EP2599222A1 - Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale - Google Patents

Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale

Info

Publication number
EP2599222A1
EP2599222A1 EP11724182.8A EP11724182A EP2599222A1 EP 2599222 A1 EP2599222 A1 EP 2599222A1 EP 11724182 A EP11724182 A EP 11724182A EP 2599222 A1 EP2599222 A1 EP 2599222A1
Authority
EP
European Patent Office
Prior art keywords
limiting
voltage source
switching
circuit arrangement
limiting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11724182.8A
Other languages
English (en)
French (fr)
Inventor
Ingo Koehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2599222A1 publication Critical patent/EP2599222A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching

Definitions

  • the present invention is based on a circuit arrangement or a method for limiting the current intensity and / or edge steepness of electrical signals as generically defined by the independent claims.
  • Electrical switching elements such as driver blocks, usually have a fixed, unchangeable edge steepness, which may not be optimally adapted to a desired application to this. For example, it may not always be possible to influence an internal drive current of the respective standard element when using standard components or modules or components. Even a predetermined short-circuit current limit, insofar as a switching element used has such a, may not always be optimally adapted to a specific, desired application.
  • too high a set or even missing current limit in the case of a fault may cause an overload of a component or an assembly, thereby potentially damaging or even destroying it.
  • a circuit arrangement for limiting the current intensity and / or edge steepness of electrical signals, comprising a voltage source and a switching element which is connected to the voltage source and which is set up for switching the voltage source, characterized in that the switching arrangement furthermore has a limiting unit, wherein the limiting unit is arranged functionally between the switching element and the voltage source, and wherein the limiting unit is adapted to limit a current intensity and / or a flank of an electrical signal in a switching operation of the voltage source using the switching element.
  • circuit arrangement with the features of the independent claims may on the one hand provide a current limit and on the other hand a flank boundary.
  • the circuit arrangement may in particular be realized with a few standard components, and thus may be inexpensive and low
  • driver circuits may be extended, in particular without major system interventions, by a circuit arrangement for limiting current intensity and / or edge steepness in accordance with the present invention. This may be realized in particular in that internal drive signals of a driver circuit need not be influenced.
  • short-circuit current and edge steepness may be easily parameterizable to the desired application by selecting suitable component values of the circuit arrangement.
  • a ready-developed standard layout of an electronic circuit may be adaptable to a particular application by simply repackaging the respective component values to the desired requirements.
  • a desired short-circuit current or a required edge steepness and thus an EMC limit value can be selected simply and flexibly by selecting the
  • Component values can be set.
  • the circuit arrangement may also be used as a driver stage itself, so that it can be controlled, for example, to save space or cost effectively directly via a logic signal.
  • the circuit arrangement may provide a targeted influencing of a steep falling signal edge at low-side outputs, without grinding a rising signal edge.
  • the circuit arrangement according to the present invention may provide a small voltage drop in the switched-on state of the switching element at this.
  • the circuit arrangement of the present invention may generally be used in conjunction with a switching element, for example realized as an open-collector output, an open-drain output or a relay. In particular, it may provide current strength and / or slew rate limitation for both slowly varying and clocked signals.
  • a switching element for example realized as an open-collector output, an open-drain output or a relay.
  • it may provide current strength and / or slew rate limitation for both slowly varying and clocked signals.
  • a limiting unit acting on the voltage source may be particularly suitable for complying with required E MV limit values.
  • limiting element and voltage source may further be arranged a capacitive element and / or a diode element, which is arranged parallel to switching element, limiting element and voltage source.
  • a slope may be further improved adjustable, at the same time it may serve as a protective circuit or a protective element for the limiting element.
  • FIG. 1 shows a first exemplary embodiment of a circuit arrangement for limiting the current intensity and / or edge steepness of electrical signals according to the present invention
  • Figure 2 shows another exemplary embodiment of a circuit arrangement for limiting the current intensity and / or edge steepness of electrical signals according to the present invention
  • FIG. 3 shows an exemplary embodiment of a circuit arrangement for limiting an edge steepness of an electrical signal according to the present invention
  • FIG. 4 shows an exemplary signal curve of the circuit arrangement according to FIG. 1;
  • FIG. 5 shows an exemplary embodiment of a method for limiting the current intensity and / or edge steepness of electrical signals according to the present invention.
  • FIG. 1 shows a first exemplary embodiment of a circuit arrangement for limiting the current intensity and / or edge steepness of electrical signals according to the present invention.
  • the circuit arrangement 100 consists here by way of example of an npn transistor 118 whose base is connected to a fixed potential 108. The connection may for example be made via the resistor 106 or via a voltage divider.
  • the emitter of the element 118 is connected to the switching element 102 via a resistive component 104.
  • the switching element 102 is the element in conjunction with the resistive element 114 and voltage source 116, which is to be extended by the current and / or edge slope limitation using the limiting unit 120.
  • a capacitive element 110a, b may be provided at the base of the limiting element 118 of the limiting unit 120 of the circuit arrangement 100.
  • the capacitive element 110a may herebetween base and Lector of the transistor element 118, the capacitive element 110b be connected between the base and emitter.
  • the collector terminal of the transistor element 118 may represent the output of the circuit arrangement, in FIG. 1 an example being connected to the voltage source 116 via a resistive element 114.
  • capacitive elements 112a, b may be present at the circuit output.
  • Capacitive element 112b may be formed, for example, as a capacitor, capacitive element 112a, for example, as an ESD diode.
  • an ESD diode may be set up at the same time to protect the base emitter diode of the transistor element 118, for example in the case of an npn transistor 118 from a breakthrough in a reverse polarity case.
  • the electrical resistance of the element 114 may advantageously be significantly greater than that of the electrical resistance of the element 104. This results in switched-on switching element 102, only a low voltage at the circuit output. A ratio of 10: 1 or greater than 10: 1 is preferred. Thus, a voltage dropping at the output when the switching element is switched on, without consideration of a small voltage drop across the elements 118 and 102, results in less than 10% of the value of the voltage source 116.
  • switching element 102 for example, a transistor element, a relay element, a switching contact may be used.
  • edge slope limitation of the circuit arrangement according to Figure 1 is as follows: Without the limiting unit 120, which ultimately includes each element except switching element 102, resistive element 114 and voltage source 116, depending on their respective configuration and thus provided optionally optional elements, may Turning on the switching element 102 result in a steep falling voltage edge at the output of the circuit 100, since this relatively low-impedance, directly via switching element 102, is pulled to low potential. The flank which arises when the switching element 102 is switched off passes through the electrical resistance of the resistance element 114 in FIG Connection with the available capacity at the output significantly flatter.
  • the output capacitance may be present either as a capacitive component or only as a parasitic capacitance.
  • the aim of limiting the steepness of the slope may therefore be in particular to flatten the falling edge of the output signal, in particular without, however, excessively grinding the rising edge so that in particular signal integrity may be maintained.
  • the switching on of the switching element 102 causes a lowering of the emitter potential of the limiting element 118, so that the limiting element 118 also turns on.
  • Parasitic capacitances and possibly existing capacitive components 112a, b now discharge via limiting element 118, resistance element 104 and switching element 102. This results in a voltage drop across resistance element 104 and switching element 102.
  • the falling edge may additionally be ground if necessary.
  • element 110a may represent an artificial magnification of a miller capacitance of the limiting element 118, causing it to switch more slowly.
  • the limiting element 118 also begins to conduct, as a result of which the potential at the collector begins to drop.
  • capacitive element 110a By a capacitive coupling of the collector to the base, by capacitive element 110a, this in turn counteracts the control of element 118, so that the activation of limiting element 118 is delayed. velvet.
  • the switch-on process is only completed after capacitive element 110a has been completely transferred.
  • the additional capacity may also be reloaded when the switching element 102 is switched off. Nevertheless, the rising edge at the output may still be only slightly influenced since relatively small capacitance values for the capacitive element 110a may already be sufficient in practice.
  • Voltage source 116 IV to 50V
  • Element 112b 10pF to 100nF;
  • Element 112a Zener voltage ⁇ 60V
  • Element 118, 102 to select according to the required limiting current, typically 0.1 mA to 100 mA, with power outputs also> 1A;
  • Element 104 is preferably selected such that at limiting current sufficient for the negative feedback voltage drop is applied (for example in the range 0.5V to 3V).
  • Element 114 factor 10> as element 104 so that when switching element 102, a meaningful voltage difference occurs at the output;
  • Element 108 minimum value approx. 2x base-emitter voltage of element 118, in the case of a bipolar transistor thus at least approx. 1.2 V. Maximum value significantly smaller than element 116, so that there is a limitation of the falling edge or of the current in the event of a short circuit.
  • the voltage of element 108 is smaller in the range of 1: 5 to 1:20 than the voltage of element 116;
  • Element 106 is used to limit the base current of element 118.
  • the base current is selected from about 10x to 200x ⁇ the limiting current of the circuit.
  • the factor (10 to 200) depends on the current gain of the selected transistor;
  • Elements 110a, 110b lOpF to 22 nF. If a wiping of the rising edge is to be avoided, a value in the lower region will tend to be used for element 110a, ie generally a smaller value than for element 112b.
  • the optional capacitive element 110b may also be used to slow the turn-on operation of the limiter 118. Once switching element 102 turns on, thus in a conductive state, the basis of the Element 118 capacitive pulled to ground, so that element 118 blocks first. Only by reloading element 110b via resistance element 106 does limiting element 118 begin to conduct. The operation of a current limit of the circuit according to
  • Figure 1 is as follows. With element 102 energized, the current in the output line results in a voltage drop across resistive element 104. In normal operation, however, this voltage drop is so small that the base-emitter voltage on restrictor 118 is sufficient, element 118 itself, for example Use of a transistor to réelle Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff
  • the output voltage of the voltage source 116 may in particular be assumed to be the voltage of the series connection of the voltage source 116 and of the resistor element 114.
  • FIG. 2 Another exemplary embodiment of a circuit arrangement for limiting the current intensity and / or edge steepness of electrical signals according to the present invention is shown.
  • a parallel connection of limiting element 118 and switching element 102 may also be realized.
  • the switching element 102 controls the limiting element 118 at its base, the output signal is thereby inverted.
  • the current gain of the limiting element 118 may be used, so that for switching element 102, a switching element with low power is used.
  • a direct control of limiting element 118 from an open-drain output of a microcontroller may be possible. This may be a separate amplifier stage can be saved.
  • the mode of operation of the circuit arrangement according to FIG. 2 is analogous to the circuit arrangement according to FIG. 1.
  • a MOSFET is used as the switching element 102, then its parasitic body diode may protect the base emitter diode of the limiting element 118 from a breakdown in reverse polarity of the circuit. In this case, however, the body diode must have a sufficiently high current carrying capacity.
  • FIG. 3 an exemplary embodiment of a circuit arrangement for limiting a slew rate of an electrical signal in accordance with the present invention is illustrated.
  • the circuit arrangement according to FIG. 3 may be understood in particular as a pure edge limitation.
  • capacitive element 302 When switching element 102 is switched off, capacitive element 302 is charged to the potential of voltage source 116 via resistance element 106, limiting element 118 and resistance element 114.
  • limiting element 118 When switching element 102 now turns on, limiting element 118 is initially blocked. Now, capacitive element 302 discharges via resistance element 300 and switching element 102, so that the base potential of limiting element 118 slowly drops. This begins to conduct, and the output voltage level follows the progression of the base voltage of limiting element 118.
  • capacitive element 302 Once switching element 102 turns off again, capacitive element 302 is charged via resistance element 106, limiting element 118 and resistance element 114, whereby the output potential rises again to the value of voltage source 116.
  • the capacitance of capacitive element 302 may be chosen to be small relative to the capacitance of element 112a, b, which will only slightly affect the rising edge
  • the behavior of a controlled edge may in particular be realized at the circuit output.
  • the circuit arrangements of Figures 1 and 2 may continue to be implemented a variable current limit.
  • the limiting element 118 should be connected to a variable potential on the base side. The amount of this potential may be able to adjust the current limit.
  • the bipolar transistor for limiting element 118 illustrated by way of example may, in all circuit arrangements of FIGS. 1 to 3, alternatively also be embodied by other transistor types, for example MOSFET or JFET, as an operational amplifier or tube element.
  • the connections should then be selected according to the component used.
  • its gate connection may, for example, also be at ground potential, so that no auxiliary voltage may be required.
  • the switching element 102 is missing in the circuit arrangement according to FIG. 2 or is replaced by a short circuit in the circuit arrangement according to variant 1, the result is a pure current limiter circuit arrangement in the respective circuit arrangements.
  • FIG. 4 shows an exemplary signal course of the circuit arrangement according to FIG. 1.
  • V (collector) to the exemplary value of 16V.
  • time t 2 takes a Einschaltevorgang of the switching element 102.
  • a circuit is performed with a slope of the edge 400, in essence, by way of example, directly.
  • the falling edge 402 is limited in its steepness, whereby this falls more slowly and only at time t3 to its lower value, which is determined substantially by the ratio of the electrical resistances of the resistive elements 114 and 104.
  • FIG. 5 shows an exemplary embodiment of a method for limiting the current intensity and / or edge steepness of electrical signals according to the present invention.
  • the method 500 for limiting current magnitude and / or slew rate of electrical signals includes the steps of performing 502 a switching operation of the voltage source using the switching element and limiting 504 a current magnitude and / or a slew rate of an electrical signal, in particular the output voltage, using a limiting unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electronic Switches (AREA)

Abstract

Eine Schaltungsanordnung (100) zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale, aufweisend eine Spannungsquelle (116) und ein Schaltelement (102), verbunden mit der Spannungsquelle (116) und eingerichtet zum Schalten der Spannungsquelle (116), wobei die Schaltanordnung (100) weiterhin eine Begrenzungseinheit (120) aufweist, wobei die Begrenzungseinheit (120) funktional zwischen dem Schaltelement (102) und der Spannungsquelle (116) angeordnet ist und wobei die Begrenzungseinheit (120) eingerichtet ist, bei einem Schaltvorgang der Spannungsquelle (116) unter Verwendung des Schaltelements (102) eine Stromstärke und/oder eine Flankensteilheit eines elektrischen Signals zu begrenzen.

Description

Schaltungsanordnung und Verfahren zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale
Stand der Technik
Die vorliegende Erfindung geht aus von einer Schaltungsanordnung bzw. einem Verfahren zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale nach Gattung der unabhängigen Ansprüche.
Elektrische Schaltelemente, wie zum Beispiel Treiberbausteine, weisen meist eine feste, nicht veränderbare Flankensteilheit auf, die für einen gewünschten Anwendungsfall nicht optimal auf diesen angepasst sein mag. Zum Beispiel mag es beim Einsatz von Standardbausteinen bzw. -baugruppen oder -bauelementen nicht immer möglich sein, einen internen Ansteuerstrom des jeweiligen Standardelementes zu beeinflussen. Auch eine vorgegebene Kurzschlussstrombegrenzung, insofern ein verwendetes Schaltelement über eine solche verfügt, mag nicht immer optimal auf einen speziellen, gewünschten Anwendungsfall angepasst sein.
Eine zu hohe Flankensteilheit eines Schaltvorgangs bzw. getaktete Signale mögen unter anderem E MV- Emissionsgrenzwerte (elektromagnetische Verträglichkeit) überschreiten, diese somit verletzen.
Weiterhin mag eine zu hoch angesetzte oder gar fehlende Strombegrenzung in einem Fehlerfall, beispielsweise in einem Kurzschlusszustand, eine Überlastung eines Bauteils bzw. einer Baugruppe hervorrufen und diese hierdurch potentiell beschädigen oder gar zerstören.
Offenbarung der Erfindung
Demgemäß wird eine Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale bereitgestellt, aufweisend eine Spannungsquelle und ein Schaltelement, welches mit der Spannungsquelle verbunden ist und welches zum Schalten der Spannungsquelle eingerichtet ist, dadurch gekennzeichnet, dass die Schaltanordnung weiterhin eine Begrenzungs- einheit aufweist, wobei die Begrenzungseinheit funktional zwischen dem Schaltelement und der Spannungsquelle angeordnet ist und wobei die Begrenzungseinheit eingerichtet ist, bei einem Schaltvorgang der Spannungsquelle unter Verwendung des Schaltelements eine Stromstärke und/oder eine Flankensteil- heit eines elektrischen Signals zu begrenzen.
Die Schaltungsanordnung mit den Merkmalen der unabhängigen Ansprüche mag einerseits eine Strombegrenzung und andererseits eine Flankenbegrenzung bereitstellen. Die Schaltungsanordnung mag insbesondere mit wenigen Standard- bauelementen realisiert werden, mag somit kostengünstig und mit geringem
Platzbedarf, beispielsweise auf einer Leiterplatte realisiert werden. Bekannte Treiberschaltungen mögen insbesondere ohne größere Systemeingriffe um eine Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit gemäß der vorliegenden Erfindung erweitert werden. Dies mag insbesondere dadurch realisiert sein, dass interne Ansteuersignale einer Treiberschaltung nicht beeinflusst werden müssen.
Die Begrenzung von Kurzschlussstrom und Flankensteilheit für einen gewünschten Anwendungsfall mag durch eine Wahl geeigneter Bauteilwerte der Schal- tungsanordnung leicht parametrisierbar auf den gewünschten Anwendungsfall adaptierbar sein. Ein fertig entwickeltes Standardlayout einer elektronischen Schaltung mag an einen bestimmten Anwendungsfall durch einfaches Umbestücken der jeweiligen Bauteilwerte an die gewünschten Erfordernisse anpassbar sein. Somit mag ein gewünschter Kurzschlussstrom bzw. eine geforderte Flan- kensteilheit und somit ein EMV-Grenzwert einfach und flexibel durch Auswahl der
Bauteilwerte eingestellt werden können.
Durch eine solche Flexibilität, beispielsweise bei einer durchzuführenden EMV- Optimierung, mag eine auftretende Flankensteilheit sehr schnell und auf einfache Weise an eine geforderte Flankensteilheit angepasst werden. Es mag somit insbesondere nicht notwendig sein, eine bereits bestehende bzw. entwickelte schaltende Baugruppe umfangreich umzugestalten, um einem geänderten EMV- Emissionsgrenzwert für eine neue Anwendung zu entsprechen. Somit mag eine langwierige bzw. kosten- und risikobehaftete Überarbeitung einer schaltenden Baugruppe entfallen. Die Schaltungsanordnung mag jedoch gleichfalls selbst als Treiberstufe einsetzbar sein, so dass diese zum Beispiel platzsparend bzw. kostensparend direkt über ein Logiksignal ansteuerbar ist. Insbesondere mag die Schaltungsanordnung eine gezielte Beeinflussung einer steilen fallenden Signalflanke an Low-Side-Ausgängen bereitstellen, ohne eine steigende Signalflanke zu verschleifen. Weiterhin mag die Schaltungsanordnung gemäß der vorliegenden Erfindung einen geringen Spannungsabfall im eingeschalteten Zustand des Schaltelements an diesem bereitstellen.
Die Schaltungsanordnung der vorliegenden Erfindung mag im allgemeinen zusammen mit einem Schaltelement, beispielsweise realisiert als ein Open- Collector-Ausgang, ein Open-Drain-Ausgang oder ein Relais, eingesetzt werden. Insbesondere mag sie eine Stromstärke und/oder Flankensteilheitsbegrenzung sowohl für langsam veränderliche als auch für getaktete Signale bereitstellen.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Anspruch angegebenen Vorrichtung möglich.
Besonders vorteilhaft mag es sein, die Stromstärke und/oder die Flankensteilheit der Ausgangsspannung der Spannungsquelle zu begrenzen. Aufgrund der hiermit einhergehenden, möglicherweise großen Amplituden mag eine auf die Spannungsquelle wirkende Begrenzungseinheit besonders geeignet sein, geforderte E MV-Grenzwerte einzuhalten.
Zwischen Begrenzungselement und Spannungsquelle mag weiterhin ein kapazitives Element und/oder ein Diodenelement angeordnet sein, welches parallel zu Schaltelement, Begrenzungselement und Spannungsquelle angeordnet ist.
Durch ein derartiges Element mag eine Flankensteilheit weiterhin verbessert einstellbar sein, gleichzeitig mag es als eine Schutzschaltung oder ein Schutzelement für das Begrenzungselement dienen. Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 eine erste exemplarische Ausführungsform einer Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung;
Figur 2 eine weitere exemplarische Ausgestaltung einer Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung;
Figur 3 eine exemplarische Ausgestaltung einer Schaltungsanordnung zur Begrenzung einer Flankensteilheit eines elektrischen Signals gemäß der vorliegenden Erfindung;
Figur 4 einen beispielhaften Signalverlauf der Schaltungsanordnung gemäß Figur 1; und
Figur 5 eine exemplarische Ausführungsform eines Verfahrens zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung.
Ausführungsformen der Erfindung
Figur 1 zeigt eine erste exemplarische Ausführungsform einer Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung.
Die Schaltungsanordnung 100 besteht hierbei exemplarisch aus einem npn- Transistor 118, dessen Basis an ein festes Potential 108 angebunden ist. Die Anbindung mag beispielsweise über den Widerstand 106 oder aber über einen Spannungsteiler erfolgen. Der Emitter des Elementes 118 ist über ein widerstandsbehaftetes Bauteil 104 mit dem Schaltelement 102 verbunden. Das Schaltelement 102 ist das Element in Zusammenschau mit widerstandsbehaftetem Element 114 und Spannungsquelle 116, welches um die Strom- und/oder Flankensteilheitsbegrenzung unter Verwendung der Begrenzungseinheit 120 erweitert werden soll.
Optional mag an der Basis des Begrenzungselementes 118 der Begrenzungseinheit 120 der Schaltungsanordnung 100 ein kapazitives Element 110a,b vorgesehen sein. Das kapazitive Element 110a mag hierbei zwischen Basis und Kol- lektor des Transistorelements 118, das kapazitive Element 110b zwischen Basis und Emitter angebunden sein. Der Kollektoranschluss des Transistorelements 118 mag den Ausgang der Schaltungsanordnung darstellen, in Figur 1 exemplarisch über ein widerstandsbehaftetes Element 114 mit der Spannungsquelle 116 verbunden.
Weiterhin mögen kapazitive Elemente 112a, b am Schaltungsausgang vorhanden bzw. angeordnet sein. Kapazitives Element 112b mag beispielsweise als ein Kondensator, kapazitives Element 112a beispielsweise als eine ESD-Diode ausgebildet sein. Im Falle, dass eine ESD-Diode vorgesehen ist, mag diese, abhängig von der Ausgestaltung der Schaltungsanordnung 100, gleichzeitig eingerichtet sein, die Basisemitterdiode des Transistorelementes 118, beispielsweise im Falle eines npn-Transistors 118 vor einem Durchbruch in einem Verpolungsfall zu schützen.
Der elektrische Widerstand des Elementes 114 mag vorteilhafterweise deutlich größer als derjenige des elektrischen Widerstandes des Elements 104 sein. Hierdurch ergibt sich bei eingeschaltetem Schaltelement 102 nur eine geringe Spannung am Schaltungsausgang. Bevorzugt ist ein Verhältnis von 10:1 bzw. größer als 10:1. Somit ergibt sich eine bei eingeschaltetem Schaltelement am Ausgang abfallende Spannung, ohne Berücksichtigung eines geringen Spannungsfalls über den Elementen 118 und 102, weniger als 10% des Wertes der Spannungsquelle 116.
Als Schaltelement 102 mag beispielsweise ein Transistorelement, ein Relaiselement, ein Schaltkontakt zum Einsatz kommen.
Die Funktionsweise der Flankensteilheitsbegrenzung der Schaltungsanordnung gemäß Figur 1 ergibt sich wie folgt: Ohne die Begrenzungseinheit 120, welche letztendlich jedes Element außer Schaltelement 102, Widerstandselement 114 sowie Spannungsquelle 116 umfasst, abhängig von ihrer jeweiligen Ausgestaltung und den somit vorgesehenen gegebenenfalls optionalen Elementen, mag sich beim Einschalten des Schaltelementes 102 eine steile fallende Spannungsflanke am Ausgang der Schaltungsanordnung 100 ergeben, da dieser relativ nie- derohmig, direkt über Schaltelement 102, auf niedriges Potential gezogen wird. Diejenige Flanke, welche beim Abschalten des Schaltelementes 102 entsteht, verläuft durch den elektrischen Widerstand des Widerstandselementes 114 in Verbindung mit der am Ausgang vorhandenen Kapazität deutlich flacher. Die Ausgangskapazität mag dabei entweder als kapazitätsbehaftetes Bauteil oder auch nur als parasitäre Kapazität vorliegen. Ziel einer Begrenzung der Flankensteilheit mag also insbesondere sein, speziell die fallende Flanke des Ausgangssignals abzuflachen, ohne hierbei jedoch die steigende Flanke zu stark zu verschleifen, so dass insbesondere Signalintegrität gewahrt bleiben mag. Das Einschalten des Schaltelementes 102 bewirkt ein Absinken des Emitterpotentials des Begrenzungselementes 118, so dass das Begrenzungselement 118 ebenfalls einschaltet. Parasitäre Kapazitäten und gegebenenfalls vorhandene kapazitive Bauelemente 112a,b entladen sich nun über Begrenzungselement 118, Widerstandselement 104 und Schaltelement 102. Hierdurch entsteht ein Spannungsabfall an Widerstandselement 104 sowie Schaltelement 102. Dieser
Spannungsabfall wiederum führt zu einer Verkleinerung der zur Verfügung stehenden Basisemitterspannung des Begrenzungselementes 118, somit zu einer Stromgegenkopplung. Hieraus resultiert eine Abschnürung von Begrenzungselement 118, somit eine Begrenzung des Entladestroms. Die fallende Flanke am Ausgang verläuft durch diese Begrenzung flacher.
Beim Ausschalten des Schaltelementes 102 werden parasitäre Kapazitäten und optional vorhandene kapazitive Bauelemente 112a, b über das Widerstandselement 114 vergleichsweise langsam aufgeladen. Einen derartigen Ladestrom je- doch begrenzt die Begrenzungseinheit 120 nicht, so dass die ohnehin bereits flache steigende Flanke am Ausgang nicht zusätzlich verschliffen wird.
Bei Verwendung eines optionalen kapazitiven Bauteils 110a, b mag sich die fallende Flanke bei Bedarf zusätzlich verschleifen lassen.
Element 110a mag insbesondere eine künstliche Vergrößerung einer Millerkapazität des Begrenzungselementes 118 darstellen, wodurch dieses langsamer schaltet. Beim Einschalten des Schaltelementes 102 beginnt auch Begrenzungselement 118 zu leiten, wodurch das Potential an dessen Kollektor abzusinken beginnt. Durch eine kapazitive Kopplung des Kollektors an die Basis, durch kapazitives Element 110a, wirkt dies wiederum der Aufsteuerung von Element 118 entgegen, so dass sich das Einschalten von Begrenzungselement 118 verlang- samt. Der Einschaltvorgang ist erst abgeschlossen, nachdem kapazitives Element 110a vollständig umgeladen ist.
Die zusätzliche Kapazität mag zwar auch beim Abschalten des Schaltelements 102 umgeladen werden. Die steigende Flanke am Ausgang mag dadurch trotzdem nur geringfügig beeinflusst werden, da in der Praxis bereits relativ geringe Kapazitätswerte für das kapazitive Element 110a ausreichen mögen.
Die bevorzugten, jedoch nicht ausschließlichen, Werte bzw. Wertebereiche der einzelnen Elemente können wie nachfolgend dargestellt angenommen werden:
Spannungsquelle 116: IV bis 50V;
Element 112b: lOpF bis lOOnF;
Element 112a: Zenerspannung < 60V;
Element 118, 102: entsprechend gefordertem Begrenzungsstrom auszuwählen, typisch 0,1 mA bis 100 mA, bei Leistungsausgängen auch > 1A;
Element 104: wird bevorzugt derart ausgewählt, dass bei Begrenzungsstrom ein für die Gegenkopplung ausreichender Spannungsfall anliegt (etwa im Bereich 0,5V bis 3V).
Element 114: Faktor 10 > als Element 104, so dass beim Schalten von Element 102 ein sinnvoller Spannungsunterschied am Ausgang auftritt;
Element 108: Mindestwert ca. 2x Basis- Emitter-Spannung von Element 118, bei Bipolartransistor somit mindestens ca. 1,2 V. Maximalwert deutlich kleiner als Element 116, damit eine Begrenzung der fallenden Flanke bzw. des Stromes im Kurzschlussfall gegeben ist. Beispielsweise ist die Spannung von Element 108 ca. im Bereich 1:5 bis 1:20 kleiner als die Spannung von Element 116;
Element 106 wird verwendet zur Begrenzung des Basisstroms von Element 118. Typischerweise wählt man den Basisstrom ca. lOx bis 200x < als den Begrenzungsstrom der Schaltung. Der Faktor (10 bis 200) hängt von der Stromverstärkung des gewählten Transistors ab;
Elemente 110a, 110b: lOpF bis 22 nF. Soll ein Verschleifen der steigenden Flanke vermieden werden, wird für Element 110a tendenziell ein Wert im unteren Bereich eingesetzt werden, also allgemein ein kleinerer Wert als für Element 112b.
Das optionale kapazitive Element 110b mag gleichfalls zur Verlangsamung des Einschaltvorgangs von Begrenzungselement 118 verwendet werden. Sobald Schaltelement 102 einschaltet, somit in leitendem Zustand ist, wird die Basis des Elements 118 kapazitiv nach Masse gezogen, so dass Element 118 zunächst sperrt. Erst durch Umladen von Element 110b über Widerstandselement 106 beginnt Begrenzungselement 118 zu leiten. Die Funktionsweise einer Strombegrenzung der Schaltungsanordnung gemäß
Figur 1 stellt sich wie folgt dar. Bei eingeschaltetem Element 102 führt der Strom in der Ausgangsleitung zu einem Spannungsabfall an Widerstandselement 104. Im regulären Betrieb ist dieser Spannungsabfall jedoch so klein, dass die Basisemitterspannung an Begrenzungselement 118 ausreicht, das Element 118 selbst, beispielsweise bei Einsatz eines Transistors, aufzusteuern, vorteilhafterweise jedoch nicht zwingend in die Sättigung. Wird die Ausgangsleitung nun nie- derohmig mit positivem Potential verbunden, beispielsweise in einem Kurzschlussfall, so steigt der Strom in der Ausgangsleitung nur so weit an, bis der Spannungsabfall an widerstandsbehaftetem Element 104 und Schaltelement 102 so groß ist, dass die Basisemitterspannung des Begrenzungselementes 118 nicht mehr ausreicht, den Transistor voll aufzusteuern. Der Spannungsabfall über die Kollektoremitterstrecke des Begrenzungselementes 118 steigt somit an, der Strom in der Ausgangsleitung wird begrenzt. In diesem Betriebsfall mag eine ausreichende Leistungsabfuhr, somit eine Kühlung des Begrenzungselementes 118 notwendig sein.
Die Ausgangsspannung der Spannungsquelle 116 mag insbesondere als die Spannung der Reihenschaltung der Spannungsquelle 116 sowie des Widerstandselements 114 angenommen werden.
Weiter Bezug nehmend auf Figur 2 wird eine weitere exemplarische Ausgestaltung einer Schaltungsanordnung zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung dargestellt.
Alternativ zu einer Reihenschaltung von Begrenzungseinheit und Schaltelement 102, wie in Figur 1 dargestellt, mag auch eine Parallelschaltung von Begrenzungselement 118 und Schaltelement 102 realisiert sein. Das Schaltelement 102 steuert hierbei das Begrenzungselement 118 an dessen Basis an, das Aus- gangssignal wird dadurch invertiert. Optional mag die Stromverstärkung des Begrenzungselementes 118 verwendet werden, so dass für Schaltelement 102 ein Schaltelement mit geringer Leistung einsetzbar ist. Hierbei mag beispielsweise eine direkte Ansteuerung von Begrenzungselement 118 aus einem Open-Drain-Ausgang eines Microcontrollers möglich sein. Hierdurch mag eine eigene Verstärkerstufe einsparbar sein.
Die Funktionsweise der Schaltungsanordnung gemäß Figur 2 ist analog zur Schaltungsanordnung gemäß Figur 1.
Wird als Schaltelement 102 ein MOSFET verwendet, so mag dessen parasitäre Bodydiode die Basisemitterdiode des Begrenzungselementes 118 vor einem Durchbruch bei Verpolung der Schaltung schützen. In diesem Fall muss die Bodydiode jedoch eine ausreichend hohe Stromtragfähigkeit aufweisen.
Weiter Bezug nehmend auf Figur 3 wird eine exemplarische Ausgestaltung einer Schaltungsanordnung zur Begrenzung einer Flankensteilheit eines elektrischen Signals gemäß der vorliegenden Erfindung dargestellt.
Die Schaltungsanordnung gemäß Figur 3 mag insbesondere als eine reine Flankenbegrenzung aufgefasst werden. Bei ausgeschaltetem Schaltelement 102 wird das kapazitive Element 302 über Widerstandselement 106, Begrenzungselement 118 und Widerstandselement 114 auf das Potential von Spannungsquelle 116 geladen. Wenn Schaltelement 102 nun einschaltet, ist Begrenzungselement 118 zunächst gesperrt. Nun entlädt sich kapazitives Element 302 über Widerstandselement 300 und Schaltelement 102, so dass das Basispotential von Begrenzungselement 118 langsam absinkt. Dieses beginnt zu leiten, und der Ausgangsspannungspegel folgt dem Verlauf der Basisspannung von Begrenzungselement 118. Sobald Schaltelement 102 wieder abschaltet, wird kapazitives Element 302 über Widerstandselement 106, Begrenzungselement 118 und Widerstandselement 114 geladen, wodurch das Ausgangspotential wieder auf den Wert der Spannungsquelle 116 ansteigt. Ist ein Element 112a, b vorhanden, mag die Kapazität von kapazitivem Element 302 klein gegenüber der Kapazität eines Elementes 112a, b gewählt werden, wodurch die steigende Flanke der Schaltungsanordnung nur geringfügig beeinflusst wird.
Im Einschaltmoment von Element 102 mag am Schaltungsausgang insbesondere das Verhalten einer gesteuerten Flanke realisiert sein. Für die Schaltungsanordnungen der Figuren 1 und 2 mag weiterhin eine variable Strombegrenzung implementierbar sein. Hierzu wäre das Begrenzungselement 118 basisseitig an ein variables Potential anzubinden. Die Höhe dieses Potentials mag die Strombegrenzung einstellen können.
Der exemplarisch dargestellte Bipolartransistor für Begrenzungselement 118 mag in allen Schaltungsanordnungen der Figuren 1 bis 3 alternativ auch durch andere Transistortypen, beispielsweise MOSFET oder JFET, als Operationsverstärker oder Röhrenelement ausgeführt sein. Die Anschlüsse sind dann entsprechend des eingesetzten Bauelements zu wählen.
Im Falle, dass in den Schaltungsanordnungen der Figuren 1 bis 2 ein selbstleitender n-Kanal FET für Begrenzungselement 118 gewählt wird, mag dessen Ga- teanbindung beispielsweise auch an Massepotential erfolgen, so dass keine Hilfsspannung erforderlich sein mag.
Fehlt das Schaltelement 102 in der Schaltungsanordnung gemäß Figur 2 oder wird durch einen Kurzschluss in der Schaltungsanordnung gemäß Variante 1 ersetzt, so ergibt sich in den jeweiligen Schaltungsanordnungen eine reine Strom- begrenzerschaltungsanordnung.
Alle Schaltungsanordnungen können abweichend von den in den Figuren dargestellten, auch schematisch zu verstehenden, Implementierungen ganz - oder teilweise auch in integrierter Form Verwendung finden.
Figur 4 zeigt einen beispielhaften Signalverlauf der Schaltungsanordnung gemäß Figur 1.
Zum Zeitpunkt tierfolgt in der Schaltungsanordnung gemäß Figur 1 ein Ausschalten des Schaltelements 102. Hierdurch steigt die Ausgangsspannung
V (collector) auf den exemplarischen Wert von 16 V an. Zum Zeitpunkt t2 erfolgt ein Einschaltevorgang des Schaltelements 102. Im Falle, dass ausschließlich ein Schaltelement 102 sowie die Elemente 114 und 116 vorgesehen sind, erfolgt eine Schaltung mit einer Steilheit der Flanke 400, im Wesentlichen, exemplarisch, unmittelbar. Im Falle der Anordnung der Begrenzungseinheit 120, wird die fallende Flanke 402 in ihrer Steilheit begrenzt, wodurch diese langsamer fällt und erst zum Zeitpunkt t3 auf ihren unteren Wert, der im Wesentlichen durch das Verhältnis der elektrischen Widerstände der Widerstandselemente 114 und 104 festgelegt ist.
Figur 5 zeigt eine exemplarische Ausführungsform eines Verfahrens zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale gemäß der vorliegenden Erfindung.
Das Verfahren 500 zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale weist auf die Schritte Ausführen 502 eines Schaltvorgangs der Spannungsquelle unter Verwendung des Schaltelementes und Begrenzen 504 einer Stromstärke und/oder einer Flankensteilheit eines elektrischen Signals, insbesondere der Ausgangsspannung, unter Verwendung eines Begrenzungseinheit.

Claims

Ansprüche
Schaltungsanordnung (100) zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale, aufweisend ein Schaltelement (102), welches mit einer Spannungsquelle (1 16) verbindbar ist und welches eingerichtet ist zum Schalten der Spannungsquelle (1 16);
dadurch gekennzeichnet, dass die Schaltungsanordnung (100) weiterhin eine Begrenzungseinheit (120) aufweist; wobei die Begrenzungseinheit (120) funktional zwischen dem Schaltelement (102) und der Spannungsquelle (1 16) angeordnet ist; und wobei die Begrenzungseinheit (120) eingerichtet ist, bei einem Schaltvorgang der Spannungsquelle (1 16) unter Verwendung des Schaltelements (102) eine Stromstärke und/oder eine Flankensteilheit eines elektrischen Signals zu begrenzen.
Schaltungsanordnung gemäß dem vorhergehenden Anspruch, weiterhin aufweisend eine Spannungsquelle (1 16); wobei das elektrische Signal als Ausgangsspannung der Spannungsquelle (1 16) ausgebildet ist; und wobei das Schalten der Spannungsquelle (1 16) das Ein- bzw. Ausschalten der Spannungsquelle umfasst.
Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche, wobei die Begrenzungseinheit (120) ein Begrenzungselement (1 18) aufweist, welches in Serie zwischen Spannungsquelle (1 16) und Schaltelement (102) angeordnet ist.
Schaltungsanordnung gemäß einem der Ansprüche 1 oder 2, wobei die Begrenzungseinheit (120) ein Begrenzungselement (1 18) aufweist, welches pa rallel zu Spannungsquelle (1 16) und Schaltelement (102) angeordnet ist.
Schaltungsanordnung gemäß einem der Ansprüche 3 und 4, wobei die Begrenzungseinheit (120) weiterhin zumindest ein erstes kapazitives Element (1 12a, b) aus der Gruppe bestehend aus Kondensator, Diode und ESD- Diode aufweist; und wobei das erstes kapazitives Element (1 12a,b) parallel zur Spannungsquelle (1 16) angeordnet ist. Schaltungsanordnung gemäß einem der Ansprüche 3 bis 5, wobei das Begrenzungselement (1 18) ein Element ist aus der Gruppe bestehend aus Transistorelement, Transistor, Bipolar-Transistor, Feldeffekt-Transistor, MOSFET, JFET, Operationsverstärker und Röhrenelement; und/oder wobei das Schaltelement (102) ein Element ist aus der Gruppe ist bestehend aus Transistorelement, Transistor, Bipolartransistor, Feldeffekt-Transistor, MOSFET, JFET, Operationsverstärker, Röhrenelement; Relaiselement und Schaltkontakt.
Schaltungsanordnung gemäß einem der vorhergehenden Ansprüche, wobei die Flankensteilheitsbegrenzung ausgebildet ist als eine Stromgegenkopplung in der Begrenzungseinheit (120) oder als gesteuerte Flanke; und/oder wobei die Strombegrenzung ausgebildet ist als Stromgegenkopplung in der Begrenzungseinheit (120).
Schaltungsanordnung gemäß einem der Ansprüche 3 bis 7, wobei die Begrenzungseinheit (120) weiterhin zumindest ein zweites kapazitives Element (1 10a, b) aufweist; und wobei das zumindest eine zweite kapazitive Element (1 10a, b) zwischen Basis und Kollektor und/oder zwischen Basis und Emitter bzw. den diesen entsprechenden Anschlüssen des Begrenzungselementes (1 18) angeordnet ist.
9. Schaltungsanordnung gemäß einem der Ansprüche 3 bis 8; wobei an der Basis bzw. dem diesen entsprechenden Anschluss des Begrenzungselementes (1 18) weiterhin ein erstes Widerstandselement (106) angeordnet ist; wobei an dem Widerstandselement (106) weiterhin eine Spannungsquelle (108) angeordnet ist; und wobei am Kollektor bzw. dem diesen entsprechenden Anschluss des Begrenzungselementes (1 18) weiterhin ein zweites Widerstandselement (104) angeordnet ist.
10. Verfahren zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale, wobei eine Begrenzungseinheit funktional zwischen einem Schaltelement und einer Spannungsquelle angeordnet ist, welche Begrenzungseinheit eingerichtet ist, bei einem Schaltvorgang der Spannungsquelle unter Verwendung des Schaltelements eine Stromstärke und/oder eine Flankensteilheit eines elektrischen Signals zu begrenzen, aufweisend Aus- führen eines Schaltvorgangs der Spannungsquelle unter Verwendung des Schaltelementes; und Begrenzen einer Stromstärke und/oder einer Flankensteilheit eines elektrischen Signals, insbesondere der Ausgangsspannung der Spannungsquelle, unter Verwendung einer Begrenzungseinheit; wobei die Flankensteilheitsbegrenzung ausgebildet ist unter Verwendung einer Stromgegenkopplung oder einer gesteuerten Flanke, und/oder wobei die Strombegrenzung ausgebildet ist als eine Stromgegenkopplung.
EP11724182.8A 2010-07-29 2011-06-03 Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale Withdrawn EP2599222A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038623A DE102010038623A1 (de) 2010-07-29 2010-07-29 Schaltungsanordnung und Verfahren zur Begrenzung von Stromstärke und/oder Flankensteilheit elektrischer Signale
PCT/EP2011/059186 WO2012013402A1 (de) 2010-07-29 2011-06-03 Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale

Publications (1)

Publication Number Publication Date
EP2599222A1 true EP2599222A1 (de) 2013-06-05

Family

ID=44626826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11724182.8A Withdrawn EP2599222A1 (de) 2010-07-29 2011-06-03 Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale

Country Status (5)

Country Link
US (1) US8975931B2 (de)
EP (1) EP2599222A1 (de)
CN (1) CN103004091A (de)
DE (1) DE102010038623A1 (de)
WO (1) WO2012013402A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120896A1 (it) 2012-10-15 2014-04-16 Indesit Co Spa Piano cottura a induzione
US10605464B2 (en) 2012-10-15 2020-03-31 Whirlpool Corporation Induction cooktop
DE102012112391B4 (de) 2012-12-17 2018-10-04 Phoenix Contact Gmbh & Co. Kg Schaltnetzteil mit einer Kaskodenschaltung
JP6299254B2 (ja) * 2014-02-10 2018-03-28 富士電機株式会社 半導体装置、スイッチング電源用制御icおよびスイッチング電源装置
EP3432682A1 (de) 2017-07-18 2019-01-23 Whirlpool Corporation Verfahren zum betreiben eines induktionskochfelds und kochfeld mit diesem verfahren
US10873331B2 (en) * 2017-08-25 2020-12-22 Richwave Technology Corp. Clamp logic circuit
US10993292B2 (en) 2017-10-23 2021-04-27 Whirlpool Corporation System and method for tuning an induction circuit
US11140751B2 (en) 2018-04-23 2021-10-05 Whirlpool Corporation System and method for controlling quasi-resonant induction heating devices
US11374494B2 (en) * 2019-03-21 2022-06-28 Infineon Technologies LLC General-purpose analog switch with a controlled differential equalization voltage-slope limit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581542A (en) * 1983-11-14 1986-04-08 General Electric Company Driver circuits for emitter switch gate turn-off SCR devices
DE3409423A1 (de) * 1984-03-15 1985-09-26 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zum schalten des stromes in einer induktiven last
JPS62159515A (ja) * 1986-01-07 1987-07-15 Fuji Electric Co Ltd 複合半導体装置
JPH01133414A (ja) * 1987-11-18 1989-05-25 Mitsubishi Electric Corp カスコードBiMOS駆動回路
US5397978A (en) * 1992-08-03 1995-03-14 Silicon Systems, Inc. Current limit circuit for IGBT spark drive applications
US5694025A (en) * 1996-04-23 1997-12-02 Motorola, Inc. Battery charger with control circuit
JP3530714B2 (ja) * 1997-05-26 2004-05-24 株式会社日立製作所 内燃機関用点火装置
US8063575B2 (en) * 2002-07-04 2011-11-22 Tridonic Jennersdorf Gmbh Current supply for luminescent diodes
DE60316105T2 (de) * 2003-03-05 2008-06-12 Stmicroelectronics S.R.L., Agrate Brianza Ansteuerschaltung für einen Steueranschluss eines Bipolartransistors mit geschaltetem und einer resonanten Last
DE602004013718D1 (de) * 2004-03-31 2008-06-26 St Microelectronics Srl Emitterschaltungssteuerschaltung zur Reglung der Speicherzeit
CN101025636A (zh) * 2006-02-24 2007-08-29 李上灿 变压器耦合的并联型开关式稳压电源
EP1916761A1 (de) * 2006-10-26 2008-04-30 Salcomp Oyj Verfahren und Schaltung zur Regelung eines Schaltnetzteils
ITMI20070141A1 (it) * 2007-01-30 2008-07-31 St Microelectronics Srl Circuito di pilotaggio per una configurazione emitter-switching di transistori
JP4985003B2 (ja) * 2007-03-19 2012-07-25 富士電機株式会社 Dc−dcコンバータ
US7564292B2 (en) * 2007-09-28 2009-07-21 Alpha & Omega Semiconductor, Inc. Device and method for limiting Di/Dt caused by a switching FET of an inductive switching circuit
US7882482B2 (en) * 2007-10-12 2011-02-01 Monolithic Power Systems, Inc. Layout schemes and apparatus for high performance DC-DC output stage
TWI404287B (zh) * 2009-11-20 2013-08-01 Delta Electronics Inc 可減少電源損耗之電容能量洩放電路及其電源供應電路
US8400797B2 (en) * 2010-07-23 2013-03-19 Lien Chang Electronic Enterprise Co., Ltd. Power conversion system with zero-voltage start-up mechanism, and zero-voltage start-up device
TWI433427B (zh) * 2010-11-25 2014-04-01 Ind Tech Res Inst 電池電力系統

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012013402A1 *

Also Published As

Publication number Publication date
CN103004091A (zh) 2013-03-27
US8975931B2 (en) 2015-03-10
WO2012013402A1 (de) 2012-02-02
DE102010038623A1 (de) 2012-02-02
US20130187695A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
EP2599222A1 (de) Schaltungsanordnung und verfahren zur begrenzung von stromstärke und/oder flankensteilheit elektrischer signale
EP2340593B1 (de) Mehrstufige überspannungsschutzschaltung, insbesondere für informationstechnische anlagen
DE102012200981B4 (de) Torschaltung
DE2407333C3 (de) Überspannungsschutzschaltungsanordnung
EP3021444B1 (de) Schaltung zum schutz vor überspannungen
DE102015120166B3 (de) Steuereinrichtung für einen Leistungshalbleiterschalter
WO2006072292A1 (de) Schaltungsanordnung und verfahren zum schutz einer schaltung vor elektrostatischen entladungen
DE102014212520A1 (de) Halbleiteransteuervorrichtung und Halbleitervorrichtung
EP3221943A1 (de) Schutzschaltung für einen überspannungs- und/oder überstromschutz
DE102015207783B4 (de) Gegen Überspannung geschütztes elektronisches Steuergerät
DE102016001689A1 (de) Schaltungsanordnung zum Schutz einer aus einem Versorgungsnetz zu betreibenden Einheit gegen Überspannungen
DE102008013243B4 (de) Elektrische Schaltungsanordnung, insbesondere eine Aufweckschaltung
DE102007018237A1 (de) Schaltung mit verbessertem ESD-Schutz bei repetierender Pulsbelastung
DE102017109684B4 (de) Spannungsmessvorrichtung, verfahren und herstellverfahren
EP3472934A1 (de) Leistungshalbleiterschaltung
EP1078460A1 (de) Verfahren und vorrichtung zum umschalten eines feldeffekttransistors
EP1065600B1 (de) Datenbus-Transmitter
DE102010032717A1 (de) Verfahren und elektrische Schaltung zum Betreiben eines Leistungshalbleiter-Bauelements
EP1526623B1 (de) Elektrische Schaltung zur Einschaltstrombegrenzung
DE102006029142A1 (de) Verfahren und Schutzschaltung gegen Überspannung
DE19526493B4 (de) Verfahren zur Steuerung eines Laststromkreises und Schaltungsanordnung zur Durchführung des Verfahrens
EP2466753A1 (de) Widerstandsschaltung, Schaltungsanordnung und Treiber
DE102010040551A1 (de) Schalteinheit zum Ansteuern eines Leistungsschalters
EP0822661A2 (de) Ansteuerschaltung für ein Feldeffekt gesteuertes Leistungs-Halbleiterbauelement
DE102017108872B4 (de) High-Side-Schaltvorrichtung und Herstellungsverfahren für eine solche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105