EP2593735A2 - Kühlvorrichtung - Google Patents

Kühlvorrichtung

Info

Publication number
EP2593735A2
EP2593735A2 EP11738939.5A EP11738939A EP2593735A2 EP 2593735 A2 EP2593735 A2 EP 2593735A2 EP 11738939 A EP11738939 A EP 11738939A EP 2593735 A2 EP2593735 A2 EP 2593735A2
Authority
EP
European Patent Office
Prior art keywords
cooling
vacuum chamber
coolant
connecting lines
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11738939.5A
Other languages
English (en)
French (fr)
Other versions
EP2593735B1 (de
Inventor
Johannes Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wild Johannes
Original Assignee
Wild Johannes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wild Johannes filed Critical Wild Johannes
Priority to PL11738939T priority Critical patent/PL2593735T3/pl
Publication of EP2593735A2 publication Critical patent/EP2593735A2/de
Application granted granted Critical
Publication of EP2593735B1 publication Critical patent/EP2593735B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the invention relates to a cooling device with a closed cooling circuit for cooling objects to semi-cryogenic temperatures of 230 K to 80 K, comprising a compressor for compressing a coolant to which the coolant is supplied in the gaseous state and from which the coolant in compressed gaseous state exits, a compressor downstream aftercooler, a countercurrent heat exchanger comprising a supply and a return line, which are arranged such that the compressed refrigerant in the supply line is liquefied by heating the flowing through the return line expanded refrigerant, and one with the Supply and return line connected, cooled by the coolant cooling head in which the coolant evaporates.
  • Such a cooling device can be found, for example, in document EP 650574 A1.
  • the countercurrent heat exchanger and the cooling head are combined to form a structural unit and placed in a vacuum chamber in which the object to be cooled is also placed.
  • the countercurrent heat exchanger arranged in the vacuum chamber is thereby integrated into the cooling circuit via flexible gas supply. Since the coolant in the flexible gas supply lines is at room temperature and only in the vacuum chamber is brought to semi-cryogenic or cryogenic temperatures, eliminating the need for the isolation of these lines.
  • the problems associated with the transport of coolant cooled to semi-cryogenic or cryogenic temperatures via flexible lines such as icing, the formation of condensation water and the occurrence of heat losses, are thus avoided.
  • the disadvantage lies in the fact that the devices require a large vacuum chamber suitable for Many processes are undesirable or even unusable.
  • the heat exchangers used in such devices are usually several meters long and are wound in a spiral in order to achieve a certain compactness of the cooling head with the heat exchanger. Nevertheless, the heat exchangers are relatively large even at low power (eg -130 ° C at 30W) (about 200mm high with a diameter of 80mm). Furthermore, such a cooling system requires a good vacuum system, since the volume of the vacuum chamber must be correspondingly large.
  • the invention therefore aims to improve a cooling device such that a cooling of an object in an efficient manner to the lowest possible semi-cryogenic or cryogenic temperatures succeeds, the vacuum chamber should be designed as small and handy as possible and at the same time achieves a significant increase in performance should be (eg instead of 30W / 140K, 200W / 140K). Furthermore, the losses during transport of the coolant should be kept as low as possible.
  • the cooling device of the type mentioned is inventively further developed to the effect that the cooling head is arranged in a connectable to a vacuum source vacuum chamber, the above xible connecting lines is connected to the supply and the return line of the countercurrent heat exchanger, so that the countercurrent heat exchanger is arranged outside the vacuum chamber.
  • the invention is thus based on the idea of using the conventional Mixed JT process and carrying out the process of liquefying the coolant by means of the countercurrent heat exchanger separated from the vacuum chamber. The liquefaction of the coolant thus takes place outside the vacuum chamber, wherein the liquefied coolant is supplied to the vacuum chamber via flexible connecting lines. It is only necessary to ensure that the heat exchanger and the connecting lines are suitably thermally insulated.
  • the heat exchanger can be isolated, for example, by means of its own vacuum chamber with vacuum pump or more easily by means of expanded polystyrene (EPS), extruded polystyrene (XPS) insulation, polyurethane (PUR) insulation or by means of a vacuum insulation panel (VIP).
  • EPS expanded polystyrene
  • XPS extruded polystyrene
  • PUR polyurethane
  • VIP vacuum insulation panel
  • the cooling unit and the cooling head are formed as a functionally separate units, so that in the cooling head itself no bulky components of the cooling unit, such as For example, a Gegenstromkortausc er od. Like., Must be arranged.
  • the compressor, the aftercooler and the countercurrent heat exchanger are arranged together in a stand unit whose housing has a passage for connecting the countercurrent heat exchanger with the vacuum chamber connecting lines.
  • radiator with the interposition of a throttle element, is connected to the supply line of the countercurrent heat exchanger so that the necessary pressure reduction of the refrigerant takes place and the liquefied coolant can evaporate in the cold head.
  • connecting line connecting the supply line of the countercurrent heat exchanger with the cooling head forms the throttle element.
  • the connecting lines have a vacuum insulation.
  • the vacuum chamber and the vacuum insulation of the connecting lines are in direct contact with each other and can be connected to a common vacuum source.
  • the vacuum system of the vacuum chamber is used in order to provide the refrigerant in a suitable form. to isolate medium on the transport between the vacuum chamber or the cooling head and the cooling reservoir and to make a vacuum feedthrough.
  • the vacuum chamber itself is located on the connecting lines mounted cooling head (eg copper) through which the refrigerant (eg liquid nitrogen) is coming from the connecting lines coming.
  • the existing vacuum chamber is expanded by the relatively small volume of the vacuum insulation of the connecting lines and at the same time creates a vacuum connection between the vacuum insulation of the connecting lines and the vacuum chamber.
  • the vacuum chamber has a passage for the connecting lines, which is designed such that the cavity of the vacuum insulation of the connecting lines is in communication with the interior of the vacuum chamber.
  • the refrigerant-carrying line is led out of the vacuum insulation, as well as suitable in vacuum-insulated pipes known from the prior art. It is particularly important to pay attention to the thermal conductivity of the cladding tube of the vacuum insulation and the heat transfer surface. A good vacuum welding during the transition is also important. This transition, which should cause low heat transfer losses, can be further protected by conventional insulation against condensation or ice. Due to the described training, it is now possible extremely efficient, space-saving (volume-saving), depending on the dimensions of the respective cooling unit to initiate any refrigeration capacity in a vacuum chamber.
  • the vacuum insulation comprises an enveloping tube surrounding the connecting lines to form a preferably substantially annular cavity.
  • the buffer tube can be flexible as well as the connecting lines.
  • the embodiment is preferably designed such that at least one spacer is arranged in the hollow space between the connecting lines and the enveloping hose.
  • the spacer has a corrugated outer and inner contour, it is ensured that between spacers on the one hand and the buffer tube and the connecting lines on the other hand only point or linear contacts arise, due to such Hertz 'shear contacts the heat input from the outside can be further reduced.
  • a particularly simple structure is achieved according to a preferred embodiment, when the common vacuum source is connected to the vacuum chamber.
  • tubular spacer is arranged, which defines the distance between the cooling head and the inner wall of the vacuum chamber, wherein the spacer has radial openings, so that the interior of the vacuum chamber with the cavity the vacuum insulation of the connecting lines is in communication.
  • the coolant preferably comprises butane and / or isobutane and / or propane and / or propene and / or ethyne and / or ethane and / or ethene and / or methane and / or argon and / or nitrogen.
  • FIG. 2 shows a sectional view of the cooling head with the connecting lines and FIG. 3 shows a section according to the line III-III of FIG.
  • the cooling circuit shown in Fig.l is usually referred to as a mixed gas Joule Thomson cooling process and is described for example in the document EP 650574 AI.
  • the cooling circuit comprises a compressor 1 for compressing the gaseously supplied refrigerant in 2.
  • the refrigerant may be, for example, a gas mixture consisting of propane, ethane, methane and nitrogen.
  • the compressed refrigerant is fed via a line 3 to an oil separator 4, with which the possibly in the compressor 1 with the refrigerant mixing oil is separated.
  • the oil purified by the oil is then fed to an aftercooler 5, in which the heat supplied to the compressor 1 is removed from the refrigerant.
  • the cooled, compressed, but still mostly gaseous refrigerant is then fed via a line 6 to a countercurrent heat exchanger 7, in which the coolant flowing through the refrigerant supply line 8 is cooled and liquefied by the refrigerant flowing in the refrigerant return line 9.
  • the refrigerant supply line 8 and the refrigerant return line 9 may in practice be several meters long and are often helically or spirally wound in order to achieve a certain compactness of the heat flow heat exchanger.
  • the liquefied refrigerant is depressurized via a throttle 10, so that the refrigerant in the cooling head 11 evaporate and thereby escape the environment evaporation heat.
  • the cooling head 11 is from Coolant flows through and is therefore designed for example as a hollow cylinder.
  • the flowing back from the cooling head 11 refrigerant is heated in countercurrent heat exchanger 7 in the sequence up to room temperature, wherein the refluxing refrigerant cools the flowing refrigerant.
  • the cooling head 11 is therefore made of a thermally conductive material such as copper. According to the invention, the cooling head 11 is connected via connecting lines
  • the inventive construction makes it necessary that the cooled and liquefied in the heat exchanger 7 refrigerant is transported via the connecting lines 13 and 14 over a more or less long distance, so that a sufficient insulation of the connecting lines must be ensured.
  • the cooling head together with the vacuum chamber and the connecting lines are shown in more detail. It can be seen that the connecting lines 13 and 14 have a vacuum insulation 17 whose evacuated interior communicates with the interior of the vacuum chamber 16.
  • the connecting lines 13 and 14 have a vacuum insulation 17 whose evacuated interior communicates with the interior of the vacuum chamber 16.
  • the vacuum insulation 17 of the connecting line has a flexible Hüllschlauch 18, which may be formed for example as a stainless steel corrugated pipe, which preferably has a steel jacket.
  • a flexible Hüllschlauch 18 may be formed for example as a stainless steel corrugated pipe, which preferably has a steel jacket.
  • spacers 19 may be arranged, which may also be made flexible. The spacers 19 preferably have a corrugated outer contour, so that due to the line contacts achieved with the cladding tube 18 and the connecting lines 13 and 14, the heat transfer is minimized.
  • the spacer 19 thus serves the mechanical and thus thermal decoupling of the connecting lines 13 and 14 to the cladding tube 18th It should be sufficiently flexible, temperature stable, resistant to aging and degassing free (eg Teflon, plastic, stainless steel). At the point 20, the connecting lines 13 and 14 are led out of the vacuum insulation 17. Low thermal losses at the transition point 20 should be taken into account. This can be achieved by materials with low thermal conductivity and a low transition cross-section (eg stainless steel). In addition, the interface 20 may be protected by conventional thermal insulation materials (eg, foamed polystyrene, Amaflex).
  • the connecting lines 13 and 14 may be thermally coupled.
  • the connecting lines 13 and 14 can alternatively be guided into each other.
  • the coolant may experience a pressure reduction along the supply line, so that the refrigerant is evaporated in the cooling head as in compression refrigerating machines and heat is dissipated. In this case, the supply line is immediately throttle body.
  • the vacuum insulation 17 is connected to a vacuum flange 21, through which the connecting lines 13 and 14 are passed and fed to the cooling head 11.
  • a spacer 22 is disposed between the cooling head 11 and the vacuum flange 21, which may for example consist of Teflon, ceramic or stainless steel and ausgasungsbestteil, low temperature suitable, should be resistant to embrittlement and aging.
  • the spacer 22 has a plurality of radial openings 24, so that the evacuated interior of the vacuum insulation of the connecting lines with the evacuated interior of the Vacuum chamber 16 is in a conductive connection.
  • a flange for connection to a vacuum pump is indicated at 23.
  • Typical applications for the invention are the cooling of high-power laser amplifiers and various cooling tasks in analytical chemistry, in the field of superconductivity, astronomy and in general in research and development as well as in medical diagnostics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Insulation (AREA)
  • Compressor (AREA)

Abstract

Bei einer Kühlvorrichtung mit einem geschlossenen Kühlkreislauf zum Kühlen von Objekten auf semi-kryogene bzw. kryogene Temperaturen von 230K bis 80K umfassend einen Kompressor zum Komprimieren eines Kühlmittels, dem das Kühlmittel in gasförmigem Zustand zugeführt ist und aus dem das Kühlmittel in verdichtetem gasförmigen Zustand austritt, einen dem Kompressor nachgeschalteten Nachkühler, aus dem das Kühlmittel größtenteils gasförmig austritt, einen Gegenstromwärmetauscher umfassend eine Zu- und eine Rückleitung, die derart angeordnet sind, dass das verdichtete Kühlmittel in der Zuleitung unter Erwärmung des durch die Rückleitung fließenden entspannten Kühlmittels verflüssigt wird, und einen mit der Zu- und der Rückleitung in Verbindung stehenden, vom Kühlmittel durchströmten Kühlkopf, in dem das Kühlmittel verdampft, ist der Kühlkopf (11) in einer mit einer Unterdruckquelle verbindbaren Vakuumkammer (16) angeordnet, die über flexible Verbindungsleitungen (13,14) mit der Zu- und der Rückleitung (8,9) des Gegenstromwärmetauschers (7) verbunden ist.

Description

Kühlvorrichtung
Die Erfindung betrifft eine Kühlvorrichtung mit einem geschlossenen Kühlkreislauf zum Kühlen von Objekten auf semi-kryogene bzw. kryogene Temperaturen von 230 K bis 80 K umfassend einen Kompressor zum Komprimieren eines Kühlmittels, dem das Kühlmittel in gasförmigem Zustand zugeführt ist und aus dem das Kühlmittel in verdichtetem gasförmigen Zustand austritt, einen dem Kompressor nachgeschalteten Nachkühler, einen Gegenstromwärme- tauscher umfassend eine Zu- und eine Rückleitung, die derart angeordnet sind, dass das verdichtete Kühlmittel in der Zuleitung unter Erwärmung des durch die Rückleitung fließenden entspannten Kühlmittels verflüssigbar ist, und einen mit der Zu- und der Rückleitung in Verbindung stehenden, vom Kühlmittel durchströmten Kühlkopf, in dem das Kühlmittel verdampft.
Eine derartige Kühlvorrichtung ist beispielsweise dem Dokument EP 650574 AI zu entnehmen. In kommerziellen Kühlsystemen werden der Gegenstromwärmetauscher und der Kühlkopf zu einer baulichen Einheit zusammenge- fasst und in einer Vakuumkammer angeordnet, in der auch das zu kühlende Objekt platziert wird. Der in der Vakuumkammer angeordnete Gegenstromwärmetauscher wird dabei über flexible Gaszu- leitung in den Kühlkreislauf eingebunden. Da sich das Kühlmittel in den flexiblen Gaszuleitungen auf Raumtemperatur befindet und erst in der Vakuumkammer auf semi-kryogene bzw. kryogene Temperaturen gebracht wird, entfällt das Erfordernis der Isolierung dieser Leitungen. Die mit dem Transport von auf semi- kryogene bzw. kryogene Temperaturen gekühltem Kühlmittel über flexible Leitungen verbundenen Probleme, wie z.B. das Vereisen, die Entstehung von Kondenswasser sowie das Auftreten von Wärmeverlusten, werden somit vermieden. Der Nachteil liegt aber darin, dass die Geräte eine große Vakuumkammer benötigen, die für viele Prozesse unerwünscht oder gar unbrauchbar ist. Die in solchen Geräten verwendeten Wärmetauscher sind in der Regel nämlich mehrere Meter lang und werden in einer Spirale gewickelt, um eine gewisse Kompaktheit des Kühlkopfes mit dem Wär- metauscher zu erreichen. Nichtsdestotrotz sind die Wärmetauscher schon bei kleinen Leistungen (z.B. -130°C bei 30W) relativ groß (ca. 200mm hoch mit einem Durchmesser von 80mm) . Weiters erfordert ein solches Kühlungssystem ein gutes Vakuumsystem, da das Volumen der Vakuumkammer dementsprechend groß sein muss. Bei bestehenden Geräten (z.B. Polycold-Cryotiger) , die das Mixed Gas Joule Thomson Verfahren nützen (siehe EP 650574 AI) und den Gegenstromwärmetauscher mit Kühlkopf in der Vakuumkammer haben, geht eine Erhöhung der Kühlleistung mit einer deutlichen Vergrößerung des Wärmetauschers einher. Insbesondere bei höheren Kühlleistungen (ca. >50W) sind solche Geräte wirtschaftlich nicht mehr sinnvoll bzw. unattraktiv, insbesondere für wissenschaftliche Anwendungen (z.B. Hochleistungs- Laserverstärker, z.B. 150W bei 130K, Laserkristalle mit Abmessungen von z.B. 3mmx6mm) , bei denen kleine Vakuumkammern er- wünscht sind.
Die Erfindung zielt daher darauf ab, eine Kühlvorrichtung derart zu verbessern, dass eine Abkühlung eines Objekts in effizienter Weise auf möglichst tiefe semi-kryogene bzw. kryogene Temperaturen gelingt, wobei die Vakuumkammer gleichzeitig möglichst klein und handlich ausgebildet sein soll und zugleich eine wesentliche Leistungssteigerung erzielt werden soll (z.B. statt 30W/140K, 200W/140K). Weiters sollen die Verluste beim Transport des Kühlmittels möglichst gering gehalten werden.
Zur Lösung dieser Aufgabe ist die Kühlvorrichtung der eingangs genannten Art erfindungsgemäß im Wesentlichen dahingehend weitergebildet, dass der Kühlkopf in einer mit einer Unterdruckquelle verbindbaren Vakuumkammer angeordnet ist, die über fle- xible Verbindungsleitungen mit der Zu- und der Rückleitung des Gegenstromwarmetauschers verbunden ist, sodass der Gegen- stromwärmetauscher außerhalb der Vakuumkammer angeordnet ist. Die Erfindung beruht also auf der Idee, das herkömmliche Mixed JT-Verfahren zu nutzen und den Prozess der Verflüssigung des Kühlmittels mittels des Gegenstromwarmetauschers abgetrennt von der Vakuumkammer durchzuführen. Die Verflüssigung des Kühlmittels erfolgt somit außerhalb der Vakuumkammer, wobei das verflüssigte Kühlmittel der Vakuumkammer über flexible Verbin- dungsleitungen zugeführt wird. Dabei ist lediglich dafür Sorge zu tragen, dass der Wärmetauscher und die Verbindungsleitungen in geeigneter Weise thermisch isoliert sind. Der Wärmetauscher kann beispielsweise mit Hilfe einer eigenen Vakuumkammer mit Vakuumpumpe oder einfacher mittels Dämmstoffen aus expandiertem Polystyrol (EPS), Dämmstoffen aus extrudiertem Polystyrol (XPS), Dämmstoffen aus Polyurethan (PUR) oder mittels einer Vakuumdämmplatte (VIP) isoliert werden. Da die Kühlleistungen auf Grund der erfindungsgemäßen Ausbildung vervielfacht werden können, spielen Verluste auf Grund einer allenfalls schlechte- ren Isolierung des Wärmetauschers nur eine untergeordnete Rolle. Es wurden z.B. Leistungen auf einem Kühlkopf mit (Zylinder: H 35mm x D 35mm) 300W/140K realisiert. Dies entspricht einer Verzehnfachung der Kälteleistung bei einer Volumenverkleinerung um das ca. 30fache. Zur besseren thermischen Isolierung, insbe- sondere bei tieferen Temperaturen kann in die Isolierung des Wärmetauschers eine temperaturstrahlungsreflektierende Schicht aus Aluminiumfolie oder gleichwertigem Material eingebracht werden. Es ergibt sich dabei beispielsweise ein Schichtaufbau EPS, Aluminiumfolie, EPS, Aluminiumfolie,...
Auf Grund der erfindungsgemäßen Ausbildung ergibt sich die Möglichkeit, das Kühlaggregat und den Kühlkopf als funktional voneinander getrennte Einheiten auszubilden, sodass im Kühlkopf selbst keine großbauenden Komponenten des Kühlaggregats, wie beispielsweise ein Gegenstromwärmetausc er od. dgl., angeordnet werden müssen. Dies ermöglicht es weiters, ein den jeweiligen Bedürfnissen entsprechendes Kühlaggregat mit der jeweils erforderlichen Kühlleistung vorzusehen, ohne dass der Kühlkopf in irgendeiner Weise angepasst werden muss und ohne dass die Handhabbarkeit des Kühlkopfes in irgendeiner Weise beeinträchtigt wird.
Eine besonders einfache Handhabbarkeit wird dadurch gewährleis- tet, dass, wie es einer bevorzugten Weiterbildung entspricht, der Kompressor, der Nachkühler und der Gegenstromwärmetauscher gemeinsam in einem Standgerät angeordnet sind, dessen Gehäuse eine Durchführung für die den Gegenstromwärmetauscher mit der Vakuumkammer verbindenden Verbindungsleitungen aufweist.
Wesentlich beim Mixed Gas Joule Thomson Kühlaggregat ist, dass der Kühler unter Zwischenschaltung eines Drosselorgans mit der Zuleitung des Gegenstromwärmetauschers in Verbindung steht, damit die nötige Druckreduktion des Kältemittels erfolgt und das verflüssigte Kühlmittel im Kältekopf verdampfen kann. Eine besonders vorteilhafte Konstruktion sieht in diesem Zusammenhang vor, dass die die Zuleitung des Gegenstromwärmetauschers mit dem Kühlkopf verbindende Verbindungsleitung das Drosselorgan bildet.
Um die thermischen Verluste beim Transport des Kühlmittels durch die Verbindungsleitungen zu minimieren, ist gemäß einer bevorzugten Weiterbildung der Erfindung vorgesehen, dass die Verbindungsleitungen eine Vakuumisolierung aufweisen. Bevorzugt kann dabei vorgesehen sein, dass die Vakuumkammer und die Vakuumisolierung der Verbindungsleitungen miteinander unmittelbar in Verbindung stehen und mit einer gemeinsamen Unterdruckquelle verbindbar sind. Dies hat den Vorteil, dass das Vakuumsystem der Vakuumkammer genutzt wird, um in geeigneter Form das Kälte- mittel auf dem Transport zwischen der Vakuumkammer bzw. dem Kühlkopf und dem Kühlreservoir zu isolieren und eine Vakuumdurchführung zu gestalten. In der Vakuumkammer selbst befindet sich der an den Verbindungsleitungen angebrachte Kühlkopf (z.B. aus Kupfer), durch welchen das Kältemittel (z.B. flüssiger Stickstoff) von den Verbindungsleitungen kommend geleitet wird. Dabei wird die bestehende Vakuumkammer um das relativ geringe Volumen der Vakuumisolierung der Verbindungsleitungen erweitert und gleichzeitig eine Vakuumverbindung zwischen der Vakuumiso- lierung der Verbindungsleitungen und der Vakuumkammer geschaffen. Somit wird das Problem der Vakuumdurchführung und die Isolation der Verbindungsleitungen mit geringem Aufwand und Kosten gelöst. Bevorzugt ist dabei vorgesehen, dass die Vakuumkammer eine Durchführung für die Verbindungsleitungen aufweist, die derart gestaltet ist, dass der Hohlraum der Vakuumisolierung der Verbindungsleitungen mit dem Innenraum der Vakuumkammer in Verbindung steht.
Am anderen Ende der Verbindungsleitungen, d.h. auf der Seite des Kältereservoir, wird die kältemittelführende Leitung aus der Vakuumisolierung, wie auch bei aus dem Stand der Technik bekannten vakuumisolierten Rohren geeignet herausgeführt. Dabei ist insbesondere auf die Wärmeleitfähigkeit des Hüllrohres der Vakuumisolierung und der Wärmeübertragungsfläche zu achten. Auf eine gute Vakuumverschweißung beim Übergang ist ebenso zu achten. Dieser Übergang, der geringe Wärmeübertragungsverluste verursachen sollte, kann durch herkömmliche Isolationsmittel gegen Kondenswasser oder Eis zusätzlich geschützt werden. Auf Grund der beschriebenen Ausbildung ist es nun möglich, äußerst effizient, platzsparend (volumensparend), je nach Dimensionierung des jeweiligen Kühlaggregats beliebige Kälteleistungen in eine Vakuumkammer einzuleiten. Ein besonders einfacher Aufbau der Vakuumisolierung der Verbindungsleitungen wird erreicht, wenn, wie dies einer bevorzugten Weiterbildung der Erfindung entspricht, die Vakuumisolierung einen die Verbindungsleitungen unter Ausbildung eines vorzugs- weise im Wesentlichen ringförmigen Hohlraumes umgebenden Hüllschlauch umfasst. Der Hüllschlauch kann genau so wie die Verbindungsleitungen flexibel sein. Um zu verhindern, dass die Verbindungsleitungen den Hüllschlauch berühren, was zu einem unerwünschten Wärmeübergang führen würde, ist die Ausbildung bevorzugt derart ausgebildet, dass im Hohlraum zwischen den Verbindungsleitungen und dem Hüllschlauch wenigstens ein Abstandhalter angeordnet ist. Wenn, wie dies bevorzugt vorgesehen ist, der Abstandhalter eine gewellte Außen- und Innenkontur aufweist, wird sichergestellt, dass zwischen Abstandhalter ei- nerseits und dem Hüllschlauch und den Verbindungsleitungen andererseits lediglich punkt- oder linienförmige Kontakte entstehen, wobei auf Grund derartiger Hertz' scher Kontakte der Wärmeintrag von außen weiter verringert werden kann. Ein besonders einfacher Aufbau wird gemäß einer bevorzugten Weiterbildung erreicht, wenn die gemeinsame Unterdruckquelle an die Vakuumkammer angeschlossen ist.
Weiters ist bevorzugt vorgesehen, dass in der Vakuumkammer ein die Durchführung umgebender, insbesondere rohrförmiger Abstand- halter angeordnet ist, der den Abstand zwischen dem Kühlkopf und der Innenwand der Vakuumkammer definiert, wobei der Abstandhalter radiale Durchbrechungen aufweist, sodass der Innenraum der Vakuumkammer mit dem Hohlraum der Vakuumisolierung der Verbindungsleitungen in Verbindung steht.
Bevorzugt umfasst das Kühlmittel Butan und/oder Iso-Butan und/oder Propan und/oder Propen und/oder Ethin und/oder Ethan und/oder Ethen und/oder Methan und/oder Argon und/oder Stickstoff .
Die Erfindung wird nun anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigt Fig.l einen geschlossenen Kühlkreislauf mit einem Kühlaggregat und einem Kühlkopf, Fig.2 eine Schnittansicht des Kühlkopfes mit den Verbindungsleitungen und Fig.3 einen Schnitt gemäß der Linie III-III der Fig.2.
Der in Fig.l gezeigte Kühlkreislauf wird meist als Mixed Gas Joule Thomson Kühlprozess bezeichnet und ist beispielsweise in dem Dokument EP 650574 AI beschrieben. Der Kühlkreislauf um- fasst einen Kompressor 1 zum Komprimieren des bei 2 gasförmig zugeführten Kältemittels. Das Kältemittel kann beispielsweise eine Gasmischung bestehend aus Propan, Ethan, Methan und Stickstoff sein. Das komprimierte Kältemittel wird über eine Leitung 3 einem Olabscheider 4 zugeführt, mit dem das sich im Kompressor 1 ggf. mit dem Kältemittel vermischende Öl abgetrennt wird. Das von Öl gereinigte Kältemittel wird anschießend einem Nachkühler 5 zugeführt, in welchem die dem Kompressor 1 zugeführte Wärme dem Kältemittel entzogen wird. Das gekühlte, komprimierte, aber noch immer zumeist gasförmige Kältemittel wird anschließend über eine Leitung 6 einem Gegenstromwärmetauscher 7 zugeführt, in welchem das durch die Kältemittelzuleitung 8 fließende Kühlmittel vom in der Kältemittelrückleitung 9 fließenden Kältemittel gekühlt und verflüssigt wird. Die Kältemittelzuleitung 8 und die Kältemittelrückleitung 9 können in der Praxis mehrere Meter lang sein und werden oft schraubenlinien- förmig oder spiralförmig gewickelt, um eine gewisse Kompaktheit des Wärmestromwärmetauschers zu erreichen. Das verflüssigte Kältemittel wird über eine Drossel 10 entspannt, sodass das Kältemittel im Kühlkopf 11 verdampfen und hierdurch der Umgebung Verdampfungswärme entziehen kann. Der Kühlkopf 11 wird vom Kühlmittel durchströmt und ist daher beispielsweise als hohler Zylinder ausgeführt. Das vom Kühlkopf 11 rückfließende Kältemittel wird im Gegenstromwärmetauscher 7 in der Folge bis auf Raumtemperatur erwärmt, wobei das rückfließende Kältemittel das hinfließende Kältemittel abkühlt. Zum Abkühlen eines Objekts, das schematisch mit 12 angedeutet ist, wird dieses in Kontakt mit dem Kühlkopf 11 gebracht. Der Kühlkopf 11 besteht daher aus einem thermisch leitfähigen Material wie z.B. Kupfer. Erfindungsgemäß ist der Kühlkopf 11 über Verbindungsleitungen
13 und 14 mit dem Gegenstromwärmetauscher 7 verbunden, sodass das Kühlaggregat 15 und der in einer Vakuumkammer 16 angeordnete Kühlkopf 11 als voneinander gesonderte bauliche Einheiten realisiert werden können. Die erfindungsgemäße Ausbildung macht es erforderlich, dass das im Wärmetauscher 7 gekühlte und verflüssigte Kältemittel über die Verbindungsleitungen 13 und 14 über eine mehr oder minder lange Strecke transportiert wird, sodass eine ausreichende Isolation der Verbindungsleitungen sichergestellt werden muss.
In Fig.2 sind der Kühlkopf samt Vakuumkammer sowie die Verbindungsleitungen näher dargestellt. Es ist ersichtlich, dass die Verbindungsleitungen 13 und 14 eine Vakuumisolierung 17 aufweisen, deren evakuierter Innenraum mit dem Innenraum der Vakuum- kammer 16 in Verbindung steht. Die Verbindungsleitungen 13 und
14 können dabei als flexible Rohre ausgebildet sein, um die Handhabbarkeit zu verbessern. Die Vakuumisolierung 17 der Verbindungsleitung weist einen flexiblen Hüllschlauch 18 auf, das beispielsweise als Edelstahlwellrohr ausgebildet sein kann, das bevorzugt eine Stahlummantelung aufweist. Zwischen den Verbindungsleitungen 13 und 14, die ebenfalls eine gewellte Außenkontur aufweisen können, können Abstandhalter 19 angeordnet sein, die ebenfalls flexibel ausgeführt sein können. Die Abstandhalter 19 weisen bevorzugt eine gewellte Außenkontur auf, sodass aufgrund der dadurch erzielten Linienberührungen mit dem Hüllrohr 18 bzw. den Verbindungsleitungen 13 und 14 die Wärmeübertragung minimiert wird. Der Abstandshalter 19 dient somit der mechanischen und damit thermischen Entkopplung der Verbindungs- leitungen 13 und 14 zum Hüllrohr 18 . Er sollte ausreichend flexibel, temperaturstabil, alterungsbeständig und ausgasungsfrei sein (z.B. Teflon, Kunststoff, Edelstahl). An der Stelle 20 sind die Verbindungsleitungen 13 und 14 aus der Vakuumisolierung 17 herausgeführt. Auf geringe thermische Verluste an der Übergangsstelle 20 ist zu achten. Dies kann durch Materialien mit geringer thermischer Leitfähigkeit und einem geringen Übergangsquerschnitt erreicht werden (z.B. Edelstahl). Zusätzlich kann die Übergangsstelle 20 durch herkömmliche Materialien zur Wärmeisolierung geschützt werden (z.B. geschäumtes Polystyrol, Amaflex) .
Die Verbindungsleitungen 13 und 14 können thermisch gekoppelt sein. Die Verbindungsleitungen 13 und 14 können alternativ auch ineinander geführt werden. Je nach Querschnitt und Länge der Verbindungsleitung 13 kann das Kühlmittel eine Druckreduktion entlang der Zuleitung erfahren, sodass das Kältemittel wie bei Kompressionskältemaschinen im Kühlkopf verdampft und Wärme abgeführt wird. In diesem Fall ist die Zuleitung sogleich Drosselorgan.
Die Vakuumisolierung 17 ist mit einem Vakuumflansch 21 verbunden, durch welchen die Verbindungsleitungen 13 und 14 hindurchgeführt und dem Kühlkopf 11 zugeführt sind. Um die mechanische Stabilität des Kühlkopfs 11 zu verbessern, ist zwischen dem Kühlkopf 11 und dem Vakuumflansch 21 ein Abstandhalter 22 angeordnet, der beispielsweise aus Teflon, Keramik oder Edelstahl bestehen kann und ausgasungsbeständig, tieftemperaturgeeignet, versprödungsbeständig und alterungsbeständig sein sollte. Dabei ist auf eine ausreichende thermische Entkopplung des Abstands- halters 22 vom Vakuumflansch 21 zu achten und auf eine gute atmosphärische Durchlässigkeit zum Hüllrohr 18. In der Querschnittsansicht gemäß Fig.3 ist ersichtlich, dass der Abstandhalter 22 mehrere radiale Durchbrechungen 24 aufwiest, damit der evakuierte Innenraum der Vakuumisolierung der Verbindungsleitungen mit dem evakuierten Innenraum der Vakuumkammer 16 in leitender Verbindung steht. Ein Flansch bzw. Anschluss zum Anschließen an eine Vakuumpumpe ist mit 23 bezeichnet. Bei gleichmäßig mit Kühlmittel durchströmtem Kühlkopf und bei mechanischer Stabilisierung des Kühlkopfes mittels Abstandshalter wird der Kühlkopf äußerst vibrationsarm.
Typische Anwendungsgebiete für die Erfindung sind die Kühlung von Hochleistungslaserverstärkern sowie verschiedene Kühlaufgaben in der analytischen Chemie, auf dem Gebiet der Supraleitung, der Astronomie sowie generell in der Forschung und Entwicklung sowie in der medizinischen Diagnostik.

Claims

Patentansprüche :
1. Kühlvorrichtung mit einem geschlossenen Kühlkreislauf zum Kühlen von Objekten auf semi-kryogene bzw. kryogene Temperaturen von 230K bis 80K umfassend einen Kompressor zum Komprimieren eines Kühlmittels, dem das Kühlmittel in gasförmigem Zustand zugeführt ist und aus dem das Kühlmittel in verdichtetem gasförmigen Zustand austritt, einen dem Kompressor nachgeschal- teten Nachkühler, aus dem das Kühlmittel größtenteils gasförmig austritt, einen Gegenstromwärmetauscher umfassend eine Zu- und eine Rückleitung, die derart angeordnet sind, dass das verdichtete Kühlmittel in der Zuleitung unter Erwärmung des durch die Rückleitung fließenden entspannten Kühlmittels verflüssigbar ist, und einen mit der Zu- und der Rückleitung in Verbindung stehenden, vom Kühlmittel durchströmten Kühlkopf, in dem das Kühlmittel verdampft, dadurch gekennzeichnet, dass der Kühlkopf (11) in einer mit einer Unterdruckquelle verbindbaren Vakuumkammer (16) angeordnet ist, die über flexible Verbindungslei- tungen (13,14) mit der Zu- und der Rückleitung (8,9) des Gegenstromwärmetauschers (7) verbunden ist, sodass der Gegenstromwärmetauscher außerhalb der Vakuumkammer angeordnet ist.
2. Kühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Kompressor (1), der Nachkühler (5) und der Gegenstromwärmetauscher (7) gemeinsam in einem Standgerät angeordnet sind, dessen Gehäuse eine Durchführung für die den Gegenstromwärmetauscher (7) mit der Vakuumkammer (16) verbindenden Verbindungsleitungen (13,14) aufweist.
3. Kühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kühlkopf (11) unter Zwischenschaltung eines Drosselorgans (10) mit der Zuleitung (8) des Gegenstromwärmetauschers (7) in Verbindung steht.
4. Kühlvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die die Zuleitung (8) des Gegenstromwärmetauschers (7) mit dem Kühlkopf (11) verbindende Verbindungsleitung (13) das Dros- selorgan (10) bildet.
5. Kühlvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verbindungsleitungen (13,14) eine Vakuumisolierung (17) aufweisen.
6. Kühlvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Vakuumisolierung (17) einen die Verbindungsleitungen (13,14) unter Ausbildung eines im Wesentlichen ringförmigen Hohlraumes umgebenden Hüllschlauch (18) umfasst, wobei der Hohlraum mit einer Unterdruckquelle verbindbar ist.
7. Kühlvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Vakuumkammer (16) und die Vakuumisolierung (17) der Verbindungsleitungen (13,14) miteinander unmittelbar in Verbindung stehen und mit einer gemeinsamen Unterdruckquelle verbindbar sind.
8. Kühlvorrichtung nach Anspruch 5 , 6 oder 7 , dadurch gekennzeichnet, dass die Vakuumkammer (16) eine Durchführung für die Verbindungsleitungen (13,14) aufweist, die derart gestaltet ist, dass der Hohlraum der Vakuumisolierung (17) der Verbindungsleitungen (13,14) mit dem Innenraum der Vakuumkammer (16) in Verbindung steht.
9. Kühlvorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass im Hohlraum zwischen den Verbindungsleitungen (13,14) und dem Hüllschlauch (18) wenigstens ein Abstandhalter (19) angeordnet ist.
10. Kühlvorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Abstandhalter (19) eine gewellte Außen- und Innenkontur aufweist.
11. Kühlvorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Vakuumkammer (16) einen Anschluss (23) zum Anschließen der gemeinsamen Unterdruckquelle aufweist.
12. Kühlvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass in der Vakuumkammer (16) ein die Durchführung umgebender, insbesondere rohrförmiger Abstandhalter (22) angeordnet ist, der den Abstand zwischen dem Kühlkopf (11) und der Innenwand der Vakuumkammer (16) definiert, wobei der Abstandhalter (22) radiale Durchbrechungen (24) aufweist, sodass der Innenraum der Vakuumkammer (16) mit dem Hohlraum der Vakuumisolierung (17) der Verbindungsleitungen (13,14) in Verbindung steht .
13. Kühlvorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Kühlmittel Butan und/oder Iso-Butan und/oder Propan und/oder Propen und/oder Ethin und/oder Ethan und/oder Ethen und/oder Methan und/oder Argon und/oder Stickstoff umfasst.
EP11738939.5A 2010-07-12 2011-07-12 Kühlvorrichtung Active EP2593735B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11738939T PL2593735T3 (pl) 2010-07-12 2011-07-12 Urządzenie chłodzące

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1177/2010A AT510064B1 (de) 2010-07-12 2010-07-12 Kühlvorrichtung
PCT/AT2011/000298 WO2012006645A2 (de) 2010-07-12 2011-07-12 Kühlvorrichtung

Publications (2)

Publication Number Publication Date
EP2593735A2 true EP2593735A2 (de) 2013-05-22
EP2593735B1 EP2593735B1 (de) 2018-12-26

Family

ID=44629558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738939.5A Active EP2593735B1 (de) 2010-07-12 2011-07-12 Kühlvorrichtung

Country Status (9)

Country Link
US (1) US9851126B2 (de)
EP (1) EP2593735B1 (de)
AT (1) AT510064B1 (de)
CY (1) CY1121387T1 (de)
ES (1) ES2717632T3 (de)
HU (1) HUE041997T2 (de)
LT (1) LT2593735T (de)
PL (1) PL2593735T3 (de)
WO (1) WO2012006645A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629728A (zh) * 2012-04-05 2012-08-08 清华大学 采用柔性约束的固体激光器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397720A (en) * 1964-10-23 1968-08-20 Hitco Multiple layer insulation for a cryogenic structure
US3704391A (en) * 1970-11-10 1972-11-28 Ite Imperial Corp Cryogenic current limiting switch
NL7807184A (nl) * 1977-07-18 1979-01-22 Caloric Ges Apparatebau Werkwijze en installatie voor het transporteren van reele gassen, in het bijzonder aardgas.
JPS62224987A (ja) * 1986-03-27 1987-10-02 Mitsubishi Electric Corp 極低温冷却装置
US5060481A (en) * 1989-07-20 1991-10-29 Helix Technology Corporation Method and apparatus for controlling a cryogenic refrigeration system
US5275595A (en) * 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
JPH0765835B2 (ja) * 1993-03-18 1995-07-19 東洋酸素株式会社 横型クライオスタット
US5337572A (en) 1993-05-04 1994-08-16 Apd Cryogenics, Inc. Cryogenic refrigerator with single stage compressor
US5353603A (en) * 1994-02-23 1994-10-11 Wynn's Climate Systems, Inc. Dual refrigerant recovery apparatus with single vacuum pump and control means
US5758505C1 (en) * 1995-10-12 2001-10-30 Cryogen Inc Precooling system for joule-thomson probe
US5687574A (en) * 1996-03-14 1997-11-18 Apd Cryogenics, Inc. Throttle cycle cryopumping system for Group I gases
US5768911A (en) * 1996-11-25 1998-06-23 Dube; Serge Refrigerating compressor oil cooling probe device
JPH1163697A (ja) * 1997-08-08 1999-03-05 Sumitomo Heavy Ind Ltd 分離型極低温冷却装置
JP3446883B2 (ja) * 1998-12-25 2003-09-16 科学技術振興事業団 液体ヘリウム再凝縮装置およびその装置に使用するトランスファーライン
US7004936B2 (en) * 2000-08-09 2006-02-28 Cryocor, Inc. Refrigeration source for a cryoablation catheter
WO2002001123A1 (en) 2000-06-23 2002-01-03 Mmr Technologies, Inc. Flexible counter-flow heat exchangers
DE10210524C1 (de) * 2002-03-09 2003-08-14 Inst Luft Kaeltetech Gem Gmbh Kryogene Kühleinrichtung
US7114347B2 (en) * 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012006645A2 *

Also Published As

Publication number Publication date
ES2717632T3 (es) 2019-06-24
US20130205826A1 (en) 2013-08-15
LT2593735T (lt) 2019-03-12
PL2593735T3 (pl) 2019-06-28
AT510064B1 (de) 2012-04-15
AT510064A1 (de) 2012-01-15
EP2593735B1 (de) 2018-12-26
US9851126B2 (en) 2017-12-26
WO2012006645A2 (de) 2012-01-19
WO2012006645A3 (de) 2012-11-22
HUE041997T2 (hu) 2019-06-28
CY1121387T1 (el) 2020-05-29

Similar Documents

Publication Publication Date Title
DE69103055T2 (de) Zweistufiger Joule-Thomson-Kryostat mit Gaszufuhrsteuerungssystem und dessen Verwendungen.
DE102014011030A1 (de) Kühl- und/oder Gefriergerät
DE112009002309T5 (de) Modularer Schrank für Ultratieftemperatur-Kühlgeräte
DE1221652B (de) Unter Ausnutzung des Joule-Thomson-Effektes wirkende Vorrichtung zur Erzeugung tiefer Temperaturen
EP2132499A1 (de) Kältegerät mit parallel geschalteten kühlmittelleitungen im wärmetauscher
WO2007014617A1 (de) Gewickelter wärmetauscher mit unterschiedlichen materialien
EP2593735B1 (de) Kühlvorrichtung
DE1501715A1 (de) Einrichtung zur Verfluessigung von Gasen
EP2377596A1 (de) Kältetrockner, insbesondere Druckluftkältetrockner, sowie Wärmetauscher für einen Kältetrockner, insbesondere Druckluftkältetrockner
EP1795846B1 (de) Wärmetauscher mit einer Mehrzahl von Rohrelementen
DE102005035647B4 (de) Kryotank mit Kühlschild
EP2420772B1 (de) Kühlkopf für eine Kühlanlage
EP1457729B1 (de) Abstandshalter für ein langgestrecktes Substrat
EP2026023A1 (de) Vorrichtung und Verfahren zum Verflüssigen von Prozessmedien
DE102008019359A1 (de) Kühl- und/oder Gefriergerät mit extrudierter Kühlmittelleitung
WO2015018646A1 (de) Kältegerät mit einem verdampfer
EP1084207A1 (de) Kältemittelgemisch für einen gemisch-drossel-prozess
EP3147551A1 (de) Flexible rohrleitung
DE2852009C3 (de) Vorrichtung zum Erwärmen und/oder Verdampfen von Gasen
EP1020691A1 (de) Kapillar-Saugrohrsystem für Verdampfer-Systeme bzw. Kältekreislaufsysteme
WO2023203020A1 (de) Reinigungsgerät
DE2263771A1 (de) Kryokabel
EP3569953A1 (de) Kältekreislaufvorrichtung und verfahren zum betrieb einer kältekreislaufvorrichtung mit einem hybridverdampfer
EP4098931A1 (de) Verfahren und anlage zum abkühlen und transportieren eines fluids
DE1751424C3 (de) Verfahren und Vorrichtung zur Desorptions-Kühlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150827

17Q First examination report despatched

Effective date: 20151112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180820

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015208

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 30271

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2717632

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190624

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E041997

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015208

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1081969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230707

Year of fee payment: 13

Ref country code: IT

Payment date: 20230720

Year of fee payment: 13

Ref country code: IE

Payment date: 20230727

Year of fee payment: 13

Ref country code: GB

Payment date: 20230727

Year of fee payment: 13

Ref country code: ES

Payment date: 20230804

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230704

Year of fee payment: 13

Ref country code: CY

Payment date: 20230706

Year of fee payment: 13

Ref country code: CH

Payment date: 20230802

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230703

Year of fee payment: 13

Ref country code: PL

Payment date: 20230704

Year of fee payment: 13

Ref country code: HU

Payment date: 20230713

Year of fee payment: 13

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20230703

Year of fee payment: 13