EP2577002B1 - Method and device for storing and releasing energy - Google Patents

Method and device for storing and releasing energy Download PDF

Info

Publication number
EP2577002B1
EP2577002B1 EP11758090.2A EP11758090A EP2577002B1 EP 2577002 B1 EP2577002 B1 EP 2577002B1 EP 11758090 A EP11758090 A EP 11758090A EP 2577002 B1 EP2577002 B1 EP 2577002B1
Authority
EP
European Patent Office
Prior art keywords
water
pressurised
energy
gas
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11758090.2A
Other languages
German (de)
French (fr)
Other versions
EP2577002A2 (en
Inventor
Peter Wolf
Wolfgang Jaske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2577002A2 publication Critical patent/EP2577002A2/en
Application granted granted Critical
Publication of EP2577002B1 publication Critical patent/EP2577002B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/004Accumulation in the liquid branch of the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators

Definitions

  • the invention relates to a method for storage and release of energy, wherein the energy is stored partly in water, wherein the water is heated. Furthermore, the invention relates to a device for storing and releasing energy with a gas pressure accumulator.
  • Energy storage power plants to store excess energy to make it available at peak load times have long been known. These power plants are many different techniques for energy storage, such. As chemical storage, mechanical storage with moving flywheels, pump buzzing or compressed air storage in various designs on.
  • the waste heat of the air compressor unit is stored in a hot water storage to increase the efficiency of the turbine. Hot water is withdrawn from this hot water tank as needed and added to a partial pressure evaporator of the compressed air prior to entering the turbine for power generation.
  • the waste heat of the air compressor unit is used for energy and on the other hand, the turbine power is increased in the combustion of a fuel.
  • the hot water defined in the partial pressure evaporator must be sprayed into the compressed air to maintain the desired mixing ratio, with increasing emptying of the compressed air storage, the pressure conditions change greatly, which in turn makes the operation difficult.
  • AA-CAES Advanced Adiabatic Compressed Air Energy Storage
  • the air storage power plants are usually due to the high temperatures to solid storage, which due to the low thermal conductivity of the materials used (mainly concrete and ceramic) have a poor heat transfer performance.
  • the solids used have a significantly lower heat storage capacity than, for example, water or oil.
  • a disadvantage of this type of energy storage and operation is that the stored energy is transmitted exclusively by the medium air with its low energy storage capacity, so that for the storage of energy disproportionately large pressure vessel in the form of z.
  • the invention is based on the object to solve the problems described in the storage and removal of energy in the form of heat and pressurized gas and to provide the energy in the shortest possible time while increasing the efficiency of energy storage in adiabatic systems.
  • the energy is therefore stored primarily not in a gas pressure accumulator, but in a water pressure accumulator, the energy is stored by pressure and heat change.
  • an additional gas pressure accumulator is provided which keeps the water in the water pressure accumulator under a defined pressure, so that even when emptying the water pressure accumulator for energy release defined pressure conditions prevail and the delivery of water or steam can be done under controlled and predetermined conditions.
  • the emptying of the water pressure accumulator must not be a complete emptying, but of course, the circumstances and the requirements also be a partial emptying.
  • the presented invention offers the possibility of stabilizing the supply of energy from naturally highly fluctuating renewable energies such as e.g. Solar or wind energy. Furthermore, by parallel connection of several energy storage systems of the type according to the invention and their separate regulation, the system releases the stored energy over a wide range again and can thus be used up to the base load range.
  • renewable energies such as e.g. Solar or wind energy.
  • the energy is not stored mainly in the gaseous medium and with the aid of the resulting in the compression of the compressed air and stored waste heat, which is used in the decompression to increase the power again .
  • the waste heat produced during the compression of a gas is used as the main energy source and the compressed gas for pressure regulation and pressure bias to store the waste heat energy and to provide it again. This results in some technical and, above all, economic benefits.
  • the technical problem to be solved is that a liquid, which is kept liquid under conditions of high vapor pressure, evaporates in the reservoir as soon as the container is emptied. For evaporation enthalpy is needed and the liquid cools down. This in turn means that no removal under stable static conditions is possible.
  • the invention relates to an energy storage, preferably operated with pressurized, hot water as a storage medium, wherein the physical conditions of the water in the storage container are kept constant when emptying.
  • This is preferably achieved in that a tempered and heated gas or superheated steam is replenished demand-oriented via a valve, so that the water in the memory can not evaporate and thus the water is deprived of energy as enthalpy of vaporization.
  • the pressure-side connection from the gas pressure accumulator to the water pressure accumulator is controlled so that the emptying of the water pressure accumulator takes place at constant pressure and constant temperature in the water pressure accumulator. This is the particularly preferred embodiment.
  • An oxygen-free gas is preferably used in the gas pressure accumulator.
  • This can also be superheated steam in a particularly favorable embodiment.
  • the gas pressure accumulator may be used as a separate unit associated with the water pressure accumulator, it is preferred that the gas pressure accumulator be included in the overall process. This is preferably done in that in the energy storage, a gas compression for storing the gas in the gas pressure accumulator takes place and the heat generated thereby is used to heat the water pressure accumulator.
  • the water pressure accumulator is emptied by the delivery of steam and thus a turbine is then driven to generate electricity.
  • other power generation machines can be used.
  • the energy not usable in the turbine or another power generation machine is then used in another way, in particular in an evaporation condenser, for the treatment of raw water to desalinated water.
  • an even more extensive use of the stored energy can take place.
  • the energy of the water pressure accumulator is used to reheat the previously discharged steam after passing through the turbine, so that it is used for a second passage through the turbine.
  • the steam discharged from the water pressure accumulator is further heated before passing through the turbine with a superheater.
  • the effectiveness of the process can be further increased.
  • a portion of the compressed gas is stored in the water pressure accumulator, so that the hot water in the water pressure accumulator can not evaporate.
  • the gas in the gas pressure accumulator preferably has at least the same pressure as the water stored in the water pressure accumulator. This can effectively prevent the hot water from evaporating in the water pressure accumulator.
  • the water from the water pressure accumulator is used directly as process steam. Even so, a good use of the energy stored in the water is possible.
  • the task of storing and releasing energy with a gas pressure accumulator is achieved in that the device a water pressure accumulator and a gas pressure accumulator, that the water pressure accumulator is connected to the gas pressure accumulator so that the pressure in the water pressure accumulator is adjustable and can be emptied to release energy of the water pressure accumulator at a correspondingly adjusted pressure.
  • the settings are conveniently carried out so that the physical conditions remain constant. The water pressure accumulator is then completely emptied at constant pressure and without cooling.
  • the pressure is adjustable so that the water pressure accumulator emits water vapor during emptying.
  • the release of water vapor is not absolutely necessary since it is also possible, for example, to work with a downstream overheating, in which steam is then produced.
  • the emptying does not have to be complete, but takes place to the extent that energy, in particular in the form of water vapor, is required.
  • the gas pressure accumulator and the water pressure accumulator with a gas compressor and associated gas pressure lines form a closed gas cycle.
  • the number of gas pressure accumulator and the water pressure accumulator is preferably at least two.
  • the number of gas pressure accumulator and water pressure accumulator can be increased as desired in this closed gas cycle, so for example, to three, four or more water pressure accumulator.
  • each water pressure accumulator is assigned a separate gas pressure accumulator.
  • the water pressure accumulator is connected via a steam line with a power generation unit, in particular a turbine or piston engine, wherein in the steam line preferably a steam control valve is arranged, with which the steam pressure is adjusted for operation of the turbine.
  • the gas compressor, the cooling water pipe, the pressurized water tank, a cooling water pump, a steam line, a turbine, the evaporation condenser, a water pipe, a water tank, a water pipe and a water pump preferably form a closed water cycle.
  • the gas pressure accumulator and the water pressure accumulator are connected to each other via a gas pressure line in which a pressure control valve is arranged, with which the pressure is adjusted, with which the water pressure accumulator is biased during the emptying process.
  • the turbine is followed by an evaporation condenser in which desalinated water is obtained by direct energy transfer from the condensation of water vapor from the turbine to raw water to be evaporated by evaporation and condensation in a condenser.
  • the energy is preferably used by steam generated by the evaporation condenser for recovering desalinated water in an energy recovery cycle consisting of the condenser, the raw water pipes and the raw water circulation pump for preheating the raw water in a raw water reservoir tank.
  • a heat exchanger for cooling the raw water supplied to the condenser is still arranged in the energy recovery circuit.
  • this heat exchanger is adjustable in its performance.
  • the amount of energy needed to produce the biased gas is several orders of magnitude smaller than the enthalpy of vaporization of the water in the water pressure accumulator, so that the energy required to maintain pressure and temperature is very small relative to the stored energy.
  • the gas compressor unit is cooled with water in a refrigeration cycle, wherein the water of the refrigeration circuit absorbs and stores the heat energy accumulated in the gas compression.
  • the water is advantageously and according to the invention at temperatures just below the value for critical water (374.15 ° C, 221.2 bar) heated, with higher or lower temperatures are possible in other modes of operation of the found method.
  • the water of the cooling circuit is collected in pressure vessels, which are acted upon by a part of the compressed gas from the closed gas cycle, wherein the applied pressure of the compressed gas may be higher than the actual pressure of the hot water.
  • compressed gas at least equal but preferably higher pressure is stored in one or more accumulator and surge tanks.
  • the hot water is supplied from the pressure vessels directly or via a heater to achieve the supercritical state of a turbine or other suitable unit as steam or superheated steam and relaxed and can thereby perform work that can be used to generate electricity.
  • Known measures to increase the efficiency of a steam turbine can be used at this point.
  • the inventive method has the advantage that the temperature and the pressure of the hot water (steam), kept constant during the emptying over the entire contents of the water tank and the energy can be provided at the desired temperature and pressure level.
  • compressed gas from the surge tanks in the hot water storage tanks are routed through an adjustable pressure reducing valve set to the desired working pressure.
  • the steam is condensed in a condensation unit arranged behind the turbine or other energy conversion unit, so that a negative pressure is created and the entire working band is used and losses can be minimized.
  • the condensation unit the water and possibly entrained compressed gas is separated and recovered.
  • the condensation unit can, for. B. from one in the patent application 102008045201.7 described evaporative condenser, so that the waste heat, which is obtained on a still well usable temperature level, z. B. can be used to obtain demineralized water.
  • the water cycle which changes over the phase change from liquid to gas and vice versa, thermal and kinetic energy into mechanical, is also closed.
  • This has the advantage that as usual in steam technology unproblematic desalted water can be used.
  • the water is again supplied to one or more free storage tanks, the gas accordingly free pressure vessels, where it can be stored at any pressure depending on the version.
  • the advantage of a pressurized water storage tank is that the energy stored in the water can also be used directly in process steam and heating circuit circuits.
  • Figure I shows one of the invention presented here, according to units and components listed, exemplary arrangement of a combined storage power plant with downstream plant for generation desalinated water. Other waste heat uses than the water treatment such. B. Power - heat - coupling are also possible, but are not shown separately.
  • the single dashed line indicates the flow of energy.
  • the double line which uses a thicker and a thinner line, indicates the gas flow.
  • the triple line with the thicker line in the middle and the two outer thinner lines indicates the flow of steam.
  • the simple solid line indicates the flow of water. This applies to both FIG. 1 as well as for FIG. 2 ,
  • the gas compressor 2 is supplied with usable energy as drive power.
  • the gas compressor 2 is advantageously supplied from an energy source 1 with electrical energy.
  • the energy source 1 can also provide mechanical energy for driving the gas compressor 2.
  • the gas compressor 2 forms with the gas pressure lines 3, 6, 9, the gas pressure accumulator 4 and the water pressure accumulator 8 a gas circulation.
  • the gas compressor 2 is cooled during the gas compression process via the cooling circuit consisting of the cooling water lines 10, 11, the cooling water pump 12 and the water pressure accumulator 8, so that the resulting during the gas compression process in the gas compressor 2 heat energy dissipated and stored in the water pressure accumulator 8 in the form of hot water becomes.
  • the cooling water of the cooling circuit is heated by recording the heat energy of the gas compressor 2 to advantageously about 370 ° C, ie just below the critical value, with other operation of the system other, lower and higher temperatures are possible.
  • the gas of the gas circulation is compressed by the gas compressor 2 at least to the value corresponding to the temperature of the water of about 220 bar, with higher pressures possible and may be more advantageous under certain conditions.
  • a portion of the compressed gas is preferably in the water pressure accumulator 8, so that the water in the water pressure accumulator 8 can not evaporate and is biased.
  • the gas pressure accumulator 4 which is connected via a gas pressure line 6 to the water pressure accumulator 8.
  • a pressure control valve 7 is arranged in the gas pressure line 6 between the gas pressure accumulator 4 and the water pressure accumulator 8.
  • the pressure control valve 7 serves to adjust the gas pressure, with the gas flows from the gas pressure accumulator 4 via the gas pressure line 6 in the water pressure accumulator 8 to keep the pressure in the water pressure accumulator 8 at the desired level during emptying.
  • Other technical solutions for water gas management are also possible.
  • the hot water from the water pressure accumulator 8 is for relaxation and to perform work via a steam line 13 and a superheater 36 of an energy conversion unit, in this example, a turbine 15 is supplied.
  • a steam control valve 14 is provided, through which the steam of the hot water from the water pressure accumulator 8 is set to the desired pressure in front of the turbine 15.
  • Other measures of pressure control are also possible.
  • the turbine 15 drives a power generator 16 to generate electrical energy from the thermal energy and the mechanical energy.
  • the relaxed, cooled steam is fed downstream of the turbine 15 via a steam line 17 according to the invention to an evaporation condenser 18 or another use.
  • the steam is condensed, so that a negative pressure is created, which supports the energy conversion process.
  • the desalinated water of the cooling circuit of the gas compressor 2 is recovered as condensate.
  • the condensate is fed from the evaporation condenser 18 via a water line 19 to a water reservoir 20.
  • the water is preferably kept ready for the cooling circuit of the gas compressor 2 and pumped as needed, so in renewed compression process for energy storage, via a water pipe 21 and a feed pump 22 in the cooling circuit of the gas compressor 2, preferably in the water pressure accumulator 8.
  • the cooling and condensation of the vapor in the evaporation condenser 18 is achieved by evaporation of raw water on the evaporator side of the evaporation condenser 18 and the associated energy transfer.
  • raw water can z. B. seawater can be used, so that the evaporation condenser 18 using the waste heat from the power generation in the turbine 15 allows the treatment of seawater to service water.
  • the raw water is in the example described arrangement in Figure I held in a raw water reservoir 23 and fed via a raw water line 25 by raw water pump 24 to the evaporation condenser 18.
  • the water vapor produced by evaporation is supplied via a steam line 26 to a condenser 27, where the energy contained in the water vapor to another energy recovery cycle, consisting of the raw water pipes 28, 29, the raw water circulation pump 30 and the heat exchanger 31 as a cooler, is transmitted.
  • the raw water is preheated in the raw water reservoir 23, so that the energy loss is minimal.
  • FIG. II shows a simpler form of energy recovery and transfer to the raw water.
  • the raw water is fed directly to the condenser 27 as a cooling medium and is thus preheated for the evaporation process in the evaporation condenser 18.
  • the achievable energy recovery rate is lower than in the Figure I outlined.
  • the condensate obtained in the condenser 27 is fed via a service water pipe 32 to a service water collecting tank 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Speicherung und Abgabe von Energie, bei dem die Energie zum Teil in Wasser gespeichert wird, wobei das Wasser erhitzt wird. Weiterhin betrifft die Erfindung eine Vorrichtung zur Speicherung und Abgabe von Energie mit einem Gasdruckspeicher.The invention relates to a method for storage and release of energy, wherein the energy is stored partly in water, wherein the water is heated. Furthermore, the invention relates to a device for storing and releasing energy with a gas pressure accumulator.

Energiespeicherkraftwerke zur Speicherung überschüssiger Energie, um diese zu Spitzenlastzeiten wieder zur Verfügung zu stellen, sind seit langem bekannt. Diesen Kraftwerken liegen viele verschiedene Techniken zur Energiespeicherung, wie z. B. chemische Speicher, mechanische Speicher mit bewegten Schwungmassen, Pumphöhenspeicher oder auch Druckluftspeicher in verschiedenen Ausführungen zu Grunde.Energy storage power plants to store excess energy to make it available at peak load times have long been known. These power plants are many different techniques for energy storage, such. As chemical storage, mechanical storage with moving flywheels, pump buzzing or compressed air storage in various designs on.

Zum besseren Verständnis der hier vorgeschlagenen Erfindung sollen lediglich die verschiedenen Ausführungen der Druckluftspeicherkraftwerke zum Vergleich betrachtet werden, da zur erfindungsgemäßen Energiespeicherung ebenfalls bevorzugt die Medien Gas und Wasser verwendet werden.For a better understanding of the invention proposed here, only the various embodiments of the compressed air storage power plants are to be considered for comparison, since the media gas and water are also preferably used for energy storage according to the invention.

Druckluftspeicherkraftwerke und die damit verbundene Art des Betriebs dieser Kraftwerke sind seit langem bekannt. So werden z. B. in der Patentschrift DE 2615439 C2 und der dort zitierten Literatur Vorschläge zur Realisierung einer solchen Technik unterbreitet. In der deutschen Patentschrift DE 2615439 C2 selbst wird eine Weiterentwicklung vorgeschlagen, die unter Nutzung der Abwärme aus der Verbrennung eines Brennstoffs in einer Turbine die Energie in Form von Heißwasser oder Dampf speichert, die bei Bedarf gespeicherte Druckluft mittels der gespeicherten Wärme erhitzt, um dann mit der erhitzten Luft eine Heißluftturbine anzutreiben, die die mittels Druckluft gespeicherte Energie wieder in Strom umwandelt.Compressed air storage power plants and the associated type of operation of these power plants have long been known. So z. B. in the patent DE 2615439 C2 and submit to the literature quoted there proposals for the realization of such a technique. In the German patent DE 2615439 C2 Even a further development is proposed, which uses the waste heat from the combustion of a fuel in a turbine, the energy stored in the form of hot water or steam, which heats stored on demand compressed air by means of the stored heat, and then to drive with the heated air, a hot air turbine, which converts the energy stored by compressed air back into electricity.

In einer weiteren Weiterentwicklung wie in DE 4427987 beschrieben, wird zur Steigerung des Wirkungsgrads der Turbine die Abwärme der Luftverdichtereinheit in einem Heisswasserspeicher gespeichert. Aus diesem Heißwasserspeicher wird bei Bedarf heißes Wasser entnommen und einem Partialdruckverdampfer der komprimierten Druckluft vor dem Eintritt in die Turbine zur Stromerzeugung zugesetzt. Dadurch wird zum einen die Abwärme der Luftverdichtereinheit energetisch genutzt und zum anderen wird die Turbinenleistung bei der Verbrennung eines Brennstoffs erhöht. Hierfür ist allerdings ein größerer Aufwand bei der Anlagentechnik zu betreiben, da das heiße Wasser definiert im Partialdruckverdampfer in die Druckluft eingesprüht werden muss, um das gewünschte Mischungsverhältnis beizubehalten, wobei sich bei zunehmender Entleerung des Druckluftspeichers die Druckverhältnisse stark ändern, was wiederum den Betrieb erschwert.In a further development as in DE 4427987 described, the waste heat of the air compressor unit is stored in a hot water storage to increase the efficiency of the turbine. Hot water is withdrawn from this hot water tank as needed and added to a partial pressure evaporator of the compressed air prior to entering the turbine for power generation. As a result, on the one hand the waste heat of the air compressor unit is used for energy and on the other hand, the turbine power is increased in the combustion of a fuel. For this purpose, however, a greater effort to operate in the system technology, since the hot water defined in the partial pressure evaporator must be sprayed into the compressed air to maintain the desired mixing ratio, with increasing emptying of the compressed air storage, the pressure conditions change greatly, which in turn makes the operation difficult.

In einer Weiterentwicklung, beispielsweise in der Projektbeschreibung "Entwicklung und Untersuchung eines neuartigen Konzeptes zur Großtechnischen Speicherung elektrischer Energie mittels Druckluft- und Wärmespeicherung: "Isobares GuD-Druckluftspeicherkraftwerk mit Wärmespeicher Isobaric Adiabatic Compressed Air Energy Storage Combine Cycle (ISACOAST-CC)" der technischen Universität Braunschweig wird mittels eines Wasserreservoirs, das oberhalb des Druckluftspeichers angeordnet ist, während des Entleerungsvorgangs Wasser in den Druckluftspeicher eingelassen um sein Volumen zu verringern, so dass der Druck der Druckluft zumindest für einen längeren Zeitraum konstant gehalten wird. Nachteilig hierbei sind der erhöhte Leistungsaufwand zur Bewegung des Wassers und der enorme Speicherplatzbedarf für das Wasser. Diese Techniken sind allesamt unter dem Oberbegriff CAES (Compressed Air Energy Storage) bekannt.In a further development, for example in the project description "Development and investigation of a novel concept for the large-scale storage of electrical energy by means of compressed air and heat storage:" Isobares GuD compressed air storage power plant with heat storage Isobaric Adiabatic Compressed Air Energy Storage Combine Cycle (ISACOAST-CC) "of the technical university Braunschweig is by means of a water reservoir, which is arranged above the compressed air reservoir, admitted during the drainage process water in the compressed air reservoir to reduce its volume, so that the pressure of the compressed air is kept constant at least for a longer period of time A disadvantage of this is the increased power expenditure for movement of water and the enormous storage space needed for the water.These techniques are all known under the generic term CAES (Compressed Air Energy Storage).

In den letzten Jahren wurde verstärkt auf dem Gebiet der adiabaten Druckluftspeicherung unter dem Oberbegriff AA-CAES (Advanced Adiabatic Compressed Air Energy Storage) geforscht. Bei der Druckluftspeicherung mittels AA-CAES Verfahren wird die bei der Komprimierung der Druckluft anfallende Abwärme in Wärmespeichern verschiedener Bauart und unterschiedlicher flüssiger oder fester Speichermedien gespeichert. Dadurch kann bei gleich bleibendem Speichervolumen und gleichem Druck mehr Luft gespeichert werden. Bei der Entnahme der Druckluft wird diese zur Verhinderung einer Abkühlung direkt oder mittels Wärmetauscher mit der zuvor getrennt gespeicherten Abwärme erhitzt. Die vorgewärmte Druckluft wird dann zur Stromerzeugung einer Druckluftturbine zugeführt. Durch diese Technik kann der Wirkungsgrad der Energiespeicherung auf ca. 70 % gegenüber ca. 40 % bei nichtadiabater Speicherung erhöht werden. Hierfür sind allerdings Luftverdichteranlagen erforderlich, die bei hohen Temperaturen von ca. 700 °C stabil arbeiten können und Speicher die große Mengen Wärme bei hohen Temperaturen von z. B. 650°C speichern und bei Bedarf auch schnell genug wieder abgeben können. In den Patentanmeldungen DE 102006022783 , DE 102008047557 und DE 102009036550 sind solche Wärmespeicher beschrieben.In recent years, research into the field of adiabatic compressed air storage has increasingly been conducted under the generic term AA-CAES (Advanced Adiabatic Compressed Air Energy Storage). In compressed air storage using the AA-CAES process, the waste heat generated during compression of the compressed air is stored in heat accumulators of various types and different liquid or solid storage media. As a result, more air can be stored at the same storage volume and pressure. When removing the compressed air, this is heated to prevent cooling directly or by means of heat exchangers with the previously stored separately stored waste heat. The preheated compressed air is then fed to power generation of a compressed air turbine. This technique can increase the efficiency of energy storage to about 70% compared to about 40% for non-adiabatic storage. For this purpose, however, air compressor systems are required, which can work stably at high temperatures of about 700 ° C and memory large amounts of heat at high temperatures of z. B. 650 ° C store and if necessary, can give away quickly enough again. In the patent applications DE 102006022783 . DE 102008047557 and DE 102009036550 such heat storage are described.

Bei den Luftspeicherkraftwerken handelt es sich in der Regel auf Grund der hohen Temperaturen um Feststoffspeicher, die bedingt durch die geringe Wärmeleitfähigkeit der eingesetzten Materialien (hauptsächlich Beton und Keramik) eine schlechte Wärmetransferleistung aufweisen. Gleichzeitig haben die verwendeten Feststoffe eine deutlich geringere Wärmespeicherkapazität als beispielsweise Wasser oder Öl. Nachteilig bei dieser Art der Energiespeicherung und Betriebsweise ist, dass die gespeicherte Energie ausschließlich durch das Medium Luft mit seiner geringen Energiespeicherkapazität übertragen wird, so dass zur Speicherung der Energie unverhältnismäßig große Druckbehälter in Form von z. B. unterirdischen Salzkavernen vorzuhalten sind. Die Ablufttemperatur der entspannten Druckluft nach der Energieabgabe in z. B. einer Druckluftturbine und das große Volumen der entspannten Luft erschweren oder verhindern eine weitere Nutzung der restlichen Energie auf niedrigerem Niveau. Auch der Wirkungsgrad steigernde Einsatz eines Kondensators, der Druckluftturbine nachgeschaltet, ist nicht möglich. Ein weiterer Nachteil der adiabaten Druckluftspeicherkraftwerke ist, dass sie verfahrens- und kostenbedingt nur als Spitzenlastkraftwerke fungieren können, da ein gleichzeitiges Be- und Entladen der Energiespeicher nicht oder nur unter erheblichem Aufwand möglich ist.The air storage power plants are usually due to the high temperatures to solid storage, which due to the low thermal conductivity of the materials used (mainly concrete and ceramic) have a poor heat transfer performance. At the same time, the solids used have a significantly lower heat storage capacity than, for example, water or oil. A disadvantage of this type of energy storage and operation is that the stored energy is transmitted exclusively by the medium air with its low energy storage capacity, so that for the storage of energy disproportionately large pressure vessel in the form of z. B. underground salt caverns vorzuhalten. The exhaust air temperature of the relaxed compressed air after the energy release in z. As a compressed air turbine and the large volume of the expanded air difficult or prevent further use of the remaining energy at a lower level. The efficiency-increasing use of a capacitor downstream of the compressed air turbine is not possible. Another disadvantage of the adiabatic compressed air storage power plants is that they can act procedurally and cost only as peak load power plants, since a simultaneous loading and unloading of energy storage is not possible or only with considerable effort.

Der Erfindung liegt die Aufgabe zu Grunde, die beschriebenen Probleme bei der Speicherung und Entnahme von Energie in Form von Wärme und unter Druck stehendem Gas zu lösen und die Energie in kürzester Zeit bei gleichzeitiger Erhöhung des Wirkungsgrads der Energiespeicherung in adiabaten Systemen zur Verfügung zu stellen.The invention is based on the object to solve the problems described in the storage and removal of energy in the form of heat and pressurized gas and to provide the energy in the shortest possible time while increasing the efficiency of energy storage in adiabatic systems.

Die Lösung dieser Aufgabe erfolgt mit einem Verfahren mit den Merkmalen des Patentanspruchs 1. Vorrichtungsmäßig wird die Aufgabe mit einer Vorrichtung mit den Merkmalen des Patentanspruchs 13 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The solution of this object is achieved by a method having the features of claim 1. In terms of apparatus, the object is achieved with a device having the features of claim 13. Preferred embodiments of the invention are specified in the subclaims.

Bei einem Verfahren zur Speicherung und Abgabe von Energie, bei dem die Energie zum Teil in Wasser gespeichert wird, wobei das Wasser erhitzt wird, ist erfindungswesentlich vorgesehen, dass die Energie in einem Wasserdruckspeicher gespeichert wird, und dass die Abgabe der Energie durch Entleerung des Wasserdruckspeichers erfolgt, wobei auf das Wasser im Wasserdruckspeicher durch eine druckseitige Verbindung mit einem Gasdruckspeicher ein Druck ausgeübt wird.In a method for storing and releasing energy in which the energy is stored partly in water, wherein the water is heated, it is essential to the invention that the energy is stored in a water pressure accumulator, and that the release of energy by emptying the water pressure accumulator takes place, wherein a pressure is exerted on the water in the water pressure accumulator by a pressure-side connection with a gas pressure accumulator.

Die Energie wird also primär nicht in einem Gasdruckspeicher, sondern in einem Wasserdruckspeicher gespeichert, wobei die Energie durch Druck- und Wärmeänderung gespeichert wird. Erfindungsgemäß wird ein zusätzlicher Gasdruckspeicher bereitgestellt, der das Wasser im Wasserdruckspeicher unter einem definierten Druck hält, so dass auch bei Entleerung des Wasserdruckspeichers zur Energieabgabe definierte Druckverhältnisse herrschen und die Abgabe des Wassers bzw. von Wasserdampf bei kontrollierten und vorgegebenen Bedingungen erfolgen kann. Die Entleerung des Wasserdruckspeichers muss dabei keine vollständige Entleerung sein, sondern kann natürlich den Umständen und den Erfordernissen entsprechend auch eine teilweise Entleerung sein.The energy is therefore stored primarily not in a gas pressure accumulator, but in a water pressure accumulator, the energy is stored by pressure and heat change. According to the invention, an additional gas pressure accumulator is provided which keeps the water in the water pressure accumulator under a defined pressure, so that even when emptying the water pressure accumulator for energy release defined pressure conditions prevail and the delivery of water or steam can be done under controlled and predetermined conditions. The emptying of the water pressure accumulator must not be a complete emptying, but of course, the circumstances and the requirements also be a partial emptying.

Zusätzlich bietet die vorgestellte Erfindung die Möglichkeit der Verstetigung der Energiebereitstellung aus naturgemäß stark schwankenden erneuerbaren Energien wie z.B. Sonnen- oder Windenergie. Des Weiteren wird durch Parallelschaltung mehrerer Energiespeichersysteme der erfindungsgemäßen Art und deren getrennter Regelung das System über einen weiten Bereich die gespeicherte Energie wieder abgegeben und kann so bis in den Grundlastbereich genutzt werden.In addition, the presented invention offers the possibility of stabilizing the supply of energy from naturally highly fluctuating renewable energies such as e.g. Solar or wind energy. Furthermore, by parallel connection of several energy storage systems of the type according to the invention and their separate regulation, the system releases the stored energy over a wide range again and can thus be used up to the base load range.

Grundsätzlich unterschiedlich zu allen anderen vorgestellten Systemen zur Energiespeicherung mittels Druckluft oder eines anderen Gases wird erfindungsgemäß die Energie nicht hauptsächlich im gasförmigen Medium gespeichert und unter Zuhilfenahme der bei der Komprimierung der Druckluft anfallenden und gespeicherten Abwärme, die bei der Dekompression zur Leistungserhöhung genutzt wird, wieder abgegeben. Bei der vorgestellten Erfindung wird die bei der Kompression eines Gases anfallende Abwärme als Hauptenergiequelle und das komprimierte Gas zur Druckregelung und Druckvorspannung die Abwärmeenergie zu speichern und wieder bereit zu stellen, genutzt. Hieraus ergeben sich einige technische und vor allem auch wirtschaftliche Vorteile.In principle, different from all other presented systems for energy storage by means of compressed air or another gas according to the invention, the energy is not stored mainly in the gaseous medium and with the aid of the resulting in the compression of the compressed air and stored waste heat, which is used in the decompression to increase the power again , In the present invention, the waste heat produced during the compression of a gas is used as the main energy source and the compressed gas for pressure regulation and pressure bias to store the waste heat energy and to provide it again. This results in some technical and, above all, economic benefits.

Das dabei zu lösende technische Problem liegt darin, dass eine Flüssigkeit, die unter Bedingungen eines hohen Dampfdrucks flüssig gehalten wird, im Vorratsbehälter verdampft, sobald der Behälter entleert wird. Dafür wird Verdampfungsenthalpie benötigt und die Flüssigkeit kühlt ab. Dies hat wiederum zur Folge, dass keine Entnahme unter stabilen statischen Bedingungen möglich ist.The technical problem to be solved is that a liquid, which is kept liquid under conditions of high vapor pressure, evaporates in the reservoir as soon as the container is emptied. For evaporation enthalpy is needed and the liquid cools down. This in turn means that no removal under stable static conditions is possible.

Gegenstand der Erfindung ist ein Energiespeicher, bevorzugt mit unter Druck stehendem, heißen Wasser als Speichermedium betrieben, bei dem die physikalischen Verhältnisse des Wassers im Speicherbehälter bei Entleerung konstant gehalten werden. Dies wird bevorzugt dadurch erreicht, dass ein vorgespanntes und erhitztes Gas oder auch überhitzter Wasserdampf über ein Ventil bedarfsorientiert nachgeliefert wird, so dass das Wasser im Speicher nicht Verdampfen kann und somit dem Wasser keine Energie als Verdampfungsenthalpie entzogen wird. Bevorzugt ist die druckseitige Verbindung vom Gasdruckspeicher zum Wasserdruckspeicher so gesteuert, dass die Entleerung des Wasserdruckspeichers bei konstantem Druck und gleichbleibender Temperatur im Wasserdruckspeicher erfolgt. Dies ist die besonders bevorzugte Ausgestaltung. Denkbar sind auch schwankende oder abweichende Verhältnisse, bei denen jedoch gemäß obiger Ausführungen insbesondere beachtet wird, dass das Wasser im Speicher nicht verdampfen kann. Bevorzugt wird dabei in dem Gasdruckspeicher ein sauerstofffreies Gas verwendet. Dies kann in einer besonders günstigen Ausgestaltung auch überhitzter Wasserdampf sein. Auch wenn der Gasdruckspeicher als eine getrennte Einheit verwendet werden kann, der dem Wasserdruckspeicher zugeordnet wird, ist es bevorzugt, wenn der Gasdruckspeicher in das gesamte Verfahren einbezogen wird. Bevorzugt erfolgt dies dadurch, dass bei der Energiespeicherung eine Gaskompression zur Speicherung des Gases in dem Gasdruckspeicher erfolgt und die dabei erzeugte Wärme zur Aufheizung des Wasserdruckspeichers verwendet wird.The invention relates to an energy storage, preferably operated with pressurized, hot water as a storage medium, wherein the physical conditions of the water in the storage container are kept constant when emptying. This is preferably achieved in that a tempered and heated gas or superheated steam is replenished demand-oriented via a valve, so that the water in the memory can not evaporate and thus the water is deprived of energy as enthalpy of vaporization. Preferably, the pressure-side connection from the gas pressure accumulator to the water pressure accumulator is controlled so that the emptying of the water pressure accumulator takes place at constant pressure and constant temperature in the water pressure accumulator. This is the particularly preferred embodiment. Also conceivable are fluctuating or deviating conditions, in which, however, according to the above statements, particular attention is paid to the fact that the water in the reservoir can not evaporate. An oxygen-free gas is preferably used in the gas pressure accumulator. This can also be superheated steam in a particularly favorable embodiment. Although the gas pressure accumulator may be used as a separate unit associated with the water pressure accumulator, it is preferred that the gas pressure accumulator be included in the overall process. This is preferably done in that in the energy storage, a gas compression for storing the gas in the gas pressure accumulator takes place and the heat generated thereby is used to heat the water pressure accumulator.

In einer bevorzugten Weiterbildung der Erfindung wird der Wasserdruckspeicher durch Abgabe von Dampf entleert und damit wird dann eine Turbine zur Erzeugung von Strom angetrieben. Neben Turbinen können auch andere Energieerzeugungsmaschinen verwendet werden. Bevorzugt ist es dabei, dass die in der Turbine oder einer anderen Energieerzeugungsmaschine nicht nutzbare Energie dann auf andere Weise genutzt wird, insbesondere in einem Verdunstungskondensator zur Aufbereitung von Rohwasser zu entsalztem Wasser genutzt wird. So kann eine noch weitergehende Nutzung der gespeicherten Energie erfolgen. Weiterhin ist es eine bevorzugte Ausgestaltung, wenn die Energie des Wasserdruckspeichers dazu genutzt wird, den vorher abgegebenen Dampf nach dem Durchlauf durch die Turbine wieder zu erwärmen, damit dieser für einen zweiten Durchgang durch die Turbine verwendet wird. Weiterhin ist es eine günstige Ausgestaltung der Erfindung, dass der aus dem Wasserdruckspeicher abgegebene Dampf vor dem Durchgang durch die Turbine mit einem Überhitzer weiter erhitzt wird. So kann die Effektivität des Verfahrens weiter gesteigert werden.In a preferred embodiment of the invention, the water pressure accumulator is emptied by the delivery of steam and thus a turbine is then driven to generate electricity. In addition to turbines, other power generation machines can be used. In this case, it is preferred that the energy not usable in the turbine or another power generation machine is then used in another way, in particular in an evaporation condenser, for the treatment of raw water to desalinated water. Thus, an even more extensive use of the stored energy can take place. Furthermore, it is a preferred embodiment, when the energy of the water pressure accumulator is used to reheat the previously discharged steam after passing through the turbine, so that it is used for a second passage through the turbine. Furthermore, it is a favorable embodiment of the invention that the steam discharged from the water pressure accumulator is further heated before passing through the turbine with a superheater. Thus, the effectiveness of the process can be further increased.

In einer anderen Weiterentwicklung der Erfindung wird ein Teil des komprimierten Gases im Wasserdruckspeicher gespeichert, so dass das heiße Wasser im Wasserdruckspeicher nicht verdampfen kann. Bevorzugt weist das Gas im Gasdruckspeicher mindestens den gleichen Druck wie das im Wasserdruckspeicher gespeicherte Wasser auf. Dadurch kann effektiv verhindert werden, dass das heiße Wasser im Wasserdruckspeicher verdampft.In another development of the invention, a portion of the compressed gas is stored in the water pressure accumulator, so that the hot water in the water pressure accumulator can not evaporate. The gas in the gas pressure accumulator preferably has at least the same pressure as the water stored in the water pressure accumulator. This can effectively prevent the hot water from evaporating in the water pressure accumulator.

In einer anderen bevorzugten Ausgestaltung der Erfindung wird das Wasser aus dem Wasserdruckspeicher direkt als Prozessdampf verwendet. Auch so ist eine gute Nutzung der in dem Wasser gespeicherten Energie möglich.In another preferred embodiment of the invention, the water from the water pressure accumulator is used directly as process steam. Even so, a good use of the energy stored in the water is possible.

Vorrichtungsmäßig wird die Aufgabe zur Speicherung und Abgabe von Energie mit einem Gasdruckspeicher dadurch gelöst, dass die Vorrichtung einen Wasserdruckspeicher und einen Gasdruckspeicher aufweist, dass der Wasserdruckspeicher derart mit dem Gasdruckspeicher verbunden ist, dass der Druck im Wasserdruckspeicher einstellbar ist und zur Energieabgabe der Wasserdruckspeicher bei entsprechend eingestelltem Druck entleerbar ist. Die Einstellungen erfolgen dabei günstigerweise so, dass die physikalischen Bedingungen konstant bleiben. Der Wasserdruckspeicher ist dann bei konstantem Druck und ohne Abkühlung auch vollständig entleerbar.In terms of apparatus, the task of storing and releasing energy with a gas pressure accumulator is achieved in that the device a water pressure accumulator and a gas pressure accumulator, that the water pressure accumulator is connected to the gas pressure accumulator so that the pressure in the water pressure accumulator is adjustable and can be emptied to release energy of the water pressure accumulator at a correspondingly adjusted pressure. The settings are conveniently carried out so that the physical conditions remain constant. The water pressure accumulator is then completely emptied at constant pressure and without cooling.

Insbesondere ist der Druck so einstellbar, dass der Wasserdruckspeicher bei der Entleerung Wasserdampf abgibt. Die Abgabe von Wasserdampf ist dabei jedoch nicht zwingend erforderlich, da auch beispielsweise mit einer nachgeschalteten Überhitzung gearbeitet werden kann, bei der dann die Dampferzeugung erfolgt. Die Entleerung muss dabei nicht vollständig sein, sondern erfolgt jeweils in dem Umfang, in dem Energie, insbesondere in Form von Wasserdampf, benötigt wird. Bevorzugt bilden der Gasdruckspeicher und der Wasserdruckspeicher mit einem Gasverdichter und zugehörigen Gasdruckleitungen einen geschlossenen Gaskreislauf. Die Zahl der Gasdruckspeicher und der Wasserdruckspeicher beträgt dabei bevorzugt mindestens zwei. Die Zahl der Gasdruckspeicher und Wasserdruckspeicher kann in diesem geschlossenen Gaskreislauf beliebig weiter erhöht werden, also z.B. auch auf drei, vier oder mehr Wasserdruckspeicher. Bevorzugt ist dabei jedem Wasserdruckspeicher ein separater Gasdruckspeicher zugeordnet. Es ist jedoch auch denkbar, eine Vielzahl von Wasserdruckspeichern mit einem Gasdruckspeicher zu verbinden und die Gasbeaufschlagung bzw. Druckbeaufschlagung durch das vorgespannte Gas des Gasdruckspeichers in allen Wasserdruckspeichern vorzunehmen. In einer anderen bevorzugten Ausgestaltung der Erfindung ist der Wasserdruckspeicher über eine Dampfleitung mit einer Energieerzeugungseinheit, insbesondere einer Turbine oder Kolbenmaschine verbunden, wobei in der Dampfleitung bevorzugt ein Dampfregelventil angeordnet ist, mit dem der Dampfdruck zum Betrieb der Turbine eingestellt wird. Der Gasverdichter, die Kühlwasserleitung, der Druckwasserspeicher, eine Kühlwasserpumpe, eine Dampfleitung, eine Turbine, der Verdunstungskondensator, eine Wasserleitung, ein Wasserspeicher, eine Wasserleitung und eine Wasserpumpe bilden bevorzugt einen geschlossenen Wasserkreislauf. In einer weiteren bevorzugten Ausgestaltung sind der Gasdruckspeicher und der Wasserdruckspeicher über eine Gasdruckleitung miteinander verbunden, in der ein Druckregelventil angeordnet ist, mit dem der Druck eingestellt wird, mit dem der Wasserdruckspeicher während des Entleerungsvorgangs vorgespannt wird.In particular, the pressure is adjustable so that the water pressure accumulator emits water vapor during emptying. However, the release of water vapor is not absolutely necessary since it is also possible, for example, to work with a downstream overheating, in which steam is then produced. The emptying does not have to be complete, but takes place to the extent that energy, in particular in the form of water vapor, is required. Preferably, the gas pressure accumulator and the water pressure accumulator with a gas compressor and associated gas pressure lines form a closed gas cycle. The number of gas pressure accumulator and the water pressure accumulator is preferably at least two. The number of gas pressure accumulator and water pressure accumulator can be increased as desired in this closed gas cycle, so for example, to three, four or more water pressure accumulator. Preferably, each water pressure accumulator is assigned a separate gas pressure accumulator. However, it is also conceivable to connect a plurality of water pressure accumulators with a gas pressure accumulator and make the gas or pressurization by the prestressed gas of the gas pressure accumulator in all water pressure accumulators. In another preferred embodiment of the invention, the water pressure accumulator is connected via a steam line with a power generation unit, in particular a turbine or piston engine, wherein in the steam line preferably a steam control valve is arranged, with which the steam pressure is adjusted for operation of the turbine. The gas compressor, the cooling water pipe, the pressurized water tank, a cooling water pump, a steam line, a turbine, the evaporation condenser, a water pipe, a water tank, a water pipe and a water pump preferably form a closed water cycle. In a further preferred embodiment, the gas pressure accumulator and the water pressure accumulator are connected to each other via a gas pressure line in which a pressure control valve is arranged, with which the pressure is adjusted, with which the water pressure accumulator is biased during the emptying process.

In einer anderen besonders bevorzugten Ausgestaltung der Erfindung ist der Turbine ein Verdunstungskondensator nachgeordnet, in dem durch direkte Energieübertragung aus der Kondensation des Wasserdampfs aus der Turbine auf zu verdunstendes Rohwasser mittels Verdunstung und Kondensation in einem Kondensator entsalztes Wasser gewonnen wird. Dabei wird die Energie bevorzugt aus durch den Verdunstungskondensator erzeugten Wasserdampf zur Gewinnung entsalzten Wassers in einem Energierückgewinnungskreislauf, bestehend aus dem Kondensator, den Rohwasserleitungen und der Rohwasserkreislaufpumpe zur Vorheizung des Rohwassers in einem Rohwasservorlagenbehälter genutzt. Dadurch kann die vorhandene Energie besonders effektiv genutzt werden. Günstigerweise ist dabei noch im Energierückgewinnungskreislauf ein Wärmetauscher zur Kühlung des dem Kondensator zugeführten Rohwassers angeordnet. Bevorzugt ist dieser Wärmetauscher in seiner Leistung regelbar.In another particularly preferred embodiment of the invention, the turbine is followed by an evaporation condenser in which desalinated water is obtained by direct energy transfer from the condensation of water vapor from the turbine to raw water to be evaporated by evaporation and condensation in a condenser. In this case, the energy is preferably used by steam generated by the evaporation condenser for recovering desalinated water in an energy recovery cycle consisting of the condenser, the raw water pipes and the raw water circulation pump for preheating the raw water in a raw water reservoir tank. This allows the existing energy to be used particularly effectively. Conveniently, a heat exchanger for cooling the raw water supplied to the condenser is still arranged in the energy recovery circuit. Preferably, this heat exchanger is adjustable in its performance.

Die Energiemenge, die zur Herstellung des vorgespannten Gases benötigt wird, ist um mehrere Größenordnungen kleiner als die Verdampfungsenthalpie des Wassers im Wasserdruckspeicher, so dass der Energiebedarf zur Druck- und Temperatur-Aufrechterhaltung sehr gering im Verhältnis zur gespeicherten Energie ist.The amount of energy needed to produce the biased gas is several orders of magnitude smaller than the enthalpy of vaporization of the water in the water pressure accumulator, so that the energy required to maintain pressure and temperature is very small relative to the stored energy.

Die Zuführungsform und die Zuführungsart der Energie ist nicht Gegenstand der Erfindung.The form of delivery and the mode of delivery of the energy are not the subject of the invention.

In einer Ausführung der vorliegenden Erfindung wird überschüssiger Strom oder eine andere Energieform, die geeignet ist eine z. B. Gasverdichtereinheit anzutreiben, in der Gasverdichtereinheit zur Komprimierung eines Gases in einem geschlossenen Gaskreislauf genutzt. Die Gasverdichtereinheit wird mit Wasser in einem Kühlkreislauf gekühlt, wobei das Wasser des Kühlkreislaufs die Wärmeenergie, die bei der Gaskompression anfällt, aufnimmt und speichert. Das Wasser wird dabei vorteilhaft und erfindungsgemäß auf Temperaturen bis knapp unter dem Wert für kritisches Wasser (374,15°C, 221,2 bar) erhitzt, wobei höhere oder tiefere Temperaturen bei anderer Betriebsweise des gefundenen Verfahrens möglich sind. Das Wasser des Kühlkreislaufs wird in Druckbehältern gesammelt, die mit einem Teil des komprimierten Gases aus dem geschlossenen Gaskreislauf beaufschlagt werden, wobei der beaufschlagte Druck des komprimierten Gases höher sein kann als der eigentliche Druck des heißen Wassers. Zusätzlich wird komprimiertes Gas mit mindestens gleichem aber bevorzugt höherem Druck in einem oder mehreren Druckspeicher- und Ausgleichsbehältern gespeichert. Zur Energieentnahme und Energieumwandlung wird das heiße Wasser aus den Druckbehältern direkt oder über einen Erhitzer zur Erreichung des überkritischen Zustands dann einer Turbine oder einem anderen geeigneten Aggregat als Dampf oder überhitzter Dampf zugeführt und entspannt und kann dadurch Arbeit verrichten, die zur Stromerzeugung genutzt werden kann. Bekannte Maßnahmen zur Erhöhung des Wirkungsgrads einer Dampfturbine können an dieser Stelle genutzt werden.In one embodiment of the present invention, excess power or other form of energy suitable for e.g. B. Gas compressor unit to be used in the gas compressor unit for compressing a gas in a closed gas cycle. The gas compressor unit is cooled with water in a refrigeration cycle, wherein the water of the refrigeration circuit absorbs and stores the heat energy accumulated in the gas compression. The water is advantageously and according to the invention at temperatures just below the value for critical water (374.15 ° C, 221.2 bar) heated, with higher or lower temperatures are possible in other modes of operation of the found method. The water of the cooling circuit is collected in pressure vessels, which are acted upon by a part of the compressed gas from the closed gas cycle, wherein the applied pressure of the compressed gas may be higher than the actual pressure of the hot water. Additionally, compressed gas at least equal but preferably higher pressure is stored in one or more accumulator and surge tanks. For energy extraction and energy conversion, the hot water is supplied from the pressure vessels directly or via a heater to achieve the supercritical state of a turbine or other suitable unit as steam or superheated steam and relaxed and can thereby perform work that can be used to generate electricity. Known measures to increase the efficiency of a steam turbine can be used at this point.

Das erfindungsgemäße Verfahren bietet den Vorteil, dass die Temperatur und der Druck des heißen Wassers (Dampf), während der Entleerung über den kompletten inhalt der Wasserbehälter konstant gehalten und die Energie auf gewünschtem Temperatur- und Druckniveau bereitgestellt werden kann. Hierzu wird zusätzlich zum bereits in den Wasser (Dampf) beinhaltenden Speicherbehältern vorhandenen komprimierten Gas, während des Entleerungsvorgangs komprimiertes Gas aus den Druckausgleichsbehältern in die Speicherbehälter für heißes Wasser über ein regelbares Druckminderungsventil, das auf den gewünschten Arbeitsdruck eingestellt ist, geleitet. Der Wasserdampf wird erfindungsgemäß in einer, hinter der Turbine oder anderen Energiewandlungseinheit angeordneten Kondensationseinheit kondensiert, so dass ein Unterdruck entsteht und das gesamte Arbeitsband genutzt und Verluste minimiert werden können. In der Kondensationseinheit wird das Wasser und ggf. mitgeschlepptes Druckgas getrennt und zurück gewonnen. Die Kondensationseinheit kann z. B. aus einem in der Patentanmeldung 102008045201.7 beschriebenen Verdunstungskondensator bestehen, so dass die Abwärme, die auf einem noch gut nutzbarem Temperaturniveau anfällt, z. B. zur Gewinnung entsalzten Wassers genutzt werden kann.The inventive method has the advantage that the temperature and the pressure of the hot water (steam), kept constant during the emptying over the entire contents of the water tank and the energy can be provided at the desired temperature and pressure level. For this purpose, in addition to the already contained in the water (steam) storage tanks compressed gas, during the discharge process compressed gas from the surge tanks in the hot water storage tanks are routed through an adjustable pressure reducing valve set to the desired working pressure. According to the invention, the steam is condensed in a condensation unit arranged behind the turbine or other energy conversion unit, so that a negative pressure is created and the entire working band is used and losses can be minimized. In the condensation unit, the water and possibly entrained compressed gas is separated and recovered. The condensation unit can, for. B. from one in the patent application 102008045201.7 described evaporative condenser, so that the waste heat, which is obtained on a still well usable temperature level, z. B. can be used to obtain demineralized water.

Der Wasserkreislauf, der über den Phasenwechsel von flüssig zu gasförmig und umgekehrt thermische und kinetische Energie in mechanische umwandelt, ist ebenfalls geschlossen. Das hat den Vorteil, dass wie in der Dampftechnik üblich unproblematisches entsalztes Wasser verwendet werden kann. Das Wasser wird wieder einem oder mehreren freien Speicherbehältern, das Gas dementsprechend freien Druckbehältern zugeführt, wo es je nach Ausführung bei beliebigem Druck gespeichert werden kann. Der Vorteil eines Druckwasserspeichers liegt darin, dass die im Wasser gespeicherte Energie auch in Prozessdampf- und Heizkreiskreisläufen direkt verwendet werden kann.The water cycle, which changes over the phase change from liquid to gas and vice versa, thermal and kinetic energy into mechanical, is also closed. This has the advantage that as usual in steam technology unproblematic desalted water can be used. The water is again supplied to one or more free storage tanks, the gas accordingly free pressure vessels, where it can be stored at any pressure depending on the version. The advantage of a pressurized water storage tank is that the energy stored in the water can also be used directly in process steam and heating circuit circuits.

Da die Fähigkeit des Wassers Energie zu speichern, wesentlich größer ist als die der Luft, können bei der erfindungsgemäßen Anordnung für die gleiche Speicherkapazität sehr viel kleinere Speicher eingesetzt werden als z. B. bei herkömmlichen Druckluftspeichern.Since the ability of the water to store energy is much greater than that of the air, in the inventive arrangement for the same storage capacity much smaller memory can be used as z. B. in conventional compressed air storage.

Figur I zeigt einer der hier vorgestellten Erfindung entsprechenden, nach Aggregaten und Bauteilen aufgelisteten, beispielhaften Anordnung eines kombinierten Speicherkraftwerks mit nach geschalteter Anlage zur Erzeugung entsalzten Wassers. Andere Abwärmenutzungen als die Wasseraufbereitung wie z. B. Kraft - Wärme - Kopplung sind auch möglich, werden aber nicht gesondert dargestellt. Figure I shows one of the invention presented here, according to units and components listed, exemplary arrangement of a combined storage power plant with downstream plant for generation desalinated water. Other waste heat uses than the water treatment such. B. Power - heat - coupling are also possible, but are not shown separately.

Die einfach gestrichelte Linie bezeichnet den Energiefluss. Die doppelte Linie, bei der eine dickere und eine dünnere Linie verwendet wird, bezeichnet den Gasfluss. Die dreifache Linie, mit der dickeren Linie in der Mitte und den beiden äußeren dünneren Linien bezeichnet den Fluss von Dampf. Die einfach durchgezogene Linie bezeichnet den Fluss von Wasser. Dies gilt sowohl für Figur 1 als auch für Figur 2.The single dashed line indicates the flow of energy. The double line, which uses a thicker and a thinner line, indicates the gas flow. The triple line, with the thicker line in the middle and the two outer thinner lines indicates the flow of steam. The simple solid line indicates the flow of water. This applies to both FIG. 1 as well as for FIG. 2 ,

Aus einer Energiequelle 1 wird dem Gasverdichter 2 als Antriebsleistung nutzbare Energie zugeführt. Der Gasverdichter 2 wird dabei vorteilhaft aus einer Energiequelle 1 mit elektrischer Energie versorgt. Die Energiequelle 1 kann aber auch mechanische Energie zum Antrieb des Gasverdichters 2 bereitstellen. Der Gasverdichter 2 bildet mit den Gasdruckleitungen 3, 6, 9, dem Gasdruckspeicher 4 und dem Wasserdruckspeicher 8 einen Gaskreislauf. Der Gasverdichter 2 wird während des Gasverdichtungsvorgangs über den Kühlkreislauf, bestehend aus den Kühlwasserleitungen 10, 11, der Kühlwasserpumpe 12 und dem Wasserdruckspeicher 8 gekühlt, so dass die während des Gasverdichtungsvorgangs im Gasverdichter 2 entstehende Wärmeenergie abgeführt und im Wasserdruckspeicher 8 in Form von heißem Wasser gespeichert wird. Das Kühlwasser des Kühlkreislaufs wird durch die Aufnahme der Wärmeenergie des Gasverdichters 2 bis auf vorteilhaft ca. 370 °C, also knapp unterhalb des kritischen Wertes erhitzt, wobei bei anderer Betriebsweise des Systems andere, niedrigere und höhere Temperaturen möglich sind. Das Gas des Gaskreislaufs wird durch den Gasverdichter 2 mindestens auf den der Temperatur des Wassers entsprechenden Wert von ca. 220 bar verdichtet, wobei höhere Drücke möglich und unter bestimmten Bedingungen vorteilhafter sein können. Ein Teil des verdichteten Gases befindet sich bevorzugt im Wasserdruckspeicher 8, so dass das Wasser im Wasserdruckspeicher 8 nicht verdampfen kann und vorgespannt wird. Der größte Teil des verdichteten Gases des Gaskreislaufs befindet sich im Gasdruckspeicher 4, der über eine Gasdruckleitung 6 mit dem Wasserdruckspeicher 8 verbunden ist. In der Gasdruckleitung 6 zwischen dem Gasdruckspeicher 4 und dem Wasserdruckspeicher 8 ist ein Druckregelventil 7 angeordnet. Das Druckregelventil 7 dient der Einstellung des Gasdrucks, mit dem Gas aus dem Gasdruckspeicher 4 über die Gasdruckleitung 6 in den Wasserdruckspeicher 8 nachströmt, um den Druck im Wasserdruckspeicher 8 bei der Entleerung auf gewünschtem Niveau konstant zu halten. Andere technische Lösungen zum Wasser -Gasmanagement sind auch möglich.From an energy source 1, the gas compressor 2 is supplied with usable energy as drive power. The gas compressor 2 is advantageously supplied from an energy source 1 with electrical energy. The energy source 1 can also provide mechanical energy for driving the gas compressor 2. The gas compressor 2 forms with the gas pressure lines 3, 6, 9, the gas pressure accumulator 4 and the water pressure accumulator 8 a gas circulation. The gas compressor 2 is cooled during the gas compression process via the cooling circuit consisting of the cooling water lines 10, 11, the cooling water pump 12 and the water pressure accumulator 8, so that the resulting during the gas compression process in the gas compressor 2 heat energy dissipated and stored in the water pressure accumulator 8 in the form of hot water becomes. The cooling water of the cooling circuit is heated by recording the heat energy of the gas compressor 2 to advantageously about 370 ° C, ie just below the critical value, with other operation of the system other, lower and higher temperatures are possible. The gas of the gas circulation is compressed by the gas compressor 2 at least to the value corresponding to the temperature of the water of about 220 bar, with higher pressures possible and may be more advantageous under certain conditions. A portion of the compressed gas is preferably in the water pressure accumulator 8, so that the water in the water pressure accumulator 8 can not evaporate and is biased. Of the most of the compressed gas of the gas cycle is located in the gas pressure accumulator 4, which is connected via a gas pressure line 6 to the water pressure accumulator 8. In the gas pressure line 6 between the gas pressure accumulator 4 and the water pressure accumulator 8, a pressure control valve 7 is arranged. The pressure control valve 7 serves to adjust the gas pressure, with the gas flows from the gas pressure accumulator 4 via the gas pressure line 6 in the water pressure accumulator 8 to keep the pressure in the water pressure accumulator 8 at the desired level during emptying. Other technical solutions for water gas management are also possible.

Das heiße Wasser aus dem Wasserdruckspeicher 8 wird zum Entspannen und zur Verrichtung von Arbeit über eine Dampfleitung 13 und einem Überhitzer 36 einer Energiewandlungseinheit, in diesem Beispiel einer Turbine 15 zugeführt. In der Dampfleitung 13 ist ein Dampfregelventil 14 vorgesehen, durch das der Dampf des heißen Wassers aus dem Wasserdruckspeicher 8 auf den gewünschten Druck vor der Turbine 15 eingestellt wird. Andere Maßnahmen der Druckregelung sind auch möglich. Die Turbine 15 treibt einen Stromgenerator 16 an, um aus der Wärmeenergie und der mechanischen Energie elektrische Energie zu erzeugen. Der entspannte, abgekühlte Dampf wird der Turbine 15 nachgeschaltet über eine Dampfleitung 17 erfindungsgemäß einem Verdunstungskondensator 18 oder einer anderen Nutzung zugeführt. In dem Verdunstungskondensator 18 wird der Dampf kondensiert, so dass ein Unterdruck entsteht, der den Energiewandlungsprozess unterstützt. Gleichzeitig wird das entsalzte Wasser des Kühlkreislaufs des Gasverdichters 2 als Kondensat zurück gewonnen. Das Kondensat wird aus dem Verdunstungskondensator 18 über eine Wasserleitung 19 einem Wasserspeicher 20 zugeführt. Hier wird bevorzugt das Wasser für den Kühlkreislauf des Gasverdichters 2 bereit gehalten und bei Bedarf, also bei erneutem Verdichtungsvorgang zur Energiespeicherung, über eine Wasserleitung 21 und einer Speisepumpe 22 in den Kühlkreislauf des Gasverdichters 2, bevorzugt in den Wasserdruckspeicher 8 gepumpt. Eventuell beim Entspannungsvorgang aus dem Wasserdruckspeicher 8 über die Turbine 15 und dem Verdunstungskondensator 18 ggf. mitgeschlepptes Gas aus dem Gaskreislauf wird im Wasserspeicher 20 vom Wasser getrennt und über eine Saugleitung 34 und einem Ventil 35 dem Gasverdichter 2 wieder zur Verfügung gestellt.The hot water from the water pressure accumulator 8 is for relaxation and to perform work via a steam line 13 and a superheater 36 of an energy conversion unit, in this example, a turbine 15 is supplied. In the steam line 13, a steam control valve 14 is provided, through which the steam of the hot water from the water pressure accumulator 8 is set to the desired pressure in front of the turbine 15. Other measures of pressure control are also possible. The turbine 15 drives a power generator 16 to generate electrical energy from the thermal energy and the mechanical energy. The relaxed, cooled steam is fed downstream of the turbine 15 via a steam line 17 according to the invention to an evaporation condenser 18 or another use. In the evaporation condenser 18, the steam is condensed, so that a negative pressure is created, which supports the energy conversion process. At the same time the desalinated water of the cooling circuit of the gas compressor 2 is recovered as condensate. The condensate is fed from the evaporation condenser 18 via a water line 19 to a water reservoir 20. Here, the water is preferably kept ready for the cooling circuit of the gas compressor 2 and pumped as needed, so in renewed compression process for energy storage, via a water pipe 21 and a feed pump 22 in the cooling circuit of the gas compressor 2, preferably in the water pressure accumulator 8. Eventually during the relaxation process from the water pressure accumulator 8 via the turbine 15 and the evaporation condenser 18 possibly entrained gas from the gas cycle is separated from the water in the water tank 20 and made available to the gas compressor 2 via a suction line 34 and a valve 35 again.

Die Abkühlung und Kondensation des Dampfes im Verdunstungskondensator 18 wird durch Verdunstung von Rohwasser auf der Verdunsterseite des Verdunstungskondensators 18 und der damit verbundenen Energieübertragung erreicht. Als Rohwasser kann z. B. Meerwasser genutzt werden, so dass der Verdunstungskondensator 18 unter Nutzung der Abwärme aus der Stromerzeugung in der Turbine 15 die Aufbereitung von Meerwasser zu Brauchwasser ermöglicht. Das Rohwasser wird in der beispielhaft beschriebenen Anordnung in Figur I in einem Rohwasservorlagebehälter 23 vorgehalten und über eine Rohwasserleitung 25 mittels Rohwasserpumpe 24 dem Verdunstungskondensator 18 zugeführt. Der durch Verdunstung entstehende Wasserdampf wird über eine Wasserdampfleitung 26 einem Kondensator 27 zugeführt, wo die im Wasserdampf enthaltene Energie an einen weiteren Energierückgewinnungskreislauf, bestehend aus den Rohwasserleitungen 28, 29, der Rohwasserkreislaufpumpe 30 und dem Wärmetauscher 31 als Kühler, übertragen wird. Über diesen Energierückgewinnungskreislauf wird das Rohwasser im Rohwasservorlagebehälter 23 vorgewärmt, so dass der Energieverlust minimal ist.The cooling and condensation of the vapor in the evaporation condenser 18 is achieved by evaporation of raw water on the evaporator side of the evaporation condenser 18 and the associated energy transfer. As raw water can z. B. seawater can be used, so that the evaporation condenser 18 using the waste heat from the power generation in the turbine 15 allows the treatment of seawater to service water. The raw water is in the example described arrangement in Figure I held in a raw water reservoir 23 and fed via a raw water line 25 by raw water pump 24 to the evaporation condenser 18. The water vapor produced by evaporation is supplied via a steam line 26 to a condenser 27, where the energy contained in the water vapor to another energy recovery cycle, consisting of the raw water pipes 28, 29, the raw water circulation pump 30 and the heat exchanger 31 as a cooler, is transmitted. About this energy recovery cycle, the raw water is preheated in the raw water reservoir 23, so that the energy loss is minimal.

In Figur II ist eine einfachere Form der Energierückgewinnung und Übertragung auf das Rohwasser dargestellt. Das Rohwasser wird direkt dem Kondensator 27 als Kühlmedium zugeführt und wird so für den Verdunstungsprozess im Verdunstungskondensator 18 vorgewärmt. Bei dieser Variante ist der erreichbare Energierückgewinnungsgrad geringer als bei der in Figur I skizzierten.FIG. II shows a simpler form of energy recovery and transfer to the raw water. The raw water is fed directly to the condenser 27 as a cooling medium and is thus preheated for the evaporation process in the evaporation condenser 18. In this variant, the achievable energy recovery rate is lower than in the Figure I outlined.

Das im Kondensator 27 gewonnene Kondensat wird über eine Brauchwasserleitung 32 einem Brauchwassersammelbehälter 33 zugeführt.The condensate obtained in the condenser 27 is fed via a service water pipe 32 to a service water collecting tank 33.

Claims (17)

  1. A method for storing and releasing energy, in which the energy in part is stored in water, wherein the water is heated,
    characterised in that,
    the energy is primarily stored in a pressurised water reservoir (8),
    in that the release of the energy takes place by the evacuation of the pressurised water reservoir (8) with the release of steam, wherein
    a pressure is exerted onto the water in the pressurised water reservoir (8) through a pressure-side connection with a pressurised gas reservoir (4), such that the water in the pressurised water reservoir cannot vaporise.
  2. The method according to claim 1, characterised in that the pressure-side connection from the pressurised gas reservoir (4) to the pressurised water reservoir (8) is controlled such that the evacuation of the pressurised water reservoir (8) takes place over the whole of the evacuation procedure at constant pressure and constant temperature in the pressurised water reservoir (8).
  3. The method according to any one of the preceding claims, characterised in that in the course of energy storage a compression of the gas takes place for purposes of storing the gas in the pressurised gas reservoir (4), and the heat thereby generated is used for purposes of heating the pressurised water reservoir (8).
  4. The method according to any one of the preceding claims, characterised in that the pressurised water reservoir (8) is evacuated by the release of steam, and an energy generation unit (15) is driven by means of the latter for purposes of generating power.
  5. The method according to claim 4, characterised in that the energy that is still contained in the water, in particular in the steam, after passing through the turbine, is utilised in an evaporative condenser for purposes of processing untreated water into desalinated water.
  6. The method according to one of the claims 4 or 5, characterised in that the energy of the pressurised water reservoir (8) is used for purposes of reheating the steam previously released after passing through the turbine (15), such that the latter is used for a second pass through the turbine (15).
  7. The method according to one of the claims 4 to 6, characterised in that the steam released from the pressurised water reservoir (8) is reheated with a superheater (36) before the pass through the turbine (15).
  8. The method according to any one of the preceding claims, characterised in that the gas in the pressurised gas reservoir (4) has at least the same pressure as the water stored in the pressurised water reservoir (8).
  9. The method according to any one of the preceding claims, characterised in that the water from the pressurised water reservoir (8) is used directly as process steam.
  10. A device for storing and releasing energy, with a pressurised gas reservoir (4), and a pressurised water reservoir, characterised in that
    the pressurised water reservoir (8) is connected with the pressurised gas reservoir (4) such that the pressure in the pressurised water reservoir (8) can be adjusted, and in that for purposes of energy release the pressurised water reservoir (8) can be evacuated at an appropriately adjusted pressure with the release of steam.
  11. The device according to claim 10, characterised in that the pressurised gas reservoir (4) and the pressurised water reservoir (8) form a closed gas circuit with a gas compressor (2) and related pressurised gas lines (3, 6, 9).
  12. The device according to one of the claims 10 or 11, characterised in that the pressurised water reservoir (8) is connected via a steam line (13) with a turbine (15), wherein in the steam line (13) is arranged a steam control valve (14), with which the steam pressure is adjusted for purposes of operating the turbine.
  13. The device according to one of the claims 10 to 12, characterised in that the gas compressor (2), a plurality of cooling water lines (10, 11), the pressurised water reservoir (8), a cooling water pump (12), a steam line (13), a turbine (15), a steam line (17), an evaporative condenser (18), a water line (19), a water reservoir (20), a water line (21), and a water pump (22) form a closed water circuit.
  14. The device according to one of the claims 10 to 13, characterised in that the pressurised gas reservoir (4) and the pressurised water reservoir (8) are connected with one another via a pressurised gas line (6) in which is arranged a pressure control valve (7), with which the pressure is adjusted, with which the pressurised water reservoir (8) is preloaded during the discharge procedure.
  15. The device according to one of the claims 10 to 14, characterised in that downstream of the turbine (15) is arranged an evaporative condenser (18), in which desalinated water is obtained, by the direct transfer of energy from the condensation of the steam from the turbine (15) to the untreated water to be evaporated, by means of evaporation and condensation in a condenser (27).
  16. The device according to claim 15, characterised in that an untreated water collecting tank (23) is assigned to an energy recovery circuit, consisting of the condenser (27), the untreated water lines (28, 29), and the untreated water circuit pump (30), for purposes of preheating the untreated water, wherein in the energy recovery circuit the energy from steam generated by means of the evaporative condenser is utilised for purposes of obtaining desalinated water.
  17. The device according to claim 16, characterised in that a heat exchanger (31) is arranged in the energy recovery circuit for purposes of cooling the untreated water supplied to the condenser (27), wherein the performance of the heat exchanger (31) can be regulated.
EP11758090.2A 2010-05-31 2011-05-31 Method and device for storing and releasing energy Active EP2577002B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010022088 DE102010022088A1 (en) 2010-05-31 2010-05-31 Base load energy storage power plant with process water treatment
PCT/DE2011/001177 WO2012048670A2 (en) 2010-05-31 2011-05-31 Method and device for storing and releasing energy

Publications (2)

Publication Number Publication Date
EP2577002A2 EP2577002A2 (en) 2013-04-10
EP2577002B1 true EP2577002B1 (en) 2016-10-19

Family

ID=44653919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11758090.2A Active EP2577002B1 (en) 2010-05-31 2011-05-31 Method and device for storing and releasing energy

Country Status (4)

Country Link
EP (1) EP2577002B1 (en)
DE (1) DE102010022088A1 (en)
PL (1) PL2577002T3 (en)
WO (1) WO2012048670A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2859196B1 (en) * 2012-06-11 2018-05-16 Arano-Trade Ltd. Energy transformation system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939356A (en) * 1974-07-24 1976-02-17 General Public Utilities Corporation Hydro-air storage electrical generation system
DE2536447B2 (en) * 1974-09-16 1977-09-01 Gebruder Sulzer AG, Winterthur (Schweiz) SYSTEM FOR STORAGE OF ENERGY OF AN ELECTRICAL SUPPLY NETWORK USING COMPRESSED AIR AND FOR RECYCLING IT
CH593423A5 (en) 1976-03-15 1977-11-30 Bbc Brown Boveri & Cie
DE2649136A1 (en) * 1976-10-28 1978-05-11 Wolf Klemm Driving hydraulic motor by liq. - where liq. is pressurised in vessel by gas pumped or admitted to vessel from gas bottle via valve
CH640601A5 (en) * 1979-09-07 1984-01-13 Bbc Brown Boveri & Cie COMPRESSED AIR STORAGE SYSTEM WITH WATER RESERVE FOR GAS TURBINE POWER PLANTS.
DE3002892A1 (en) * 1979-12-05 1981-06-11 BBC AG Brown, Boveri & Cie., Baden, Aargau COMPRESSED AIR STORAGE SYSTEM WITH WATER RESERVE FOR GAS TURBINE POWER PLANTS
CH659855A5 (en) * 1981-11-16 1987-02-27 Bbc Brown Boveri & Cie AIR STORAGE POWER PLANT.
DE4427987A1 (en) 1994-08-08 1996-02-15 Abb Management Ag Air storage turbine using waste heat steam raising equipment
DE19909611C1 (en) * 1999-03-05 2000-04-06 Gerhard Stock Gas expander for hot water engine has container with sliding piston and hot and cold water injection nozzle in top
DE102006022783A1 (en) 2006-05-16 2007-05-03 Ed. Züblin Ag Large volume heat accumulator for heat accumulator for again warming of compressed air, consists of two caps placed over one another which possess form of perpendicularly standing pipe with rounded caps at ends
KR100792790B1 (en) * 2006-08-21 2008-01-10 한국기계연구원 Compressed air energy storage generation system and power generation method using it
ITBZ20070049A1 (en) * 2007-11-23 2009-05-24 Walu Tec Di Christoph Schwienb EQUIPMENT FOR RECOVERY OF ENERGY FROM MOTOR MACHINES
DE102008047557A1 (en) 2008-05-30 2009-12-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Device and system for storing thermal energy
DE102009036550A1 (en) 2008-11-01 2010-05-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Device for intermediate storage of thermal energy, comprises a first part area that is traversed by a tube guide system, and a second part area in which a thermal unloadable and reloadable storage medium is arranged

Also Published As

Publication number Publication date
WO2012048670A3 (en) 2014-06-12
WO2012048670A2 (en) 2012-04-19
PL2577002T3 (en) 2017-03-31
DE102010022088A1 (en) 2011-12-01
EP2577002A2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2812542B1 (en) Energy storage power plant and method for operating such a power plant
EP2021634B1 (en) Device and associated method for the conversion of heat energy into mechanical, electrical and/or thermal energy
DE102013009351B3 (en) Plant for recovery of energy from heat of e.g. waste incinerator, has valves which connect/disconnect vaporizer units to control flow of working fluid, to take heat from working fluid and to pass heated working fluid to workspace
DE102011108970A1 (en) Low-temperature power plant has pressure equalizing valve and control valve that are arranged on relaxation side of turbine
EP3230571B1 (en) Device and method for temporarily storing gas and heat
WO2012013289A2 (en) Method and device for storing electricity
WO2022101348A1 (en) Thermal energy store for storing electrical energy
WO2022112063A1 (en) System and method for storing and releasing electrical energy, the energy being stored as thermal energy
DE102004041108B3 (en) Organic Rankine Cycle performing device e.g. for transformation of energy, has compressor for condensator and internal heat-transfer agent for heat transfer between steam and condensation
DE102010003676A1 (en) Separator for CO2 and power plant
EP1941160A1 (en) Method and device for generating mechanical or electrical energy from heat
DE102012110579B4 (en) Plant and process for generating process steam
EP2577002B1 (en) Method and device for storing and releasing energy
EP1870646A2 (en) Method and device for recovery of condensation heat from a thermodynamic cyclical process
DE102016106733A1 (en) Method and installation for energy conversion of pressure energy into electrical energy
DE202004013299U1 (en) Installation for generation of mechanical energy with utilization of the principle of organic Rankine cycle incorporates a condensate line which branches downstream the condensate pump
DE102013210425A1 (en) Plant and process for treating water
DE102011116338B4 (en) Solar thermal power plant and method for operating a solar thermal power plant
EP2559867A1 (en) Method for generating electrical energy with a combination power plant and combination power plant and device for carrying out the method
DE102012100645B4 (en) ORC - Organic Rankine cycle
WO2008031613A2 (en) Current generation in the base load region with geothermal energy
EP2932054B1 (en) Gas turbine plant with improved flexibility
EP2951407A2 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
DE102017223705A1 (en) power plant
EP3995673B1 (en) Method and device for recovering energy from heat-conducting media

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20140612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 3/00 20060101ALI20160502BHEP

Ipc: F01K 21/04 20060101AFI20160502BHEP

Ipc: F01K 3/12 20060101ALI20160502BHEP

INTG Intention to grant announced

Effective date: 20160530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 838538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010964

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010964

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

26N No opposition filed

Effective date: 20170720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 13

Ref country code: IT

Payment date: 20230531

Year of fee payment: 13

Ref country code: FR

Payment date: 20230517

Year of fee payment: 13

Ref country code: DE

Payment date: 20230419

Year of fee payment: 13

Ref country code: CH

Payment date: 20230602

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230522

Year of fee payment: 13

Ref country code: PL

Payment date: 20230518

Year of fee payment: 13

Ref country code: AT

Payment date: 20230516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 13