
Publication of EP2608875B1 publication Critical patent/EP2608875B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4334Mixers with a converging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles

Definitions

  • the invention relates to an apparatus and a method for dispersing gas in a liquid.
  • the dispersion of gases in liquid media is widely used in the chemical industry, for example in hydrogenations, chlorinations or oxidations.
  • the oxygen input is essential.
  • a dispersion of gas takes place in a liquid medium.
  • gases are dispersed in highly viscous liquids to produce, for example, creams, foam rubber or chocolate with an air-filled porous structure (eg described in US Pat WO02 / 13618A2 ).
  • the goal of a gas dispersion is the introduction of gas into a fluid, preferably in the form of small bubbles as possible, to produce the largest possible interface between gaseous and liquid phase.
  • static mixers examples include SMX mixers (cf. US4062524 ) or SMXL mixer (cf., for example, patent specification US5520460 ) called. They consist of two or more mutually perpendicular lattices of parallel metal strips which are interconnected at their crossing points and employed at an angle to the main flow direction of the mixed material to divide the liquid into partial streams and mix.
  • a single mixing element is unsuitable as a mixer, since a mixing takes place only along a preferred direction transverse to the main flow direction. Therefore, usually several mixing elements, which are each rotated by 90 ° to each other, arranged one behind the other.
  • the object is to provide an apparatus and a method for dispersing gas in a liquid, to enable a more effective gas dispersion than described in the prior art.
  • a smaller average bubble size should be achieved at the mixer outlet with the same mixer length.
  • a smaller average bubble size should be achieved at the mixer outlet with the same pressure loss over the entire mixer.
  • a first subject of the present invention is therefore an apparatus according to claim 1 for the dispersion of gas into a liquid having a number n of successive zones Z 1 , Z 2 , ..., Z n with static mixing elements, each zone Z i a Length L i and an effective diameter D i , characterized in that the individual zones are designed so that the normalized to the respective ratio L i / D i mechanical energy input E i , which acts on the gas-liquid mixture, in Flow direction increases from zone to zone, where n is an integer greater than or equal to 3 and i is an index that passes through the integer from 1 to the number n of the zones.
  • Another object of the present invention is a method for dispersing gas into a liquid in which gas and liquid are conveyed together by a mixing device and thereby a number n of successive Z zones Z 1 , Z 2 , ..., Z n flow through with static mixing elements, each zone Z i has a length L i and an effective diameter D i , characterized in that normalized to the respective ratio L i / D i mechanical energy input E i , which acts on the gas-liquid mixture increases in the flow direction from zone to zone, where n is an integer greater than or equal to 3 and i is an index which is the integer from 1 to the number n of Passes through zones.
  • Liquid is generally understood here to mean a medium which can be conveyed through the device according to the invention. This may, for example, also be a melt or a dispersion (eg emulsion or suspension).
  • the term fluid is used.
  • the fluid is preferably of higher viscosity, ie it has a viscosity between 2 mPas and 10,000,000 mPas, more preferably between 1,000 mPas and 1,000,000 mPas (measured in a cone-plate viscometer according to DIN 53019 at a shear rate of 1 s -1 ).
  • a mixer consists of a series of modular mixing elements. To increase the mixing effect, the number of mixing elements in a mixer can be increased. Usually, the mixing elements are introduced into a tube to form a static mixer. It should be noted that the present invention is not limited to mixers constructed from an array of modular mixing elements but is also applicable to mixers in a compact design.
  • the device according to the invention is characterized in that it has a number n of contiguous zones, where n is an integer greater than or equal to 3.
  • n is an integer greater than or equal to 3.
  • Each zone Z i has a length L i and a cross-sectional area A i .
  • i is an index that traverses the integer from 1 to the number n of zones.
  • the length L i of a zone Z i corresponds to the length of the mixing elements arranged one behind the other in this zone; the cross-sectional area A i corresponds to the cross-sectional area of the mixing elements present in the zone Z i .
  • an effective diameter D i 4 ⁇ A i ⁇
  • the effective diameter D i corresponds in a circular cross section to the diameter of the circle.
  • the effective diameter D i corresponds to the diameter of a circle having an area corresponding to the cross-sectional area.
  • the ratio L i / D i is a characteristic characteristic of the respective zone Z i .
  • a mixing element has internal structures and channels between these structures. If a fluid is conveyed through a mixing element, the structures and channels cause the fluid to be divided, distributed, sheared and, if necessary, fluidized into partial flows, thus mixing the partial flows with one another.
  • the mean diameter of a channel is subsequently abbreviated by the letter d i .
  • the ratio d i / D i between the mean channel diameter d i and the effective diameter D i of the mixing elements in a zone Z i is also a characteristic index for the respective zone Z i .
  • the parameter a i denotes the open cross-sectional area, more precisely the projection surface of the free cross-section. This results, for example, from Fig. 1a the open cross-sectional area a i of the sum of the projection areas of the individual free cross-sectional areas of the open channels, through which the fluid can flow (equation 3).
  • the parameter m is a counting parameter
  • N is the number of individual free cross-sectional areas.
  • the static mixers used in the prior art for gas dispersion have mixing internals that are consistent throughout the length of the mixer.
  • the length L corresponds to the length of the mixer and whose effective diameter D corresponds to the effective diameter of the mixer.
  • the length L can be increased.
  • the mechanical energy input E abs is according to equation (4) proportional to the pressure loss, where V ⁇ is the volume flow of the fluid.
  • the pressure loss ⁇ p and thus the mechanical energy input can be increased in the same way by reducing the effective diameter D.
  • the device according to the invention is characterized by a number n of zones.
  • Each zone Z i is characterized by a specific mechanical energy input E i , which is registered in a fluid flowing through the respective zone.
  • the specific mechanical energy input E i is the mechanical energy input E abs normalized to the characteristic L i / D i .
  • E 1 ⁇ E 2 ⁇ ... ⁇ E n . e e Section ⁇ D L
  • the number n of zones in a device according to the invention is not limited. It can run to infinity if the zones become infinitesimally small and there is a continuously increasing specific energy input along the length of the device, as might be the case, for example, with a conically narrowing tube.
  • a particularly preferred embodiment of the device according to the invention is characterized in that there is a first zone Z 0 , which makes a higher specific energy input than the subsequent in the flow direction zone Z 1 ( E 0 > E 1 ).
  • further zones Z 2 to Z n follow on the zone Z 1 , with the following for the corresponding specific energy inputs E 1 to E n : E 1 ⁇ E 2 ⁇ ... ⁇ E n .
  • the device according to the invention has a number n of mixing zones, which are arranged one behind the other, wherein the mean channel diameter d i in the mixing zones in the flow direction is smaller. Smaller channels produce a higher pressure loss per length, which is equivalent to increasing specific energy input.
  • This embodiment preferably comprises a cylindrical tube into which mixing elements are introduced.
  • the effective diameter D i of the mixing elements is preferably constant over the entire tube length, while the mean channel diameter d i in successive zones in the flow direction is smaller.
  • mixing elements of the same type are used, eg SMX mixers with different characteristic numbers d / D.
  • this embodiment comprises a cylindrical tube into which mixing elements are introduced, which have an increasingly smaller effective diameter D i in the flow direction.
  • the mixing elements whose outer diameter is smaller than the inner diameter of the tube are preferably enclosed by a jacket tube whose outer diameter corresponds approximately to the inner diameter of the tube in order to be able to bring it into the tube.
  • transition jacketed pipes are preferably present, which have a conically tapering in the direction of the mixing element with a small diameter inner diameter.
  • the device according to the invention has in each zone Z i an arrangement of mixing elements of different types, which cause an increasing pressure loss in the same direction in the flow direction in each zone Z i for the same ratio L i / D i .
  • the mixing elements are introduced into a cylindrical tube. They preferably have the same effective diameter D i .
  • the device according to the invention is suitable for the dispersion of gas in a liquid, for example for introducing a towing gas into a polymer melt or for foaming liquid media.
  • the gas may be added with tubes or thin capillaries, preferably in the flow direction before the static mixer cascade. Furthermore, the gas may also be added through a porous body.
  • a porous body may comprise, for example, the following geometries: a frit and / or a porous, sintered body and / or a single or multi-layer sieve.
  • the porous body may, for example, be in the form of a cylinder, in the form of a cuboid, a sphere or a cube or in conical form, e.g. as a cone, be formed. These devices ensure a fine predispersion of the gas and possibly also for a distribution of the gas over the cross section.
  • the capillary or the porous body has a mean effective internal hole diameter of preferably 0.1-500 .mu.m, preferably 1 - 200 .mu.m, particularly preferably 10-90 .mu.m.
  • Porous bodies which may be used are, for example, porous sintered bodies of metal, such as frit bodies used in chromatography, for example the sintered bodies of Mott Corporation (Farmington, USA).
  • wound wire mesh can be used, for example, the wound wire mesh from Fuji Filter Manufacturing Co., Ltd. (Tokyo, Japan), trade name: Fujiloy ®.
  • sieves or multi-layer fabrics can be used, such as the metal wire mesh composite panels of the company Haver & Boecker wire weaving (Oelde, Germany), trade name: Haver Porostar.
  • the effective diameter D i of the holes inserted in the porous sintered bodies or wires or wound wire meshes is preferably 1-500 ⁇ m, more preferably 2-200 ⁇ m, most preferably 10-90 ⁇ m.
  • Fig. 1 shows examples of three different static mixers (No.1, No. 2 and No. 3): Fig. 1 (a) from above, Fig. 1 (b) from the side (sectional drawing) and Fig. 1 (c) in the arrangement after installation in a pipe or housing.
  • the indications for wi and bi denote the length and width of the projected cross section of the free flow channels.
  • Di denotes the clear diameter and DM the outer diameter of the static mixing elements.
  • Li denotes the entire length of a geometrically uniform mixer section and li the length of a single mixing element.
  • No. 1 illustrates a Kenics mixer.
  • No.2 shows a commercial SMX static mixer with or without an outer ring.
  • No. 3 shows a mixer with web structure and outer ring (FIG. DE 29923895U1 and EP1189686B1 ).
  • Fig. 2 shows three different examples (A, B and C) of variants static mixer, with individual zones (characterized by the lengths L 1 , L 2 , L 3 ), characterized in that on the respective ratio L i / D i of the individual zones normalized mechanical energy input E i increases in the flow direction of a fluid which flows through the respective zone Z i .
  • the flow direction is indicated by the thick arrow.
  • Fig. 2B shows an embodiment with a cylindrical tube, in which mixing elements are introduced, in which the effective diameter D i over the entire tube length is constant, while the mean channel diameter d i in successive zones in the flow direction is smaller.
  • Mixing elements of the same type are used, eg SMX mixers with different characteristic numbers d / D.
  • Fig. 2C shows an arrangement of mixing elements of different types, which cause an increasing pressure loss at the same ratio L i / D i in the flow direction in each zone Z i .
  • a Kenics mixer shown in the first zone of length L1 .
  • an SMX mixer In the second zone of length L2 is an SMX mixer.
  • the third zone of length L3 there is also an SMX mixer with smaller effective diameters D i compared to the mixer in the second zone.
  • Fig. 3A shows a device according to the invention with three zones and a premixer and a gas metering via a capillary. Before the premixer is the area where the fluid is metered (L) and a device for metering gases (G) via a capillary (Ca).
  • Fig. 3B shows a gas metering by means of porous sintered body (the mixer behind it is not shown here).
  • the premixer In front of the premixer is the area where the fluid is metered (L) and a device for gas metering (G) via a porous sintered body (PS), which is located within the flow cross section.
  • L metered
  • G gas metering
  • PS porous sintered body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit.
  • Die Dispergierung von Gasen in flüssigen Medien findet in der chemischen Industrie beispielsweise bei Hydrierungen, Chlorierungen oder Oxidationen eine breite Anwendung. Bei Fermentationen und der aeroben Abwasserreinigung ist der Sauerstoffeintrag von wesentlicher Bedeutung. Auch bei der Schaumerzeugung findet eine Dispergierung von Gas in einem flüssigen Medium statt. In der Lebensmitteltechnik werden Gase in hochviskosen Flüssigkeiten dispergiert, um z.B. Cremes, Schaumgummi oder Schokolade mit luftgefüllter poröser Struktur herzustellen (z.B. beschrieben in WO02/13618A2 ).
  • Das Ziel einer Gasdispergierung ist der Eintrag von Gas in ein Fluid, vorzugsweise in Form von möglichst kleinen Bläschen, um eine möglichst große Grenzfläche zwischen gasförmiger und flüssiger Phase herzustellen. Je größer die Phasengrenzfläche ist, desto höher ist nach dem ersten Fick'schen Gesetz der Stofftransport zwischen Gas und Flüssigkeit.
  • Die Gasdispergierung erfolgt dabei häufig in zwei Schritten:
    1. 1. Einbringen des Gases in die Flüssigkeit in Form von Blasen
    2. 2. Zerteilen der Blasen
  • Die Art des Einbringens, im Allgemeinen über Düsen, Fritten oder Lochplatten, bestimmt die Größenverteilung der Primärblasen. In dem Artikel "Gasdispergierung in Flüssigkeiten durch Düsen bei hohen Durchsätzen" aus Chemie-Ingenieur-Technik, 28. Jahrgang 1956, Nr 6, Seiten 389 - 395 wird beispielsweise beschrieben, welchen Einfluss Parameter wie Düsenweite, Gasdurchsatz, Viskosität und Grenzflächenspannung auf die Größenverteilung von Gasblasen, die beim Hineinschießen eines Gasstrahls in eine Flüssigkeit aus einer Düse entstehen, haben.
    Das Zerteilen der Blasen kann beispielsweise mittels eines dynamischen oder statischen Mischers erfolgen. Während bei dynamischen Mischern die Homogenisierung einer Mischung durch bewegte Organe wie z.B. Rührer erreicht wird, wird bei statischen Mischern die Strömungsenergie des Fluids ausgenutzt: eine Fördereinheit (z.B. eine Pumpe) drückt die Flüssigkeit durch ein mit statischen Mischereinbauten versehenes Rohr, wobei die der Hauptströmungsachse folgende Flüssigkeit in Teilströme aufgeteilt wird, die je nach Art der Einbauten gedehnt, geschert, miteinander verwirbelt und vermischt werden. Der Vorteil bei der Verwendung von statischen Mischern liegt u. a. darin, dass keine beweglichen Teile vorhanden sind.
  • Einen Überblick über verschiedene Typen von statischen Mischern gibt zum Beispiel der Artikel " Statische Mischer und ihre Anwendungen", M. H. Pahl und E. Muschelknautz, Chem.-Ing.-Techn. 52 (1980) Nr. 4, S. 285-291. Als Beispiele für statische Mischer seien SMX-Mischer (vgl. Patentschrift US4062524 ) oder SMXL-Mischer (vgl. z.B. Patentschrift US5520460 ) genannt. Sie bestehen aus zwei oder mehr zueinander senkrecht stehenden Gittern von parallelen Blechstreifen, die an ihren Kreuzungspunkten miteinander verbunden und in einem Winkel gegen die Hauptströmungsrichtung des Mischgutes angestellt sind, um die Flüssigkeit in Teilströme zu teilen und zu mischen. Ein einzelnes Mischelement ist als Mischer ungeeignet, da eine Durchmischung nur entlang einer Vorzugsrichtung quer zur Hauptströmungsrichtung erfolgt. Deshalb werden üblicherweise mehrere Mischelemente, die jeweils zueinander um 90° verdreht sind, hintereinander angeordnet.
  • Die Verwendung statischer Mischer zur Dispergierung von Gas in einer Flüssigkeit ist bekannt. In WO2005/103115A1 wird zum Beispiel die Verwendung eines statischen Mischers in einem Verfahren zur Herstellung von Polycarbonat nach dem Umesterungsverfahren beschrieben. Um Monomere und andere flüchtige Bestandteile aus dem Polycarbonat zu entfernen, wird der Polymerschmelze ein Schäumungsmittel zugesetzt. Durch anschließende Druckerniedrigung entweicht das Schäumungsmittel unter Aufschäumen der Schmelze. Der Schaum bewirkt eine starke Oberflächenvergrößerung, die vorteilhaft für die Entgasung, d.h. die Entfernung flüchtiger Bestandteile ist. Als Schäumungsmittel wird bevorzugt ein inertes Gas wie z.B. Stickstoff eingesetzt, das mittels eines statischen Mischers, z.B. eines SMX-Mischers, in die Schmelze eingebracht und dispergiert wird.
    In US2005/0094482A1 und US5480589 sind statische Mischer zur Dispergierung von Gasen zur Herstellung geschlossenzelliger Schäume beschrieben. Ein stufenförmiger Aufbau zur Erhöhung der Effektivität der Gasdispergierung ist nicht beschrieben.
  • Bei der Dispergierung von Gas in eine Flüssigkeit sind im Allgemeinen größere Mischerlängen nötig als bei der Dispergierung von Flüssigkeiten.
  • Dokument US-A-5 605 399 offenbart eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1.
  • Ausgehend vom Stand der Technik stellt sich die Aufgabe, eine Vorrichtung und ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit bereitzustellen, um eine effektivere Gasdispergierung als nach dem Stand der Technik beschrieben zu ermöglichen. Im Vergleich zum Stand der Technik soll bei gleicher Mischerlänge eine kleinere mittlere Blasengröße am Mischeraustritt erzielt werden. Alternativ soll bei gleichem Druckverlust über den gesamten Mischer eine kleinere mittlere Blasengröße am Mischeraustritt erzielt werden.
  • Überraschend wurde gefunden, dass ein statischer Mischer, bei dem in Fließrichtung ein steigender spezifischer Energieeintrag vorliegt, über eine besonders effektive Dispergierwirkung verfügt. Es lassen sich mit Hilfe eines solchen Mischers bei vergleichbarem Gesamtdruckverlust kleinere Gasblasen erzeugen als mit einem statischen Mischer, bei dem der Energieeintrag über die Länge des Mischers konstant ist. Es lassen sich mit Hilfe eines solchen Mischers ebenfalls bei gleicher Gesamtmischerlänge kleinere Gasblasen erzeugen als mit einem statischen Mischer, bei dem der Energieeintrag über die Länge des Mischers konstant ist.
  • Ein erster Gegenstand der vorliegenden Erfindung ist daher eine Vorrichtung gemäß Anspruch 1 zur Dispergierung von Gas in eine Flüssigkeit mit einer Anzahl n an aufeinander folgenden Zonen Z1, Z2,..., Zn mit statischen Mischelementen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass die einzelnen Zonen so ausgeführt sind, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Dispergierung von Gas in eine Flüssigkeit, bei dem Gas und Flüssigkeit gemeinsam durch eine Mischvorrichtung gefördert werden und dabei eine Anzahl n an aufeinander folgenden Zonen Z1, Z2,...,Zn mit statischen Mischelementen durchströmen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
  • Unter Flüssigkeit wird hier allgemein ein Medium verstanden, das durch die erfindungsgemäße Vorrichtung gefördert werden kann. Dabei kann es sich beispielsweise auch um eine Schmelze oder eine Dispersion (z.B. Emulsion oder Suspension) handeln. Im Folgenden wird auch der Begriff Fluid verwendet. Das Fluid ist dabei vorzugsweise höherviskos, d.h. es weist eine Viskosität zwischen 2 mPas und 10.000.000 mPas, besonders bevorzugt zwischen 1000 mPas und 1.000.000 mPas auf (gemessen in einem Kegel-Platte-Viskosimeter nach DIN 53019 bei einem Schergefälle von 1 s-1).
  • Um ein Gas oder Gasgemisch in dem Fluid zu dispergieren, wird mechanische Energie in das Gemisch eingetragen. Dieser Energieeintrag wird durch statische Mischelemente realisiert. In der Mischtechnik ist die Verwendung von modularen Systemen üblich. Ein Mischer setzt sich aus einer Reihe von modularen Mischelementen zusammen. Zur Erhöhung der Mischwirkung kann die Zahl der Mischelemente in einem Mischer erhöht werden. Üblicherweise werden die Mischelemente zur Ausbildung eines statischen Mischers in ein Rohr eingebracht. Es sei daraufhingewiesen, dass die vorliegende Erfindung nicht auf Mischer beschränkt ist, die aus einer Anordnung modularer Mischelemente aufgebaut sind, sondern auch auf Mischer in kompakter Bauform Anwendung findet.
  • Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus, dass sie über eine Anzahl n an aneinandergrenzenden Zonen verfügt, wobei n eine ganze Zahl größer oder gleich 3 ist. In jeder Zone liegen statische Mischelemente vor. Jede Zone Z i weist eine Länge Li und eine Querschnittsfläche Ai auf. Dabei ist i ein Index, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft. Die Länge Li einer Zone Z i entspricht der Länge der hintereinander angeordneter Mischelemente in dieser Zone; die Querschnittsfläche Ai entspricht der Querschnittsfläche der in der Zone Z i vorliegenden Mischelemente.
  • Aus der Querschnittsfläche Ai lässt sich ein effektiver Durchmesser Di nach Gleichung 1 errechnen: D i = 4 A i π
    Figure imgb0001
  • Der effektive Durchmesser Di entspricht bei einem kreisförmigen Querschnitt dem Durchmesser des Kreises. Bei einem nicht-kreisförmigen (z.B. rechteckigem) Querschnitt entspricht der effektive Durchmesser Di dem Durchmesser eines Kreises mit einer Fläche, die der Querschnittsfläche entspricht.
  • Das Verhältnis Li /Di ist eine für die jeweilige Zone Z i charakteristische Kennzahl.
  • Ein Mischelement verfügt über innere Strukturen und Kanäle zwischen diesen Strukturen. Wird ein Fluid durch ein Mischelement gefördert, so bewirken die Strukturen und Kanäle, dass das Fluid in Teilströme aufgeteilt, verteilt, geschert und ggf. verwirbelt wird und so die Teilströme miteinander vermischt werden. Der mittlere Durchmesser eines Kanals wird nachfolgend mit dem Buchstaben di abgekürzt. Unter einem mittleren Kanaldurchmesser di wird der über alle Kanäle arithmetisch gemittelte effektive Kanaldurchmesser verstanden, wobei sich der effektive Kanaldurchmesser analog dem effektiven Durchmesser einer Zone Z i nach Gleichung 1 berechnen lässt. d i = 4 a i π
    Figure imgb0002
  • Das Verhältnis di /Di zwischen dem mittleren Kanaldurchmesser di und dem effektiven Durchmesser Di der Mischelemente in einer Zone Z i ist ebenfalls eine charakteristische Kennzahl für die jeweilige Zone Z i . Der Parameter ai bezeichnet dabei die offene Querschnittsfläche, genauer die Projektionsfläche des freien Querschnitts. So ergibt sich beispielsweise aus Fig. 1a die offene Querschnittsfläche ai aus der Summe der Projektionsflächen der einzelnen freien Querschnittsflächen der offenen Kanäle, durch die das Fluid durchströmen kann (Gleichung 3). a i = m = 1 N b i , m w i , m
    Figure imgb0003
  • Der Parameter m ist dabei ein Zählparameter, N ist die Anzahl der einzelnen freien Querschnittsflächen.
  • Die nach dem Stand der Technik zur Gasdispergierung eingesetzten statischen Mischer verfügen über Mischeinbauten, die über die Länge des Mischers gleichbleibend sind. Hier liegt nur eine einzige Zone vor, deren Länge L der Länge des Mischers und dessen effektiver Durchmesser D dem effektiven Durchmesser des Mischers entspricht. Um die Dispergierwirkung eines solchen Mischers zu erhöhen, kann beispielsweise die Länge L erhöht werden. Mit der Länge des Mischers steigt der Druckverlust Δp über den Mischer linear an. Der mechanische Energieeintrag Eabs ist gemäß Gleichung (4) proportional zum Druckverlust, wobei der Volumenstrom des Fluids ist. E abs = Δ p V ˙
    Figure imgb0004
  • Der Druckverlust Δp und damit der mechanische Energieeintrag lässt sich in gleicher Weise auch durch eine Reduzierung des effektiven Durchmessers D erhöhen.
  • Die erfindungsgemäße Vorrichtung zeichnet sich durch eine Anzahl n an Zonen aus. Jede Zone Z i ist durch einen spezifischen mechanischen Energieeintrag Ei charakterisiert, der in ein Fluid, das die jeweilige Zone durchströmt, eingetragen wird. Der spezifische mechanische Energieeintrag Ei ist der auf die Kennzahl Li /Di normierte mechanische Energieeintrag Eabs . Dabei ist erfindungsgemäß E 1 < E 2 < ... < En . E = E abs D L
    Figure imgb0005
  • Die Zahl n der Zonen in einer erfindungsgemäßen Vorrichtung ist nicht limitiert. Sie kann gegen unendlich laufen, wenn die Zonen infinitesimal klein werden und ein kontinuierlich steigender spezifischer Energieeintrag über die Länge der Vorrichtung vorliegt, wie es z.B. bei einem konisch enger werdenden Rohr der Fall sein könnte.
  • Es ist denkbar, dass vor oder hinter den Zonen Z1 bis Z n weitere Zonen existieren, die frei wählbare spezifische Energieeinträge aufweisen.
  • So ist eine besonders bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung dadurch gekennzeichnet, dass es eine erste Zone Z0 gibt, die einen höheren spezifischen Energieeintrag leistet als die in Fließrichtung nachfolgende Zone Z1 (E 0>E1 ). Erfindungsgemäß folgen auf die Zone Z1 weitere Zonen Z2 bis Zn, wobei für die entsprechenden spezifischen Energieeinträge E 1 bis En gilt: E 1 <E 2 <...<En .
  • Überraschend wurde festgestellt, dass durch eine solche Anordnung von Zonen durch die Zone Z0 Primärblasen erzeugt werden, die in den darauffolgenden Zonen weniger stark zur Koaleszenz neigen und somit eine effektivere Dispergierung erreicht wird.
  • In einer bevorzugten Ausführungsform verfügt die erfindungsgemäße Vorrichtung über eine Anzahl n an Mischzonen, die hintereinander angeordnet sind, wobei der mittlere Kanaldurchmesser di in den Mischzonen in Fließrichtung kleiner wird. Durch kleinere Kanäle wird ein höherer Druckverlust pro Länge erzeugt, der gleichbedeutend mit einem zunehmenden spezifischen Energieeintrag ist.
  • Bevorzugt umfasst diese Ausführungsform ein zylinderförmiges Rohr, in das Mischelemente eingebracht sind. Der effektive Durchmesser Di der Mischelemente ist dabei bevorzugt über die gesamte Rohrlänge konstant, während der mittlere Kanaldurchmesser di in aufeinanderfolgenden Zonen in Fließrichtung kleiner wird. Es gilt D 1 = D 2 =... = Dn und d 1 > d 2 > ... > dn.
  • Bevorzugt werden Mischelemente des gleichen Typs verwendet, z.B. SMX-Mischer mit unterschiedlichen Kennzahlen d/D.
  • Die erfindungsgemäße Vorrichtung verfügt über eine Anordnung von Mischelementen, die in Fließrichtung bei konstantem Verhältnis dilDi einen zunehmend geringeren effektiven Durchmesser Di aufweisen. Es gilt d 1 D 1 = d 2 D 2 = d i D i = d n D n
    Figure imgb0006
    und D 1>D 2>...>Dn .
  • Bevorzugt umfasst diese Ausführungsform ein zylinderförmiges Rohr, in das Mischelemente eingebracht sind, die in Fließrichtung einen zunehmend kleineren effektiven Durchmesser Di besitzen.
  • Die Mischelemente, deren Außendurchmesser kleiner ist als der Innendurchmesser des Rohres sind dabei bevorzugt mit einem Mantelrohr umschlossen, dessen Außendurchmesser annähernd dem Innendurchmesser des Rohres entspricht, um sie passend in das Rohr einbringen zu können. An den Übergangsstellen von einem Mischelement mit einem großen Durchmesser zu einem Mischelement mit einem kleinen Durchmesser sind bevorzugt Übergangsmantelrohre vorhanden, die über einen in Richtung des Mischelements mit kleinem Durchmesser konisch verjüngendem Innendurchmesser verfügen. Diese Übergangsmantelrohre können einstückig mit den Mantelrohren verbunden oder separat ausgeführt sein.
  • In einer weiteren bevorzugten Ausführungsform verfügt die erfindungsgemäße Vorrichtung in jeder Zone Z i über eine Anordnung von Mischelementen unterschiedlichen Typs, die bei gleichem Verhältnis Li /Di in Fließrichtung in jeder Zone Z i einen zunehmenden Druckverlust verursachen.
  • Bevorzugt sind die Mischelemente in ein zylinderförmiges Rohr eingebracht. Sie verfügen bevorzugt über den gleichen effektiven Durchmesser Di.
  • Sollten die Außendurchmesser der Typen von Mischelementen variieren, so ist es denkbar, diejenigen Mischelemente, deren Außendurchmesser kleiner ist als der Innendurchmesser des Rohres, mit einem Mantelrohr bzw. Ring zu umschließen, dessen Außendurchmesser annähernd dem Innendurchmesser des Rohres entspricht, um sie passend in das Rohr einbringen zu können. Auch die oben beschriebene Verwendung von Übergangsmantelrohren ist hier vorteilhaft.
  • Es ist denkbar, die verschiedenen aufgeführten Ausführungsformen miteinander zu kombinieren.
  • Die erfindungsgemäße Vorrichtung eignet sich zur Dispergierung von Gas in einer Flüssigkeit, z.B. zum Eintrag eines Schleppgases in eine Polymerschmelze oder zum Aufschäumen von flüssigen Medien.
  • Das Gas kann mit Röhrchen oder dünnen Kapillaren, die sich vorzugsweise in Fließrichtung vor der Statikmischerkaskade befinden, zugegeben werden. Weiterhin kann das Gas auch durch einen porösen Körper zugegeben werden. Ein poröser Körper kann beispielsweise folgende Geometrien umfassen: eine Fritte und/oder einen porösen, gesinterten Körper und/oder ein ein- oder mehrlagiges Sieb.
  • Der poröse Körper kann beispielsweise in Form eines Zylinders, in Form eines Quaders, einer Kugel oder eines Würfels oder in konischer Form, z.B. als Kegel, ausgeformt sein. Diese Vorrichtungen sorgen für eine feine Vordispergierung des Gases sowie ggf. auch für eine Verteilung des Gases über den Querschnitt.
  • Die Kapillare bzw. der poröse Körper weist einen mittleren effektiven Lochinnendurchmesser von vorzugsweise 0,1-500 µm, bevorzugt 1 - 200 µm, besonders bevorzugt 10-90 µm auf.
  • Als poröse Körper können beispielsweise poröse Sinterkörper aus Metall zum Einsatz kommen, wie Frittenkörper, welche in der Chromatographie verwendet werden, z.B. die Sinterkörper der Fa. Mott Corporation (Farmington, USA). Weiterhin können gewickelte Drahtgewebe zum Einsatz kommen, beispielsweise die gewickelten Drahtgewebe der Fa. Fuji Filter Manufacturing Co., Ltd. (Tokyo, Japan), Handelsname: Fujiloy®. Weiterhin können Siebe oder mehrlagige Gewebe zum Einsatz kommen, wie z.B. die Metall-Drahtgewebe-Verbundplatten der Fa. Haver & Boecker Drahtweberei (Oelde, Deutschland), Handelsname: Haver Porostar.
  • Diese Vorrichtungen dienen der Verteilung des Gases über den Rohrquerschnitt und einer für die Gasdispergierung günstigen Vordispergierung über die engen Poren. Der effektive Durchmesser Di der in den porösen Sinterkörpern oder Sieben oder gewickelten Drahtgeweben eingesetzten Löchern beträgt bevorzugt 1-500 µm, besonders bevorzugt 2-200 µm, ganz besonders bevorzugt 10-90 µm.
  • Die Erfindung wird nachstehend anhand von Beispielen näher erläutert ohne sie jedoch hierauf zu beschränken.
  • Fig. 1 zeigt Bespiele von drei unterschiedlichen statischen Mischern (No.1, No. 2 und No. 3): Fig. 1(a) von oben, Fig. 1(b) von der Seite (Schnittzeichnung) und Fig. 1 (c) in der Anordnung nach Einbau in ein Rohr oder Gehäuse. Die Angaben für wi und bi bezeichnen die Länge bzw. Breite des projizierten Querschnitts der freien Strömungskanäle. Di bezeichnet den lichten Durchmesser und DM den Außendurchmesser der statischen Mischelemente. Li bezeichnet die gesamte Länge eines geometrisch gleichförmigen Mischerabschnitts und li die Länge eines einzelnen Mischelements.
  • No. 1 stellt einen Kenics-Mischer dar. No.2 zeigt einen handelsüblichen SMX-Statikmischer ohne bzw. mit äußerem Ring. No. 3 zeigt einen Mischer mit Stegstruktur und äußerem Ring ( DE 29923895U1 und EP1189686B1 ).
  • Fig. 2 zeigt drei verschiedene Beispiele (A, B und C) von Varianten Statikmischer, mit einzelnen Zonen (gekennzeichnet durch die Längenangaben L1, L2, L3), dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di der einzelnen Zonen normierte mechanische Energieeintrag Ei auf ein Fluid, das die jeweilige Zone Z i durchströmt, in Fließrichtung zunimmt. Die Fließrichtung wird durch den dicken Pfeil angegeben.
  • Fig. 2A zeigt eine Abfolge von erfindungsgemäßen Mischern mit geometrisch ähnlicher Struktur und einer Anordnung von Mischelementen, die in Fließrichtung bei konstantem Verhältnis d i /Di einen zunehmend geringeren effektiven Durchmesser Di aufweisen. Es gilt d 1 D 1 = d 2 D 2 = d 3 D 3
    Figure imgb0007
    und D 1 > D 2 > D 3.
  • Fig. 2B zeigt eine Ausführungsform mit einem zylinderförmigen Rohr, in das Mischelemente eingebracht sind, bei denen der effektive Durchmesser Di über die gesamte Rohrlänge konstant ist, während der mittlere Kanaldurchmesser d i in aufeinanderfolgenden Zonen in Fließrichtung kleiner wird. Es gilt D 1 = D 2 = D 3 und d 1 > d 2 > d3 . Es werden Mischelemente des gleichen Typs verwendet, z.B. SMX-Mischer mit unterschiedlichen Kennzahlen d/D.
  • Fig. 2C zeigt eine Anordnung von Mischelementen unterschiedlichen Typs, die bei gleichem Verhältnis Li /Di in Fließrichtung in jeder Zone Z i einen zunehmenden Druckverlust verursachen. Als Beispiel ist hier in der ersten Zone mit der Länge L1 ein Kenics-Mischer dargestellt. In der zweiten Zone mit der Länge L2 befindet sich ein SMX-Mischer. In der dritten Zone mit der Länge L3 befindet sich ebenfalls ein SMX-Mischer mit geringeren effektiven Durchmesser Di im Vergleich zu dem Mischer in der zweiten Zone.
  • Fig. 3A zeigt eine erfindungsgemäße Vorrichtung mit drei Zonen und einem Vormischer sowie einer Gasdosierung über eine Kapillare. Vor dem Vormischer befindet sich der Bereich, bei dem das Fluid dosiert wird (L) sowie eine Vorrichtung zur Dosierung von Gasen (G) über eine Kapillare (Ca).
  • Fig. 3B zeigt eine Gasdosierung mittels porösem Sinterkörper (der dahinter liegende Mischer ist hier nicht eingezeichnet). Vor dem Vormischer befindet sich der Bereich, bei dem das Fluid dosiert wird (L) und eine Vorrichtung zur Gasdosierung (G) über einen porösen Sinterkörper (PS), welcher sich innerhalb des Strömungsquerschnitts befindet.

Claims (8)

  1. Vorrichtung zur Dispergierung von Gas in eine Flüssigkeit mit einer Anzahl n an aufeinander folgenden Zonen Z1, Z2,..., Zn mit statischen Mischelementen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, wobei
    die einzelnen Zonen so ausgeführt sind, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf eine Flüssigkeit wirkt in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft , dadurch gekennzeichnet, dass
    die in den Zonen Z1 bis Zn vorliegenden Mischelemente dasselbe Verhältnis di /Di aufwesen, wobei di der mittlere Durchmesser ist, und einen in Fließrichtung von Zone zu Zone zunehmend geringeren effektiven Durchmesser Di aufweisen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der mittlere Kanaldurchmesser di in den in Fließrichtung aufeinander folgenden Zonen Z1 bis Zn kleiner wird.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zonen Z1 bis Zn über Mischelemente unterschiedlichen Typs verfügen, die bei gleichem Verhältnis Li /Di in Fließrichtung von Zone zu Zone einen zunehmenden Druckverlust verursachen.
  4. Vorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass es eine erste Zone Z0 gibt, die einen höheren spezifischen Energieeintrag Eo leistet als die in Fließrichtung nachfolgende Zone Z1.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, weiterhin umfassend ein Röhrchen oder eine dünne Kapillare zur Zuführung von Gas in die Vorrichtung, dadurch gekennzeichnet, dass das Röhrchen oder die dünne Kapillare vor der Anordnung aus Mischelementen angebracht ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 4, weiterhin umfassend einen porösen oder siebförmigen Körper zur Zuführung von Gas in die Vorrichtung, dadurch gekennzeichnet, dass der Körper vor der Anordnung aus Mischelementen angebracht ist.
  7. Verfahren zur Dispergierung von Gas in eine Flüssigkeit, bei dem Gas und Flüssigkeit gemeinsam durch eine Mischvorrichtung nach einem der Ansprüche 1 bis 6 gefördert werden und dabei eine Anzahl n an aufeinander folgenden Zonen Z1, Z2,...,Zn mit statischen Mischelementen durchströmen, wobei jede Zone Z i eine Länge Li und einen effektiven Durchmesser Di aufweist, dadurch gekennzeichnet, dass der auf das jeweilige Verhältnis Li /Di normierte mechanische Energieeintrag Ei , der auf das Gas-Flüssigkeits-Gemisch wirkt, in Fließrichtung von Zone zu Zone zunimmt, wobei n eine ganze Zahl größer oder gleich 3 ist und i ein Index ist, der die ganzen Zahl von 1 bis zur Anzahl n der Zonen durchläuft.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Flüssigkeit eine Viskosität zwischen 2 mPas und 10.000.000 mPas, besonders bevorzugt zwischen 1000 mPas und 1.000.000 mPas aufweist.
EP11723393.2A 2010-08-24 2011-05-19 Vorrichtung und verfahren zur gasdispergierung Active EP2608875B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010039700A DE102010039700A1 (de) 2010-08-24 2010-08-24 Vorrichtung und Verfahren zur Gasdispergierung
PCT/EP2011/058135 WO2012025264A1 (de) 2010-08-24 2011-05-19 Vorrichtung und verfahren zur gasdispergierung

Publications (2)

Publication Number Publication Date
EP2608875A1 EP2608875A1 (de) 2013-07-03
EP2608875B1 true EP2608875B1 (de) 2015-01-21

Family

ID=44385315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723393.2A Active EP2608875B1 (de) 2010-08-24 2011-05-19 Vorrichtung und verfahren zur gasdispergierung

Country Status (8)

Country Link
US (1) US9440201B2 (de)
EP (1) EP2608875B1 (de)
CN (1) CN103249476B (de)
CA (1) CA2809082A1 (de)
DE (1) DE102010039700A1 (de)
ES (1) ES2535187T3 (de)
SG (1) SG188250A1 (de)
WO (1) WO2012025264A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132393B1 (en) * 2012-04-28 2015-09-15 Michael Ross Foam generator for mixing air and washing chemicals to create foam
CA3029840C (en) * 2016-07-05 2023-09-26 Ineos Americas, Llc Method and apparatus for recovering absorbing agents in acid gas treatment
DE102016114898A1 (de) * 2016-08-11 2018-02-15 Ceracon Gmbh Vorrichtung und Verfahren zum Schäumen eines viskosen Materials
US11206853B2 (en) 2017-04-12 2021-12-28 Gaia Usa, Inc. Apparatus and method for generating and mixing ultrafine gas bubbles into a high gas concentration aqueous solution
CA3120242A1 (en) 2018-06-01 2019-12-05 Gaia Usa, Inc. Apparatus in the form of a unitary, single-piece structure configured to generate and mix ultra-fine gas bubbles into a high gas concentration aqueous solution
DE102019200823A1 (de) * 2019-01-23 2020-07-23 Rampf Holding Gmbh & Co. Kg Mischvorrichtung
CN109908712B (zh) * 2019-04-24 2024-04-02 攀钢集团钛业有限责任公司 用于四氯化钛吸收的气液混合器
DE102020106987A1 (de) 2020-03-13 2021-09-16 Herrenknecht Aktiengesellschaft Schaumerzeugungsstruktur und Schaumerzeugungsmodul mit einer Schaumerzeugungsstruktur

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062524A (en) 1973-06-06 1977-12-13 Bayer Aktiengesellschaft Apparatus for the static mixing of fluid streams
US4674888A (en) 1984-05-06 1987-06-23 Komax Systems, Inc. Gaseous injector for mixing apparatus
DE59104667D1 (de) * 1990-08-23 1995-03-30 Sulzer Chemtech Ag Statische Laminar-Mischeinrichtung, Zumischvorrichtung, sowie Verwendung von Mischeinrichtung und Zumischvorrichtung.
US5435061A (en) 1992-02-24 1995-07-25 Koch Engineering Company, Inc. Method of manufacturing a static mixing unit
US5480589A (en) 1994-09-27 1996-01-02 Nordson Corporation Method and apparatus for producing closed cell foam
US5605399A (en) 1995-10-17 1997-02-25 Komax Systems, Inc. Progressive motionless mixer
US6102561A (en) * 1998-01-05 2000-08-15 Komax Systems, Inc. Device for enhancing heat transfer and uniformity of a fluid stream with layers of helical vanes
DE29923895U1 (de) 1998-03-27 2001-05-23 Bayer Ag, 51373 Leverkusen Statischer Mischer
DE19813600A1 (de) 1998-03-27 1999-09-30 Bayer Ag Statischer Scheibenmischer
US6027241A (en) * 1999-04-30 2000-02-22 Komax Systems, Inc. Multi viscosity mixing apparatus
US6394644B1 (en) 1999-06-21 2002-05-28 Koch-Glitsch, Inc. Stacked static mixing elements
FR2812793B1 (fr) 2000-08-11 2003-05-30 Gervais Danone Sa Procede de fabrication d'un produit alimentaire aere et produit ainsi obtenu
JP3794687B2 (ja) * 2002-08-23 2006-07-05 株式会社山武 マイクロ乳化器
US20050094482A1 (en) 2003-10-31 2005-05-05 Nordson Corporation Method and apparatus for producing closed cell foam
DE102004019295A1 (de) 2004-04-21 2005-12-01 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonat
WO2010066457A1 (en) * 2008-12-10 2010-06-17 Technische Universiteit Eindhoven Static mixer comprising a static mixing element, method of mixing a fluid in a conduit and a formula for designing such a static mixing element

Also Published As

Publication number Publication date
CN103249476B (zh) 2016-02-10
US9440201B2 (en) 2016-09-13
SG188250A1 (en) 2013-05-31
CN103249476A (zh) 2013-08-14
US20130215710A1 (en) 2013-08-22
ES2535187T3 (es) 2015-05-06
CA2809082A1 (en) 2012-03-01
DE102010039700A1 (de) 2012-03-01
EP2608875A1 (de) 2013-07-03
WO2012025264A1 (de) 2012-03-01

Similar Documents

Publication Publication Date Title
EP2608875B1 (de) Vorrichtung und verfahren zur gasdispergierung
EP0956151B1 (de) Verfahren und vorrichtung zur herstellung eines dispersen gemisches
EP2403633B1 (de) Koaxialer kompaktstatikmischer sowie dessen verwendung
EP0861121B1 (de) Verfahren zur herstellung von dispersionen und zur durchführung chemischer reaktionen mit disperser phase
DE69917433T2 (de) Verfahren und vorrichtung zum herstellen von flüssigdispersen systemen in flüssigkeiten
DE4433744C2 (de) Vorrichtung zum Vermischen von Medien zur Erzeugung flüssiger Systeme
DE3851106T2 (de) Vorrichtung zum Mischen fliessfähiger Medien.
EP1280598A2 (de) Kavitationsmischer
EP0644271A1 (de) Verfahren zur herstellung eines frei dispersen systems und einrichtung zur durchführung des verfahrens
DE1557118B2 (de)
EP0758918A1 (de) Verfahren und vorrichtung zur durchführung chemischer reaktionen mittels mikrostruktur-mischung
EP1278593B1 (de) Statisches mischelement
EP2368625A1 (de) Verfahren und Vorrichtung zur Dispergierung
DE10206083B4 (de) Verfahren zum Erzeugen monodisperser Nanotropfen sowie mikrofluidischer Reaktor zum Durchführen des Verfahrens
EP0472491A1 (de) Statische Laminar-Mischeinrichtung, Zumischvorrichtung, sowie Verwendung von Mischeinrichtung und Zumischvorrichtung
EP3520990A2 (de) Verfahren und vorrichtung zum extrudieren und homogenisieren von ringförmigen extrudaten
WO2004098758A1 (de) Dispergiervorrichtung
DE60311667T2 (de) Fluidbehandlungsvorrichtung mit ringförmigen strömungswegen, system und verfahren
DE102006036815B4 (de) Emulgiereinrichtung und Verfahren zur Bildung einer Emulsion
WO2011116893A1 (de) Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit
WO2011116892A1 (de) Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit
DE102012104053B3 (de) Emulgiervorrichtung
DE202023105655U1 (de) Einsatz für Cross-Flow-Membran-Emulgierungsanordnung
EP1343589A2 (de) Vorrichtung und verfahren zur stofftrennung
WO1999007461A1 (de) Kreuzbalkenmischdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140806

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005722

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 708890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2535187

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150521

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005722

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011005722

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160922 AND 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: COVESTRO DEUTSCHLAND AG; DE

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: BAYER INTELLECTUAL PROPERTY GMBH

Effective date: 20160810

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: COVESTRO DEUTSCHLAND AG, DE

Effective date: 20161115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BAYER MATERIALSCIENCE AG

Effective date: 20170125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 708890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160519

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: COVESTRO DEUTSCHLAND AG

Effective date: 20171219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210428

Year of fee payment: 11

Ref country code: FR

Payment date: 20210426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210426

Year of fee payment: 11

Ref country code: GB

Payment date: 20210422

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011005722

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003040000

Ipc: B01F0023200000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220603

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220502

Year of fee payment: 12

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230520